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Preface

As with earlier volumes in this series, volume 41 of Handbook of Statistics
with the subtitle “Conceptual Econometrics Using R” and a companion vol-

ume 42 with the subtitle “Financial, Macro and Micro Econometrics Using

R” provide state-of-the-art information on important topics in Econometrics,

a branch of Economics concerned with quantitative methods. This handbook

covers a great many conceptual topics of practical interest to quantitative

scientists, especially in Economics and Finance.

The book has uniquely broad coverage with all chapter authors providing

practical R software tools for implementing their research results. Despite

some overlap, we divide the chapters into three parts. We list the three parts

while retaining the nine chapter numbers as:

1. Statistical Inference
(1) Jean-Marie Dufour and Julien Neves propose new simulation-based

exact finite sample inference methods implemented in their R package

MaxMC. Its toolkit includes overcoming nuisance parameters.

(2) Hrishikesh D. Vinod discusses new tools from his R package

“generalCorr” for inferring exogeneity and causal paths from passively

observed data, citing applications in diverse fields.

(3) Zifeng Zhao provides new tools for bias reduction in h-step ahead

forecast when h is large.

(4) Yong Li, Jun Yu and Tao Zeng review MCMC based frequentist infer-

ence methods which avoid using Bayes Factors.

2. Multivariate Models
(5) Peter C. B. Phillips and Chirok Han provide efficient R tools for

dynamic panel data models including difference GMM, system GMM,

and within group estimation.

(6) Wolfgang Scherrer and Manfred Deistler provide tools for avoiding

inappropriate VAR models by using multivariate ARMA and state-

space models. They consider identification issues, Hankel matrices

and reduced rank regressions.

(7) Kris Boudt, Alexios Galanos, Scott Payseur, and Eric Zivot survey

multivariate GARCH models for large data sets and outlier-robust

MGARCH and evaluations of cokurtosis and coskewness.

xiii



3. Miscellaneous Topics
(8) Joaquim Ramalho considers estimation and inference for direct and

marginal effects in regressions where the dependent variable is

restricted to the range [0,1], such as when it is a ratio.

(9) Sebastián Cano-Berlanga, Jos�e-Manuel, Gim�enez-Gómez and Cori

Vilella discuss cooperative game theory including transferable utility,

“punctual solutions,” voting power index and “claims problems” while

providing tools for sharing of benefits among interdependent (economic)

agents.

All chapters are authored by distinguished researchers. Most senior authors

have received professional honors, such as being elected “Fellows” of the

Journal of Econometrics or of the Econometric Society.
The intended audience is not only students, teachers, and researchers in

various industries and sciences but also profit and nonprofit business decision

makers and government policymakers. The wide variety of applications of

statistical methodology should be of interest to researchers in all quantitative

fields in both natural and social sciences and engineering.

A unique feature of this volume is that all included chapters provide not

only a review of the newer theory but also describe ways of implementing

authors’ new ideas using free R software. Also, the writing style is user-

friendly and includes descriptions and links to resources for practical imple-

mentations on a free open source R, allowing readers to not only use the tools

on their own data but also providing a jump start for understanding the state of

the art. Open source allows reproducible research and opportunity for anyone

to extend the toolbox.

According to a usage dating back to Victorian England, the phrase “The

three R’s” describes basic skills taught in schools: Reading, wRiting, and aRith-

metic. In the 21st century, we should add R software as the fourth R, which is

fast becoming an equally basic skill. Unfortunately, some economists are

continuing to rely on expensive copyrighted commercial software which not

only needs expensive updating but also hides many internal computational algo-

rithms from critical public evaluation for robustness, speed, and accuracy. Users

of open source software routinely work with the latest updated versions. This

saves time, resources, and effort needed in deciding whether the improvements

in the latest update are worth the price and arranging to pay for it.

In teaching undergraduate statistics classes one of us (Vinod) introduces stu-

dents to R as a convenient calculator, where they can name numerical vector or

matrix objects for easy manipulation by name. Starting with the convenience of

not having to use Normal or Binomial tables, students begin to appreciate and

enjoy the enormous power of R for learning and analyzing quantitative data.

There are over 14,686 free R packages, contributed and maintained by

researchers from around the world, which can be searched at https://mran.

microsoft.com/packages. In short, R has a huge and powerful ecosystem.
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Students soon learn that if a statistical technique exists, there is most likely an

R package which has already implemented it. The plotting functions in R are

excellent and easy to use, with the ability to create animations, interactive

charts and superimpose statistical information on geographical maps, including

the ability to indicate dynamically changing facts. R is able to work with other

programming languages including Fortran, Java, C++, and others. R is accessi-

ble in the sense that one does not need to have formal training in computer

science to write R programs for general use.

For reviewing the papers we thank: Peter R. Hansen (University of North

Carolina at Chapel Hill), Shujie Ma (University of California, Riverside),

Aaron Smith (University of California, Davis), Tayyeb Shabbir (California

State University Dominguez Hills, Carson, CA), Andreas Bauer (IMF Senior

Resident Representative, New Delhi, India), Jos�e Dias Curto (ISCTE - Instituto

Universitario de Lisboa, Portugal), Ruey S. Tsay (Booth School of Business,

University of Chicago), Alessandro Magrini (University of Florence, Italy),

Jae H. Kim (La Trobe University, Australia), In Choi (Sogang University,

Korea), among others.

A common thread in all chapters in this handbook is that all authors of this

volume have taken extra effort to make their research implementable in R. We

are grateful to our authors as well as many anonymous researchers who have

refereed the papers and made valuable suggestions to improve the chapters.

We also thank Peter Llewellyn, Kari Naveen, Vignesh Tamilselvvanignesh,

Arni S.R. Srinivasa Rao, Sam Mahfoudh, Alina Cleju, and others connected

with Elsevier’s editorial offices.

Hrishikesh D. Vinod

C.R. Rao
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Chapter 1

Finite-sample inference
and nonstandard asymptotics
with Monte Carlo tests and R

Jean-Marie Dufoura,* and Julien Nevesb
aDepartment of Economics, McGill University, Montr�eal, QC, Canada
bCornell University, Ithaca, NY, United States
*Corresponding author: e-mail: jean-marie.dufour@mcgill.ca

Abstract
We review the concept of Monte Carlo test as a simulation-based inference procedure

which allows one to construct tests with provably exact levels in situations where the

distribution of a test statistic is difficult to establish but can be simulated. The number

of simulations required can be extremely small, as low as 19 to run a test with level

0.05. We discuss three extensions of the method: (1) a randomized tie-breaking tech-

nique which allows one to use test statistics with discrete null distributions, without fur-

ther information on the mass points; (2) an extension (maximized Monte Carlo tests)

which yields provably valid tests when the test statistic depends on a (finite) number

of nuisance parameters; (3) an asymptotic version which allows one to get asymptoti-

cally valid tests without any need to establish an asymptotic distribution. As the method

is computer intensive, we describe an R package (MaxMC) that allows one to imple-

ment this type of procedure. A number of special cases and applications are discussed.

Keywords: R, Exact inference, Test level, Test size, Discrete distribution, Randomized

tie-breaker, Nonstandard asymptotic distribution, Monte Carlo test, Maximized Monte

Carlo, MMC, Simulated annealing, Genetic algorithm, Particle swarm, Bootstrap,

Kolmogorov–Smirnov, Behrens–Fisher, Autoregressive model, Singular Wald test

1 Introduction

One of the central problems of statistical methodology consists in finding criti-

cal values for performing tests and building confidence sets. However, it is

often the case that analytical formulae are not available. The dominant model

where finite-sample methods are available is the classical linear model with

fixed (or strictly exogenous) regressors and independently identically distributed

Handbook of Statistics, Vol. 41. https://doi.org/10.1016/bs.host.2019.05.001
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(i.i.d.) Gaussian disturbances. As a result, statistical inference is typically based

on large-sample approximations—which may be quite unreliable in finite

samples—or bootstrapping. The bootstrap usually provides improvements over

the use of limiting distributions, but it is also based on large-sample arguments

through a demonstration that the asymptotic distribution of test statistic and the

bootstrap distribution are identical in large samples; for reviews, see Efron

(1982), Beran and Ducharme (1991), Efron and Tibshirani (1993), Hall

(1992), Jeong and Maddala (1993), Vinod (1993), Shao and Tu (1995),

Davison and Hinkley (1997), Chernick (1999), and Horowitz (1997).

In this paper, we focus on the method of Monte Carlo tests, which can

deliver tests whose size (or level) is controlled in finite samples, without the

need to establish analytically the distribution of the test statistic. The number

of simulations required can be extremely small, as low as 19 to run a test with

level 0.05. This feature allows one to use computationally expensive test sta-

tistics. We also emphasize that the approach can yield asymptotically valid

tests in many situations where the limiting distribution of the test statistic is

nonstandard or may not exist.

The technique of Monte Carlo tests actually predates bootstrapping and was

originally suggested by Dwass (1957) in order to implement permutation tests.

Another variant was later proposed by Barnard (1963), Hope (1968), and

Birnbaum (1974), in view of performing tests based on test statistics with con-

tinuous distributions under the null hypothesis. Other early work on this method

is available in Besag and Diggle (1977), Marriott (1979), Edgington (1980),

Foutz (1980), Ripley (1981), Edwards (1985), J€ockel (1986), and Edwards

and Berry (1987). These results typically rely on special assumptions on the

form of the distributions of the test statistics (continuous or discrete in a specific

way) and do not allow for the presence of nuisance parameters. A general

theory of Monte Carlo tests is presented in Dufour (2006) and includes three

main extensions. For other discussions and applications, see Kiviet and

Dufour (1997), Dufour et al. (1998, 2003, 2010), Dufour and Kiviet (1998),

Dufour and Khalaf (2001, 2002), Dufour and Farhat (2002), Dufour and

Jouini (2006), Beaulieu et al. (2007, 2013), and Coudin and Dufour (2009).

The first extension allows for pivotal (nuisance-parameter-free) test statis-

tics with otherwise arbitrary distributions—which may be continuous, discrete,

or mixed (e.g., mixtures of continuous and discrete distributions). This is done

in particular by exploiting a technique of randomized ranks for breaking ties in

rank tests (see Hájek, 1969), which is simple to implement with exchangeable

replications [as opposed to independent and identically distributed (i.i.d.) repli-

cations]. No information on the probabilities of mass points (if any) is needed.

The second extension involves test statistics whose null distribution depends

on nuisance parameters. This is done by considering a simulated p -value func-

tion which depends on nuisance parameters (under the null hypothesis). Maxi-

mizing the latter with respect to the nuisance parameters then yields a test with

provably exact level, irrespective of the sample size and the number replications

used. We call such tests maximized Monte Carlo (MMC) tests.
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The third extension is a simplified version of the latter where the nuisance-

parameter space is replaced by a consistent set estimator of the nuisance

parameters. Such set estimators can be built as soon as a consistent estimate

is available, but also in other cases (e.g., when certain parameters are not

identifiable under the null hypothesis). There is no need to establish the form

of the asymptotic distribution or even its existence. The property of finite-

sample validity is lost in this case, but the procedure remains asymptotically

valid even in the presence of discontinuities in the asymptotic distribution.

This includes in particular autoregressive models with unit (and explosive)

roots and models where parameters may not be identified under the null

hypothesis.

The method of Monte Carlo tests is intrinsically a simulation-based

approach, so the use of computer-based simulation-based techniques is

required. Further, MMC procedures maximize simulated p-value functions

which are not smooth functions, because they are flat almost everywhere

with jumps where they are not differentiable. In this chapter, we describe

how this can be done using an R package called MaxMC (Dufour and

Neves, 2019).

In Section 2, we review the theory of Monte Carlo tests for pivotal test sta-

tistics, in particular how finite-sample tests based on statistics with general

(possibly discrete) distributions can be performed using this method. In

Section 3, we describe an algorithm which implements it in R. Section 4

discusses the application of Monte Carlo tests to the problem of testing the

equality of two distribution functions using a permutational Kolmogorov–
Smirnov two-sample test, so that the null distribution is not continuous. In

Section 5, we present the theory of maximized Monte Carlo tests from a

finite-sample viewpoint, and in Section 6, we consider MMC tests based

on consistent set estimators. The implementation of MMC tests in R is

discussed in Section 7. Two examples are considered in Section 8: (1) the clas-

sic Behrens–Fisher problem of comparing the means of normal samples with

different variances and (2) inference on an AR(p) model. Section 9 concludes.

2 Monte Carlo tests with continuous and discrete test statistics

In this section, we consider a test statistic S :¼ S(X(n)) for a null hypothesis H0

such that the distribution of S under H0 is uniquely determined, i.e., it does not

involve unknown parameters. X(n) represents a sample of n observations. This

distribution may not be easy to compute analytically, but can be simulated.

We will now describe from a theoretical viewpoint how an exact test of H0

based on S can be performed.

Let us denote by S0 the statistic computed using the sample data, and by

S1, …, SN a set of N i.i.d. (or exchangeable) replications of S under H0. We

consider critical regions of the form

RðcÞ¼ SðXðnÞÞ � c
� �

(1)

Finite-sample inference and nonstandard asymptotics Chapter 1 5



where c is a critical value for a test with level α, i.e.

½SðXðnÞÞ � c|H0� � α: (2)

While useful, this separation of the sample space into a critical region and an

acceptance region, requires one to find an appropriate critical value c, which
furthermore only delivers a test at a given level α. It is often easier and more

informative to consider the survival function

G½x� :¼½SðXðnÞÞ � x|H0� (3)

of the test statistic under H0. If we evaluate this function at x ¼ S0, this yields
the p-value

pðS0Þ¼G½S0� (4)

and the critical region

pðS0Þ� α : (5)

It is then easy to see that

½pðS0Þ� α|H0� � α (6)

with equality when the distribution of S0 is continuous under H0.

In many statistical and econometric applications, no analytical form is

available to compute the p-value p(S0). The principle of Monte Carlo tests

consists in replacing the function p(x) by a simulation-based analog p̂NðxÞ.
Though this may appear to be only an approximation—which may lead to

level distortions—it turns out that replacing p(x) by p̂NðxÞ does allow one

to perfectly control the level of the test in many situations of interest. Let

S1, …, SN be i.i.d. replications of the test statistic under the null hypothesis,

and set

p̂NðS0Þ¼
NĜNðS0Þ+ 1

N + 1
(7)

where ĜNðxÞ is the sample survival function defined as

ĜNðxÞ¼ 1

N

XN
j¼1

I½0,∞ÞðSj� xÞ where IAðzÞ¼ 1 if z2A
0 if z 62 A

�
: (8)

If α is the desired level of the test, we reject the null hypothesis if p̂NðS0Þ� α.
When the distribution of S is continuous under the null hypothesis and α(N + 1)

is an integer, we have

H0
½p̂NðS0Þ� α� ¼ α , (9)
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which means that the critical region

p̂NðS0Þ� α (10)

has exact size α; for a proof, see Dufour (2006).

In addition, NĜNðxÞ is the number of simulated values of S larger than x.

Therefore, we have the following relationship between ĜNðS0Þ and R̂NðS0Þ,
the sample rank of S0 in S0, S1, …, SN:

ĜNðS0Þ¼N + 1� R̂NðS0Þ
N

: (11)

We can thus rewrite the simulated p-value

p̂NðS0Þ¼
N + 2� R̂NðS0Þ

N + 1
: (12)

However, if the test statistic follows a discrete distribution, the presence of

ties in the sample can modify the distribution of p̂NðS0Þ in a way that depends

on the (unknown) distribution of the test statistic. Accordingly, Dufour (2006)

provides a way of “breaking” ties by using randomly generated points drawn

from a uniform distribution. Let U0,U1,…, UN �i:i:d Uð0,1Þ. Then for every Si,
we can create a pair (Si, Ui). Using the following lexicographic ordering

ðSi,UiÞ� ðS0,U0Þ,fSi < S0 or ðSi ¼ S0 and Ui �U0Þg , (13)

we can order the (Si, Ui) pairs and define the randomized rank for S0 as

eRNðS0Þ¼
XN
i¼0

I½ðSi,UiÞ� ðS0,U0Þ� (14)

where I[(Si, Ui) � (S0, U0)] ¼ 1 when the condition is satisfied, and I[(Si, Ui)

� (S0, U0)] ¼ 0 otherwise. This yields a modified simulated p-value where

R̂NðS0Þ is replaced by eRNðS0Þ, i.e.,

epNðS0Þ¼N + 2� eRNðS0Þ
N + 1

: (15)

If α(N + 1) is an integer, the test is exact as with nonrandomized p -values, i.e.,

H0
½epNðS0Þ� α� ¼ α (16)

The function MaxMC::pvalue implements (15).

The Monte Carlo test procedure method based on epNðS0Þ can be summar-

ized as follows.

Step 1: Compute the statistic S0 using the observed data.

Step 2: Generate N i.i.d. replications S1, …, SN of the statistic S under H0.

Step 3: Using S0 and the replications S1, …, SN, compute the p-value
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epNðS0Þ¼N + 2� eRNðS0Þ
N + 1

(17)

where eRNðS0Þ is the randomized sample rank of S0.
Step 4: Check if epNðS0Þ� α.

We call this procedure a MC test with randomized tie-breaker. The problem

then consists in simulating S1, …, SN. There are two basic situations. The first

one consists in cases where the form of the DGP is specified, so we can simu-

late the data and compute the corresponding values of the test statistic. If the

distribution of the test statistic does not depend on unknown parameters, these

can be set at arbitrary values (compatible with the null hypothesis) in a way that

makes the computation cost as small as possible. For example, the distribution

of a t-statistic in a linear regression typically does not involve the values of the

coefficients of unconstrained regressors, so these can be set to zero for the pur-

pose of generating replications of the t-statistic. The second case is the one

where the DGP cannot be simulated, but the test statistic can be. This happens,

for example, in nonparametric setups where the DGP is incompletely specified,

but signs and ranks have well defined distributions under the null hypothesis. In

such cases, one can simulate the signs (or the ranks) along the corresponding

values of the test statistic. Alternatively, one could also simulate any DGP com-

patible with null hypothesis, and proceed as in the first case.

3 Pivotal Monte Carlo tests in R

The technique of Monte Carlo tests for pivotal test statistics is implemented in

the MaxMC package under the function name MaxMC::mc. The function call

is reproduced here for reference.

mc(y, statistic, ...,
dgp = function(y) sample(y, replace = TRUE), N = 99,
type = c("geq", "leq", "absolute", "two-tailed"))

The arguments of the function are the following ones.

y: A vector or data frame.

statistic: A function or a character string which specifies how the

statistic is computed. The function receives y as input

and produces a scalar as output.

...: Other named arguments for the test statistic which are passed

unchanged each time it is called.

dgp: A function. The function takes y as the first argument of its inputs,

and produces a simulated y as output. It should represent the data

8 PART I Statistical Inference



generating process under the null. The default value is the function

sample(y, replace = TRUE), i.e., the bootstrap resampling of y.

N: An atomic vector: the number of replications of the test statistic.

type: A character string. It specifies the type of test for which the

p-value function is produced. The possible values are: geq,
leq, absolute, and two-tailed. The default value is geq.

Four different types of p-values are allowed: leq, geq, absolute, and

two-tailed. The default, geq, corresponds to the methods described in

Section 2, i.e., the null hypothesis is rejected when S0 is greater than

some critical value. While this case is common, MaxMC::mc and

MaxMC::pvalue allow for other popular types of tests. Option leq calcu-

lates the p-value assuming that we reject the null hypothesis when S0
is smaller than some critical value. For two-tailed tests, two-tailed
computes the p -value as twice the minimum of leq and geq, i.e.,

epNðS0Þ¼ 2 � min
N eFNðS0Þ+ 1

N + 1
,
N eGNðS0Þ+ 1

N + 1
Þ

 
(18)

where eFNðS0Þ¼ 1� eGNðS0Þ : (19)

Finally, consider the case where we wish to perform a two-tailed test and the

statistic has a symmetric null distribution. Instead of using (18), we could

exploit the symmetry of the test statistic by taking the absolute value of the

statistic and using geq to compute the p-value. This is what absolute
performs.

The returned value of the function MaxMC::mc is an object of class

“mc,” with the following components:

S0: observed value of the test statistic;

p.value: Monte Carlo p-value of statistic;

y: data specified in call;

statistic: statistic function specified in call;

dgp: dgp function specified in call;

N: number of replications specified in call;

type: type of p-value specified in call;

call: original call to mmc;

seed: value of .Random.seed at the start of mc call.
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4 Example: Two-sample goodness-of-fit test

In order to demonstrate how the mc function can be used, we look at the

problem of testing the equality of the distributions of two random sam-

ples. Let X1, …, Xn and Y1, …, Ym be i.i.d. observations such that

FðxÞ¼ðXi � xÞ is the cumulative distribution function of Xi and HðyÞ¼
ðYj � yÞ is the cumulative distribution function of Yj. We wish to test

H0 :F¼H against H1 :F 6¼H : (20)

To test H0, one common solution is to use the Kolmogorov–Smirnov statistic

(KS) (Bulca and Arslan, 2013; Smirnov, 1948) defined as follows:

KS¼ sup
x

|F̂nðxÞ� ĜmðxÞ| (21)

where

F̂nðxÞ¼ 1

n

Xn
i¼1

Ið�∞, x�ðXiÞ , ĤnðyÞ¼ 1

m

Xm
j¼1

Ið�∞, y�ðYjÞ (22)

are the empirical distribution functions of X1, …, Xn and Y1, …, Ym,
respectively.

The KS test is distribution-free when the observations are i.i.d. and follow

a continuous distribution, but this property vanishes if the observations follow

a discrete distribution. Therefore, in order to obtain an exact test when the Xi

or Yi can follow discrete distributions, we use a permutation test which is

implemented as a MC test procedure with randomized tie-breaker (Dufour

and Farhat, 2001).

To demonstrate how to use MaxMC::mc, we first need to generate some

data. For the sake of this example, let n ¼ m ¼ 8, Xi �Poisson(10),

and Yj �Poisson(10). Then, the following code snippet will yield the

desired sample data.

# Generate x � Poisson(10), y � Poisson(10)
x <- rpois(8, lambda = 10)
y <- rpois(8, lambda = 10)
data <- list(x = x, y = y)

With these randomly generated Xi and Yj, we can compute the Kolmogorov–
Smirnov statistic using the function stats::ks.test, i.e.

# Apply the test statistic
ks.test(data$x, data$y)
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This yields the following output.

Two-sample Kolmogorov-Smirnov test

data: data$x and data$y
D = 0.375, p-value = 0.6272
alternative hypothesis: two-sided

Warning message:
In ks.test(data$x, data$y) : cannot compute exact p-value with
ties

Next, before using MaxMC::mc, we need to specify both how the statistic

is computed using the actual data, and how to generate simulated data

sets under the null.

For the test statistic, we merely create a wrapper for the function ks.test
that outputs a scalar instead of an object of class “htest.” Note that we

use the function suppressWarnings in order to prevent the generation

of warning messages every time the mc function calls the statistic
function. It is not required.

For the data generating process, we use a permutation of the grouped data

(X1, …, Xn, Y1, …, Ym) to generate N simulated samples

ðXðjÞ
1 ,…, X

ðjÞ
n , Y

ðjÞ
1 ,…, Y

ðjÞ
m Þ , j¼ 1,…, N, (23)

as described in Dufour and Farhat (2001).

# Set the statistic function
statistic <- function(data){

out <- suppressWarnings(ks.test(data$x, data$y))
return(out$statistic)
}

# Set the DGP function
dgp <- function(data){

perm <- sample(c(data$x, data$y))
x <- perm[1:length(data$x)]
y <- perm[-(1:length(data$x))]
return(list(x = x, y = y))
}

We then evaluate the function: MaxMC::mc.

library(MaxMC)
# Apply the mc procedure
mc(y = data, statistic = statistic, dgp = dgp, N = 999,
type = "absolute")
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This yields the following output.

Monte Carlo with Tie-Breaker
Call:
mc(y = data, statistic = statistic, dgp = dgp, N = 999,

type = "absolute")

D = 0.375, N = 999, p-value = 0.488

In theory, this p-value is exact. While the results are fairly similar to what we

obtained with stats::ks.test directly, the point of this particular exer-

cise is not to show an obvious failure of the ordinary test, but how

effortless it is to use the MC technique with tie-breaker.

5 Maximized Monte Carlo tests

Unlike in the previous section, we now discard the assumption that S :¼
S(X(n), θ) is a pivotal statistic, i.e., the distribution of S depends on some nui-

sance parameters ν under H0. Let Ω be the parameter space of ν and ν0 be its

true value. Then we are essentially looking to test

H0 : ν0 2Ω0 (24)

where Ω0 is the subset of Ω consistent with the null hypothesis. To solve this

type of problem and retrieve an exact test, we can now proceed as follows.

Step 1: Compute the statistic S0 using the sample data.

Step 2: Generate N i.i.d. replications Sj(ν) of the statistic S for each ν 2 Ω0.

Step 3: Using the replications Sj(ν), compute the following p-value

p̂NðS0|νÞ¼
NĜNðS0|νÞ+ 1

N + 1
(25)

where ĜNðx|νÞ corresponds to the following survival function

ĜNðx|νÞ¼ 1

N

XN
j¼1

I½0, ∞ÞðSjðνÞ� xÞ : (26)

Step 4: Maximize the p-value function p̂NðS0|νÞ over the set ν 2 Ω0, i.e.,

Q̂NðS0Þ¼ sup
ν2Ω0

p̂NðS0|νÞ : (27)

Step 5: Reject the null hypothesis if

Q̂NðS0Þ� α : (28)

For every value of ν consistent with the null hypothesis, we find its associated

p-value. Then, if and only if every p-value is smaller than the desired level,
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we reject the null hypothesis. We call this procedure a maximized Monte

Carlo (MMC) test, and Q̂NðS0Þ the MMC p-value.
If α(N + 1) is an integer and the distribution of S is continuous, we have

½Q̂NðS0Þ� α� � α (29)

under H0, which means that the critical region

Q̂NðS0Þ� α (30)

has level α; for a proof, see Dufour (2006). Without relying on strong regular-

ity assumptions, the MMC method provides a simple method to obtain valid

tests even in the presence of nuisance parameters.

As with MC tests with a randomized tie-breaker, we can use ranks instead

of directly using the survival function ĜNðS0|νÞ. Therefore, as previously

shown, we can write ĜNðS0|νÞ as

ĜNðS0|νÞ¼N + 1� R̂NðS0|νÞ
N

(31)

where R̂NðS0|νÞ represents the sample rank of S0 in S0, S1(ν), …, SN(ν). In the

case of a discrete statistic, we can extend the discussion in the previous section

to how to “break” ties in sample ranks. Hence, let U0,U1,…, UN �i:i:d Uð0,1Þ.
Then, we can create the pairs (Si, Ui) and use the lexicographic ordering previ-

ously described:

ðSiðνÞ,UiÞ� ðS0,U0Þ,fSiðνÞ< S0 or ðSiðνÞ¼ S0 and Ui �U0Þg (32)

to order the (Si, Ui) pairs and compute the randomized rank for S0 as

eRNðS0|νÞ¼
XN
i¼0

I½ðSiðνÞ,UiÞ� ðS0,U0Þ� (33)

where I is an indicator function for the preference relation.

We get in this way the following p-value function, using the randomized

rank for S0,

epNðS0|νÞ¼N + 2� eRNðS0|νÞ
N + 1

(34)

and, if α(N + 1) is an integer, we have:

H0
½ sup
ν2Ω0

epNðS0|νÞ� α� � α (35)

i.e., the test is exact at level α; again for a proof, see Dufour (2006). This

result holds regardless whether the distribution of S is continuous or discrete.

As discussed in Section 2, the test statistics Sj(ν) can be simulated by

either simulating the restricted DGP and the corresponding statistic, or the
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distribution of the test statistic. The only difference with the pivotal case is

that these now depend on the nuisance parameters ν along with random dis-

turbances. For smoothness, the same disturbances should be used for each

replication, with ν viewed as a variable over which the maximization takes

place. On simulating time series data, the package meboot may be useful;

see Vinod and López-de Lacalle (2009).

The MMC procedure accompanied with the use of DGP to generate Sj(ν) is
implemented in MaxMC under the function MaxMC::mmc. Before going into

the details of MaxMC::mmc, it is important to look into some of its

computational issues and how the MMC can be modified to solve them.

6 Asymptotic MMC tests

A practical difficulty inherent to the MMC method is that the computational

cost typically increases with the volume.

Regardless of any past or future improvements in the field of computer

science, whenever a consistent point set estimate of ν is available, we can sim-

plify the MMC procedure by reducing the space over which the p -value is

maximized, while maintaining the validity of the test asymptotically. This

can be done as follows.

Step 1: Compute the statistic S0 using the sample data.

Step 2: Let CT be a sequence of sets such that CT �Ω, and

lim
T!∞

P½ν0 2CT � ¼ 1 under H0 : (36)

Step 3: Generate N i.i.d. replications STj(ν) of the statistic S for each ν 2 CT.

Step 4: Using the replications STj(ν), compute the p-value

epNðS0|νÞ¼N eGTNðS0|νÞ+ 1
N + 1

(37)

where eGTNðx|νÞ is the simulated survival function

ĜTNðx|νÞ¼ 1

N

XN
j¼1

I½0, ∞ÞðSTjðνÞ� xÞ where IAðzÞ¼ 1 if z2A
0 if z 62 A

�
: (38)

Step 5: Maximize the p-value function epTNðS0|νÞ over the set ν 2 CT, i.e.,eQTNðS0Þ¼ sup
ν2CT

epTNðS0|νÞ : (39)

Step 6: Reject H0 when

lim
T!∞

eQTNðS0Þ� α : (40)

We call this procedure the consistent set consistent MMC (SC-MMC) test.

If α(N + 1) is an integer, we have:
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lim
T!∞

H0
eQTN S0ð Þ� α
h i

� α (41)

i.e., the test has an asymptotic level equal to α. Finding a consistent estimator

is usually pretty straightforward. Methods such as the generalized method

of moments (GMM) or maximum likelihood (ML) often provide consistent

estimators. Then, any set of the following form

CT ¼ ν2Ω :k ν̂T �ν k< df g (42)

where d is any fixed positive constant and ν̂T is a consistent estimator,

satisfies (36).

The constant d can be chosen to be arbitrarily small and will restrict the set

on which epTNðS0|νÞ is maximized. Decreasing d normally coincides with

increases in the power of the test. However, a small d might prevent us from

capturing discontinuities in the distribution of statistic with respect to the

nuisance parameter. We could even technically reduce the set to

CT ¼ ν̂Tf g (43)

where ν̂T is a consistent point estimator of ν. Then, there is no need to maxi-

mize the p-value, since CT contains only one point. We refer to this case as

the Local Monte Carlo (LMC) which is analogous to a parametric bootstrap.

However, in order to satisfy (36), we need stronger regularity assumptions on

the model, which limits the cases where LMC (or parametric bootstrap) tests

are asymptotically valid; for a discussion of such conditions, see Dufour (2006).

Besides, although asymptotic tests might be appealing, they fall short from

one of the main advantages of familiar Monte Carlo methods, exact inference.

One way to get back this property while simultaneously reducing the compu-

tational load is to use confidence sets (or intervals) for the nuisance para-

meters. This suggests one to employ a two-step confidence procedure of the

type described in Dufour (1990) and Dufour and Kiviet (1998). When such

confidence intervals are available, the MMC procedure can be modified in

the following way.

Step 1: Compute the statistic S0 using the sample data.

Step 2: Construct Cν0ðα1Þ, an exact confidence set for ν, with level α1, i.e.,

P½ν0 2Cν0ðα1Þ�¼ 1�α1 under H0 : (44)

Step 3: Generate N i.i.d. replications Sj(ν) of the statistic S for each ν2Cν0ðα1Þ:
Step 4: Using the replications Sj(ν), compute the following p-value

epNðS0|νÞ¼N eGNðS0|νÞ+ 1
N + 1

(45)

where eGNðx|νÞ corresponds to the usual survival function.

Step 5: Maximize the p-value function epNðS0|νÞ over the set

ν2Cν0ðα1Þ, i.e.,
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eQNðS0Þ¼ sup
ν2Cν0

ðα1Þ
epNðS0|νÞ : (46)

Step 6: Reject H0 if eQNðS0Þ� α2 : (47)

If α2(N + 1) is an integer, we have:

H0
½Q̂NðS0Þ� α2� � α1 + α2 ¼ α (48)

which states that the MMC procedure has exact level α1 + α2 ¼ α. A simple

choice α1 and α2 consists in setting α1 ¼ α2 ¼ α/2.

7 MMC tests in R

The MaxMC::mmc function implements the MMC technique with tie-breaker

described in the previous section.

mmc(y, statistic, ...,
dgp = function(y, v) sample(y, replace = TRUE),
est = NULL, lower, upper, N = 99,
type = c("geq", "leq", "absolute", "two-tailed"),
method = c("GenSA", "pso", "GA", "gridSearch"),
control = list(), alpha = NULL)

The arguments for the function call are the following.

y: A vector or data frame.

statistic: A function or a character string which specifies how the

statistic is computed. The function takes y as input and

produces a scalar as output.

...: Other named arguments for the statistic which are passed

unchanged each time it is called.

dgp: A function. The function takes as inputs y and a vector of nuisance

parameters v, and produces a simulated y as output. It should repre-

sent the data generating process under the null hypothesis. The

default value is the function sample(y, replace = TRUE), i.e., the

bootstrap resampling of y.

est: A vector with the same length as v. It is the starting point of the

algorithm. If est is a consistent estimate of v, then mmc returns both

the MMC and Local Monte Carlo (LMC). Default is NULL, in

which case, default values will be generated automatically.
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lower: A vector with the same length as v. Lower bounds for nuisance

parameters under the null hypothesis.

upper: A vector with the same length as v. Upper bounds for nuisance

parameters under the null hypothesis.

N: An atomic vector: the number of replications of the test statistic.

type: A character string. It specifies the type of test for which the

p-value function is computed. The possible values are: geq,
leq, absolute, and two-tailed. The default is geq.

method: A character string. Type of algorithm to be used for global

optimization. Four methods are available: grid search (grid-
Search), simulated annealing (GenSA), genetic algorithm

(GA), and particle swarm (pso). Default is GenSA.

control: A list. Arguments to be used to control the behavior of the

algorithm chosen in method.

alpha: An atomic vector. If mmc finds a p-value over alpha, the algo-

rithm stops. This is particularly useful if we are only looking

at testing a hypothesis at a particular level. Default is NULL.

monitor: A logical variable. If set to TRUE, the p-values at every

iteration and the cumulative maximum p-value are plotted

on a graphical device. The default is FALSE.

The dgp function defined by the user is used to generate new observa-

tions in order to compute the simulated statistics. The only difference

with the pivotal case is that the dgp also takes nuisance parameters

among its inputs. The statistic and dgp functions are the building

blocks of the procedure. It is thus essential that the functions be writ-

ten efficiently in order for mmc to find the MMC p -value quickly.

The returned value of mmc is an object of class “mmc,” containing the

following components.

S0: Observed value of the statistic.

pval: Maximized Monte Carlo p-value of statistic under the null

hypothesis.

y: Data specified in call.

statistic: statistic function specified in call.

dgp: dgp function specified in call.

est: est vector if specified in call.

lower: lower vector if specified in call.
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upper: upper vector if specified in call.

N: Number of replications specified in call.

type: type of p-value specified in call.

method: method specified in call.

call: Original call to mmc.

seed: Value of .Random.seed at the start of mmc call.

lmc: If par is specified, it returns an object of class mc corresponding

to the Local Monte Carlo test.

opt_result: An object returning the optimization results.

rejection: If alpha is specified, it returns a vector specifying whether

the hypothesis was rejected at level alpha.

7.1 Global Optimization

Several methods can be used to maximize over the set of nuisance parameters.

For the moment, four methods are available: grid search, simulated annealing,

genetic algorithm, and particle swarm optimization. Future updates might

include improved algorithms. One issue we have to face when choosing an

algorithm is that the p-value function

epNðS0|νÞ¼N eGnðS0|νÞ+ 1
N + 1

(49)

is not continuously differentiable. In fact, the function has derivative equal to

zero everywhere except at N + 1 points where the derivative does not exist.

Since we are trying to maximize this p-value function, any method of optimi-

zation which relies on its derivative is going to be unsuccessful (e.g., gradient

descent algorithms and quasi-Newton methods).

7.1.1 gridSearch

The grid search method is the easiest to implement and understand, but sadly

not efficient when the number of parameters is large and not strongly

restricted under H0. Let Ω* be the space of nuisance parameters ν ¼ (ν1, ν2,
…νm) over which we maximize the p-value. A simple way to setup a grid

search consists in defining a vector of lower bounds a ¼ (a1, a2, …, am)
and a vector of upper bounds b ¼ (b1, b2, …, bm) for each component of ν.
Grid search involves taking n equally spaced points in each interval of the

form [ai, bi] including ai and bi. This creates a total of n
m possible grid points

to check. Finally, once each pair of points is calculated, the maximum of these

values is chosen.
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The problem with this type of method is that the number of evaluations

increases exponentially as n and m increase. Since we cannot really reduce

m, decreasing n is the only possible way of assuring that the method stops

in a reasonable time, but this decreases the validity of the solution.

The package NMOF (Gilli et al., 2011) provides the function gridSearch
which implements exactly this method. It has the distinctive advantage

of providing an easy way to parallelize the problem using the package

parallel by Sasaki et al. (2005). This could resolve some of the comput-

ing issues associated with the grid search method, but we do not recom-

mend this method in general especially for m � 3. By default, we set

n ¼ 10, but this can be modified to a more appropriate number.

7.1.2 GenSA

Simulated annealing is a stochastic, metaheuristic technique which can find a

“good” solution to a global optimization problem, even in the presence of

multiple local minima. It was originally and independently proposed by

Kirkpatrick et al. (1983) and �Cerný (1985); see also Goffe et al. (1994).

Simulated annealing simply selects some neighboring point x0 to the cur-

rent position x. Then with some probability function the algorithm chooses

if it will stay with x or move to x0. As the algorithm progresses, the probability

of moving to a new point converges to zero. This is done through a global

time-varying parameter T which follows an annealing schedule called the

“temperature.” Typically the definition of the algorithm sets the probability

of moving equal to 1 when x0 is better than x, but it is not necessary for con-

vergence. The main feature of simulated annealing is that there is always a

probability that it might move to a worse point. This usually prevents the

algorithm from being stuck in a local minimum.

The simulated annealing method is implemented using the GenSA pack-

age described in Xiang et al. (2013). The package stats available in the base

distribution of R also provides the function optim which implements

simulated annealing.

As shown by Katharine (2014), the GenSA package outperforms the func-

tion optim in terms of convergence and speed. Thus, choosing which ver-

sion of simulated annealing to implement in the MaxMC package was

straightforward. The method is set by default to stop when the number

of steps without improvement reaches 25. It will also stop when it finds

a point where the p-value is either equal to 1 or bigger than the level

alpha. For other details on the settings of this method, see Xiang et al.

(2013) and the documentation for MaxMC and GenSA.

7.1.3 psoptim

Particle swarm optimization was introduced by Eberhart and Kennedy (1995)

and Shi and Eberhart (1998). Like the simulated annealing technique, particle

swarm is metaheuristic. The algorithm involves taking a set of candidate
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solutions (particles) with random initial position, and the particles are set to

move around the space to search for the best solution. The directions and

velocities associated with the particles are guided toward both the best known

position for individual particle and the best known overall position. As the

number of iterations increase, so will the convergence rate to the best known

position for the entire population.

Multiple packages such as hydroPSO (Zambrano-Bigiarini, 2013) and pso

(Bendtsen, 2012) implement the particle swarm optimization technique in R.
For the package MaxMC, the pso package and its function psoptim was

selected.

When comparing pso and hydroPSO, Katharine (2014) found that pso
performed a bit better. This is the main reason why it is implemented in

MaxMC. By default, the algorithm is set to stop after no improvement to the

best known location has been made in 25 steps. For more details on how the

velocities, population size and other features are set, see Bendtsen (2012) and

the documentation for MaxMC and pso.

7.1.4 GA

The genetic algorithm is a subclass of evolutionary algorithm techniques. The

technique dates back to the 1970s (see Holland, 1992). As the name suggests,

evolutionary algorithms mimic natural selection, where only the fittest indivi-

duals survive through the process of mutation, selection, and crossover.

For the genetic algorithm, each candidate solution has a set of properties

(or genes) which can mutate or change until we find the best solution. The fol-

lowing packages offer some sort of implementation of the genetic algorithm:

soma (Clayden, 2014), GA (Scrucca, 2013, 2016), genalg (Willighagen,

2005), mcga (Satman, 2013), and NMOF (Gilli et al., 2011).

GA was chosen not only because it provides a flexible set of controls and

methods for the genetic algorithm, but it also allows for easy parallelization of

the problem, which as previously mentioned can be tremendously helpful.

7.2 Optimal Choice

Which global optimization method should we pick? Since each technique has

its own pros and cons, the choice of methodology is not always clear-cut. For

instance, we can look at the Behrens–Fisher problem shown in Section 8.1.

Without going into the details of the problem, we solve it using different opti-

mization methods to compare and contrast their speed and accuracy. In order

to do so, we use microbenchmark (Mersmann, 2015) and its plot method

based on ggplot2 (Wickham, 2009).

As can be seen, the pso algorithm appears to provide the most efficient

method in this case. GenSA takes, on average, the longest time for this

example, but in some cases it finds a solution quite rapidly. Moreover,

the grid search method performs well because it only evaluates the
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function at 103 points. If we doubled the accuracy for gridSearch, the

computation time would increase by a factor of 8, which would reduce

the usefulness of this method. Further, we did not use any parallelization

in the controls of the methods. This could significantly improve

performance.

Finally, since the methods are metaheuristic, Fig. 1 is sadly not enough for

us to make any comment on how efficient one method is compared to another

GenSA

GA

pso

gridSearch

1e+03 1e+05

Time (ms)

FIG. 1 Density plot for evaluation time of mmc(y ¼ data, statistic ¼ statistic, dgp ¼ dgp, est ¼ est,

lower¼ lower, upper¼ upper,N¼ 99, type¼ “absolute”)with different global optimization algorithms.
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in finding a “good” solution. In the end, the choice of method may boil down

to personal preference. What is important regarding the MaxMC package is

that it is compatible with any of these methods and allows the user to choose.

8 MMC tests: Examples

In this section, we discuss two examples where the MMC method provides a

natural solution to hypothesis testing problems: (1) the classic Behrens–Fisher
problem of comparing the means of normal samples with different variances

and (2) testing the unit root hypothesis in an AR(p) model. These cases are

presented mainly for the purpose of showing how the MMC method can be

implemented in MaxMC.

8.1 Behrens–Fisher problem

In order to demonstrate how to apply the MaxMC::mmc function, we present a

simple example where we test for the equality of the means of two

independent normal populations with unknown and not necessarily equal

variances. This is known as the Behrens–Fisher problem; for more

details, see Fisher (1935, 1941) and Behrens (1929).

Let X11,…, X1n1 �Nðμ1,σ21Þ and X21,…, X2n2 �Nðμ2,σ22Þ. We consider the

problem of testing

H0 : μ1�μ2 ¼ 0 against H1 : μ1�μ2 6¼ 0: (50)

One solution to this problem consists in using the extension of Student’s t-test
proposed by Welch (1947) for unequal variances with the following form

t¼ X1�X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

+
s22
n2

s
(51)

where si is the sample variance of Xi and ni is the sample size of Xi. The issue

with this statistic is that its finite-sample distribution under the null hypothesis

depends ultimately on nuisance parameters σ1 and σ2, more precisely on the

ratio σ2/σ1. Weir (1960) showed that the distribution of this statistic can be

approximated with a Student’s t-distribution with the following number of

degrees of freedom

df 	
s21
n1

� s22
n2

� �2

s41
n31�n21

+
s42

n32�n22

(52)

where si is the sample variance of Xi and ni is the sample size of Xi.
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Instead of using the t-distribution approximation, we will apply the MMC

method directly. The following R code excerpt shows how the Behrens–
Fisher problem can be implemented for X1i � N(0, 1) and X2i � N(0, 4) with
n1 ¼ n2 ¼ 15.

library(MASS)
# Generate sample x1 � N(0,1) and x2 � N(0,4)
x1 <- rnorm(15, mean = 0, sd = 1)
x2 <- rnorm(15, mean = 0, sd = 2)
data <- list(x1 = x1, x2 = x2)

# Fit normal distributions on x1 and x2 using MLE
fit1 <- fitdistr(x1, "normal")
fit2 <- fitdistr(x2, "normal")

# Compute the estimate for the nuisance parameter
est <- fit2$estimate["sd"]/fit1$estimate["sd"]

# Set the bounds of the nuisance parameter
lower <- 0
upper <- est + 10

# Set the function for the DGP under the null
dgp <- function(data, v) {

x1 <- rnorm(length(data$x1), mean = 0, sd = 1)
x2 <- rnorm(length(data$x2), mean = 0, sd = v)
return(list(x1 = x1, x2 = x2))
}

# Set the statistic function for Welch’s t-test
welch <- function(data) {

test <- t.test(data$x2, data$x1)
return(test$statistic)
}

# Apply Welch’s t-test
t.test(data$x2, data$x1)

# Apply the mmc procedure
mmc(y = data, statistic = welch, dgp = dgp, lower = lower,

est = est, upper = upper, N = 99, type = "absolute",
method = "GenSA")

Welch Two Sample t-test

data: data$x2 and data$x1
t = -0.50217, df = 19.362, p-value = 0.6212
alternative hypothesis: true difference in means is not equal
to 0
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95 percent confidence interval:
-1.6180550 0.9912269
sample estimates:
mean of x mean of y
-0.09098809 0.22242598

Maximized Monte Carlo

Call:
mmc(y = data, statistic = welch, dgp = dgp, est = est,

lower = lower, upper = upper, N = 99, type = "absolute",
method = "GenSA")

t = -0.50217, N = 99
Local Monte Carlo: p-value = 0.56
Maximized Monte Carlo: p-value = 0.65

Note that we use the MASS package (Venables and Ripley, 2003) to derive a

point estimate ν̂ for the ratio of σ2 and σ1 which we use as a starting point for

our optimization algorithm. Since our nuisance parameter can take any value

on the positive real line, it is practical to restrict the optimization of the MMC

to a strictly smaller subset. For instance, we can build the following interval

around the estimator, ν̂,

Cν̂ ¼ 0, ν̂ + d½ � (53)

where d is some constant. In our example, d is arbitrarily set to 10 and

MaxMC::mmc maximizes the p-value over Cν̂ .

Note that, since the t.test from the stats package (Sasaki et al., 2005)

implements by default the Welch test, so no additional arguments have

to be specified in the code.

8.2 Unit root tests in autoregressive models

We now turn our attention to how MaxMC can be used for unit root tests in

autoregressive models. In particular, we look into the details of one of the

most popular class of unit root tests, the augmented Dickey–Fuller test.

8.2.1 Framework

Consider the following autoregressive model of order p

Yt ¼ μ+ ηt+
Xp
j¼1

ϕjYt�j + ut (54)
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where t ¼ p + 1, …, T, μ is the drift component, η is the time trend, and ut
is a sequence of i.i.d. (0, σ2) variables. We can rewrite the model in the

following way

ΦðLÞYt ¼ μ+ ηt+ ut (55)

where t ¼ p + 1, …, T and

ΦðLÞ :¼ 1�
Xp
j¼1

ϕjL
j

(56)

is the characteristic equation of the time process with L being the lag

operator, i.e., LYt ¼ Yt�1. If the characteristic polynomial has a unit root, i.e.,

Φ(1) ¼ 0, with multiplicity r, then Yt is said to be an integrated process of

order r, or an I(r) process.
As such, tests of unit root can be easily formulated as

H0 :Φð1Þ¼ 0 (57)

or equivalently,

H0 :
Xp
j¼1

ϕj ¼ 1 (58)

In order to test H0, we can rewrite (54) in the following way

ΔYt ¼ μ+ ηt+ γYt�1 +
Xp�1

j¼1

ρj+ 1ΔYt�j + ut (59)

where t ¼ p + 1, …, T, ΔYt ¼ Yt � Yt�1, and

γ¼
Xp
j¼1

ϕj�1 , ρj ¼�
Xp
i¼j

ϕi : (60)

Then, the null hypothesis can be written as

H0 : γ¼ 0 : (61)

To test H0, we can simply use the usual Student t-statistic tγ based on least-

squares estimator. This is referred to as the augmented Dickey–Fuller (ADF)
test statistic. The usual version of this procedure tests H0 against the alternative

hypothesis of stationarity, i.e., H1 : γ < 0.

Since tγ is based on (59) and not (54), the ADF test statistic does not have

the usual Student’s t-distribution. In fact, it is not even distributed symmetri-

cally. But the distributional properties of tγ have been well documented; see

Fuller (1996), Banerjee et al. (1993), and MacKinnon (1999).
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8.2.2 Code

To illustrate how to use MaxMC with the ADF test statistic, we start by

examining a simple AR(2) process without drift or time trend, i.e.,

Yt ¼ϕ1Yt�1 +ϕ2Yt�2 + ut (62)

where t ¼ 2, …, T and ut �i:i:d Nð0,σ2Þ . A crude way of applying the MMC

method consists in taking all parameters (e.g., σ, ϕ1, and ϕ2) as nuisance

parameters. A better way is to take advantage of the problem setting. For

example, since the distribution of the ADF statistic is independent of σ, it is
not necessary to include it among the nuisance parameters. Further, if we have

a unit root, the following needs to hold

ϕ1 +ϕ2 ¼ 1 (63)

While both ϕ1 and ϕ2 can be seen as nuisance parameters, we can exploit (63)

to reduce the set of nuisance parameters: we maximize the p-value with

respect to ϕ1 (or ϕ2) only.

For the sake of this example, we let ϕ1 ¼ϕ2 ¼ 1
2
, i.e., we have a unit root.

To generate data, we can use the function filter from the package stats

as demonstrated in the following tidbit of code.

library(fUnitRoots)

# Generate an AR(2) process with phi = (.5,.5), and n = 25
y <- filter(rnorm(25), c(.5,.5), method = "recursive")

We also include a line to import fUnitroots (Wuertz, 2009). This is simply

because fUnitroots provides the function adfTest which we are going to

use to compute the ADF statistic. It is important to bear in mind that

adfTest uses the tables provided by Banerjee et al. (1993) to compute

the asymptotic p-value.
The next step is to setup the functions for the DGP and how to compute the

statistic. We take ϕ2 as the nuisance parameter, so we set ϕ1 ¼ 1 � ϕ2 under

the null hypothesis. This yields the following code.

# Set the function to generate an AR(2) integrated process
dgp <- function(y, v) {

ran.y <- filter(rnorm(length(y)), c(1-v,v),
method = "recursive")
}

# Set the Augmented Dicky-Fuller statistic
statistic <- function(y){

out <- adfTest(y, lags = 2, type = "nc")
return(out@test$statistic)
}
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Note that the option type = "nc" for the function adfTest simply speci-

fies that our model does not have a drift or a time trend.

The last step before applying MaxMC::mmc is to set the bounds for the

nuisance parameter ϕ2. While ϕ2 could potentially be any number on

the real line, we restrict our attention to values of ϕ2 such that the

process has no root in the interior of the unit circle. An AR(2) process

whose roots do not belong to the interior of the unit circle must sat-

isfy the following restrictions:

ϕ2 +ϕ1 � 1 , ϕ2�ϕ1 � 1 , ϕ2j j � 1 : (64)

Hence, we can simply set our bounds to ϕ2j j � 1:

# Set bounds for the nuisance parameter v
lower <- -1
upper <- 1

Now, we are ready to apply the MMC procedure with MaxMC::mmc . Since

we have only one nuisance parameter, we pick grid search as our

method of choice for the optimization.

# Apply the mmc procedure
mmc(y, statistic = statistic , dgp = dgp, lower = lower,

upper = upper, N = 99, type = "leq",
method = "gridSearch", control = list(n = 100))

Hence, this MaxMC::mmc call generates the following output.

Maximized Monte Carlo

Call:
mmc(y = y, statistic = statistic, dgp = dgp, lower = lower,

upper = upper, N = 99, type = "leq",
method = "gridSearch", control = list(n = 100))

Dickey-Fuller = -1.0743, N = 99
Maximized Monte Carlo: p-value = 0.31

In this particular session, the p-value is equal to 0.31, which is consistent with

the fact that the data generated has a unit root.

9 Conclusion

The method of Monte Carlo tests is a powerful method which allows one to

perform exact tests in many situations where this is not typically feasible, as

well as asymptotically valid tests in problems where the asymptotic distribu-

tion of the test statistic is nonregular and may have discontinuities. Its main
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theoretical feature is transparency: the investigator needs little knowledge of

the distributional complexities involved. The simulation takes care of these.

In the case of pivotal test statistics, Monte Carlo tests implemented with the

Hájek tie-breaker allow one to control size perfectly, even if no information

is available on the mass points of the null distribution. This can be especially

useful when analyzing qualitative data or using rank tests. For the ubiquitous

problem of test statistics which depend on nuisance parameters under the

null hypothesis, MMC tests do allow one to control the level as soon the test

statistic can be simulated after fixing the nuisance parameters. The variant

of the procedure where maximization is limited to a consistent set estimator

of the nuisance parameters allows one to obtain asymptotically valid tests in

cases where the asymptotic distribution is difficult to establish and may

involve nuisance parameters, including discontinuities.

Clearly, this general technique is computer-intensive. The MaxMC pack-

age now available in R provides a systematic way of using this type of

procedure.
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Abstract
We modify Suppes’ probabilistic causality theory by replacing inequalities among prob-

abilities of events by unequal residuals of flipped kernel regression conditional expecta-

tion functions, E f(XjjXi, Xk) and E f(XijXj, Xk), allowing asymmetry. Using three criteria

we aggregate evidence from four orders of stochastic dominance and new asymmetric

partial correlation coefficients to develop a unanimity index: UI. The index yields a deci-
sion rule for Xi to be self-driven or exogenous, based on confirming the causal paths

Xi !Xj. Thus UI can replace Hausman–Wu’s indirect exogeneity test which diagnoses

endogeneity (a disease) by showing that instrumental variables (IV) estimator remedy

“works.” A simulation supports our decision rules. An illustration identifies exogenous

variables which can help predict US economic recession.

Keywords: Kernel regression, Stochastic dominance, Bootstrap inference, Instrumen-

tal variables, Directed acyclic graphs

1 Introduction

Estimation and inference regarding causal directions is a fundamental challenge

in many sciences, which is linked to a long-standing need in econometrics for

testing exogeneity without exclusively relying on instrumental variables (IV).

This chapter develops new empirical approaches for causal paths and exogene-

ity testing using only passively observed data within econometrics paradigm by

extending the Cowles commission simultaneous equation models (CC-SEM)

and Koopmans (1950).

Consider a set of p random variables V ¼ (X1, …, Xp), with subscripts

from the index set VI ¼ {1, …, p} and joint density fjt(V). The marginal den-

sity f(Xi) is the Radon–Nikodym derivative of the joint density, either with

respect to the Lebesgue or the counting measure. This chapter provides new
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tools for exploratory assessment of causal relations, which can be described

by regression equations in CC-SEM between passively observed data generat-

ing processes (DGPs) in V.
Remark 1. (Limited scope of our causality discussion). Philosophers have

debated causality concepts for over a millennium. The reader can check phil-

osophical references in Reiss (2016) and the Internet Stanford Encyclopedia,

Zalta (2018). Deterministic causal relations expressed as functional relations

without random components are outside the scope of this chapter. For example,

Boyle’s law (pressure * volume ¼ a constant) where all component variables

(pressure and volume) can be independently controlled in a laboratory is con-

sidered deterministic causality here. Situations where a known treatment causes

a known outcome (effect), and the problem is assessing the size of treatment

effects, such as those considered in Imbens and Rubin (2015), are also outside

the scope of this chapter.

An alternative to deterministic causality which admits noise implying rare

violations was proposed by Suppes (1970). The intuitive idea behind Suppes’

“probabilistic theory of causation,” is that if the event Xi causes the event Xj

(implying the causal path Xi !Xj) we should have

PðXjjXiÞ>PðXjÞ a:e:, (1)

where a.e. denotes “almost everywhere” in a relevant measure space. If the

number of violations of the inequality (1) is too many, it will not be a set

of measure zero, in terms of the Lebesgue measure. Then the inequality does

not hold a.e. Some authors including Salmon (1977) have long known serious

limitations of Suppes’ theory, which are summarized in the following Lemma,

with a new proof.

Lemma 1. Suppes’ condition (1) is neither necessary nor sufficient for
causality.
Proof. Let Xk denote an additional omitted cause which might be a con-

founder. It is possible to construct counter examples where the true causal

paths are (Xk !Xi) and (Xk !Xj). For example, let Xi denote the event of

atmospheric barometer falling sharply and let Xj denote a weather storm

event. These Xi, Xj satisfy Eq. (1). However, the barometer itself does not

cause the storm! The true cause Xk “falling atmospheric pressure” is hidden

from (1). Since barometer reading Xi is not necessary for the storm event

Xj, this is a counter example. Thus the “necessity” is rejected.

We reject sufficiency by using the definition of conditional probability as

follows. Since conditional probability equals joint divided by marginal, we

can rewrite (1) as

PðXi\XjÞ
PðXiÞ >PðXjÞ,
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or as

PðXi\XjÞ>PðXiÞ * PðXjÞ:
The inequality’s sense remains intact if we divide both sides by a positive

quantity, P(Xj) > 0, to yield the inequality:

PðXi\XjÞ
PðXjÞ >PðXiÞ:

Thus we must always have

PðXijXjÞ>PðXiÞ a:e: (2)

We have proved that Suppes’ test satisfies conditions for Xj !Xi as well

as Xi !Xj at all times. A result finding bidirectional causality Xi $Xj all

the time means that the condition is (1) is not sufficient for Xi !Xj. □

Some philosophers and economists (e.g., Clive Granger) have suggested

that the path Xi !Xj should further require that Xi must occur in time before

Xj occur, to help achieve asymmetry. However, this is needlessly restrictive

and inapplicable for human agents (who read newspapers) acting strategically

at time t in anticipation of events at time t + 1.

Remark 2. (Asymmetry via flipped models). Logically consistent probabilistic

causality theory must retain robust asymmetry even when our causality testing

condition(s) are stressed by flipping the cause and effect (Xi and Xj). Since

Eqs. (1) and (2) suggesting opposite causal directions are proved to coexist,

we need to go beyond the inequality signs and consider the relative magni-

tudes of the differences: (P(XjjXi) � P(Xj)), and (P(XijXj) � P(Xi)), in order

to generalize Suppes’ nondeterministic theory.

Remark 3. (Confounders and controls distinguished). The causal path Xi ! Xj

assessment is often affected by two types of often present related events Xk.

It is convenient to distinguish between two types of Xk: (i) “confounder”

and (ii) “control” variables, even though the two may be synonymous for

many readers. First, we define “confounder” Xk as the true underlying cause

behind the apparent Xi for the outcome Xj. For example, the true cause of

weather events Xj is “atmospheric pressure” Xk and not “barometer reading”

as Xi. Second, we define Xk as a “control” event if both (Xi, Xk) may be caus-

ing Xj, but we are interested in knowing if Xi causes Xj over and above the

effect of Xk. For example, let Xj be health outcome, Xi be some medicine, then

Xk, the patient’s age, is commonly used as a control. A confounder can be

treated as a control, but the converse may not hold true.

Theorem 1 (Stochastic causality).

(a) Assuming data on all confounders Xk defined in Remark 3 are available,
the causal path Xi !Xj holds if and only if (iff)

ðPðXjjXi, XkÞ�PðXjjXkÞÞ> ðPðXijXj, XkÞ�PðXijXkÞÞ, a:e: (3)
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(b) Assuming data on all controls Xk defined in Remark 3 are available, the
causal path Xi !Xj holds iff

ðPðXjjXi, XkÞ�PðXjÞÞ> ðPðXijXj, XkÞ�PðXiÞÞ, a:e: (4)

Proof. We remove the obstacles to proving necessity in our proof of Lemma 1

by explicitly including Xk among conditions of Theorem 1. The obstacle to

proving sufficiency of Suppes’ condition arising from simultaneous existence

of Eqs. (1) and (2) is removed here by going deeper into the magnitudes

underlying inequalities and focusing on their relative sizes, not just signs. □

A philosopher Salmon (1977, p. 151) suggests replacing the probabilities

of events appearing in Eq. (1) by causally connected processes defined as

“spatio-temporally continuous entities” having their own physical status. That

is, we need to replace probabilities of events involving P(Xi, Xj, Xk) by densi-

ties f(Xi, Xj, Xk) of data generating processes (DGPs). Then, the iff condition

from Theorem 1 (a) becomes

ð f ðXjjXi, XkÞ� f ðXjjXkÞÞ> ð f ðXijXj, XkÞ� f ðXijXkÞÞ a:e: (5)

The slightly simpler iff condition from Theorem 1 (b) becomes

ð f ðXjjXi, XkÞ� f ðXjÞÞ> ð f ðXijXj, XkÞ� f ðXiÞÞ a:e: (6)

When we accept Salmon’s suggestion to consider causality in terms of

variable DGPs instead of events, we have an important advantage. We can

use widely accepted multiple regression to remove the effect of control vari-

ables, not readily available for probabilities of events.

However, conditions (5) and (6) involve difficult to quantify conditional

densities. Hansen (2004) suggests a two-step estimator for conditional density

estimation from nonparametric regression residuals. However, (5) and (6) also

involve quantification of numerical differences between two (conditional) den-

sities. Fortunately, financial economists have developed sophisticated tools for

quantification of probabilistic “dominance” of one density over another, called

“stochastic dominance” of various orders, discussed later (Definition 3). Hence

direct quantification of (5) and (6) is feasible, but left for future work.

Instead of direct estimation of (5) and (6) it is easier to estimate fitted values

of conditional expectation functions (Ef̂ ) available from nonparametric nonlin-

ear kernel regressions. Our two-step method for implementing the condition in

Theorem 1 (a) treats the presumed true cause Xk as a confounder. The first step

uses kernel regression: Xj ¼ f(Xk) + error, with residual e
ð1Þ
jk ¼Xj�Ef̂ ðXkÞ. Our

second step uses kernel regression: e
ð1Þ
jk ¼ f ðXi,XkÞ+ error, leading to second

step residual e
ð2Þ
jjik ¼ e

ð1Þ
jk �Ef̂ ðXi,XkÞ. Since it is customary to define residuals

as observed minus fitted values, the regression residual value quantifies the neg-

ative of the left-hand side (LHS) of (5). The right-hand side of (5) is obtained by

flipping i and j.
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Theorem 1 (b) requiring only one step is a bit simpler to implement. One

computes kernel regression residual: ejjik ¼Xj�Ef̂ ðXi,XkÞ, while treating all

Xk as controls. Remark 3 notes that a confounder can be treated a control,

but not vice versa. Since one usually does not know in advance whether Xk

is a confounder or control, we should start treating Xk as control. When one

suspects that Xk may be a strong cause of Xj overwhelming Xi, we can then

implement Theorem 1 (a) requiring two steps.

Note that our one-step method approximates f(XjjXi, Xk) � f(Xj) appearing

on the LHS of the inequality (6) by the negative of kernel regression residual

ejjik described above. One can avoid working with such negatives on both

sides by rewriting (6) as

ð f ðXjÞ� f ðXjjXi, XkÞÞ< ð f ðXiÞ� f ðXijXj, XkÞÞ a:e:

while replacing (>) by (<). Sample realizations from marginal densities

appearing on both sides of (6), f(Xj), f(Xi), are simply the available data

values: Xjt, Xit; t ¼ 1, …, T.
This chapter develops three criteria (Cr1–Cr3, described later in Section 4)

which also rely on kernel regression residuals to help decide the causal path

from nonexperimental data, without ruling out bidirectional causality:

Xi $Xj, in a subset of cases, consistent with a properly stochastic (nondeter-

ministic) causality concept.

In short, we want to quantify stochastic causality of Theorem 1 after repla-

cing probabilities by densities. We standardize all DGPs (Xi, Xj, Xk) to make

sure that regression residual magnitudes on two sides of flipped kernel regres-

sions are comparable. The fitted values ðEf̂ Þ of kernel regressions mentioned

above are sample realizations of conditional densities in the form of condi-

tional expectation functions. Finally we are ready to propose a practical

implementation of Theorem 1 (b) by defining the following.

Definition 1 (Stochastic kernel causality). Assuming three conditions: (A1)

that conditional expectation functions are consistently estimated, (A2) that

all DGPs are standardized, and (A3) that all Xk are control variables, we have

the causal path Xi !Xj iff absolute errors in conditional expectation functions

predicting Xj are “smaller” than similar errors in predicting Xi. Replacing true

unknown errors by residuals we have:

jejjikj ¼ jXj�E½ f̂ ðXjjXi, XkÞ�j < jXi�E½ f̂ ðXijXj, XkÞ�j ¼ jeijjkj, a:e:, (7)

where the notation Xk refers to any number (0, 1, 2, …) of control variables.

The operator E in Eq. (7) refers to conditional expectation functions readily

available from kernel regressions. If there are T observations in our DGPs,

we will need to consider inequalities among two sets of estimates of T errors,

compared by using stochastic dominance methods described below. Hence the

name “stochastic kernel causality” seems appropriate.
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An intuitive example may be crime rate as Xi, police deployment rate as Xj

and income in the locality as Xk. We conclude that Xi ! Xj if Xi predicts Xj

better (smaller absolute residuals) than vice versa, after allowing for Xk.

A version without Xk using European data illustrated in a vignette of

R package “generalCorr,” Vinod (2017), implements (7).

1.1 Computational agenda and decision rules

Stochastic kernel causality of Definition 1 is an empirical not deterministic

concept. Our agenda in the sequel is to develop three deeper manifestations

of the inequalities in (7) into three empirical criteria, Cr1–Cr3, to further

develop a sample unanimity index ui 2 [�100, 100], summarizing the three

criteria into a single number. Now our proposed decision rules after choosing

a threshold, τ ¼ 5, say, are

Ru.1: If (ui < �τ) the causal path is: Xi !Xj

Ru.2: If (ui > τ) the causal path is: Xj !Xi

Ru.3: If (juij� τ) we obtain bidirectional causality: Xi $Xj, that is, the

variables are jointly dependent.

CC-SEM literature refers to bidirectional causality as “endogeneity problem.”

It is generally solved by inserting another equation in a simultaneous equation

model and by using two-stage least squares (2SLS) to replace the endogenous

variable on the right-hand side (RHS) of the equation by the fitted values

obtained from that additional equation. Even though the fitted values obtained

from that additional equation can be viewed as an instrumental variable (IV),

our criticism of instrumental variables for testing exogeneity in Section 3.1.2

does not apply to estimations similar to those involving 2SLS.

An outline of the remaining chapter follows. Section 2 briefly reviews

kernel regressions, which can be skipped by readers who are familiar kernel

regressions. Section 3 briefly describes the CC-SEMmodels linking endogenous,

exogenous terminology with stochastic kernel causality. Section 4 describes a

quantification of stochastic kernel causality by Cr1–Cr3. Section 8 reports a

simulation of our decision rules. Section 9 considers statistical inference using

the bootstrap. Section 10 considers a topical example of predicting recessions.

Section 11 contains a summary and final remarks.

2 Kernel regression review

Linearity of the regression model is often a matter of convenience rather than

an evidence-based choice. Back in 1784, the German philosopher Kant said:

“Out of the crooked timber of humanity no straight thing was ever made.”

Since social sciences and medicine deal with human agents, evidence support-

ing linearity is often missing.
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The main reason for using nonparametric nonlinear kernel regression in

applied work is to avoid misspecification of the functional form. Best fitting

kernel regression line is often jagged which does not have any polynomial

or sinusoidal form. However, it provides a superior fit (higher R2) by not

assuming a functional form.

A disadvantage used to be computational difficulty, which has recently

disappeared. Remaining disadvantages are that kernel regressions fail to pro-

vide partial derivatives and that out-of-sample forecasts can be poor. Determi-

nation of causal paths is unaffected by these disadvantages.

Assuming that variables Xk are absent for ease of exposition, without

loss of generality (wlog), let us denote by LjRi a model having Xj on the

LHS and Xi on the RHS to be estimated by a nonlinear nonparametric kernel

regression:

LjRi : Xjt ¼G1ðXitÞ+ Ejji, t¼ 1,…,T, (8)

where errors are no longer Normal and independent. Our nonparametric

estimate g1(X) of the population conditional mean function G1(X) is

g1ðXÞ¼
XT
t¼1

XjtK

�
Xit�X

h

�
XT

t¼1

K

�
Xit�X

h

� , (9)

where K(.) is the well-known Gaussian kernel function and h is the bandwidth

often chosen by leave-one-out cross validation, Li and Racine (2007) and

Vinod (2008, Sec. 8.4). It is well known that kernel regression fits are superior

to OLS.

The flipped kernel regression LiRj is obtained by interchanging Xj and Xi

in Eq. (8).

LiRj : Xit ¼G2ðXjtÞ + Eijj, t¼ 1,…,T: (10)

Proposition 1 (Optimality of g1). Assume that g1 in Eq. (9) belongs to B, a
class of Borel measurable functions having finite second moment, then g1 is
an optimal predictor of of Xj given Xi, in the sense that it minimizes the mean
squared error (MSE) in the class of Borel measurable functions.

Proposition 1 is proved as Theorem 2.1 in Li and Racine (2007).

Proposition 2 (Kernel regression is CAN). Assume that

(i) {Xit, Xjt} are iid, and g1(x), joint density as well as error variance func-
tions are twice differentiable.

(ii) K is a bounded second order kernel.
(iii) As T!∞, Th3 !∞, and Th7 ! 0.

Then kernel regression estimate of the conditional expectation function g1 is
consistent and asymptotically normal (CAN).
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Proof. See Theorem 2.7 of Li and Racine (2007) for further details and exten-

sions to multivariate and local polynomial generalizations, including a proof

of consistency and asymptotic normality. □

2.1 Counterfactuals in kernel regressions

Counterfactuals are defined as “what has not happened but could happen” in

available data. Since experimental manipulation is often not an option, espe-

cially in social sciences, many authors use virtual manipulation involving

counterfactuals, implicit in cross validation described next.

Proposition 3 (Counterfactuals in cross validation). Considering {Xit, Xjt}
data, when we pretend that t-th observation is absent, even though it is present,
we have a counterfactual. Now leave-one-out cross validation used to deter-
mine bandwidth h appearing in (9) of kernel regressions minimizes a weighted
error sum of squares

minh
1

T
St½Yt� ĝ1,�tL�2WðXtÞ, (11)

where W(.) is a weight function, subscript (� t) denotes omitting t-th observa-
tion and where the subscript (L) refers to local linear fit. We employ cross
validation as a counterfactual in our determination of (g1, g2) conditional
expectation functions, which in turn determine our causal direction and its
strength. This is explained in the sequel.

2.2 Kernel regression and consistency

It is straightforward to also include control (confounding) variables Xk in

Eqs. (8) and (10). Let LjRi now suggest left-side Xj right-side (Xi, Xk).

LjRi : Xjt ¼G1ðXit,XktÞ+ Ejjik, t¼ 1,…,T: (12)

The kernel regression estimate g1 of the conditional expectation function

G1 ¼ E(XjjXi, Xk) is consistent, only if the true unknown errors in Eq. (12)

are orthogonal to the regressors with probability limit satisfying:

plimT!∞ðEjjikXitÞ=T¼ 0: (13)

If the true relation is nonlinear, a high order polynomial, say, researcher

using a linear model is implicitly letting high order terms merge into the

regression error. Since the merged error is correlated with the regressor due

to misspecification, it will induce endogeneity. Our use of nonparametric

kernel regressions prevents endogeneity induced by hidden nonlinearities.
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3 Cowles commission SEMs

Koopmans (1950) formulated the consistency requirement of Eq. (13) as exogene-

ity of Xi and went on to require that each RHS variables should “approximately

cause” the LHS variable. He was not interested in determining causal path itself.

Engle et al. (1983) (hereafter “EHR”) were the first to use flipped models to

show that linear regression of Xi on Xj and vice versa have identical R2 values,

implying that exogeneity test based on causality is ambiguous. Our use of

nonlinear nonparametric kernel regressions removes identical R2 values, and the

ambiguity. More important, it suggests that Eq. (13) provides an important

causality criterion which appears to have been ignored in philosophical causality

literature.

All references to causality became out of favor in the CC-SEM literature due

to EHR and Holland (1986) (with discussion by many experts including Rubin

and Granger). The prevailing view was that causality must be deterministic,

not stochastic following Rubin’s dictum: “No causation without manipulation.”

Deterministic causality is often too time-consuming and costly, if not utterly

impractical with observational data.

This section further explores the link between stochastic causality and

CC-SEM methods for further insights. For example, presence of endogenous

variables implying bidirectional causality, Xi $Xj, is accepted as a fact of

life, implying that (Xi, Xj) are jointly dependent variables. CC-SEM literature

refers to it as the “endogeneity problem” or even disease (Bound et al., 1995).

An example from CC-SEM exhibiting endogeneity problem for Xj is

Xi ¼ f1ðXj,XkÞ+ u1 (14)

Xj ¼ f2ðXiÞ+ u2, (15)

where two variables (Xi, Xj) are endogenous (also known as jointly dependent)

and one variable Xk is exogenous. The specification of the LHS and RHS vari-

ables is based on economic theory and researcher judgment that RHS vari-

ables are exogenous or approximately causal.

Models with similar equations are called structural equation models (SEM)

with additive noise in graph theory literature, briefly reviewed in our

Appendix A. A graph G¼ ðV,EÞ consists of nodes from the index set VI and

edges E �V2
I connecting them, after ruling out any edge from a node to itself.

Graph theory links the p variables in V with edges and directed arrows

signifying causal paths. Directed acyclic graphs (DAGs) and Bayesian nets

developed by computer scientists and others are reviewed by Peters et al.

(2014), Pearl (2009), and Reiss (2016). Our Eq. (14) implies two causal paths:

ðXj !Xi, Xk !XiÞ, whereas Eq. (15) implies the path: ðXk !XjÞ. Eqs. (14)
and (15) together imply (Xk !Xj !Xi) which is both directed and noncyclic.

Hence, it is a directed acyclic graph, or DAG.
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CC-SEM methods suggest writing a reduced form of equations obtained

by replacing Xj in (14) by f2(Xk), making the RHS a more complicated func-

tion f3(Xk). Thus we have exogenous variables on the RHSs of both equations.

These equations are “identified” if one can uniquely determine the structural

equation coefficients from reduced form coefficients. If f1, f2 are linear regres-
sions the model is not identified. If they are nonlinear nonparametric, they are

identified, since f3 will not be confused with f2.

3.1 Need for alternative exogeneity tests

Current literature offers two approaches for exogeneity testing: (i) using sequen-

tial cuts of a joint density to assess weak exogeneity, and (ii) Hausman–Wu type

testing based on instrumental variables. We motivate our approach by discuss-

ing the limitations of these approaches in the next two sections.

3.1.1 Weak exogeneity and its limitations

Write a joint density as a product of a conditional and marginal density in two

ways upon flipping Xi with Xj:

f ðXj, XiÞ¼ f ðXjjXiÞ � f ðXiÞ, (16)

¼ f 0ðXijXjÞ � f 0ðXjÞ: (17)

In the absence of nonparametric tools, EHR rewrite Eq. (16) after condi-

tioning on explicit parameters l ¼ (l1, l2) as:

f ðXj, XijlÞ¼ f ðXjjXi, l1Þ � f ðXijl2Þ, (18)

related to a factoring of the likelihood function, needed for maximum likeli-

hood (ML) estimation. Now EHR’s widely accepted “weak exogeneity” is

complicated, because it requires Eq. (18) to implement a “sequential cut”

extending Barndorff-Nielsen notion of a cut for the exponential family of

distributions.

Definition 2 (EHR weak exogeneity). Xi is weakly exogenous for parameters

of interest, c, if there exists a reparameterization l ¼ (l1, l2) where

(i) c is a function of l1, and
(ii) [f(XjjXi, l1) � f(Xijl2)] operates a “sequential cut” defined in Eq. (18).

Properties of EHR weak exogeneity.

[WE1] Parameter distinctions: A distinction between parameters of interest,
c, and other (nuisance) parameters l2 is a crucial part of the
definition.

[WE2] Granger causality irrelevant: EHR state (p. 290) that “Granger non-
causality is neither necessary nor sufficient for weak exogeneity.”

[WE3] Invariance: EHR assume that c are invariant to policy changes to
avoid the famous Lucas critique.
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[WE4] Inability to test: EHR flip a two-equation simultaneous equations
model (their equations numbered 27 and 28 vs 30 and 31) to argue
on page 288 that “the choice of parameters of interest is the sole
determinant of weak exogeneity, which is, therefore not directly
testable.”

3.1.2 Hausman–Wu test and its limitations

Lacking a direct exogeneity test, Wu (1973) had originally provided an indi-

rect exogeneity test, which was later popularized as the Hausman–Wu test. It

defines a vector of contrasts, d ¼ bOLS � bIV, between ordinary least squares

(OLS), an efficient but potentially inconsistent (due to endogeneity) estimator

on the one hand, and another inefficient but consistent (by assumption) IV

estimator. The covariance matrix of d can be shown to be Vd ¼ V (bIV) � V

(bOLS), and a quadratic form, d0ðVdÞ�1d, is asymptotically a w2(p), with

p degrees of freedom. The Hausman–Wu test amounts to medieval diagnosing

of a disease (endogeneity) by showing that a cure (bIV) works.
Actually, the IV remedy has been found to be seriously flawed as shown

by Bound et al. (1993) with a provocative title “the cure can be worse than
the disease” and Bound et al. (1995). Of course, there are several applications

including two-stage least squares where IV estimators are extremely useful.

One must distinguish between IV-based tests and IV estimators used to rem-

edy endogeneity.

3.1.3 Limitations of IV-based tests

Certain caution is needed in using IV-based tests for exogeneity. For example,

authors, including Bound et al. (1993) and Kiviet and Niemczyk (2007), have

warned that in finite samples instrumental variable IV estimators “have sys-

tematic estimation errors too, and may even have no finite moments.” More-

over they can be very inefficient (even in large samples) and unnecessarily

change the original specification. We list the following disadvantages:

(IV.1) One must replace each Xi with ad hoc, potentially weak and/or irrel-

evant instrumental variable from a set Z
�
, before testing for exogeneity of

Xi. The set Z
�
needs to be exhaustive and each element needs to be avail-

able to the researcher.

(IV.2) The test needs to be repeated for each potential Z
�
i replacing

each Xi.

(IV.3) Davidson and MacKinnon (1993, p. 241) show that degrees of free-

dom p for the w2(p) test are too large when only a subset of p variables in V
are exogenous.

(IV.4) The Chi-square sampling distribution is subject to unverified

assumptions of linearity and normality, especially unrealistic for human

subjects in finite samples.
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3.1.4 OLS super-consistency implications

Stock (1987) considers OLS estimate of marginal propensity to consume

(MPC) for the Keynesian consumption function when both consumption and

income are nonstationary, or measured in levels. Stock proves (p. 1042) that

Haavelmo’s “simultaneous equations bias” disappears asymptotically,

because OLS is super-consistent, reaching the true value at a fast asymptotic

rate of T. Since the bias will remain present in finite samples, our Cr1 of (21)

chooses the flip with a smaller potential bias. If we are estimating relations

involving nonstationary variables, endogeneity will not necessarily induce

asymptotic inconsistency.

3.1.5 CC-SEM implications for stochastic kernel causality

The properties WE1–WE4, and the four disadvantages of indirect exogeneity

testing listed as IV.1–IV.4 make it clear that a direct test for exogeneity is

much needed. Our direct test follows Koopmans in requiring that RHS exoge-

nous variable should approximately cause the LHS variable. The Hausman–Wu

test criterion will be incorporated in the first criterion for causality (Cr1) in

Eq. (21) explained in the next section. Hence exogeneity of Xi in the LjRi

model based on Eq. (12) can be tested by using our decision rule for assessing

the causal path Xi !Xj described later in Section 7.

4 Stochastic kernel causality by three criteria

Having defined kernel regressions and CC-SEM exogeneity methods we are

ready to consider deeper manifestations on the inequalities (7) in Definition

1 of stochastic kernel causality. First define two conditional expectation func-

tions estimated by flipped kernel regressions as:

gjjik ¼E½ f̂ ðXjjXi,XkÞ�, gijjk ¼E½ f̂ ðXijXj,XkÞ�: (19)

Now our Definition 1 of (7) under assumptions A1–A3 for the causal path

Xi !Xj requires the kernel regression residuals to satisfy for t ¼ 1, …, T

jejjikj ¼ jXj�gjjikj< jXi�gijjkj ¼ jeijjkj, a:e: (20)

The “a.e.” inequality (20) among T numbers can manifest itself in many

distinct ways. Our criteria employ sophisticated comparisons of T numbers

by comparing their densities, not just summary statistics. Stochastic domi-

nance methods of four orders compare rolling moments (mean, variance,

skewness, kurtosis) defined locally over rolling small neighborhoods.

Thus we are ready to fulfill our “computational agenda” mentioned in

Section 1.1 requiring definitions of criteria Cr1–Cr3, ultimately leading to a

sample unanimity index ui.
Our first criterion Cr1 described next evaluates finite sample implications

of assumption A1 requiring consistency of conditional expectation functions,
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gjjik and gijjk. We plug observable residuals into the (consistency) exogeneity

condition (13), yielding two sets of T multiplications ejjikXt and eijjkYt. Our
Cr1 assumes that closeness to zero of these expressions reveals relative speeds

of convergence.

4.1 First criterion Cr1 for Xi→Xj

Since Kernel regressions are CAN (Proposition 2) the conditional expectation

functions (gjjik, gijjk) are consistent. Since speeds of convergence can differ,

one should prefer the conditioning with a faster convergence rate. The obvious

finite sample indicators of speeds of convergence are available from Eq. (13)

when we replace the true unknown errors by residuals. If gjjik converges faster
to its true value than gijjk, the T values implied by the “plim” expression of the

LjRi model should be closer to zero than the similar “plim” expression of the

flipped LiRj model. Now the condition for the causal path Xi !Xj making Xi

more exogenous in the LjRi model, than Xj is exogenous in the flipped LiRj

model, is the inequality:

Cr1 : jejjikXtj< jeijjkYtj, a:e: (21)

4.2 Second criterion Cr2 for Xi→Xj

The validity of the causal path X! Y requires that independent changes in Xi

lead to (dependent) changes in Xj, leading to LjRi model providing a better fit

than LiRj. Note that the fit is measured by the size of residuals which are

numerically comparable due to assumption (A2). Hence we require

Cr2 : jejjikj< jeijjkj, a:e:, (22)

which defines Cr2 from Eq. (20).

4.3 Third criterion Cr3 for Xi→Xj

Following Vinod (2014) an aggregate manifestation of the “a.e.” inequality (7)

involving residuals: ejjik, eijjk can be stated in terms of a higher coefficient of

determination R2 for one of the two flipped models. The effect of Xk

variable(s), if any, on Xi, Xj is netted out in these computations to yield our third

criterion:

Cr3 : R2
jji,k ¼ 1�SðejjikÞ2

ðTSSÞ > 1�SðeijjkÞ2
ðTSSÞ ¼R2

ijj,k, (23)

where TSS denotes the total sum of squares, which is (T � 1) for standardized

data, and where the conditioning in the two models is denoted by subscripts to

the R2.
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An equivalent requirement using generalized partial correlation coeffi-

cients from Vinod (2017) for Xi ! Xj is

jr�ðjji; kÞj> jr�ðijj; kÞj: (24)

An advantage of Cr3 is that it can be computed without having to standardize

the data.

R package “generalCorr” reports the generalized partial correlation

coefficients in Eq. (24), if desired. The R function “pacorMany” provides

partial correlation coefficients of first column with all others. Recall that

Theorem 1 (a) Eq. (5) considers netting out of the confounders Xk from

both causal Xi and outcome Xj variables, exactly as it is implemented in

computing (24).

5 Numerical evaluation of Cr1 and Cr2

This section provides further remarks on numerical evaluation of inequalities

in (21) and (22) which hold a.e. That is, a “small” number of inequality rever-

sals are permissible. Fortunately, financial economists have a solution to the

quantification of a choice problem characterized by (fuzzy) inequalities which

are violated for subsets of points.

Suppose an investor has data on two probability distributions of returns

(rat, rbt). If these returns satisfy the inequality (rat > rbt), a.e., then the clear

choice is investment “a.” However, real world portfolios ‘a’ almost always

beating “b” are very rare. Moreover investors often want to compare not only

the mean, but also the variance, skewness, and kurtosis, if not the entire dis-

tribution of returns. Hence, financial economists have developed a concept

of stochastic dominance of four orders to, respectively, compare the local

mean, variance, skewness, and kurtosis.

This section develops Cu(sd1) to Cu(sd4) as four sets numbers to quan-

tify all four important features of “fuzzy” inequalities between two densities

in (21) and (22). This will eventually lead to the unanimity index. Of course,

investors seek higher returns, while we seek lower absolute values of resi-

duals in Eqs. (21) and (22), implying that we must change the sign before

using the Finance algorithm. Ours is claimed to be one of the first applica-

tions of stochastic dominance in resolving fuzzy inequalities unrelated to

Finance.

Definition 3 (Stochastic Dominance). Density f(X) dominates another density

f(Y) in the first order if the respective empirical cumulative distribution func-

tions (ecdf ) satisfy: F(x) � F(y).
It may be unintuitive but true that the dominating density f(X) with larger

magnitudes has a smaller cumulative density F(x) in Definition 3. The sto-

chastic dominance is surveyed in Levy (1992) and four orders of stochastic

dominance are discussed next.
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6 Stochastic dominance of four Orders

The first order stochastic dominance (SD1) is defined in Definition 2. It is

well known that SD1 provides a comprehensive picture of the ranking

between two probability distributions with a focus on locally defined first

moment (mean). This section attempts to discuss quantification of SD1 to

SD4 following the theory and software available in Vinod (2008, chap. 4).

The underlying computation requires bringing the two densities on a com-

mon “support,” requiring ecdf’s to have up to 2T possible jumps or steps. Hence

there are 2T estimates of F(x) � F(y) denoted by a 2T � 1 vector (sd1).

Anderson (1996) shows how a simple premultiplication by a large patterned

matrix implements computation of (sd1). Let us use a simple cumulative sum,

Cu(sd1), whose sign (+ 1, 0, �1) helps summarize the first order stochastic

dominance into only one number.

Second order dominance (SD2) of f(x) over f(y) requires further integrals

of ecdf’s to satisfy:
R
FðxÞ� R

FðyÞ. One computes the numerical integral by

using the trapezoidal rule described in terms of a large patterned matrix whose

details are given in Vinod (2008, chap. 4) and in Anderson (1996). The 2T
estimates of SD2 denoted by (sd2) are locally defined variances. Their simple

cumulative sum is denoted as Cu(sd2), whose sign (+ 1, 0, �1) summarizes

the information regarding second order dominance.

Similarly, SD of order 3 is estimated by a vector (sd3) of 2T locally

defined skewness values defined from
R R

FðxÞ� R R
FðyÞ. The sd3 is further

summarized by the sign of Cu(sd3).

Analogous SD of order 4 for kurtosis requires
R R R

FðxÞ� R R R
FðyÞ and

measures investor “prudence” according to Vinod (2004). Cumulative sum of

point-wise kurtosis estimates of SD4 are Cu(sd4), whose sign (+ 1, 0, �1)

summarizes the SD4 dominance information.

Remark 4. Dominance of four orders associated with the first four moments

yield four 2T � 1 vectors: sd1–sd4. Their cumulative sums, are denoted as

Cu(sd1) to Cu(sd4), whose signs are generally the same as the sign of their

averages. These signs are indicators of the overall direction of the inequality

suggested by T distinct signs of sd1–sd4 values.

6.1 Weighted sum of signs of Cu(sd1) to Cu(sd4)

Now we quantify the three inequality criteria. The inequalities for criteria Cr1

and Cr2 are fuzzy, requiring the use of stochastic dominance methods. It is

convenient to rewrite the inequalities (22) and (21) as

Cr1 : signðjejjikXtj� jeijjkYtjÞ, and

Cr2 : signðjejjikj� jeijjkjÞ,
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where the smaller magnitudes suggest a superior specification. Hence the sign

(�1) suggests an outcome where the causal path is Xi !Xj.

Depending on the order of stochastic dominance, we have standard tools

described in Remark 4 and Vinod (2008, Sec. 4.3) for estimating four num-

bers, Cu(sd1) to Cu(sd4), quantifying stochastic dominance values. Their

signs and magnitudes are determined by the local behavior of the first four

moments of the underlying densities of absolute values involved in Cr1 and

Cr2 expressions above.

Since it is cumbersome to deal with signs of four numbers, we construct a

weighted sum of their signs. What weights do we choose for combining the

signs, (�1, 0, +1), not magnitudes of Cu(sd1) to Cu(sd4)? Statistical theory

suggests that weights on magnitudes should be inversely proportional to the

increasing sampling variances of the first four central moments. (s2, 2s4,
6s6, 96s8) from a normal parent (applying central limit theory to means of

(sd‘) according to Kendall and Stuart (1977, p. 258). If s2 ¼ 0.5 the declining

weights become (2, 2, 1.33, 0.17). The weights when aggregating the signs of

cumulative sums (not magnitudes of means) obviously need a mild decline.

Based on a small simulation our chosen weights are: (1.2/4, 1.1/4, 1.05/4, 1/4)

which sum to 1.085.

Vinod (2017) R package “generalCorr” provides an option to change the

weights. Let Ncr1 denotes a single number weighted sum of four signs of

Cu(sd1) to Cu(sd4) associated with Cr1. Similarly, let Ncr2 denote a single

number weighted sum of four signs of Cu(sd1) to Cu(sd4) quantifying Cr2.

Note that the sign from the inequality of two R2 values (23) involved in our

third criterion Cr3 is already only one number in the interval [�1, 0, +1]. We

do not need any weighted sum for Cr3. We simply evaluate the sign

Cr3 : signðR2
jji,k�R2

ijj,kÞ, (25)

to compute our Ncr3. This choice of sign(.) expression for Cr3 makes sure that

the sign (�1) represents the situation where the causal path is Xi !Xj. Thus

we have defined our sign function evaluations for the three criteria Cr1–Cr3
such that the sign (�1) always means Xi !Xj.

6.2 Unanimity index summarizing signs

The preponderance of evidence regarding the sign is summarized by the grand

total of these three numbers Ncri, i ¼ 1, 2, 3, summarizing the empirical sup-

port for a causal path. We compute

Nall ¼Ncr1 +Ncr2 +Ncr3: (26)

The interpretation of Nall is simply that negative values support the path

Xi !Xj and also support treating Xi as exogenous in a model for joint density

f(Xi, Xj, Xk).
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Vinod (2017) proves that Nall 2 [�3.175, 3.175]. Since the number 3.175

is unintuitive, we transform it into our sample unanimity index (ui) defined by

the relation:

ui¼ 100ðNall=3:175Þ, ui2 ½�100,100�, (27)

for easier interpretation as signed index numbers. The sign of ui indicates the
estimated direction of the causal path and magnitude represents the extent of

unanimity between the quantified criteria Cr1–Cr3. The population index is

denoted by upper case letters UI.

7 Review of decision rule computations

At this point it is somewhat repetitious but useful to review the above discus-

sion implementing our computational agenda in Section 1.1 leading to our

decision rules.

Result 1. Assuming A1–A3, stochastic kernel causality of Definition 1 com-

pares kernel regression: Xj ¼ G(Xi, Xk) + E1, implying Xi !Xj with its flipped

cousin: Xi ¼ G(Xj, Xk) + E2, implying Xj !Xi.

The empirically superior causality paths among the flipped cousins are

determined by three criteria:

(Cr1): compares consistency and exogeneity condition in (21),

(Cr2): compares smallness of absolute values of residuals in (22), and

(Cr3): compares R2 values of the two models as in (23).

Four orders of stochastic dominance representing local mean, variance,

skewness, and kurtosis in comparing densities involving residuals ejjik, eijjk
yield four numbers: Cu(sd1) to Cu(sd4) for Cr1 using numerical integrations.

A weighted average of the signs of these four numbers yields one number Ncr1

as the representative sign for Cr1. We have similar four numbers of Cr2 and

another number Ncr2 summarizing them. The last criterion Cr3 yields only one

number, Ncr3 ¼�signðR2
jji,k�R2

ijj,kÞ 2 ½�1,0,1�. The number should be �1 for

the path Xi !Xj.

Thus we have one number summary of the signs of all three criteria as

Nall ¼ Ncr1 + Ncr2 + Ncr3. This represents the preponderance of evidence for

any particular sign. Finally our sample unanimity index is a simple transfor-

mation of Nall defined as ui ¼ 100(Nall/3.175) which must lie in an intuitive

range: ui 2 [�100, 100]. Choosing a threshold value τ ¼ 5 we can conclude

with high probability that Xi !Xj if and only if (ui < �τ).
Proof Sketch. We have distilled as much information as possible in the two

sets of residuals and two flipped models to assess the causal path. Our result-

ing decision rules treat the causal paths as empirical questions, without

ruling out bidirectional causality associated with jointly dependent variables
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in CC-SEM terminology. If additional computational resources are available,

a bootstrap sampling distribution of the sample ui provides a confidence inter-
val. The “high probability” claimed in Result 1 is further supported by a sim-

ulation reported in Section 8, and by examples where cause is known in the

vignettes accompanying the R package “generalCorr.”

8 Simulation for checking decision rules

Following our Definition 1 and decision rules in Section 1.1 we generate the

X1 variable (assumed to be exogenous) independently and then define X2 to

depend on X1 after adding a noise term, E � N(0, 1), a the standard normal

deviate. Our decision rules are known to perform better in the absence of nor-
mality and linearity. Hence all our experiments using E are handicapping our

decision rules. Nevertheless we want to see if they work reasonably well.

In the following experiments X1 is an independently generated (exogenous)

DGP, and hence the causal path is known to be X1 !X2, by construction. We

use sample sizes: T ¼ 50, 100, 300, to check if our decision rules correctly

assess the causal path, despite the handicap of linearity and/or normality.

Let m denote the count for indeterminate signs when we repeat the experi-

ments N ¼ 1000 times. Define the success probability (suPr) for each experi-

ment as:

ðsuPrÞ¼ ðcount of correct signsÞ
N�m

: (28)

The simulation considers four sets of artificial data where the causal direc-

tion is known to be X1 !X2.

1. Time regressor: X1 ¼ {1, 2, 3, …, T}
X2 ¼ 3 + 4X1 + E

2. Unit root quadratic:

X1 has T random walk series from cumulative sum or standard normals.

X2 ¼ 3 + 4X1�3X2
1 + E

3. Two uniforms:

X1, Z1 each have T uniform random numbers

X2 ¼ 3 + 4X1 + 3Z1 + E
4. Three uniforms:

X1, Z1, Z2 each have T uniform random numbers

X2 ¼ 3 + 4X1 + 5Z1 � 6Z2 + E

The simulation required about 36 h on a Dell Optiplex Windows 10 desktop

running Intel core i5-7500, cpu at 3.40 GHz, RAM 8 GB, R version 3.4.2.

The large success proportions (suPr) reported in row 7 (for T ¼ 50),

row 15 (for T ¼ 100) and row 23 (for T ¼ 300) of Table 1 assume the threshold
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τ ¼ 0. The results for the four experiments in four columns show that our

decision rules using a “ui” from Cr1 to Cr3 work well. The effect on success

probabilities of the choice of the threshold is studied for the T ¼ 300 case by

using τ ¼ 0, 15, 20, 25, respectively, along rows 21–24.

TABLE 1 Summary statistics for results of using the “ui” measure for correct

identification of causal path indicated by its positive sign using N 5 1000

repetitions, T 5 50, 100, 300 sample sizes along three horizontal panels

Row Stat. Expm51 Expm52 Expm53 Expm54

1 Min. T ¼ 50 31.496 �100.000 �100.000 �100.000

2 1st Qu. 63.780 31.496 31.496 �31.496

3 Median 100.000 31.496 31.496 37.008

4 Mean 82.395 33.725 24.386 27.622

5 3rd Qu. 100.000 100.000 37.008 37.008

6 Max. 100.000 100.000 100.000 100.000

7 suPr 1.000 0.793 0.808 0.712

8 Min. T ¼ 100 31.496 �100.000 �100.000 �100.000

9 1st Qu. 63.780 31.496 31.496 31.496

10 Median 81.102 31.496 31.496 37.008

11 Mean 74.691 33.106 32.822 35.879

12 3rd Qu. 100.000 100.000 37.008 37.008

13 Max. 100.000 100.000 100.000 100.000

14 suPr 1.000 0.787 0.892 0.803

15 Min. T ¼ 300 31.496 �100.000 �31.496 �63.780

16 1st Qu. 81.102 31.496 31.496 37.008

17 Median 81.102 31.496 31.496 37.008

18 Mean 80.357 43.020 42.973 42.117

19 3rd Qu. 100.000 100.000 37.008 37.008

20 Max. 100.000 100.000 100.000 100.000

21 suPr,τ ¼ 0 1.000 0.829 0.987 0.963

22 suPr,τ ¼ 15 1.000 0.833 0.988 0.970

23 suPr,τ ¼ 20 1.000 0.835 0.989 0.971

24 suPr,τ ¼ 25 1.000 0.836 0.989 0.971

Success probabilities (suPr) show convergence as T increases in the three panels.
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Moreover since the success probabilities “suPr” for τ ¼ 0 along rows 7,

14, and 21 increase as T ¼ 50, 100, 300 increases, this suggests desirable

asymptotic convergence-type feature. Thus, our decision rules are supported

by the simulation.

9 A bootstrap exogeneity test

Statistical inference regarding causal paths and exogeneity uses the rescaled

version ui from Eq. (27) of Nall of (26), for estimating the population param-

eter UI.
Bootstrap percentile confidence interval: We suggest a large number J of

bootstrap resamples of (X, Y, Z) data to obtain (Nall)j and (ui)j using any boot-

strap algorithm. These (j ¼ 1, …, J) values provide an approximation to the

sampling distribution of “sum” or “ui.” We can easily sort the J values from

the smallest to the largest and obtain the “order statistics” denoted as (ui)(j),

with parenthetical subscripts. Now a (1 � a)100 percent confidence interval

is obtained from the quantiles at a/2 and 1 � a/2. For example, if a ¼ 0.05,

J ¼ 999, 95% confidence interval limits are: (ui)(25) and (ui)(975).

Recalling the decision rules Ru.1–Ru.3 of Section 1.1, if both confidence

limits fall inside one of the two half-open intervals, we have a statistically sig-

nificant conclusion. For example, Ru.1 states that: If (ui < �τ) the causal path
is: Xi !Xj. If instead of a point estimate we have two limits, we want both

confidence limits of ui lie in the same half-open interval: [�100, �5). Then,

we have a statistically significant conclusion that Xi !Xj, or equivalently that

Xi is exogenous.

This chapter uses the maximum entropy bootstrap (meboot) R package

described in Vinod and López-de-Lacalle (2009) because it is most familiar

to me, retains the dependence structure in the data, and is recently supported

by simulations in Yalta (2016), Vinod (2015) and elsewhere. An advantage

of meboot is that it permits bootstrap inference even if the variables in

the model are not stationary. Following Stock (1987) such specification in

data levels (without differencing or detrending) allows the estimators to be

super-consistent.

9.1 Summarizing sampling distribution of ui

The approximate sampling distribution is revealed by J (¼999) resampled

estimates of ui. A simple way of learning the properties of these estimates

is in terms of the usual summary statistics. This will be illustrated later in

Table 4 for our illustrative example.

Another way involves computing bootstrap proportion of significantly

positive or negative values. Let m denote the bootstrap count of indeterminate

signs when (ui)2 [�τ, τ], where the threshold τ ¼ 5 can be changed by the
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researcher depending on the problem at hand. Now define a bootstrap approx-

imation to the proportion of significantly positive signs as:

P�ð+ 1Þ¼ ðcount of uij > τÞ
J�m

: (29)

Similarly, a bootstrap approximation to the proportion of significantly nega-

tive signs is:

P�ð�1Þ¼ ðcount of uij <�τÞ
J�m

: (30)

10 Application example

An application with some topical interest is briefly discussed in this section.

Since the US economy has had a long stretch of growth, tools for predicting a

recession are all the more important. Macroeconomists and Federal Reserve

researchers being aware of their failure to forecast the last great recession

of 2007–2008 have developed new data series. For example, Gilchrist and

Zakrajek (2012) excess bond premium (EBP) series has been shown to pre-

dict recession risk. The term-spread, defined as the difference between

long term yield (10-year) and short-term yield (1-year) on government secu-

rities is shown by Bauer and Mertens (2018) to be an excellent predictor of

recessions.

Instead of directly predicting discrete events like recessions, we are

attempting to study what macroeconomic variables drive EBP and term-

spread themselves. Our term-spread is denoted as “Dyld” or difference in

yields on 10-year and 6-month government securities and discussed later in

Section 10.1. We use Federal Reserve Bank’s fairly long quarterly data set

from 1973Q1 to 2017Q1.

We study the following potential causes behind EBP by considering the

endogeneity of variables in the following nonparametric regression:

EBP¼ f ðYld10;eFFR;CrCrea;CrDstr;UnemR;M2;MbyP;YbyHrs;JD;JCÞ,
(31)

where self-explanatory symbols are: yield on 10-year treasury bonds (Yld10,

not seasonally adjusted), effective federal funds rate (eFFR), and credit crea-

tion (CrCrea, not seasonally adjusted), credit destruction (CrDstr, not season-

ally adjusted), unemployment rate (UnemR), money stock (M2, seasonally

adjusted billions of dollars), MbyP (ratio of M to PGDP or real money sup-

ply), YbyHrs (ratio of GDP to hours, or productivity), JD (job destruction),

JC (job creation). Arguments for using separate variables for CrCrea and

CrDstr are found in Contessi and Francis (2013) with additional references.
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Table 2 explicitly reports for each flipped pair the “cause” and “response”

such that the left-hand variable EBP in Eq. (31) is present in all pairs. The col-

umn entitled “strength” reports the absolute value juij value. The names of

variables to go in the “cause” and “response” columns are dictated by the sign

of ui. For example, line 6 has M2 in the “cause” column and EBP in the

“response” column, because ui < 0 implies that M2 is exogenous. The column

entitled “corr” reports Pearson correlation coefficient with EBP, while the

column entitled “P-value” reports the “P”-value for testing the null of zero

correlation. Of course, kernel causality and exogeneity need not agree with

traditional correlation inference, since the latter assumes linearity and normal

distributions.

Whenever ui > 0, we place EBP in the “cause” column. Table 2 line 1b

reports that ui is positive and smaller than that for “Yld10” along row 1. We have

focused more on EBP than “Dyld” because EBP has greater independent innova-

tions than “Dyld” according to line 1b, where “Dyld” does not “cause” EBP. The

simple correlation between EBP and “Dyld” is statistically insignificant and

lower than the correlation between EBP and Yld10 reported along row 1.

Note that only M2, YbyHrs, JD, and JC are likely to be self-driven (exog-

enous) causing the excess bond premium, while all other variables seem to be

endogenous, being caused by EBP.

TABLE 2 Excess bond premium and possible causes

Cause Response Strength Corr. P value

1 EBP Yld10 47.244 0.0866 0.25161

1b EBP Dyld 31.496 0.0416 0.58258

2 EBP eFFR 31.496 0.0902 0.23248

3 EBP CrCrea 31.496 �0.0606 0.42322

4 EBP CrDstr 31.496 0.2617 0.00043

5 EBP UnemR 31.496 0.1108 0.14222

6 M2 EBP 31.496 �0.0536 0.47843

7 EBP MbyP 31.496 0.0195 0.79659

8 YbyHrs EBP 31.496 �0.0588 0.43693

9 JD EBP 31.496 0.47 0

10 JC EBP 31.496 �0.1323 0.07915
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10.1 Variables affecting term spread

Before we turn to statistical inference associated with the results above, we

include results for causal paths and their strengths when the dependent vari-

able in (31) is “Dyld,” or difference in yields.

Dyld¼ f ðYld10; eFFR; CrCrea; CrDstr; UnemR; M2; MbyP; YbyHrs; JD; JCÞ:
(32)

The results in Table 3 show that independent variation in “Dyld,” similar

to “EBP,” drives that in variables: (dffFFR, CrCrea, CrDtr, UnemR, JD, JC).

By contrast, “Dyld” is driven by variables (Yld10, M2, MbyP, YbyHrs). This

contrasts with the driver variables (M2, YbyHrs, JD, JC) in Table 2. The com-

mon drivers are money supply M2 and productivity “YbyHrs.”

10.2 Bootstrap inference on Estimated Causality Paths

What about sampling variability of ui? We resample the data 999 times using

the “meboot” package to keep the time series properties of the data unchanged.

The summary statistics of the 999 estimates of ui for 10 variables are split into

two Tables 4 and 5.

Table 6 shows that our approximate sampling distribution results provide a

distinct piece of information not covered by the results about the strength or P

TABLE 3 Term spread between 10-year to 6-month treasury yields and

possible causes

Cause Response Strength Corr. P value

1 Yld10 Dyld 31.496 �0.1862 0.0131

2 Dyld eFFR 100 �0.5463 0

3 Dyld CrCrea 37.008 �0.1666 0.02668

4 Dyld CrDstr 100 0.3107 3e�05

5 Dyld UnemR 31.496 0.5149 0

6 M2 Dyld 31.496 0.2412 0.00122

7 MbyP Dyld 31.496 �0.0014 0.98522

8 YbyHrs Dyld 31.496 0.2718 0.00025

9 Dyld JD 37.008 �0.0403 0.5939

10 Dyld JC 100 �0.1359 0.07121
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TABLE 5 Summary statistics of 999 bootstrap estimates of causal directions

and strengths, Part 2

M2 MbyP YbyHrs JD JC

Min. �31.50 �31.50 �31.50 �31.50 �100.00

1st Qu. �31.50 31.50 �31.50 �31.50 �31.50

Median �31.50 31.50 �31.50 �31.50 �31.50

Mean �31.50 32.77 �31.50 �1.29 �29.55

3rd Qu. �31.50 31.50 �31.50 31.50 �31.50

Max. �31.50 100.00 �31.50 100.00 100.00

TABLE 4 Summary statistics of 999 bootstrap estimates of causal directions

and strengths, Part 1

Yld10 eFFR CrCrea CrDstr UnemR

Min. �31.50 �100.00 �31.50 �31.50 �31.50

1st Qu. 31.50 �31.50 �31.50 31.50 �31.50

Median 47.24 �31.50 31.50 31.50 �31.50

Mean 55.18 �4.88 6.36 29.32 �10.84

3rd Qu. 81.10 31.50 31.50 31.50 31.50

Max. 100.00 100.00 100.00 100.00 100.00

TABLE 6 Bootstrap success rates for causal direction using 999 resamples.

Variable P(	1)

1 Yld10 0.9737

2 eFFR 0.6232

3 CrCrea 0.537

4 CrDstr 0.951

5 UnemR 0.7124

6 M2 1

7 MbyP 0.964

8 YbyHrs 1

9 JD 0.5486

10 JC 0.9758



value in Table 2. The table contains proportion of negative or positive (which-

ever is most prevalent) in each column described as bootstrap success rates,

defined in Eqs. (30) and (29).

We recommend careful analysis of each causal pair with the help of scat-

terplots. We include only two plots here for brevity: (i) EBP-UnemR pair

where UnemR is found to be endogenous, and (ii) EBP-M2 pair where M2

is found to be exogenous. Histograms of the two variables are seen in the

diagonal panels of Figs. 1 and 2. The South West panels have a scatter dia-

gram and locally best fitting free hand curve. The number in the North East

panels is the ordinary correlation coefficient whose font size suggests its sta-

tistical significance.

Fig. 1 depicts a scatterplot having a mildly up-down-up pattern. This

may explain why the Pearson correlation coefficient of 0.11 is statistically

insignificant, since it does not capture nonlinear relations. Endogeneity of

unemployment rate suggests that it is likely an effect of recessions and not
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FIG. 1 Scatterplot with nonlinear curve: EBP-UnemR.
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a cause. Note that Fig. 2 suggests that the variation in M2 is weakly exoge-

nous. Its scatterplot is U-shaped and quite noisy confirming highly insignifi-

cant and small Pearson correlation coefficient. Thus a decline in M2 may

help predict recessions.

11 Summary and final remarks

We update Suppes’ “probabilistic causality theory” from philosophical litera-

ture and propose a new “stochastic causality theory” of Theorem 1. If one

replaces probabilities of events with densities of DGPs, its direct quantifica-

tion seems difficult. Hence we use kernel regressions to define our

“stochastic causality” (Definition 1). A review Section 7 summarizes the der-

ivation of the unanimity index (ui 2 [�100, 100]) providing our decision

rules. This index uses three criteria Cr1–Cr3 and four orders of stochastic
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FIG. 2 Scatterplot with nonlinear curve: EBP-M2.
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dominance. Our decision rules are simulated in Section 8 with high success

rate. Our new bootstrap test for exogeneity in Section 9 provides statistical

inference for ui using about a thousand estimates.

Descriptive statistics of these 1000 estimates can provide a quick view of

the sampling distribution of ui to assess the preponderant sign and hence the

causal direction. We also provide a confidence interval and identify a bidirec-

tional causal path when (ui 2 [�τ, τ]) or too close to zero. Now (ui > �τ)
directly identifies an RHS variable as having an endogeneity problem. It

may well need an extra equation in a simultaneous equations model.

Engle et al. (1983, p. 288) admit that their “weak exogeneity” is not

“directly testable” as it involves arbitrarily defined distinction between para-

meters of interest (c) and nuisance parameters (l2). Hausman–Wu indirect

exogeneity tests use IV estimators which can “do more harm than good”

(Bound et al., 1995, p. 449), and are criticized as being “very inefficient”

by Kiviet and Niemczyk (2007), Dufour, and others. Medicine has long

rejected medieval-style diagnoses of diseases by simply showing that a cure

works. Hence there is a long-standing need for a direct alternative which

avoids having to specify, collect data on and try an exhaustive set of several

potential instrumental variables, and concluding that a particular RHS vari-

able is exogenous only if no IV “works.” Since it is hard to be sure that one

has attempted an exhaustive set of IVs, the endogeneity problem is likely to

be over-diagnosed and treated with dubious instruments.

An illustrative example in Section 10 considers a novel macroeconomic

model explaining the “excess bond premium” (EBP) known to be a good pre-

dictor of US recessions. Alternatively we attempt to explain term spread

“Dyld” between long-term and short-term government bond interest rates.

Our Table 2 suggests that US investors worried about an impending recession

should pay attention to innovations in two key variables: money stock

(M2) and productivity (YbyHrs) which are found to be kernel exogenous.

Clearly, practitioners can use our unanimity index implemented with very

few lines of code. The ability to incorporate control variables in our analysis

is particularly valuable for causality estimation and testing. There are several

potential applications in all scientific areas including exploratory hypothesis

formulation, big data, and artificial intelligence. One recent paper, Lister

and Garcia (2018), uses our decision rules to conclude that global warming

causes arthropod deaths. Another paper, Allen and Hooper (2018), uses them

to explore causes of volatility in stock prices.
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Appendices

Appendix A. Review of graph theory

Let us begin this admittedly brief and incomplete review by providing a

mapping between CC-SEM textbook jargon (Vinod, 2008, chap. 6) and graph

theory-SEM jargon from the Stanford Encyclopedia, intended to enhance the

communication between the two camps.

1. (left-hand endogenous variable) 
 (child or descendant variable)

2. (included right-hand endogenous variables) 
 (parent variables)

3. (excluded right-hand endogenous variable) 
 (variables with coefficients

set to zero a priori)

4. (included right-hand exogenous variable) 
 (variables included to incor-

porate Reichenbach’s common cause principle)

5. (excluded right-hand exogenous variable) 
 (various causal identification

requirements)

In graph theory the determination of the correct DAG among p variables in V
makes it identifiable. Correct DAGs must satisfy, Reiss (2016), Markov con-

dition, minimality, faithfulness, Gaussianity, and incorporate interventions via

Pearl’s “do” notation.

Assume that a graph G is DAG. A joint density f(V) satisfies the Markov

condition (MC) relative to graph G if and only if it satisfies three conditions

explained in the encyclopedia:

(Screen Off ) Let X in V and every set of variables Y also in V excluding the

variables which are caused by or “descendants or children of”

X the conditional probabilities satisfy:

PðXjparentðXÞ,YÞ¼PðXjparentðXÞÞ
In other words, given the values of the variables that are parents of X, the

values of the variables in Y (which includes no descendants of X) make no fur-

ther difference to the probability that X will take on any given value.

(Factorization) once we know the conditional probability distribution of

each variable given its parents, we can compute the com-

plete joint distribution over all of the variables. P(V) ¼PiP
(Xijparent(Xi)). This captures Reichenbach’s common cause

principle.

(d-separation) Pearl’s sufficient condition for statistical independence

in potentially large graphs. Let X, Y 2 V, Z 2 V�X, �Y,

where the notation with minus subscript means those vari-

ables are excluded from the set, then P(X, Y jZ) ¼ P(XjZ)
� P(Y jZ)
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Reichenbach’s conjunctive fork used for achieving asymmetry is defined by

the following formulas:

PðX\YjZÞ¼PðXjZÞ�PðYjZÞ (A.1)

PðX\YjZ�Þ¼PðXjZ�Þ�PðYjZ�Þ (A.2)

PðXjZÞ>PðXjZ�Þ (A.3)

PðYjZÞ>PðYjZ�Þ, (A.4)

where Z� denotes the situation where Z is absent.

Appendix B. For R code

An R package “generalCorr” has various functions implementing all tools in

this chapter. It contains three vignettes showing how to use the R functions

with several examples including a discussion of the intuition behind them.

The following code is a good way to start an R session.

rm(list=ls())
options(prompt = " ", continue = " ", width = 68,
useFancyQuotes = FALSE)
print(date())

The above code replaces the R prompt “>” and continuation symbol “+” by

blanks to facilitate direct copy and paste of the R code. Most code outputs

are suppressed in this appendix for brevity.

Assume the data file is in the form of an excel type workbook or spread-

sheet. I place important information about data sources, longer variable names,

etc. in the first three lines of excel workbook. The fourth line has variable

names as column headings exactly one per column. Variable naming conven-

tions in R are case sensitive, do not allow names with spaces or math symbols,

(%, +, /, ¼ ), and cannot start with a number. For example, “9x” or “x/y” cannot

be valid variable names.

Next, the excel workbook is “saved as” a comma separated “csv” file. It is

a good idea to open the file in a notepad to get rid of some extra commas or

stuff which might creep in at the end of some lines or at end of the file, if one

is editing the excel workbook and removes some text along rows or columns.

Finally, we are ready to read the data as:
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ad="http://www.fordham.edu/economics/vinod/macroebp73to17.csv"
da=read.table(ad, skip=3,sep=",",header=TRUE)
summary(da)
attach(da)
eFFR=effFFR #brief notation effective federal funds rate

The “attach” command allows us to access data variables by name.

In the following we access the “generalCorr” package and define a matrix

“mtx” where the first variable “EBP” is the left-side variable in Eq. (31) and

other 10 variables are listed next.

library(generalCorr)
options(np.messages=FALSE)
mtx=cbind(EBP,Yld10,eFFR,CrCrea,CrDstr,
UnemR,M2,MbyP,YbyHrs,JD,JC)
c1=causeSummary(mtx)#fast causality analysis
xtable(c1)#latex table output
parcorMany(mtx) #matrix of partial correlations,SLOW

Table 2 is produced by the above code.

The command “bootPairs” below uses 999 data resamples to assess sam-

pling variability of the estimated ui values. It created 10 columns of 999 num-

bers called “b1” here and took about 10 h to implement on a home PC.

b1=bootPairs(mtx, n999=999)
a1summ=apply(b1,2,summary)
a1sum2=a1summ*(100/3.175)
xtable(round(a1sum2[,1:5], 3))
xtable(round(a1sum2[,6:10], 3))

Tables 4 and 5 are produced by the “xtable” commands in the above code.

Following code produces Table 6.

n1=colnames(mtx)[2:11]
bsign=round(bootSign(b1),4)
xtable(cbind(n1,bsign))

The code for our Figs. 1 and 2 is next.

library(PerformanceAnalytics)
chart.Correlation(cbind(EBP,M2))
chart.Correlation(cbind(EBP,UnemR))

Thus anyone with Internet access and rudimentary knowledge of R can estimate

causal directions and strengths between a set of variables rather simply.
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Vinod, H.D., López-de-Lacalle, J., 2009. Maximum entropy bootstrap for time series: the meboot

R package. J. Stat. Softw. 29 (5), 1–19. http://www.jstatsoft.org/v29/i05/.

Wu, D.-M., 1973. Alternative tests of independence between stochastic regressors and distur-

bances. Econometrica 77 (5), 733–750.

Yalta, A.T., 2016. Bootstrap inference of level relationships in the presence of serially correlated

errors: a large scale simulation study and an application in energy demand. Comput. Econ.

48, 339–366. https://doi.org/10.1007/s10614-015-9530-7.

Zalta, E.N., 2018. The Stanford Encyclopedia of Philosophy. The Metaphysics Research Lab,

Stanford University. https://plato.stanford.edu.

64 PART I Statistical Inference

http://www.unige.ch/lettres/baumgartner/docs/kausa/protect/salmon.pdf
http://www.unige.ch/lettres/baumgartner/docs/kausa/protect/salmon.pdf
http://refhub.elsevier.com/S0169-7161(18)30104-4/rf0115
http://refhub.elsevier.com/S0169-7161(18)30104-4/rf0115
http://refhub.elsevier.com/S0169-7161(18)30104-4/rf0120
http://refhub.elsevier.com/S0169-7161(18)30104-4/rf0125
http://refhub.elsevier.com/S0169-7161(18)30104-4/rf0125
http://www.worldscibooks.com/economics/6895.html
http://www.worldscibooks.com/economics/6895.html
http://refhub.elsevier.com/S0169-7161(18)30104-4/rf0135
http://refhub.elsevier.com/S0169-7161(18)30104-4/rf0135
http://refhub.elsevier.com/S0169-7161(18)30104-4/rf0135
http://www.tandfonline.com/doi/full/10.1080/02664763.2015.1049939
https://cloud.r-project.org/web/packages/generalCorr/vignettes/generalCorr-vignette3.pdf
https://cloud.r-project.org/web/packages/generalCorr/vignettes/generalCorr-vignette3.pdf
http://www.jstatsoft.org/v29/i05/
http://refhub.elsevier.com/S0169-7161(18)30104-4/rf0155
http://refhub.elsevier.com/S0169-7161(18)30104-4/rf0155
https://doi.org/10.1007/s10614-015-9530-7
https://plato.stanford.edu


Chapter 3

Adjusting for bias in long
horizon regressions using R

Kenneth D. Westa,* and Zifeng Zhaob

aDepartment of Economics, University of Wisconsin-Madison, Madison, WI, United States
bDepartment of Information Technology, Analytics and Operations, Mendoza College of Business,

University of Notre Dame, Notre Dame, IN, United States
*Corresponding author: e-mail: kdwest@wisc.edu

Abstract
Long horizon regressions that rely on linear models are common in many applied

fields. Examples from economics include forecasting inflation 12 quarters ahead

(Crone et al., 2013) and relating 120 month ahead changes in exchange rates to cur-

rent period variables (Snaith et al., 2013). We describe R code to implement recently

developed procedures that adjust long horizon regressions to lessen bias in parameter

estimates (West, 2016).

Keywords: Least squares bias, Small sample bias, Bias reduction, Multistep forecast,

Direct forecast, VAR model

1 Introduction

In this chapter we consider small sample bias in long horizon least squares

regressions in discrete time linear time series models. A leading application

is to “direct” multistep forecasts. We describe R code that adjusts for small

sample bias in such regressions. Such adjustments may be important because

in some specifications such bias is arbitrarily large for an arbitrarily long horizon

(West, 2016).

We begin by reviewing long horizon regressions and the direct method for

making a multistep forecast. We then describe R functions to implement

recently developed procedures that modify long horizon regression parameters

to lessen bias. We close with the code for an empirical application.

Throughout, our topic is solely construction of bias adjusted regression

estimates, taking as given a set of regressors or predictors. That is, we do

not discuss selection of predictors nor many other topics that are important
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in applied work such as construction of confidence intervals and forecast eval-

uation. See West and Zhao (2018) for how bias adjustment relates to forecast

evaluation via mean squared prediction error.

The R code can be downloaded from https://www.ssc.wisc.edu/
�kwest/appendices/appendices.htm.

2 Long horizon regressions

Let yt be a scalar time series, with data running up to time T. We suppose that

one wishes to model or forecast yt+q for some horizon q+1>0. If the data are

monthly, q+1 is measured in months, and similarly for frequencies other than

monthly.

In economics applications, the relevant range for q+1 runs from one step

ahead (q+1¼1) to q+1 in excess of 100. One step ahead forecasts—business

investment next quarter, employment next month, and so on—are ubiquitous.

Multistep forecasts are also common. The Survey of Professional Forecasters

asks participants to forecast GDP and inflation up to five quarters ahead;

Mark (1995) forecasts exchange rates 16 quarters ahead; and Crone et al.

(2013) forecast inflation 12 quarters ahead. Policy and academic work

sometimes look at even longer horizons. Lunsford and West (2017) forecast

interest rates 10 years ahead; Snaith et al. (2013) relate 120 month ahead

changes in exchange rates to period t predictors; and Hjalmarsson (2011)

relates 10 year ahead stock returns to period t predictors. These examples

could be multiplied many times over.

Note that the final two examples used the verb “relates” and not

“forecasts.” Such research evaluates the connection between a many step

ahead variable and a set of regressors using in-sample analysis only. The

R procedures we describe here are just as valuable for such in-sample analysis

as it is for analysis that involves forecasting. However, to focus the discus-

sion, we often shall describe our R functions in terms of forecasts.

Much though not all the relevant work—both in- and out-of-sample—

relies on stationary linear models, which we maintain here. Specifically, we

assume that the forecast or in-sample modeling of a stationary variable yt+q
relies on the projection of yt+q onto a constant and a (k� 1) vector Xt�1. Write

the population least squares projection as

yt+ q ¼ α +X0
t�1β + ηt+ q: (1)

The disturbance ηt+q is unobserved and is defined as the difference

between yt+q and the population projection of yt+q onto a constant and Xt�1.

In economics, there are two broad classes of applications. In the first class,

the elements of Xt�1 are financial market or survey variables that are hypothe-

sized to be good predictors of an economic variable y. A simple example

occurs in the Snaith et al. (2013) paper cited above:
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l Let st be the log of the end of month nominal exchange rate (say, dollars

per British pound), so that

Δst � st� st�1

is approximately percentage change in the exchange rate. Observe that

with this definition,

yt+ q � st+ q� st�1 ¼Δst + q +Δst+ q�1 +⋯ +Δst

is approximately the percentage change in the exchange rate from month

t�1 to month t+q.

l Let it be the nominal return on a nominally safe q+1 month US bond.

Since we are assuming for the sake of illustration that the data are

monthly, if q+1¼120, then it is the interest rate on a 10-year US Treasury

bond. (“Nominally safe” means: the borrower [i.e., the US government]

will not default, and the return is only guaranteed in nominal rather than

real inflation adjusted terms.) Let it
∗ be the corresponding foreign interest

rate (the comparable interest rate in the UK, in this example).

Then a certain economic model says that the interest differential on 10-year

bonds it� it
∗ well explains the cumulative change in the exchange rate over

the following 10 years. So the regression run is

yt+ q � st+ q� st�1 ¼ α + β1 it� i∗tð Þ+ ηt+ q; X0
t�1 � it� i∗t and k¼ 1: (2)

The second broad class of applications are ones where Xt�1 consists of

deterministic terms and lags of yt and perhaps other variables. An example

is Marcellino et al. (2006), who examine prediction of many monthly eco-

nomic series at horizons up to q+1¼24 months, using both univariate

(Xt�1 includes lags of yt) and bivariate (Xt�1 includes lags of yt and of a sec-

ond variable) models. In the simplest possible case, the model is univariate

and the forecasting horizon is one step ahead (q+1¼1). Then (1) is

yt ¼ α + β1yt�1 + β2yt�2 +…+ βkyt�k + ηt; X
0
t�1 ¼ yt�1…yt�kð Þ: (3)

A specification such as (3) indicates that the researcher thinks an AR(k)
model well approximates yt. For this same set of predictors, a multistep direct

prediction (q+1>1) relies on the projection

yt+ q ¼ α+ β1yt�1 + β2yt�2 +⋯+ βkyt�k + ηt+ q: (4)

Eq. (4) relies on the fact that a multistep prediction of an AR(k) model is

linear in k lags of the variable. Of course, the coefficients α, β1,… , βk in (4)

are different from those in (3) (except when q+1¼1).
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A modest permutation of (4) involves predicting the average rather than

point in time forecast. For example, we generally are less interested in infla-

tion in the fourth quarter of next year than we are in average inflation over the

next four quarters. This sort of application involves a regression of the form

yt+ q � xt+ q + xt + q�1 +⋯ + xt
� �

= q+ 1ð Þ
¼ α + β1xt�1 + β2xt�2 +⋯+ βkxt�k + ηt+ q: (5)

Again, the coefficients in (5) are, in general, different from those in (4).

Each of (3)–(5) illustrated the direct multistep forecast of yt+q. Note for

future use that in (4) and (5), if, indeed, the hypothesized AR(k) model is cor-

rect, the disturbance follows a moving average process of order q:

ηt+ q �MA qð Þ: (6)

In many though not all motivations for regressions in the first class of

applications, illustrated by (2), it is also true that ηt+q�MA(q).
A brief digression on methods for multistep forecasts: for forecasts such as

those in (4) and (5), an alternative approach is to recursively generate j period
ahead forecasts by using j�1 period ahead forecasts. This is the approach of

Box and Jenkins (1976), for example. Let “^” denote a least squares estimate.

For example, in the model (4), the Box and Jenkins method constructs one and

two step ahead forecasts via

one step ahead forecast¼ α̂+ β̂1yT +⋯ + β̂kyT�k + 1, (7a)

two step ahead forecast¼ α̂ + β̂1� one step ahead forecastð Þ +β̂2yT +
…+ β̂kyT�k + 2: (7b)

This is sometimes called the iterated or plug-in method of forecasting. Our

procedures for bias adjustment are trivially applicable for one step ahead fore-

casts such as (7a), when the direct and iterated methods are identical. But they

are not directly applicable for multistep iterated forecasts such as (7b). For a

theoretical comparison of iterated and direct forecasts, see Ing (2003). We

focus on direct forecasts because they are dominant in economics.

3 Bias adjustment for long horizon regressions

3.1 Introduction

Least squares estimators of time series models are biased in finite samples.

That is, even if we make (mild) assumptions so that estimates are consistent

for underlying population quantities, in finite samples the expectation of the

least squares estimator is not, in general, equal to the underlying population

quantity. For the simple AR(1) model (in (3), k¼1 and ηt� i.i.d.), Kendall

(1954) suggested that
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Eβ̂1 � β1�
1 + 3β1ð Þ

T
: (8)

More generally, West (2016) shows that for a k�1 vector b that depends

on own- and cross-moments of Xt�1 and ηt, the least squares estimator of (8)

satisfies

Eβ̂¼ β +
b

T
+O T�3=2
� �

: (9)

In the simple AR(1) model underlying (8), k¼1, β¼β1 and b¼ � (1+3β1).
The small sample bias we are concerned with in this chapter is the b/T term

in (9). We describe R code to construct an estimate b̂, yielding a bias adjusted

estimate β̂� b̂=T.
Bias in estimate of the constant term α (defined in (1)) follows from:

bias to order T�1 inα̂
� �¼ EX0

t

� �
b:

Given an estimate b̂ supplied by the R code we are about to describe, and

a sample average X, one can adjust for such bias via:

bias adjusted estimate of αð Þ¼ α̂�X
0
b̂=T:

Because such an adjustment follows directly from adjustment for bias in the

slope coefficient vector β, we shall not further discuss bias adjustment of α.
A number of papers have derived b/T when forecasts are one step ahead

(q+1¼1) and ηt is a conditionally homoskedastic martingale difference. See

Shaman and Stine (1988) for the univariate AR (Eq. 4) and the summary in

Engsted and Pedersen (2014) when the one step ahead forecast comes from

an equation from a vector autoregression. West (2016) derives b/T for arbitrary

horizons q+1 and allowing time varying second moments in ηt+q. Our

R procedures implement a subset of the results allowed in West (2016). In par-

ticular, our code coheres with a special case of the theory in West (2016).

This special case requires that (a) a certain cumulant condition holds that rules

out time varying second moments and (b) ηt+q is uncorrelated not just with

Xt�1 itself but also with all lags of Xt�1 (i.e., Eηt+ qX
0
t�j ¼ 0 for j¼2, 3, …).

(This last condition is generally assumed under the null of the model but may fail

under misspecification. For example, in (4), if yt�AR(k), then Eηt+ qX
0
t�j ¼ 0 for

all j�1 and the condition holds. But if yt�AR(m) for some m>k, then in (4)

the condition fails and Eηt+ qX
0
t�j 6¼ 0 for at least one j>1.) In any application

in which (a) or (b) fail, the estimate b̂ that our code delivers should be taken

with a larger than usual grain of salt.

See West (2016) for details. One important theoretical result from West

(2016): in regressions such as (2) or (5) where the left hand side variable is a

long horizon sum or average of a stationary variable, bias b is arbitrarily big

in absolute value for an arbitrarily long horizon q. This is a general result for
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such left hand side variables, and is not specific to the examples such as (2) and

(5). Hence a bias adjustment is especially appealing for such regressions.

To understand the parameters and/or moments that must be passed to our

functions that estimate b, it may be helpful to note that b depends on own- and

cross-covariances of the right hand side variables Xt�1 and the disturbance

ηt+q. The first pair of functions that we are about to describe (longhor1,

longhor) construct estimates of the relevant second moments and the user

needs only to pass a parameter specifying a certain lag length. The second pair

of functions that we describe (proc_vb_ma0, prov_vb_maq) rely partially on

the user to construct the relevant second moments; prior to invoking the func-

tions, the user is required to have estimated a certain autoregression or vector

autoregression, with the results of that estimation passed to our R functions.

The first pair of functions (longhor1, longhor) are high-level, but require

that Xt�1 consist solely of lags of a single variable such as in (2)–(5). This sin-
gle variable may or may not be lags of the left hand side variable; the “may”

case is illustrated in (3) and (4), the “may not” in (2) and (5). The second pair

of functions (proc_vb_ma0, prov_vb_maq) are lower level, requiring more

work from the user. But they do not restrict the specification of Xt�1.

3.2 R function longhor1

One of our R functions is most easily motivated with reference to any of (3)–(5).
The user passes a vector yseries with data on the left hand side variable and a

second vector xseries with data on the right hand side variable. The two vectors

are different in the case of (5) but are the same in the cases of (3) or (4). The

user also specifies the integer order of the lead of the left hand side relative to

the right hand side nq (¼q in (1)) the integer number of lags nk (¼k in (1))

on the right hand side, integer pointers first and last to the sample period and

an integer narlag that should be set to nk if (3)–(5) is of interest and whose

presence is explained below. The function returns three nk �1 vectors:

l vbias (¼ b, as defined in (9));

l betahat (¼ least squares β̂);
l betahat_adj (¼ bias adjusted β̂¼betahat� (vbias/T), T¼ last-first+1).

See Table 1, which summarizes this information.

To clarify dating and variable definitions: the regression of interest is

yseries, nq periods ahead, on lags 1 to nk of xseries:

yseries t+ nqð Þ¼ α + β1xseries t�1ð Þ+⋯+ βkxseries t�nkð Þ
+ disturbance t+ nqð Þ,

t+ nq¼ first,…, t+ nq¼ last:

(10)

Since the regression is run with yseries dates running from first to last, the

dates on xseriest�1 go from t�1¼ first_nq�1 to t�1¼ last_nq�1.
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To further clarify dating, consider a concrete example. Suppose that yseries

includes 99 observations. For simplicity of exposition, assume data are annual

and run from 1901 to 1999. Thus yseries(4) is data from 1904 and xseries
(11) is data from 1911, for example. Suppose further that nq¼7 and

nk¼2¼narlag. Suppose, finally, that one wishes to run the regression with left

hand side data running from 1910 to 1990 (thus not using some of the data):

yseriest+ 7 ¼ const:+ β1xseriest�1 + β2xseriest�2 + disturbance,

t+ 7¼ 1910,…,1990
(11)

TABLE 1 Function longhor1

result <- longhor1(yseries, xseries, first, last, nq, nk, narlags)
vbias <- result[[1]]; betahat <- result[[2]]; betahat_adj
<- result[[3]]

The right hand side variables in the regression of interest consist of a constant and lags
of a single variable, such as in (2)–(6). The left hand side may or may not be a lead of
the same variable.

Passed by user

yseries vector for the left hand side variable

xseries vector for the right hand side variable

first integer start date for the left hand side variable in the regression

last integer end date for the left hand side variable in the regression

nq q: integer horizon, nq� 0

nk k: integer number of lags k of xseries to include on the r.h.s. of the
regression (1)

narlag integer number of lags to include in estimating an AR model for xseries
(needed to compute the bias). The user should insure that narlag is
sufficient to produce a white noise residual in this autoregression

Returned to user

result[[1]] nk�1 vector: b̂¼estimate of k�1 numerator of bias to order T�1

(T¼ sample size)

result[[2]] nk�1 vector: β̂¼ordinary least squares estimate of k�1 β

result[[3]] nk�1 vector, bias adjusted β̂, result[[3]]5 result[[2]]2 (result[[1]]/T),
T¼ last-first+1

Functions invoked directly or indirectly by longhor1: proc_vb_ma0, proc_vb_maq, and
proc_vbias.
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Thus the vector of the left hand side variable and the matrix of stochastic

right hand side variables are

yseries1910

yseries1911

⋮
yseries1990

0BBB@
1CCCA,

xseries1902 xseries1901

xseries1903 xseries1902

⋮ ⋮
xseries1982 xseries1981

0BBB@
1CCCA:

Then one invokes longhor1 via

result< -longhor1 ðyseries, xseries, 10, 90,7, 2, 2Þ ,
vbias< -result½½1�� ; betahat< -result½½2 �� ; betahat_adj< -result½½3�� :

(12)

In this example, the procedure returns three 2�1 vectors: betahat � β̂�
β̂1 β̂2
� �0

, vbias ¼ b̂, betahat_adj � β̂� b̂=T, where T¼81.

More generally, the procedure is invoked via

result< -longhor1ðyseries, xseries, first, last, nq, nk, narlagÞ
vbias< -result½½1�� ; betahat< -result½½2 �� ; betahat_adj< -result½½3�� :

(13)

Note: The code does not do error checks for missing data. So, suppose in

the concrete example just given, where available data run from 1901 to 1999,

that the user passes first¼5 along with nq¼7. Then the function would

assume the first observation on the left hand side variable is 1905 and the first

observation on xseries is 8 years earlier (8¼nq+1), i.e., 1897—a date that

is not in the sample. Results are unpredictable if, as in this illustration,

parameters point to data that are not available.

Procedure longhor1 can also handle applications such as (2), at the addi-

tional cost of the user specifying a lag length for an autoregression in the right

hand side variable. Let xt be a generic right hand side variable in a regression,

with xt¼ it� it
∗ in (2) as an example. As noted above, b depends on own- and

cross-covariances of the right hand side variables Xt�1—in this case, simply

xt—and the disturbance ηt+q. In longhor1, to compute the necessary second

moments, the code relies in part on the presumption that the dynamics of xt
can be approximated by a finite order autoregression. The user must specify

the order of this autoregression, i.e., the order of an autoregression in xt that
produces an approximately white noise disturbance. That is the purpose of

the parameter narlag. In (3)–(5), it will normally be the case that

narlag¼nk—one chooses to use k lags in the regression because use of k lags
produces an approximately white noise disturbance. But in (2), the theory that

leads to the regression does not constrain the order of an approximating

autoregression for xt(¼ it� it
∗).

To illustrate: suppose that the user decides that an AR(4) produces an

approximately white noise disturbance in it� it
∗. Then for (2), one invokes

longhor1 with
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l nk¼1 (because there is only one stochastic right hand side variable), and

l narlag¼4 (on the user’s conclusion that an AR(4) in it� it
∗ produces

an approximately white noise residual).

3.3 R function longhor

This is a generalization of longhor1 in which a vector autoregression rather

than an autoregression is used to compute autocovariances of the variables

whose lags are in Xt�1. In the exchange rate example (2), one might suppose

that sharper estimates of the moments of it� it
∗ will result from use of the time

series of exchange rates in addition to the time series of it� it
∗.

Again let xt be the variable whose lags are in Xt�1. Let w1t,… , wnt be n
additional variables thought to have useful information about the autocovar-

iances of xt. Put these n additional variables in a matrix Wseries. Then to

compute autocovariances from a VAR in (xt, w1t,… , wnt) one invokes

longhor passing Wseries and setting nWseries¼n. See Table 2.

3.4 R functions proc_vb_ma0 and proc_vb_maq

These are low level functions invoked by longhor and longhor1. They are

flexible enough to allow computation of bias to order T in any least squares

regression. An example of a regression covered by these procedures but not

allowed by longhor or longhor1 is a direct forecast that relies on a bivariate

information set

TABLE 2 Function longhor

result <- longhor(yseries, xseries, Wseries, nWseries, first,
last, nq, nk, narlag)

vbias <- result[[1]]; betahat <- result[[2]]; betahat_adj
<- result[[3]]

The right hand side variables in the regression of interest consist of a constant and lags
of a single variable, such as in (2)–(6). The left hand side may or may not be a lead of
the same variable.

Parameters are as for longhor1, with the two additional parameters defined as

Wseries matrix containing variables in addition to xseries to be used in the VAR
that will be used to compute autocovariances of xt

nWseries the number of series or columns in Wseries. If nWseries¼0, the
procedure calls longhor1 to compute b

Functions invoked directly or indirectly by longhor: longhor1, proc_vb_ma0,
proc_vb_maq, and proc_vbias.
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yt+ q ¼ α+β1yt�1+β2yt�2 +⋯+βmyt�m+βm+ 1xt�1+βm+ 2xt�2+⋯+βkxt�m+ηt+ q;

X0
t�1 ¼ yt�1, yt�2,…, yt�m, xt�1, xt�2,…, xt�mð Þ:

(14)

In (14), k¼2m. Of course our functions also allow the left hand side vari-

able to be not point in time as in (14) but an average or cumulated sum as in

(2) or (5). The key difference between (14) and specifications covered by

longhor and longhor1 is that the latter require that Xt�1 consist of lags of a

single variable, whereas there are lags of two different variables on the right

hand side of (14). The functions proc_vb_ma0 and proc_vb_maq accommo-

date not only two but any number of different variables on the right hand side

of the regression of interest.

In contrast to longhor and longhor1, proc_vb_ma0 and proc_vb_maq

require the user to do preliminary calculations before being invoked. First,

the user, and not these functions, is required to estimate β̂. These functions

will compute b̂ but not β̂. Second, the user, and not these functions, must esti-

mate a vector autoregression whose variables include those in Xt�1, passing

certain results from this vector autoregression to these two functions.

To illustrate how to invoke these functions, let us use (14), setting m¼2

for concreteness:

yt+ q ¼ α+ β1yt�1 + β2yt�2 + β3xt�1 + β4xt�2 + ηt+ q; k¼ 4; X0t�1¼ yt�1, yt�2, xt�1, xt�2ð Þ:
(15)

The user needs to specify a vector autoregressive model for the right hand

side variables in (15) that can be used by our R functions to deliver accurate

estimates of the autocovariances of Xt�1. The fact that there are two lags on

the right hand side of (15) suggests that a vector autoregression of order 2 will

suffice. Let Yt(2�1)¼ (yt, xt)
0. Write the VAR(2) as

Yt ¼ const:+Φ1Yt�1 +Φ2Yt�2 +Vt; Vt � i:i:d; ΩV �EVtV
0
t : (16)

In (16), Φ1, Φ2, and ΩV are 2�2; Vt is 2�1; here and in subsequent equa-

tions “const.” is an inessential vector of constants whose dimension may be

different in different equations.

The user must estimate a VAR such as (16) and pass to our R functions the

estimates of the autoregressive coefficients (Φ1 and Φ2 in example (16)) and

the variance–covariance matrix of the disturbance to the VAR (ΩV in example

(16)) to our R functions. These estimates are passed after rewriting the VAR

in the VAR(1) companion form. For the VAR (16), the companion form is
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Yt

Yt�1

 !
¼ const:+

Φ1 Φ2

I2 02�2

 !
Yt�1

Yt�2

 !
+

Vt

02�1

 !
,written compactlyas

Zt
4�1

¼ const:+ Φ
4�4

Zt�1
4�1

+ Ut
4�1

:

(17)

The general setup: let Zt be the nZ�1 vector of variables in the VAR used

to compute moments related to Xt, with the VAR written in companion form.

That is,

Zt�EZt
nZ�1

¼ Φ
nZ�nZ

Zt�1�EZt�1ð Þ + Ut
nZ�1

, ΩU
nZ�nZ

¼EUtU
0
t , Xt

k�1
¼ PX

k�nZ

Zt
nZ�1

(18)

Note that the elements of Xt are elements of Zt.
The user must compute and pass to the code: the dimension k of Xt (called

nk in the code), the dimension of nZ of Zt (called nZtwid in the code), PX and

estimates Φ̂ and Ω̂U (called PX, phitwid, and omegaUtwid in the code).

In the example (16) and (17), nk¼4, nZtwid¼4,

PX¼
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0BBB@
1CCCA

and, letting “b”denote a least squares estimate or residual,

phitwid¼ Φ̂1 Φ̂2

I2 02�2

 !
,omegaUtwid¼ Ω̂V 02�2

02�2 02�2

 !
,Ω̂V ¼ T�1

X
V̂tV̂

0
t�1:

The user must also pass some moments related to the cross-covariances

between Zt or Xt on the one hand and ηt on the other. We supply separate func-

tion calls for (1) ηt+q i.i.d., and (2) ηt+q�MA(q). The first is a special case of

the second.

Let η̂t+ q be the least squares residuals. Let Zt be the vector of variables in

the companion form VAR. The two separate function calls are:

(1) q¼0 and ηt� i.i.d.: The user needs to compute and pass an estimate

of EηtZt0, called EetaZtwid0. In example (16) and (17), in which

Z0t¼(yt, yt�1, xt, xt�1),
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EetaZtwid0¼ T�1
X

η̂tyt, T
�1
X

η̂tyt�1, T
�1
X

η̂txt, T
�1
X

η̂txt�1

� �
:

(To prevent misunderstanding: yes, in this example T�1
P

η̂tyt�1 ¼ 0 and

T�1
P

η̂txt�1 ¼ 0 by construction, since least square residuals are orthogonal

to the regressors.)

(2) ηt+q�MA(q): The user passes the integer parameter nq (the value of q) as
well as (i) a matrix EetaZtwid and (ii) a vector EXeta. (i) and (ii) are

defined as follows:

(i) EetaZtwid is a matrix of dimension (q+1)�nZ. In this matrix, for

i¼0,… , q, the (i+1)st row is a 1�nZtwid estimate of Eηt + qZ
0
t+ i.

The estimate can be computed by the user as

estimate ofEηt+ qZ
0
t+ i ¼ T�1

X
η̂t + qZ

0
t+ i:

(ii) EXeta is an estimate of the nk�1 vector E(Xt+Xt+1+⋯+Xt+q�1)ηt+q.
The estimate can be computed by the user as

EXeta¼ T�1
X

Xt +Xt+ 1 +⋯ +Xt+ q�1

� �
η̂t + q:

Here is the syntax to invoke the functions. The functions return the nk �1

estimate of b̂, called vbias.

	 ηt � i:i:d : (19a)

vbias< -proc_vb_ma0ðnZtwid, phitwid, omegaUtwid, nk, PX, EetaZtwid0Þ

	 ηt �MA qð Þ : (19b)

vbias< -proc_vb_maqðnZtwid, phitwid, omegaUtwid, nk, PX, EetaZtwid, EXeta, nqÞ :

Relative to the procedure used when ηt� i.i.d., the procedure for ηt�MA(q)
requires that the user change one parameter (EetaZtwid0 ! EetaZtwid)

and include two additional parameters (EXeta and nq). See Tables 3 and 4.

After obtaining vbias � b̂ from either procedure, the user must divide by

sample size T, to obtain bias adjusted estimate¼ β̂� b
T.

4 R code for an empirical application

Table 5 has R code for an application using longhor1. It estimates (4) with

lag length k¼2 and horizon q+1¼12.
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TABLE 3 Function proc_vb_ma0

vbias <- proc_vb_ma0(nZtwid, phitwid, omegaUtwid, nk, PX,
EetaZtwid0)

l In (1), q¼0 and the regression disturbance ηt� i. i. d. The right hand side variables in
the regression are not restricted to be a constant and lags of a single variable.

l The user has estimated an auxiliary regression, written in companion form as

Zt�EZt
nZ�1

¼ Φ
nZ�nZ

Zt�1�EZt�1ð Þ+ Ut
nZ�1

, ΩU
nZ�nZ

¼EUtU
0
t, Xt

k�1
¼ PX

k�nZ

Zt
nZ�1

:

This regression produces an approximately white noise disturbance Ut.
l The user has also estimated (1), yielding least squares residuals {η̂t }.

Passed by user

nZtwid nZ: integer number of variables in the auxiliary VAR (13)

phitwid Φ̂: matrix of autoregressive estimates in (13)

omegaUtwid Ω̂U: matrix of estimates of the variance–covariance matrix in (13)

nk k: integer number of variables in regression (1)

PX PX: matrix selecting from Zt the right hand side variables in the
regression of interest in (13) (PX¼ I is possible)

EetaZtwid0 vector estimate of EηtZt
0, i.e., T�1

P
η̂tZ

0
t

Returned to user

vbias nk�1 vector: b̂¼estimate of k�1 numerator of bias to order T �1

Functions invoked by proc_vb_ma0: proc_vbias.

TABLE 4 Function proc_vb_maq

vbias <- proc_vb_maq(nZtwid, phitwid, omegaUtwid, nk, PX,
EetaZtwid, EXeta, nq)

l In (1), q may be any integer and the regression disturbance ηt+q�MA(q). The right
hand side variables in the regression are not restricted to be a constant and lags of
a single variable.

l The user has estimated an auxiliary regression, written in companion form as

Zt�EZt
nZ�1

¼ Φ
nZ�nZ

Zt�1�EZt�1ð Þ+ Ut
nZ�1

, ΩU
nZ�nZ

¼EUtU
0
t, Xt

k�1
¼ PX

k�nZ

Zt
nZ�1

:

This regression produces an approximately white noise disturbance Ut.
l The user has also estimated (1), yielding least squares residuals {η̂t + q}.

Continued
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TABLE 4 Function proc_vb_maq—Cont’d

Passed by user

nZtwid nZ: integer number of variables in the auxiliary VAR (13)

phitwid Φ̂: matrix of autoregressive estimates in (13)

omegaUtwid Ω̂U: matrix of estimates of the variance–covariance matrix in (13)

nk k: integer number of variables in regression (1)

PX PX: matrix selecting from Zt the right hand side variables in the
regression of interest in (13) (PX¼ I is possible)

EetaZtwid estimates of Eηt+qZ
0
t+i�1, i¼1 to q+1. Matrix of dimension (nq+1)

nZtwid (i.e., of dimension (q+1) nZ). Row i+1 has the estimate of
Eηt+qZ 0

t+i, e.g., the first row of EetaZtwid is T�1
P

η̂t + qZ
0
t

EXeta vector estimate of E(Xt+Xt+1+⋯+Xt+q�1)ηt+q,
i.e., T�1

P
Xt +Xt +1 +⋯+Xt + q�1

� �
η̂t + q

nq integer value of q in (1)

Returned to user

vbias nk�1 vector: b̂¼estimate of k�1 numerator of bias to order T �1

Functions invoked by proc_vb_maq: proc_vbias.

TABLE 5 R code to illustrating use of longhor1

rm(list=ls())

library(MASS)

library(expm)

source("lagmatrix.R")

source("proc_vbias.R")

source("proc_vb_ma0.R")

source("proc_vb_maq.R")

source("UtilFunc_OLS.R")

source("longhor.R")

source("longhor1.R")

# Parameterwe Setting

T <- 240 # sample size

ARp <- 2 # Order of AR

q_horizon <- 11 # Forecast horizon is q+1
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Abstract
This chapter overviews several MCMC-based test statistics for hypothesis testing and

specification testing and MCMC-based model selection criteria developed in recent

years. The statistics for hypothesis testing can be viewed as the MCMC version of

the “trinity” of test statistics based in maximum likelihood (ML), namely, the likelihood

ratio (LR) test, the Lagrange multiplier (LM) test, and the Wald test. The model selec-

tion criteria correspond to two predictive distributions. One of them can be viewed as

the MCMC version of widely used information criterion, AIC. The asymptotic distribu-

tions of the test statistics and model selection criteria are discussed. The test statistics

and model selection criteria are applied to several popular models using real data,

one of which involves latent variables. The implementation is illustrated in R with

the MCMC output obtained by R2WinBUGS.
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1 Introduction

In economics and finance, statistical models with increasing complexity have

been used more and more often. Typically empirical analysis of statistical

models involves calculating and maximizing the log-likelihood function, lead-

ing to the maximum likelihood (ML) estimator. The ML estimator (MLE) has

desirable asymptotic properties of consistency, normality, and efficiency

under broad conditions, facilitating hypothesis testing, specification testing,

and model selection. The asymptotic normality and efficiency of MLE make

the well-known trinity of tests in ML popular in practice, i.e., the likelihood

ratio (LR) test, the Wald test, and the Lagrange Multiplier (LM) test. In addi-

tion, some specification tests, such as the information matrix based tests, are

based on MLE. Furthermore, some widely used information criteria for model

selection, such as AIC, BIC, and HQ, are based on MLE.

Unfortunately, many statistical models face with a great deal of difficulties

empirically in the sense that they cannot be easily estimated by ML. Examples

include but not are restricted to latent variable models, continuous time models,

modelswith complicated parameter restrictions,models inwhich the log-likelihood

is not available in closed-form or is unbounded,models inwhich parameters are not

point identified, high dimensional models for which numerical optimization is dif-

ficult to use, models with multiple local optimum in the log-likelihood function.

While for some of these models, alternative estimation methods, such as

GMM, can be used. These alternative methods are generally less efficient than

ML. With rapidly enhanced power in computing technology, the MCMC

method has been used more and more frequently to provide the full likelihood

analysis of models. MCMC is typically regarded as a Bayesian approach as it

samples from the posterior distribution and the posterior mean is often chosen

to be the Bayesian parameter estimate.

After the MCMC output is obtained, a few questions naturally arise. The first

question is how to conduct hypothesis testing as one typically does after MLE

is used to estimate a model. The second question is how to perform the specifica-

tion test of the estimated model. The third question is how to compare alternative

models that are not necessarily nested by each other. Hypothesis testing, specifi-

cation testing and model selection are of fundamental importance in empirical

studies. Therefore, MCMC-based answers to these questions become critically

in practice. The traditional Bayesian answer to these questions is to use the gold

standard, the Bayes factors (BFs), or it variants. The BFs basically compare the

posterior model probabilities of candidate models, conditional on the data.

Despite its appeal in the statistical interpretation, BFs suffer a few serious theoret-

ical and computational difficulties. For example, it is not well-defined under

improper priors. It subjects to Jeffreys-Lindley’s paradox, that is, it tends to reject

the null hypothesis even when the null is correct. For manymodels, BFs are diffi-

cult to compute.

The aim of this chapter is to overview the literature on MCMC-based

statistical inference. However, we focus on test statistics and model selection
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criteria which can be justified in a frequentist set up, in the same way as how

the ML-based methods are justified. Since MCMC was introduced initially as

a Bayesian tool, it is not immediately obvious how to make statistical infer-

ence based on the MCMC output in the frequentist framework. The essence

of the literature is to treat MCMC as a sampling method and resort to the fre-

quentist framework to obtain the asymptotic theory of various statistics based

on the MCMC output in repeated sampling.

The statistics for hypothesis testing developed in the literature can be viewed

as the MCMC version of the “trinity” of the tests in ML. The statistics for speci-

fication testing can be viewed as the MCMC version of the information matrix

based test. One of the model selection criteria can be viewed as the MCMC ver-

sion of AIC. Their asymptotic properties of these statistics are reviewed. The

methods are illustrated using some important models widely used in economics

and finance in a real data setting. The implementation is illustrated in R with

the MCMC output obtained by R2WinBUGS.

MCMC can be used to sample from distributions other than the posterior.

In a seminar paper, Chernozhukov and Hong (2003) proposed to use MCMC

to sample from quasi-posterior. Moreover, the MCMC output may be used for

other types of statistical inference. One example is to construct the confidence

sets for identified sets of parameters in econometric models defined through a

likelihood or a vector of moments; see Chen et al. (2016). Review of these

studies are beyond of the scope of this chapter.

The chapter is organized as follows. Section 2 reviews the MCMC tech-

nique and introduces the implementation of MCMC using the R package. We

also briefly explain the inferencial approach typically adopted in the Bayesian

literature. Section 3 overviews several statistics for hypothesis testing based

on the MCMC output. Section 4 overviews the MCMC-based test statistics

for specification. Section 5 reviews DIC, an MCMC version of AIC, and other

related information criteria. Section 6 gives the empirical illustrations. Section 7

concludes the chapter. R code that implement our methods can be found at

http://www.mysmu.edu/faculty/yujun/Handbook_Rcode.zip.

2 MCMC and its implementation in R

Without loss of generality, we take the latent variable models as an example, to

explain why ML is difficult to use and to describe how to obtain the MCMC

output. Let y¼ (y1,…, yn) denote the data generated from a probability measure

P0 on the probability space (Ω, F, P0). Let z¼ (z1, z2,…, zn)
0 be the latent vari-

ables. The latent variable model is indexed by the some P-dimensional param-

eter vector, θ. Furthermore, p(y jθ) is used to denote the observed-data

likelihood function, and p(y, z jθ) is denoted as the complete-data likelihood

function. The relationship between these two likelihood functions is given by

p yj θð Þ¼
ð
p y, zj θð Þdz: (1)
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In many latent variable modes, especially dynamic latent variable models,

the latent variable z is often dependent on the sample size and its dimension is

the same as or larger than the number of the sample size. When the sample

size is large, the integral is high-dimensional. Often the integral does not have

a closed-form solution and cannot be reduced into lower dimension integrals.

In this case, it will be very difficult to accurately approximate the integral

numerically. Consequently, ML is difficult to implement.

Now, we review the basic idea of MCMC. Let p(θ) be prior distribution

assigned for parameter θ. Since the observed likelihood p(y jθ) is intractable,
it is very difficult to draw the random observations from the posterior distri-

bution p(θ jy) directly. To deal with this difficulty, the data-augmentation

strategy (Tanner and Wong, 1987) can be applied to augment the parameter

space from θ to (θ, z). As a result, the likelihood function becomes p(y jθ,z)
which typically is available in closed-form. The MCMC technique, such as

Gibbs sampler, draws random samples from the joint posterior distribution

p(θ, z jy). More concretely, we start with an initial value [θ(0), z(0)], and then

at the jth iteration, conditional on the current values [θ( j ), z( j )],

(a) generate θ(j+1) from p(θ jz( j ), y);
(b) generate z(j+1) from p(z jθ(j+1), z).
To get rid of the effect of the initial value, some random observations are dis-

carded as the burn-in observations. After that, the simulated random samples

can be regarded as efficient random draws (though correlated in general) from

the joint posterior distribution p(θ, z jy). These correlated random samples are

the MCMC output.

Based on the MCMC output, the parameter estimate can be obtained. For

example, Bayesian estimates of θ can be easily obtained as the sample mean

of the generated random samples. Specifically, let {θ( j ), j¼1, 2, …, J} be

effective random observations generated form the joint posterior distribution

p(θ, z jy). Then Bayesian estimates of θ is

θ¼ 1

J

XJ
i¼1

θ jð Þ:

This estimate is justified when the loss function is quadratic.

Under some regularity conditions, it is well documented in the literature

(see, for example, Gelman et al., 2013) that the posterior distribution has a

limiting normal distribution given by

θ� θ̂|y�a N 0, �1

n

∂
2 lnp θ̂j y

� �
∂θ∂θ0

24 35�1
0B@

1CA, (2)
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where θ̂ is the posterior mode i:e:, θ̂¼ arg max lnp θj yð Þ
� �

and

p θj yð Þ¼ p yj θð Þp θð Þð
p yj θð Þp θð Þdθ

:

Furthermore, under extra regularity conditions, when p(θ)¼Op(1), Li et al.

(2017a) showed that the relationship between the posterior mean θ and the

posterior mode θ̂ can be expressed as

θ¼ θ̂ +Op n�1
� �

, (3)

dVar θj yð Þ¼ �
∂
2 lnp yj θ̂

� �
∂θ∂θ0

24 35�1

+Op n�2
� �

: (4)

The large sample properties in (2), (3) and (4) provide the fountainhead

from which all the methods reviewed in this chapter springs.

In practice, however, MCMC procedures are not easy to implement using

nonconventional software that is not widely available among researchers and

practitioners. Therefore, it is practically important to find efficient software

packages which can free the researchers from tedious programming and

debugging. For this purpose, under the R language environment, Sturtz

et al. (2005) introduced a so-called R2WinBUGS package combined with a

free software WinBUGS1.4 to obtain the MCMC output. R is an extremely

powerful language and environment for statistical computation and graphics

which is available free of charge. WinBUGS is a user-friendly software pack-

age that implements the Gibbs sampler. It does sampling-based posterior com-

putations for a variety of statistical models such as random effects, generalized

linear, proportional hazards, latent variable, and frailty models. The latest

version of WinBUGS is Win-BUGS1.4 which was developed by the medical

Research Council Biostatistics Unit and the department of Epidemiology and

Public Health of the Imperial College School of Medicine at St Mary’s

Hospital. It is available free of charge at http://www.mrc-bsu.cam.ac.uk/bugs/

An introduction to this software can be found in Spiegelhalter et al. (2003).

In this chapter, using the R language, we implement R2WinBUGS to get

the MCMC outputs and then use R to compute the test statistics and the infor-

mation criteria discussed below. The R code can be downloaded online where

the detailed explanation for R commands is provided line by line in the

R scripts by us. For more details about R2WinBUGS and WinBUGS1.4,

one can refer to Sturtz et al. (2005) and Spiegelhalter et al. (2003). Special

tailored R packages to obtain the MCMC output to fit particular statistical

models are also available. For example, the R package named MCMC-Pack
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was developed by Martin and Quinn (2005). Our R code to compute the test

statistics and the information criteria discussed below may be also applied

to the MCMC output generated by MCMCPack.

3 Hypothesis testing based on the MCMC output

3.1 Hypothesis testing under decision theory

Assume that a statistical model M� {p(y jθ)} is used to fit the data. The

P-dimensional parameter vector θ can be divided into two parts θ¼ (ϑ0,ψ 0)0

where ϑ 2 Θ denote a vector of p-dimensional parameter of interest and

ψ 2 Ψ a vector of q-dimensional nuisance parameter. We are interested in

knowing whether or not ϑ is equal to some value to verify a particular theory.

Hence, the point null hypothesis problem can be written as

H0 :ϑ¼ϑ0

H1 :ϑ 6¼ϑ0

�
: (5)

In this section, we discuss the hypothesis testing problem from a decision

viewpoint.

Consider a decision problem whose decision space has two statistical deci-

sions, to accept H0 (name it d0) or to reject H0 (name it d1). We may specify a

loss function denoted by {L[di, (θ,ψ)], i¼0,1} to measure the consequence of

the statistical decision di. Let p(ϑ, ψ jy) be the posterior distribution with some

given prior p(ϑ, ψ), and T(y, ϑ0) be a test statistic for hypothesis testing which

is a function of the data y. When the expected posterior loss of accepting H0

is sufficiently larger than the expected posterior loss of rejecting H0, i.e.,

T yϑ0ð Þ¼
ð
Θ

ð
Ψ

L d0 ϑψð Þ½ ��L d1 ϑψð Þ½ �f gp ϑ, ψj yð Þdϑdψ > c,

we can say that the statistical decision of accepting H0 might be inappropriate

with some confidence so that the statistical decision to reject H0 can be done

naturally. For more details about hypothesis testing under decision theory, one

can refer to Bernardo and Rueda (2002) and Bernardo and Smith (2006).

In practice, it is enough to specify the net loss function denoted by

ΔL[H0, (ϑ,ψ)]¼L[d0, (ϑ,ψ)]�L[d1, (ϑ,ψ)]. Hence, the test statistic can be

rewritten as

T y, ϑ0ð Þ¼
ð
Θ

ð
Ψ
ΔL H0, ϑ, ψð Þ½ �p ϑ, ψj yð Þdϑdψ ¼Eθ|y ΔL H0, ϑ, ψð Þ½ �ð Þ:

3.2 The choice of loss function for hypothesis testing

In the subsection, we review the loss functions for the purpose of constructing

hypothesis test statistics. We show that the BFs correspond to the discrete loss
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function that takes values of 0 and 1. To overcome the shortcomings of BFs,

alterative continuous loss functions have been proposed in the literature to

construct new test statistics based on the MCMC output. There is a more

fundamental difference between these new test statistics and the BFs. The

new test statistics are justified in a frequentist setup, that is, by assuming

that y comes out of the data generating process in a repeated experiment

whereas BFs is justified in a Bayesian setup, that is, the decision is made

conditional on y.

3.2.1 BFs and 0–1 loss function

If the 0–1 loss function is used, that is,

L d0, ϑ, ψð Þ½ � ¼ 0 if ϑ¼ϑ0

1 if ϑ 6¼ϑ0

�
, L d1, ϑ, ψð Þ½ � ¼ 1 if ϑ¼ϑ0

0 if ϑ 6¼ϑ0

�
,

the net loss function ΔL[H0, (ϑ,ψ)] is given by

ΔL H0, ϑ, ψð Þ½ � ¼ �1 if ϑ¼ϑ0

1 if ϑ 6¼ϑ0

�
:

Hence, the test statistic based on this discrete loss function is given by

T y, ϑ0ð Þ¼
ð
Θ

ð
Ψ
ΔL H0, ϑ, ψð Þ½ �p ϑ, ψj yð Þdϑdψ

¼
ð
Θ

ð
Ψ
ΔL H0, ϑ, ψð Þ½ �p yj ϑ, ψð Þp ϑ, ψð Þ

p yð Þ dϑdψ,

where p(y)¼ ÐΘÐΨp(y jϑ,ψ)p(ϑ,ψ)dϑdψ is the marginal likelihood.

In general, a positive probability w is assigned to the event ϑ¼ϑ0, such
that a reasonable prior for ϑ with a discrete support at ϑ0 can be given by

p ϑð Þ¼ w ifϑ¼ϑ0

1�wð Þπ ϑð Þ ifϑ 6¼ϑ0

�
:

where π(ϑ) is a prior distribution. Hence, the test statistic under this discrete

prior distribution can be expressed as

T y, ϑ0ð Þ ¼
ð
Θ

ð
Ψ
ΔL H0, ϑ, ψð Þ½ �p yj ϑ, ψð Þp ϑ, ψð Þ

p yð Þ dϑdψ

¼�
ð
Ψ

p yj ϑ0, ψð Þp ϑ0, ψð Þ
p yð Þ dϑdψ +

ð
Θ

ð
Ψ

p yj ϑ, ψð Þp ϑ, ψð Þ
p yð Þ dϑdψ

¼�
ð
Ψ

p yj ϑ0, ψð Þp ψj ϑ0ð Þp ϑ¼ ϑ0ð Þ
p yð Þ dϑdψ +

ð
Θ

ð
Ψ

p yj ϑ, ψð Þp ψj ϑð Þp ϑð Þ
p yð Þ dϑdψ

¼�
ð
Ψ

p yj ϑ0, ψð Þp ψj ϑ0ð Þw
p yð Þ dϑdψ +

ð
Θ

ð
Ψ

p yj ϑ, ψð Þp ψj ϑð Þ 1�wð Þπ ϑð Þ
p yð Þ dϑdψ,

where p(ψ jϑ) is the conditional prior distribution.
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From this formula, we can see that the decision criterion can be made as

Reject H0 iff

ð
Ψ
p yj ϑ¼ϑ0, ψð Þωp ψj ϑ¼ϑ0ð Þdψ

<

ð
Θ

ð
Ψ
p yj ϑ, ψð Þp ψj ϑð Þ 1�wð Þp ϑð Þdθdψ

To represent the prior ignorance, in practice, the probability w is set to 1/2

and the criterion becomes:

Reject H0 iffB01 ¼

ð
Ψ
p yj ϑ¼ϑ0, ψð Þp ψj ϑ¼ϑ0ð Þdψð

Θ

ð
Ψ
p yj ϑ, ψð Þp ψj ϑð Þπ ϑð Þdϑdψ

¼m0

m1

< 1,

where {mk, k¼0, 1} are marginal likelihoods. B01 is the well-known BF

defined as the ratio of the marginal likelihoods (Kass and Raftery, 1995).

Although BF is intuitively appealing and has a strong probabilistic inter-

pretation, it is known to suffer from some theoretical and computational diffi-

culties. First, when a subjective prior π(ϑ) is not available, Jeffreys’ prior or
reference prior (Bernardo and Smith, 2006; Jeffreys, 1961) are often used to

reflect the lack of prior information. Jeffreys’ prior and reference prior are

generally improper. It follows that π(ϑ)¼C f (ϑ), where f (ϑ) is a nonintegr-

able function, and C is an arbitrary positive constant. In this case, the BF can

be expressed as

B01 ¼ 1

C

ð
Ψ
p yj ψ , ϑ0ð Þp ψj ϑ0ð Þdψð

Θ

ð
Ψ
p yj ϑ, ψð Þp ψj ϑð Þf ϑð Þdϑdψ

:

Clearly, the BF is ill-defined since it depends on the arbitrary constant, C.
Second, to address the ill-defined problem of BF under the improper prior,

a proper prior π(ϑ) with a large variance (that is a vague prior) has been pro-

posed to represent the prior ignorance. While in this case the BF is

well-defined, it has a tendency to favor the null hypothesis even when the null

hypothesis is correct, giving rise to the notorious Jeffreys-Lindley’s paradox;

see Poirier (1995), Robert (1993, 2001). Jeffreys-Lindley’s paradox leads to

researchers to find variations to the BF. Examples include partial Bayes factor
(O’Hagan, 1991), the intrinsic Bayes factor (Berger and Perrichi, 1996), and

the fractional Bayes factor (O’Hagan, 1995). These variants basically split

the data y into a training sample and a testing sample. The training sample

is used to update an uninformative prior to obtain an informative prior. Unfor-

tunately, they suffer from more or less arbitrary choices of training samples,

weights for averaging training samples, and fractions, respectively.
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Last but not least, for the latent variable model and many other models,

calculation of the marginal likelihood Mk, k¼0, 1 often involves intractable

high-dimensional integrals, and, as a result, BFs are generally very difficult

to calculate; see Han and Carlin (2001) for an excellent review of methods

for calculating the BFs from the MCMC output.

3.2.2 Bernardo and Rueda (2002) and the KL loss function

Bernardo and Rueda (2002, BR hereafter) pointed out that if ϑ is a continuous

parameter, hypothesis testing forces the use of a nonregular (not absolutely

continuous) “sharp” prior concentrating a positive probability mass so that

the null hypothesis H0 must have a strictly positive prior probability. This

nonregular prior structure leads to the theoretical difficulties of BFs. To over-

come these difficulties, Bernardo and Rueda (2002) suggested using a contin-

uous loss function based on the Kullback–Leibler0 (KL) divergence to replace

the discrete loss function, i.e.,

KL p xð Þ, q xð Þ½ � ¼
ð
p xð Þ ln p xð Þ

q xð Þdx,

where p(x) and q(x) are any two regular probability density functions. Then,

the corresponding hypothesis test statistic can be given by:

TBR y, ϑ0ð Þ¼Eθ|y min KL p yj ϑ, ψð Þ, p yj ϑ0, ψð Þ½ �, KL p yj ϑ0, ψð Þ, p yj ϑ, ψð Þ½ �f gð Þ:

While TBR (y, ϑ0) is well-defined under improper priors, since the KL diver-

gence function often does not have a closed-form expression, TBR (y, ϑ0) is
difficult to compute for the latent variable model. Moreover, BR suggested

choosing threshold values based on the normal distribution to implement the

test. The rationale for basing threshold values on the normal distribution con-

ceivably comes from the fact that many test statistics are asymptotically nor-

mally distributed. Therefore, BR’s approach is not Bayesian as the sampling

distribution of the test statistic is used and it is based on the idea of repeated

sampling, not conditional on y.

3.2.3 Li and Yu (2012) and the Q loss function

To address the computational problem in TBR (y, θ0), Li and Yu (2012, LY

hereafter) proposed a loss function based on the Qfunction used in the EM

algorithm (Dempster et al., 1977) to replace the KL divergence function.

For any two points such as θ1 and θ2 defined in the parameter space, the Q
function can be expressed as

Q θ1j θ2ð Þ¼EZ|y,θ2 lnp y, zj θ1ð Þ½ �:
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Compared with the observed data likelihood function p(y jθ), the Q func-

tion is easier to evaluate for the latent variable model. Let θ0¼ (ϑ0, ψ), Li and
Yu (2012) defined a new continuous net loss function as:

ΔL θ, θ0ð Þ¼ Q θ, θð Þ�Q θ0, θð Þf g+ Q θ0, θ0ð Þ�Q θ, θ0ð Þf g,
and proposed a MCMC-based test statistic as:

TLY y, θ0ð Þ¼Eθ|y ΔL θ, ϑ0ð Þ½ �:
While TLY (y, θ0) is well-defined under improper priors and easy to com-

pute for the latent variable model, one still needs to specify some threshold

values. Again, threshold values lack of rigorous statistical justifications.

Importantly, the need to specify some threshold values suggests that LY’s

approach is not Bayesian.

3.2.4 Li et al. (2014) and LR-type loss function

To address the problem in choosing threshold values, Li et al. (2014, LZY

hereafter) introduced another net continuous loss function based on the devi-

ance function (Spiegelhalter et al., 2002) given by

ΔL H0, ϑ, ψð Þ½ � ¼ 2 lnp yj ϑ, ψð Þ�2 lnp yj ϑ0, ψð Þ:
The corresponding test statistic is

TLZY y, ϑ0ð Þ¼ 2

ð
lnp yj ϑ, ψð Þ� ln p yj ϑ0, ψð Þ½ �p ϑ, ψj yð Þdϑdψ: (6)

Since the likelihood function p(y jϑ, ψ) is often intractable for the latent

variable model, to achieve computational tractability, under some regularity

conditions, Li et al. (2014) developed an asymptotically equivalent form for

TLZY (y, ϑ0), i.e.,

T∗
LZY y, ϑ0ð Þ¼ 2D + 2 lnp ϑ, ψ

� �� lnp ψj ϑ0ð Þ� ��2

ð
ln p ϑj ψð Þp θj yð Þdθ

� p + q� tr �L
2ð Þ
0n ψð ÞV22 θ

� �h ih i
,

(7)

where θ¼ ϑ, ψ
� �0

is the posterior mean of θ under H1, and

D¼
ð1
0

ϑ2ϑ0

� �0
E
z1y,θb

S1 y, zj θb
� �� �h in o

db,

with θb ¼ 1�bð Þθ∗ + bθ, for b 2 [0, 1], θ∗ ¼ ϑ0, ψð Þ0, S(y, z jθ)¼∂ ln

p(y, z jθ)/∂θ, S1(�) being the subvector of S(y, z jθ) corresponding to ϑ,
V22 θ
� �¼E ψ�ψð Þ ψ�ψð Þ0j y,H1

� �
, the submatrix of V θ

� �
corresponding to

ψ, and L0n
(2)(ψ)¼∂

2 ln p(y, ψ jϑ0)/∂ψ ∂ψ 0.
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To compute TLZY
∗ (y,ϑ0), one mainly needs to evaluate the second deriva-

tive of ln p(y jθ). The well-known Louis formula by Louis (1982) suggests

∂
2 lnp yj θð Þ
∂θ∂θ0

¼Ez|y,θ
∂
2 ln y, zj θð Þ

∂θ∂θ0

� 	
+Varz|y,θ S y, zj θð Þf g

¼Ez|y,θ
∂
2 ln y, zj θð Þ

∂θ∂θ0
+ S y, zj θð ÞS y, zj θð Þ0

� 	
�Ez|y,θ S y, zj θð Þf gEz|y,θ S y, zj θð Þf g0,

where all the expectations are taken with respect to the conditional distribu-

tion of z given y and θ. Hence, we can use the following formula to calculate

the second derivative of the observed-data likelihood function,

Ez|y,θ
∂
2 ln y, zj θð Þ

∂θ∂θ0
+ S y, zj θð ÞS y, zj θð Þ0

� 	

� 1

J

XJ
i¼1

∂
2 ln y, z jð Þj θ� �

∂θ∂θ0
+ S y, z jð Þj θ
� �

S y, z jð Þj θ
� �0( )

,

Ez|y,θ S y, zj θð Þf g� 1

J

XJ
i¼1

S y, z mð Þj θ
� �

¼ 1

J

XJ
i¼1

∂ lnp y, z jð Þj θ� �
∂θ

,

where {z( j ), j¼1, 2, …, J} are the MCMC samples of z.
Since TLZY is the posterior mean of the difference in deviance, TLZY and

TLZY
∗ can be understood as the MCMC version of LR test. Li et al. (2014)

pointed out that the proposed test statistic appeals in four aspects. First, they

are well-defined under improper priors. Second, they do not suffer from

Jeffreys-Lindley’s paradox and, hence, can be used under non-informative

vague priors. Third, at least, TLZY
∗ is not difficult to compute. For the latent

variable model, TLZY
∗ (y,ϑ0) only involves the second derivative which is not

very difficult to evaluate from the MCMC output.

Finally, under some mild regularity conditions, when the likelihood infor-

mation dominates the prior information, Li et al. (2014) proved that under the

null hypothesis

TLZY y, ϑ0ð Þ�a e0 IJ1=211 θ0ð ÞJ11 θ0ð ÞIJ1=211 θ0ð Þ
h i

e

� p + q� tr½�L
2ð Þ
0n θ
� �

V22 θ
� ��h i

,

(8)

T∗
LZY y, ϑ0ð Þ�a e0 IJ1=211 θ0ð ÞJ11 θ0ð ÞIJ1=211 θ0ð Þ

h i
e

� p + q� tr½�L
2ð Þ
0n θ
� �

V22 θ
� ��h i

,

(9)
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where e is a standard multivariate normal variate, θ0¼ (ϑ0, ψ0) the true value
of θ, J(θ0) the Fisher information matrix given by

J θ0ð Þ¼ 1

n

ð
�L 2ð Þ

n θ0ð Þp yj θ0ð Þdy,

IJ(θ0) the inverse of J(θ0), J11(θ0), and IJ11(θ0) the submatrices of J(θ0)
and IJ(θ0), respectively, corresponding to ϑ. The asymptotic distributions

given in (8) and (9) are obtained under the assumptions of repeated sampling

and the diverged sample size. Clearly, the set up is also in the frequentist

domain. A drawback of the test is that it is not asymptotically pivotal because

the asymptotic distribution depends on some unknown population parameters.

3.2.5 Li et al. (2015) and LM-type loss function

To address the nonpivotal problem in the test statistic of Li et al. (2014, 2015)

proposed to use a quadratic loss function given by

ΔL H0, θ½ � ¼ ϑ�ϑ
� �0

Cϑϑ θ0
� �

ϑ�ϑ
� �

, (10)

where

C θð Þ¼ s θð Þs θð Þ0,s θð Þ¼ ∂ lnp yj θð Þ
∂θ

,

and s(θ) the score function of θ, Cϑϑ (θ) is the submatrix of C(θ) corresponding
to ϑ and is semipositive definite, θ0 ¼ ϑ0, ψ0ð Þ is the posterior mean of ϑ under

H0, θ is the posterior mean of θ under H1. Based on this quadratic loss, natu-

rally, the test statistic is given by

TLLY y, ϑ0ð Þ¼
ð
ΔL H0, θ½ �p θj yð Þdθ¼

ð
ϑ�ϑ
� �0

Cϑϑ θ0
� �

ϑ�ϑ
� �

p θj yð Þdθ,
(11)

where p(θ jy) is the posterior distribution of θ under H1.

To compute TLLY (y, ϑ0), one mainly needs to evaluate the first derivative

of ln p(y jθ). For the latent variable model, ln p(y jθ) is often intractable.

Under the EM algorithm (Dempster et al., 1977), it can be shown that

∂ lnp yj θð Þ
∂θ

¼Ez|y,θ S y, zj θð Þf g� 1

J

XJ
i¼1

S y, z jð Þj θ
� �

¼ 1

J

XJ
i¼1

∂ lnp y, z jð Þj θ� �
∂θ

where {z( j ), j¼1, 2, …, J} are the MCMC samples of z.

The proposed test can be viewed as the MCMC version of LM test. To see

the link, let the LM statistic (Breusch and Pagan, 1980) be

LM¼ sϑ θ̂0
� �

�IL
2ð Þ
ϑϑ θ̂
� �h i

sϑ θ̂0
� �

,
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where θ̂0 ¼ ϑ0, ψ̂0ð Þ is the MLE of θ under the null hypothesis, sϑ (θ) is sub-
vector of s(θ) corresponding to ϑ, ILϑϑ (θ) is the submatrix of IL(θ)
corresponding to ϑ, IL(2)(θ) is the inverse matrix of L(2)(θ):¼∂

2 ln p(y jθ)/
∂θ∂θ0. Under some regularity assumptions, when the null hypothesis is true

and the likelihood dominates the prior, Li et al. (2015) showed that

TLLY y, ϑ0ð Þ¼LM + op 1ð Þ!d χ2 pð Þ:
The test statistic TLLY (y, ϑ0) has a few nice properties. For example, it is

well-defined under an improper prior and immune to Jeffreys-Lindley’s para-

dox. In addition, for the latent variable model it is not difficult to compute

with the EM algorithm. Finally, it follows a pivotal χp
2 asymptotically, and

hence, it is easy to obtain threshold values.

3.2.6 Li et al. (2019) and Wald-type loss function

Although the test statistic proposed by Li et al. (2015) is convenient to calcu-

late and has some good properties, it requires the MCMC output to be

obtained twice, one under H0 and the other under H1. Based on another qua-

dratic loss function, Li et al. (2019) proposed a test statistic which is only

by-product of the MCMC output under H1, and hence, is easier to compute.

Let the posterior covariance matrix under the alterative hypothesis be

V θ
� �¼E θ�θ

� �
θ�θ
� �0j y,H1

h i
¼
ð

θ�θ
� �

θ�θ
� �0

p θj yð Þdθ,

where θ is the posterior mean of θ under the alternative hypothesis H1. Li

et al. (2019) proposed the following net loss function for hypothesis testing

ΔL H0, θ½ � ¼ ϑ�ϑ0ð Þ0 Vϑϑ θ
� �� ��1

ϑ�ϑ0ð Þ,

where Vϑϑ (θ) is the submatrix of V(θ) corresponding to ϑ, Vϑϑ θ
� �� ��1

is the

inverse matrix of Vϑϑ θ
� �

: Then, the test statistic can be established as follows:

TLLYZ y, ϑ0ð Þ¼
ð

ϑ�ϑ0ð Þ0 Vϑϑ θ
� �� ��1

ϑ�ϑ0ð Þp θj yð Þdθ: (12)

To see the link between TLLYZ (y, ϑ0) and the Wald statistic, define the

Wald statistic by (Engle, 1984)

Wald¼ ϑ̂ML�ϑ0

� �0
�IL

2ð Þ
ϑϑ θ̂ML

� �h i�1

ϑ̂ML�ϑ0

� �0
,

where θ̂ML≔ ϑ̂ML, ψ̂ML

� �
is the ML estimate of θ. Under some regularity

assumptions, when the null hypothesis is true and the likelihood dominates

the prior, Li et al. (2019) showed that

TLLYZ y, ϑ0ð Þ¼Wald + op 1ð Þ!d χ2 pð Þ:
This is whyTLLYZ (y, ϑ0) may be viewed as aMCMCversion of theWald test.
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It can be seen that TLLYZ (y, ϑ0) shared some nice properties with the test

of Li et al. (2015). First, it is well-defined under improper prior distributions

and avoids Jeffreys-Lindley’s paradox. Second, the asymptotic distribution is

pivotal so that the threshold values can be easily obtained from the χ2(p) dis-
tribution. Most importantly, it is only by-product of the posterior output under

H1, and hence, is easier to compute.

Table 1 summarize the MCMC-based trinity of the tests and their key prop-

erties. It is important to emphasize that although they are constructed from the

MCMC output which contains random draw from the Bayesian posterior distri-

bution, the statistical inference made by the three tests is not conditional on the

data. Instead, the justification of the three tests is done in a frequentist frame-

work, requiring repeated sampling from the DGP and an asymptotic argument.

4 Specification testing based on the MCMC output

Detection of specification problems in economics has been a major concern.

After ML is applied to estimate the model, several specification tests may

be used, including the information matrix test of White (1982), the IOS and

IOSA tests of Presnell and Boos (2004). Recently, Li et al. (2018) proposed

a specification test based on the MCMC output which can assess the validity

of the model specification and can tell the source of model misspecification if

the null model is rejected.

Let model P be a collection of candidate models indexed by parameters θ
whose dimension is q. Let Pθ denote P indexed by θ. We say the model P is

correctly specified if there exists θ, such that P0 2 Pθ.

Arguably the best known specification test is based on the information

matrix proposed by White (1982). For i.i.d. case, let p(y jθ) denote the likeli-

hood function of Model Pθ and

s y, θð Þ ≔∂ lnp yj θð Þ=∂θ,h y, θð Þ ≔∂
2 lnp yj θð Þ=∂θ∂θ0

H θð Þ ≔
ð
h y, θð Þp yj θð Þdy, J θð Þ ≔

ð
s y, θð Þs0 y, θð Þp yj θð Þdy

Let d(y,θ)≔vech[h(y,θ)+ s(y,θ)s0(y,θ)], where vech is the columnwise vec-

torization with the upper portion excluded. Let the ML-based sample counter-

parts of H(θ) and J(θ) be

Ĥn θ̂ML

� �
≔
1

n

Xn
t¼1

h yt, θ̂ML

� �
, Ĵn θ̂ML

� �
≔
1

n

Xn
t¼1

s ytJ θ̂ML

� �
s0 yt, θ̂ML

� �
:

Let Dn θ̂ML

� �
¼ 1

n

Pn
t¼nd yt, θ̂ML

� �
and _Dn θ̂ML

� �
¼ ∂Dn θ̂ML

� �
=∂θ. If the

model is correctly specified, then H(θ)+J(θ)¼0. White (1982) proposed the

following information matrix test

IMT¼ nDn θ̂ML

� �
V�1
n θ̂ML

� �
Dn θ̂ML

� �
, (13)
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TABLE 1 Summary of MCMC-based trinity of tests

TLZY TLLY TLLYZ

Expression 2 ln p ϑ, ψ
� �� lnp ψj ϑ0ð Þ� �

�2
Ð
ln p ϑj ψð Þp θj yð Þdθ+2D

� p +1� tr½�L
2ð Þ
0n ψð ÞV22 θ

� �h i
Ð

ϑ2ϑ
� �0

Cϑϑ ϑ0

� �
ϑ�ϑ
� �

p ϑj yð Þdϑ

Ð
ϑ2ϑ0

� �0
Vϑϑθ
� ��1

ϑ�ϑ0ð Þp θj yð Þdθ

Prior Improper or proper Improper or proper Improper or proper

Jeffreys-Lindley’s Paradox No No No

Asymptotic theory e0 IJ
1=2
11 ϑ0ð ÞJ11 ϑ0ð ÞIJ1=211 ϑ0ð Þ

h i
e

� p +q� tr �L
2ð Þ
0n θ
� �

V22 θ
� �h ih i χ2(p) χ2(p)

Asymptotic pivotal No Yes Yes



where

Vn θ̂ML

� �
¼ 1

n

Xn
t¼1

vt θ̂ML

� �
vt θ̂ML

� �0
,

vt θ̂ML

� �
¼ d yt, θ̂ML

� �
� _Dn θ̂ML

� �
Ĥ

�1

n θ̂ML

� �
s yt, θ̂ML

� �
:

He then showed that IMT!d χ2 as n!∞ under the null hypothesis.

Presnell and Boos (2004) proposed an alternative test—the “in-and-out”

likelihood ratio (IOS) test for models with i.i.d. observations,

IOS¼ ln

Qn
t¼1p yt, θ̂ML

� �
Qn

t¼1p yt, θ̂
tð Þ
ML

� �¼Xn
t¼1

lnp ytj θ̂ML

� �
� lnp yt, θ̂

tð Þ
ML

� �h i
,

where θ̂
tð Þ
ML be the MLE of θ when the t-th observation, yt, is deleted from the

whole sample. They showed that the asymptotic form of IOS is

IOSA ¼ tr �Ĥ
�1

n θ̂ML

� �
Ĵn θ̂ML

� �h i
, (14)

and IOS � IOSA¼op (n�1/2). Like IMT, IOSA also compares Ĥn θ̂ML

� �
with

Ĵn θ̂ML

� �
, but in a ratio form instead of an additive form. Under the null

hypothesis, IOSA!p q and n1/2 (IOSA �q) converges to a normal distribution

with zero mean and finite variance. It is well documented in the literature that

the asymptotic distributions poorly approximate their finite sample counter-

parts for IMT, IOS, and IOSA. As a result, they all suffer from serious bias

distortions if the critical values for testing are based on the asymptotic distri-

butions. The poor finite sample performance of these tests is not surprising as

the asymptotic theory is derived based on the convergence of the sample high

order moments, whose speed is slow. To reduce the size distortion of these

tests, bootstrap methods have been proposed to obtain the critical values.

Unfortunately, bootstrap methods are computationally demanding.

For weakly dependent data, let yt:¼ (y1, …, yt) and

s yt, θð Þ ≔
∂ lnp ytj θð Þ

∂θ
, h yt, θð Þ ≔

∂
2 lnp ytj θð Þ
∂θ∂θ0

,

st θð Þ ≔s yt, θð Þ� s yt�1, θð Þ, ht θð Þ ≔h yt, θð Þ�h yt�1, θð Þ,

Ĵn θð Þ ≔
1

n

Xn
t¼1

st θð Þs0t θð Þ, Ĥn θð Þ ≔
1

n

Xn
t¼1

ht θð Þ:

and V θ
� �¼ Ð θ�θ

� �
θ�θ
� �0

p θj yð Þdθ, a natural MCMC-based informative

matrix test statistic can be defined as:

BIMT¼ tr nV θ
� �

Ĵn θ
� �� �¼ n

ð
θ�θ
� �0

Ĵn θ
� �

θ�θ
� �

p θj yð Þdθ, (15)
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Under some mild regularity conditions, Li et al. (2018) showed that under

the null hypothesis, n1/2 (BIMT/q� 1) has the same asymptotic distribution as

n1/2 (IOSA/q� 1). Hence, BIMT may be regarded as the MCMC-based ver-

sion of IOSA. Unfortunately but not surprisingly, BIMT inherits the size dis-

tortion problem of IOSA and bootstrap methods must be used.

Due to this size distortion problem, Li et al. used a technique of Fan et al.

(2015) to construct a new specification test statistic. In particular, they propose

to expand p(y jθ), the model in concern, to a larger model denoted by p(y jθL)
where θL¼ (θ0,θE0 )0 with θE being a qE-dimensional vector. So the expanded

model p(y jθL) nests the original model p(y jθ).
It is assumed that if the specification p(y jθ) is correct, then the true value

of θE is zero. The final specification test statistic of Li et al. (2018) has the

form of

BMT¼ tr CE y, θ, θE ¼ 0
� �� �

VE θL
� �
 �

+
ffiffiffi
n

p
BIMT=q�1ð Þ2, (16)

where CE y, θ, θE ¼ 0
� �� �

is the submatrix of C (y, θL) corresponding to θE
evaluated at θ, θE ¼ 0

� �
and VE θL

� �
is the submatrix of VE(θL) corresponding

to θE evaluated at, θL and

s y, θLð Þ¼ ∂ lnp yj θLð Þ
∂θL

,C y, θLð Þ¼ s y, θLð Þs y, θLð Þ0,

V θL
� �¼E θL�θL

� �
θL�θL
� �0j yh i

¼
ð

θL�θL
� �

θL�θL
� �0

p θLjyð ÞdθL,

with θL being the posterior mean of θL in the expanded model. It can be seen

that BIMT is used as the power enhancement function.

Under a set of regularity conditions, Li et al. showed that if the model is

correctly specified, BMT!d χ2 qEð Þ; but if the model is misspecified with

q∗ 6¼q, then

tr CE y, θ, θE ¼ 0
� �� �

VE θL
� �
 �¼ ffiffiffi

n
p

q∗=q�1ð Þ2 +Op

ffiffiffi
n

p� �
,BMT�Op

ffiffiffi
n

p� �
,

where q∗¼ tr[�H (θ∗)–1 J (θ∗)] with θ∗ being the pseudo true value of θ, where

H θ∗ð Þ ≔ lim
n!∞

Hn θ∗ð ÞandJ θ∗ð Þ≔ lim
n!∞

Jn θ∗ð Þ,

Jn θð Þ ≔
ð
Ĵn θð Þp yð Þdy,Hn θð Þ≔

ð
Ĥn θð Þp yð Þdy,

BMT has several nice properties. First, compared with IM, IOS, and IOSA,

BMT is based on the MCMC output. When the likelihood function is difficult

to optimize but the MCMC draws from the posterior distribution are available,

BMT is easier to compute than IM, IOS, and IOSA. Second, whenffiffiffi
n

p
BIMT=q�1ð Þ2 does not have the size distortion problem, it is most likely

that BMT will not suffer from size distortion. As a result, no bootstrap method

is needed and intensive computational effort is avoided.
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5 Model selection based on the MCMC output

Model selection is a very important statistical decision in practice. Many

important and widely used information criteria have been proposed to select

from candidate models in the literature. Examples include AIC, BIC, and

HQ. Most of them require that MLE is available. The most well-known model

selection criterion based on the MCMC output is DIC of Spiegelhalter et al.

(2002). DIC is constructed based on the posterior distribution of the log-

likelihood or the deviance, and has several desirable features. First, DIC is

simple to calculate from the MCMC output when the likelihood function

is available in closed-form. Second, DIC is applicable to a wide range of sta-

tistical models. Third, unlike BFs, DIC is not subject to Jeffreys-Lindley’s

paradox and can be defined under improper priors. In this section, we first

review the DIC for models when the asymptotic theory for ML is applicable,

paying particular attention to the asymptotic justification of DIC. We also dis-

cuss how to obtain DICs when there are latent variables. In both cases, the

loss function is the plug-in predictive loss. We also discuss the information

criteria when the loss function is the Bayesian predictive loss.

5.1 DIC for regular models

We first review DIC for regular models, that is, when the asymptotic theory

given by (2), (3) and (4) holds true. Spiegelhalter et al. (2002) proposed the

DIC for Bayesian model comparison. The criterion is based on the deviance

D θð Þ¼�2 lnp yj θð Þ,
and takes the form of

DIC¼D θ
� �

+ 2PD, (17)

where PD, used to measure the model complexity and also known as

“effective number of parameters,” is defined as the difference between the

posterior mean of the deviance and the deviance evaluated at the posterior

mean of the parameters:

PD ¼D θð Þ �D θ
� �¼�2

ð
ln p yj θð Þ� ln p yj θð Þ½ �p yj θð Þdθ, (18)

with θ being the posterior mean of θ.
Under some regularity conditions, Li et al. (2017a) gives a rigorous

decision-theoretic justification. Let g(y) be the data generating process of y,

yrep¼ (y1,rep, …, yn,rep)
0 denote the future replicate data with y. Hence, the

plug-in predictive distribution based on replicate data is �2 lnp yrepj θ yð Þ� �
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where θ yð Þ is the posterior mean under the data y. Consider the plug-in pre-

dictive distribution p yrep jθ yð Þ in the following KL divergence

KL g yrep
� �

, p yrepj θn yð Þ� �� �¼Eyrep ln
g yrep
� �

p yrepj θn yð Þ� �" #

¼Eyrep lng yrep
� �� �

+Eyrep � lnp yrepj θn yð Þ� �� �
:

The smaller this KL divergence, the better the candidate model in predicting

g(yrep). Since g(yrep) is the true DGP and Eyrep
ln g(yrep) is independent with

candidate models, it is dropped from the above equation. Li et al. (2017a) showed

that DIC is an unbiased estimator of EyEyrep �2 ln p yrepj θ yð Þ� �� �
asymptotically,

i.e., EyEyrep �2 ln p yrepj θ
� �� �¼Ey DICð Þ+ o 1ð Þ. The key assumptions to obtain

the asymptotic unbiasedness include that the candidate models are good approx-

imation to the true DGP, the consistency and asymptotic normality of MLE,

and the expression for the asymptotic variance of MLE. For details, see

Li et al. (2017a).

The above decision-theoretic justification to DIC is that DIC selects a

model that asymptotically minimizes the risk, which is the expected KL diver-

gence between the DGP and the plug-in predictive distribution p yrepj θ yð Þ� �
where the expectation is taken with respect to the DGP. A key difference

between AIC and DIC is that the plug-in predictive distribution is based on

different estimators. In AIC, the ML estimate, θ̂ML yð Þ, is used while in DIC

the Bayesian posterior mean, θ yð Þ, is used.
When ln p(y jθ) has a closed-form expression, it can be seen that DIC is

trivial to compute from the MCMC output. DIC has been incorporated into

a Bayesian software, WinBUGS. This explains why DIC has been widely

used in practice for model selection.

5.2 Bayesian predictive distribution as the loss function

Unfortunately, the plug-in predictive distribution is not invariant to parame-

terization. As a result, DIC is sensitive to parameterization. Alternatively,

we may use the Bayesian predictive distribution as a loss function. The

Bayesian predictive distribution is not only a full proper predictive distribu-

tion, but also invariant to reparameterization.

Let p(yrep jy) be the Bayesian predictive distribution, that is,

p yrepj y
� �¼ ð p yrepj θ

� �
p θj yð Þdθ:
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The KL divergence based on the Bayesian predictive distribution is given by

KL g yrep
� �

, p yrepj y
� �� �¼Eyrep lng yrep

� �� ��Eyrep lnp yrepj y
� �� �

: (19)

Li et al. (2017a) obtained the information criterion based on the Bayesian

predictive distribution as

DICBP ¼D θ
� �

+ 1 + ln2ð ÞPD: (20)

Under some regularity assumptions, Li et al. showed that DICBP is

an unbiased estimator of EyEyrep
[�2 ln p(yrep jy)] asymptotically, i.e.,

EyEyrep
[�2 ln p(yrep jy)]¼Ey(DIC

BP)+o(1). Clearly, DICBP is as easy to com-

pute as DIC. Since DIC is monitored in WinBUGS, no additional effort is

needed for calculating DICBP.

5.3 Integrated DIC for latent variable models

Unfortunately, not all models are regular. A well-known nonregular model in

economics is a class of models with incidental parameters which leads to the

incidental parameter problem. In this class of models, the information about

the incidental parameters stops accumulating after a finite number of observa-

tions have been taken; see Neyman and Scott (1948) and Lancaster (2000) for

details about the incidental parameter problem.

As shown in Gelman et al. (2013), the incidental parameter problem can

lead that the ML estimator is inconsistent and Bayesian large sample theory

becomes invalid. When this is the case, the asymptotic justification of DIC

does not hold because of the failure of these standard asymptotic theory.

In general, the latent variable model given in (1) does not have incidental

parameters and hence the incidental parameter problem is not applicable. As

explained earlier, for many latent variable models, the likelihood function is

very difficult to be accurately approximate, rendering ML difficult to imple-

ment. To facilitate the posterior analysis, the data-augmentation strategy of

Tanner and Wong (1987) is often used to augment the parameter space to (θ, z),
changing the likelihood function to p(y jθ, z) which typically has a closed-form

expression. Denote the sample mean of z, θ by z, θ, obtained from the MCMC

output. Applying DIC developed earlier to the data-augmented MCMC output

leads to

DICDA ¼D z, θ
� �

+ 2PDA
D , (21)

PDA
D ¼D z, θð Þ �D z, θ

� �
¼�2

ð
ln p yj z, θð Þ� lnp yj z, θ� �� �

p z, θj yð Þdzdθ, (22)

where D(z,θ)¼ �2 ln p(y jz,θ) which is typically available in closed-form.

This way of calculating DIC is monitored and implemented in Win-BUGS,
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following the suggestion of Spiegelhalter et al. (2002). Clearly the use of data

augmentation not only facilitates MCMC sampling, but also makes DIC easier

to calculate from the MCMC output.

Unfortunately, the data augmentation technique introduces incidental para-

meters to the model which lead to the incidental parameter problem. This is

because, as discussed before, in many latent variable models, the latent vari-

able z is often dependent on the sample size and its dimension is the same

as or larger than the number of the sample size. As a result, the model

becomes non-regular after the parameter space is expanded to (θ, z). In partic-

ular, the ML estimator of z is typically inconsistent and the Bayesian large

sample theory is invalid for z. Although data augmentation makes DIC easy

to calculate, it invalidates the asymptotic justification of DIC. DIC based on

the data augmentation technique, as calculated in (21) and (22), is no longer

asymptotically unbiased estimator of EyEyrep �2 ln p yrepj θ yð Þ� �� �
: As a result,

for the latent variable model, DIC, as how it is currently monitored and imple-

mented in Win-BUGS, should not be used.

To address this problem, Li et al. (2017b) introduced an integrated DIC

(IDIC) which integrates the latent variable out of the deviance and the penalty

term. IDIC is given by

IDIC¼D θ
� �

+ 2PI
D, (23)

where

PI
D ¼ tr I θ

� �
V θ
� �
 �

, (24)

and

I θð Þ¼�∂
2 lnp yj θð Þ
∂θ∂θ0

,V θ
� �¼E θ�θ

� �
θ�θ
� �0j yh i

:

Li et al. (2017b) showed that under regularity conditions, IDIC is an

asymptotically unbiased estimator of EyEyrep �2 ln p yrepj θ yð Þ� �� �
.

Similarly, if the loss function the Bayesian predictive distribution, one

may obtain an alternative information criterion, which is IDICBP by Li et al.

(2017b) and is defined as

IDICBP ¼D θ
� �

+ 1 + ln2ð ÞPI
D, (25)

As shown in Li et al. (2017a), EyEyrep
(�2 ln p(yrep jy))¼Ey[IDIC

BP]+o(1).

5.4 Computing IDIC for latent variable models

For the latent variable model, ln p(y jθ) generally does not have an analytical

expression. As a result, computing ln p yj θ� �
and PD

I is not trivial, in sharp
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contrast to the quantities in (21) and (22). Li et al. (2017b) introduced a very

general approach to computing IDIC.

Let

p y, zj θ, b� �¼ p yj z, θ� �b
p zj θ� �

p yj θ, b� �¼ ð p y, zj θ, b� �
dz¼

ð
p yj z, θ� �b

p zj θ� �
dz,

p zj y, θ, b� �¼ p y, zj θ, b� �
p yj θ, b� � ¼ p yj z, θ� �b

p zj θ� �
p yj θ, b� � ,

so that

p yj θ, 1� �¼ ðp yj z, θ� �
p zj θ� �

dz¼
ð
p y, zj θ� �

dz¼ p yj θ� �
,

p yj θ, 0� �¼ ðp yj z, θ� �0
p zj θ� �

dz¼
ð
p zj θ� �

dz¼ 1

p zj y, θ, 1� �¼ p z, yj θ, 1� �
p yj θ, 1� � ¼ p yj z, θ� �

p zj θ� �
p yj θ, 1� � ¼ p yj z, θ� �

p zj θ� �
p yj θ� � ¼ p zj y, θ� �

,

p zj y, θ, 0� �¼ p z, yj θ, 0� �
p yj θ, 0� � ¼ p yj z, θ� �0

p zj θ� �
p yj θ, 0� � ¼ p zj θ� �

1
¼ p zj θ� �

:

Using the path sampling technique of Gelman and Meng (1998), Li et al.

showed that

ln p yj θ� �� ln1¼ ln
f 1ð Þ
f 0ð Þ¼

ð1
0

∂ ln f bð Þ
∂b

db

¼
ð1
0

E
z|y,θ,b lnp yj z, θ� �� �

db≔
ð1
0

u bð Þdb,
(26)

where f bð Þ¼ p yj θ, b� �
such that f 1ð Þ¼ p yj θ� �

and f (0)¼1.

In many cases,
Ð
0
1u(b)db in (26) does not have an analytical solution.

Following Gelman and Meng (1998), we can numerically approximate it

using the trapezoidal rule. In particular, we can choose a set of fixed grids

b sð Þ ¼ s
S


 �S
s¼0

such that b(0)¼0 <b(1) <b(2) <… <b(S)¼1, and then approxi-

mate the integral by

lnp yj θ� �� 1

S

u 0ð Þ
2

+
Xs�1

s¼1

u bsð Þ + u 1ð Þ
2

 !
:

Since ln p yj z, θ� �
often has an analytical expression, ln p yj θ� �

can be

conveniently obtained using the above formula.
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To compute PD
I , it mainly needs to evaluate the second derivative of ln

p(y jθ). Again, the well-known Louis formula suggests that

∂
2 lnp yj θð Þ
∂θ∂θ0

¼Ez|y,θ
∂
2 ln y, zj θð Þ

∂θ∂θ0

� 	
+Varz|y,θ S y, zj θð Þf g

¼Ez|y,θ
∂
2 ln y, zj θð Þ

∂θ∂θ0
+ S y, zj θð ÞSðy, zj θÞ0

� 	
�Ez|y,θ S y, zj θð Þf gEz|y,θ S y, zj θð Þf g0:

Hence, we can use the following formula to calculate the second deriva-

tive of the observed-data likelihood function,

Ez|y,θ
∂
2 ln y, zj θð Þ

∂θ∂θ0
+ S y, zj θð ÞSðy, zj θÞ0

� 	
� 1

J

XJ
j¼1

∂
2 ln y, z jð Þj θ� �

∂θ∂θ0
+ S y, z jð Þj θ
� �

S y, z mð Þj θ
� �0( )

,

Ez|y,θ S y, zj θð Þf g� 1

J

XJ
j¼1

S y, z jð Þj θ
� �

,

where {z( j ), j¼1, 2, …, J} are the MCMC samples.

The main difference between DIC, given in (17) and (18), and IDIC, given

in (23) and (24), lies in PD and PD
I . To compute PD, we need to evaluate

Eθ|y ln p yj θð Þ½ Þ� � 1
J

PJ
j¼1 lnp yj θ jð Þ

� �
: For the latent variable models, with-

out knowing the analytical form of ln p(y jθ), computing 1
J

PJ
j¼1 lnp yj θ jð Þ

� �
is very expensive since one has to evaluate ln p (y jθ( j )) for J times with J
being large. To compute PD

I in IDIC, one only needs to compute the second

derivative once.

Two well-known classes of latent variable models are the linear Gaussian

state space model and the nonlinear non-Gaussian state space model. For

these two classes of models, some recursive algorithms, such as the Kalman

filter and particle filter algorithms, can be used to facilitate the computation

of IDIC. There are existing R packages to implement the Kalman filter and

particle filter algorithms; see Tusell (2011). Hence, the proposed method here

can be combined with these R packages.

6 Empirical illustrations

In this section, we illustrate the proposed test statistics and model selection

criteria using three popular examples in economics and finance. The first

example contains asset pricing models with a t error distributions. The likeli-

hood functions of these models not only have the analytical form, but also can
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be rewritten as in the latent variable form. These two alternative ways of

rewritting the models allow us to check the problem in DIC with data aug-

mentation. The second example contains stochastic volatility models, where

the volatility is latent. In the second example, the analytical expression of

the observed data likelihood does not exist.

6.1 Statistical inference in asset pricing models

Asset pricing models are one of important models in modern finance. There

models generally assume that the return distribution is normal. Unfortunately,

there has been overwhelming empirical evidence against normality for asset

returns, which have led researchers to investigate asset pricing models with

heavy-tailed distributions. Zhou (1993) and Kan and Zhou (2017) suggested to

use the multivariate t distribution to replace the multivariate normal distribution.

Moreover, on the basis of the efficient market theory, the asset excess premium

should not be statistically different from zero. At last, the multivariate t distribu-
tion can be rewritten as scale-mixture framework to become a latent variable

model. Hence, we consider the following six asset pricing models:

Model1 :Rt ¼ β0Ft + єt, єt �N 0,Σ½ �;
Model2 :Rt ¼ α + β0Ft + єt, єt �N 0,Σ½ �;
Model3 :Rt ¼ β0Ft + єt, єt � t 0,Σ, v½ �;
Model4 :Rt ¼ β0Ft + єt, єt �N 0,Σ=ωtð Þ,ωt �Γ

v

2
,
v

2

� �
;

Model5 :Rt ¼α+ β0Ft + єt, єt � t 0,Σ, v½ �;
Model6 :Rt ¼α+ β0Ft + єt, єt �N 0,Σ=ωtð Þ,ωt �Γ

v

2
,
v

2

� �
,

where Rt is the excess return of portfolio at period t with N� 1 dimension,

Ft a K� 1 vector of factor portfolio excess returns, α a N� 1 vector of

intercepts, β a N�K vector of scaled covariances, єt the random error, t¼1,

2, …, n. For convenience, we restrict Σ to be a diagonal matrix and ν to be

a known constant as ν¼3. It is noted that Model 4 is the scale-mixture distri-

butional representation of Model 3, and Model 5 is the scale mixture distribu-

tional representation of Model 6.

Monthly returns of 25 portfolios, constructed at the end of each June, are the

intersections of 5 portfolios formed on size (market equity, ME) and 5 portfolios

formed on the ratio of book equity tomarket equity (BE/ME). The Fama/French’s

three factors, market excess return, SMB (Small Minus Big), HML (High Minus

Low) are used as the explanatory factors (Fama and French, 1993). The sample

period is from July 1926 to July 2011, so thatN¼25, n¼1021. The data are freely

available from the data library of Kenneth French.a

ahttp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Making inference for the asset pricing models has attracted a considerable

amount of attentions in the empirical asset pricing literature. Avramov and

Zhou (2010) provided an excellent review of the literature on Bayesian port-

folio analysis. As to Bayesian inference, we need specify the prior distribu-

tions for parameters. Here, to represent the prior ignorance, we assign some

vague conjugate prior distributions, that is,

αi �N 0, 100½ �, βij �N 0, 100½ �,ϕ�1
ii �Γ 0:01, 0:01½ �:

Based on the R language, we use R2WinBUGS to get the MCMC outputs,

and draw 100,000 random observations from the posterior distributions in

each model where the first 40,000 is used as the burn-in sample, and the next

60,000 iterations is collected with every 3th observation as effective observa-

tions. Hence, these are 20,000 effective observations.

6.1.1 Hypothesis testing for asset pricing models

In asset pricing theory, the efficient market theory suggests that the excess

premium α should be zero. Hence, we can write this problem as a hypothesis

to be tested as:

H0 :α¼ 0�1N ,H1 :α 6¼ 0�1N ,

where 1N is an N-dimensional vector with unit elements. Model 6 is the most

general model which can nest other models, hence, based on this model, we

discuss the asset pricing testing problem above.

In Section 4, among of those approaches, we have shown that the threshold

values by Bernardo and Rueda (2002) and Li and Yu (2012) are difficult to

calibrate. Hence, here, we only consider the statistics respectively developed

by (Li et al., 2014, 2015, 2019). Based on 20,000 MCMC samples, we calculate

the three test statistics, TLZY (y, ϑ0), TLLY (y, ϑ0) and TLLYZ (y, ϑ0). We report

the results in Table 2.

Obviously, from these results, according to the critical values from χ2(25),
under 5% significant level, all the test statistics reject the null hypothesis.

Hence, we can conclude that the mean–variance efficiency does not held in

practice. As to these test statistics, more details, one can refer to Li et al.

(2014, 2015, 2019). At last, according to the Savage-Dickey Density Ratio

approach by Verdinelli and Wasserman (1995), it can be shown that.

B̂F¼ 1:069 which provide mild evidence to support H0 which is contrac-

tive to the results from the hypothesis testing statistics. This reason lies that

in this section, we use the vague prior to do the hypothesis testing so that

BFs suffer from the Jeffreys-Lindley’s paradox. It should be very suggested

to use BFs for doing hypothesis testing when the prior information is not

available. More details about the Jeffreys-Lindley’s paradox, see the discus-

sion by Li et al. (2015).
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6.1.2 Specification testing for asset pricing models

In this subsection, we take the standard Fama–French three-factor asset pric-

ing model (Fama and French, 1993) that is, model 2 as an example for illus-

trating the proposed approach. The standard asset pricing model is given by

Model2 :Rt ¼ α + β1Rmt + β2SMBt + β3HMLt + Et,Et �N 0,Σ½ �
where Rm is the excess market return, SMB stands for “Small [market capital-

ization] Minus Big” and H ML for “High [book-to-market ratio] Minus Low”;

they measure the historic excess returns of small caps over big caps and of

value stocks over growth stocks.

Here, for checking the model misspecification, the expanded model can be

specified as

Model2E :Rt ¼α + β1Rmt + β1ER
2
mt + β2SMBt + β3HMLt + Et,Et �N 0, Σ½ �

Hence, according to Section 4, we can write this model misspecification

problem as a hypothesis to be tested as:

H0 : β1E ¼ 0, H1 : β1E 6¼ 0

Following Section 4, the proposed test statistic can be given by

BMT¼ tr CE y, α, β1, β2, β3,Σð Þ, β1E ¼ 0ð Þ½ �VE θL
� �
 �

+
ffiffiffiffiffiffiffiffiffiffi
1021

p
BIMT=125�1ð Þ2

Hence, based on 20,000 effective observation drawn from the posterior

distribution, we can compute the corresponding statistics which are reported

in Table 3. It is noted that if the model is correctly specified, BMT converges

to χ2(25) distribution. Given this χ2 distribution, under 0.05 significant level,

the critical value is 37.65. Hence, according to the table, we can conclude that

BMT strongly reject the null hypothesis which means that the asset price

model is misspecified (Table 3).

6.1.3 Model comparison for asset pricing models

We make a model comparison of these asset pricing models. Based on 20,000

effective observations, we calculate DICs, and BFs. Table 4 reports PD, PD
DA,

TABLE 2 Asset pricing testing in M6

Hypothesis α50

TLZY (y, ϑ0) 140.5191

TLLY (y, ϑ0) 153.5680

TLLZY (y, ϑ0) 184.4315
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PD
I , DIC, DICBP, DICDA, IDIC, and IDICBP for all six models. Note that only

M4 and M6 has the latent variable so that PD
DA and DICDA are only reported

for these two models. Furthermore, M3 and M4 are the same model with dif-

ferent distribution expression, M5 and M6 are the same model with different

distribution expression. Hence, as to the same model with different distri-

bution expression, PD, PD
I , DIC, DICBP, IDIC, and IDICBP are equal for the

same model.

From Table 4, we can get some interesting finding. First, as expected, DICDA

in Model 3 is quite different from that in Model 4 although these two models

are the same, but only have different distribution expression. The main reason

is that in Model 4, the scale-mixture specification is used and, hence, a sequence

of latent variables, {ωt} are treated as parameters. For the same reason, DICDA in

Model 5 is quite different from that inModel 6. As argued earlier, this conceptual

TABLE 3 Results of specification test for model 2

Item Value

BIMT 610

tr CE y, α, β1, β2, β3, Σð Þ, β1E ¼ 0ð Þ½ �VE θL
� �


444ffiffiffiffiffiffiffiffiffiffiffi
1021

p
BIMT=125�1ð Þ2 481

BMT 925

TABLE 4 Model selection results for Fama–French three factor models

Model M1 M2 M3 M4 M5 M6

# of

Parameters

100 125 100 100 125 125

PD 100 125 100 100 125 125

DIC �119,842 �119,880 �133,088 �133,088 �133,202 �133,202

DICBP �119,872 �119,918 �133,118 �133,118 �133,240 �133,240

PD
DA — — — 1021 — 1046

DICDA — — — �134,777 — �134,897

PD
I 100 125 100 100 126 126

IDIC �119,842 �119,880 �133,087 �133,087 �133,201 �133,201

IDICBP �119,873 �119,918 �133,118 �133,118 �133,240 �133,240
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difficulty is due to lack of the theoretical foundation. Second, DIC, DICBP, IDIC,

and IDICBP do not suffer from the same difficulty as DICDA. For Model 3 (and

Model 5), they are identical to those for Model 4 (and Model 6). Third, the theo-

retical results show that PD and PD
I should be close to the actual number of the

parameters, P, if the posterior distribution is well approximated by the normal

distribution and the use of uninformative priors is used. The results can be con-

firmed from this table. Most importantly, we see that PD is almost identical to

PD
I in all models. Not surprisingly, DIC and IDIC are almost the same in all mod-

els and DICBP and IDICBP are almost the same. This confirm the theoretical

result that PD and PD
I can be well approximated. In addition, all DICs provide

the evidence to support M6 is the best model for prediction among these six

models.

In addition, as to PD and PD
I , we need point out that in terms of the compu-

tational cost, for Models 3 and 5, PD
I can require less efforts than PD. The

reason is that PD involves
Ð
lnp(y jθ)p(θ jy)dθ, which is approximated by

1
J

PJ
j¼1 ln p yj θ jð Þ

� �
: This quantity is much more expensive to compute

because it requires numerical evaluation of lnp(y jθ( j )) for J times. For exam-

ple, here, based on the 20,000 posterior random observations, one has to

evaluate lnp(y jθ( j )) 20,000 times. Fortunately, as to asset pricing models,

lnp(y jθ( j )) has closed-form. However, as to other models such that lnp(y jθ)
does not have analytical form, obviously, IDIC is more advantageous than DIC.

At last, in order to check the reliability of the general computation approach

by Section 5.4, we take model 6 as an example. Since the likelihood function

lnp(y jθ) has analytical form, we can easily get that D θ
� �¼�133452: Using

the approximation approach in Section 5.4, we give the approximated value of

D θ
� �

, that is, D̂ θ
� �

under different grids and report the results in the Table 5.

From this table, it can be observed that with the increasing grid S, the proposed

approach can approximate D θ
� �

very well.

TABLE 5 The approximated value of D θ
� �

based

on Section 5.4

Hypothesis D̂ θ
� �

S¼200 �133,436

S¼400 �133,437

S¼800 �133,451

S¼900 �133,452
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6.2 Statistical inference in stochastic volatility models

Stochastic volatility (SV) models are one of the important models to model

the time-varying volatility in financial econometrics. The basic SV model is

composed of two equations, one is measurement equation, the other is state

equation where the logarithmic volatility is the state variable which is often

assumed to follow an AR(1) model. The basic form can be written as

yt ¼ α+ exp ht=2ð Þut,ut �N 0, 1ð Þ,
ht ¼ μ+ϕ ht�1�μð Þ + vt,vt �N 0, τ2ð Þ,

where t¼1, 2,… , n, yt is the continuously compounded return, ht the unob-

served log-volatility, h0¼μ, ut, and vt are independent for all t. In this chapter,

we denote this model by M1.

An important and well documented empirical feature in many financial

time series is the leverage effect (Black, 1976). Hence, following Yu

(2005), a fundamental extension of the basic SV model is to incorporate the

leverage effect. The leverage effect SV model can be defined as:

yt ¼ α+ exp ht=2ð Þut,ut �N 0, 1ð Þ
ht+ 1 ¼ μ+ϕ ht�μð Þ+ vt+ 1,vt+ 1 �N 0, τ2ð Þ

with

ut
vt+ 1


 �
�i:i:d:N 0

0


 �
,

1 ρ
ρ 1


 �� 	
and h0¼μ. In this model, ρ captures the leverage effect if ρ< 0. In the empir-

ical literature, there is a negative relationship between the expected future vol-

atility and the current return. We denote this model as M2.

To carry out Bayesian analysis, following Meyer and Yu (2000), the prior

distributions are specified as follows:

α�N 0, 100ð Þ, μ�N 0, 100ð Þ,
ϕ�Beta 1, 1ð Þ,1=τ2 �Γ 0:001ð Þ, ρ�Unit �1, 1ð Þ

This type prior can be regarded as a noninformative prior to represent the

prior ignorance.

The dataset consists of 945 daily mean-corrected returns on Pound/�Dollar

exchange rates, covering the period between 01/10/81 and 28/06/85. Here, using

R language, we useR2WinBUGS to runMCMC to get the outputs.After a burn-in

period of 10,000 iterations, we save every 20th value for the next 100,000 itera-

tions to get 5000 effective draws. The same dataset was used in Kim et al.

(1998) and Meyer and Yu (2000). The posterior mean and standard error of para-

meters in the two competing model are reported in Table 6. Note that the inM2,

the posterior mean of ρ is very close to zero, relative to its posterior standard error.
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6.2.1 Hypothesis testing for stochastic volatility models

In this chapter, the hypothesis that we are concerned can be expressed as:

H0 : ρ¼ 0, H1 : ρ 6¼ 0

Here, ρ is the interest parameter, the nuisance parameter is denoted by ψ¼
(μ, φ, τ�2), θ¼ (ρ, ψ)¼ρ, (μ, φ, τ2). Again, based on 20,000 effective obser-

vation, we calculate the three test statistic, that is, TLZY (y, ϑ0), TLLY (y, ϑ0),
and TLLYZ (y, ϑ0). We report all the results in Table 7.

From this table, according to the critical values calibrated from their

asymptotic distribution, under 5% significant level, all three test statistics fail

to reject the null hypothesis. The result is correspond with estimation result,

that is, ρ¼�0.0575. Furthermore, this provide enough evidence to support

that leverage effect in this exchange data is not obvious.

6.2.2 Specification testing for SV models

The dataset used here contains the daily returns on AUD/USD exchange rates

from January 2005 to December 2012. Following a suggestion of a referee,

TABLE 6 Posterior mean and standard error of parameters

in M1 and M2

Parameter

M1 M2

Mean SE Mean SE

μ �0.6733 0.3282 �0.6485 0.3377

φ 0.9733 0.0127 0.9802 0.0138

ρ — — �0.0575 0.1570

τ 0.1698 0.0378 0.1661 0.0391

TABLE 7 Hypothesis hypothesis results for the

leverage effect

Hypothesis ρ50

TLZY
∗ (y,ϑ0) �0.6870

TLLY (y, ϑ0) 0.1659

TLLZY (y, ϑ0) 1.7050
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before we apply BMT to the SV model, we first test the i.i.d. normal model

with constant mean and constant variance given by

yt ¼ α + εt,εt �i:i:d:N 0, σ2
� �

(27)

An AR(1) model is used as the expanded model

yt ¼ α + βyt�1 + εt,εt �i:i:d:N 0, σ2
� �

: (28)

The Bayesian MCMC method is implemented to estimate the parameters

with the following vague prior

α�N 0, 100σ2
� �

,β�N 0, 100σ2
� �

,σ�2 �Γ 0:001, 0:001ð Þ:
For the above two models, we draw 20,000 MCMC samples from the pos-

terior distribution and compute BMT.

The critical value of χ2(1) is 6.63 at the 1% significance level. BMT is

251.52, rejecting the i.i.d. normal model. This conclusion is not surprising

as the volatility of stock returns is stochastic. However, J1 is 0.2858 (i.e.,

J0¼251.23) which is less than the critical value of χ2(1). Using J1 alone only
suggests that we cannot reject β¼0 in Model (28). This conclusion is also not

surprising as the weekly returns have very weak serial correlations.

Next, we change the null model to the following basic SV model,

yt ¼ α + exp ht=2ð Þut,ut �i:i:d:N 0, 1ð Þ,
ht ¼ μ+ϕ ht�1�μð Þ+ τvt,vt �i:i:d:N 0, 1ð Þ:

(29)

The expanded model is as follows:

yt ¼ α + β1yt�1 + exp ht=2ð Þut,ut �i:i:d:N 0, 1ð Þ:
ht ¼ μ+ϕ ht�1�μð Þ+ τvt,vt �i:i:d:N 0, 1ð Þ:

(30)

The following vague priors are used

α�N 0, 100ð Þ, ϕ�Beta 1, 1ð Þ,
τ�2 �Γ 0:001, 0:001ð Þ, β1 �N 0:5, 100ð Þ:

To obtain BMT, we draw 110,000 MCMC samples from the posterior dis-

tribution and discard the first 10,000 as burning-in observations, and store the

remaining samples as effective observations in both models. In this case,

BMT¼0.4279 which is less than the critical value of χ2(1), suggesting that

the basic SV model is not misspecified.

6.2.3 Model comparison of SV models

Hence, we consider the model comparison of these two models. Since the mod-

els are of a nonlinear non-Gaussian form and both p(y jθ) are not available in

closed-form, the approach provided in Section 5 is implemented to compute

MCMC-based statistical inference using R Chapter 4 111



DICs, and the Savage Dickey density ratio (Verdinelli and Wasserman, 1995) is

implemented to calculate BFs. Hence, DIC requires tedious computational

efforts. Here, we only report the results of DICDA, IDIC, PD
DA, PD

I , and BFs in

Table 8.

From this table, we can get the following findings. First, DICDA and IDIC

suggest different rankings of the competing models where DICD suggests that

M2 is better that M1, IDIC and IDICBP both suggest M1. According to DICDA,

it can be observed that M1 and M2 perform nearly the same judged by the

model fit term, D z, θ
� �

. However, M2 reduces PD
7 by 22.3 over M1. This

reduction of the model complexity is the reason why DICDA prefers M2. This

result is surprising as the posterior mean of the leverage effect is nearly zero

as reported in Table 8 and not accord with the hypothesis testing results.

Obviously, as to SV models, when the latent variable is regarded as para-

meters, the number of parameters exceeds the number of observations, say

n+3 in M1 and n+4 in M1. Hence, an important season to lead the surprising

results lie that DICDA is lack of rigorously theoretical foundation and should

be cautious to be used in practice although its computation is simple.

Second, IDIC and IDICBP both suggest that M1 is slightly better that M2

although the difference is not large. In IDIC, PD
I is 2.32 in M1 and 3.24 in

M2. These values are very close to the actual numbers of parameters in the

two models. It is noted that M2 has one extra parameter so that this difference

is reasonable. Moreover, M1 and M2 perform nearly the same judged by D θ
� �

.

These findings give the reason why M1 is slightly better that M2. Third, BFs

suggest that M1 is the better model, consistent with the ranking of IDIC. This

empirical example clearly demonstrates that IDIC is a more reliable model

selection criterion that DICDA. In addition, although IDIC and IDICBP both

TABLE 8 Model selection results for M1 and M2

Model M1 M2

PD
DA 53.60 31.33

D z, θ
� �

1695.40 1693.36

DICDA 1802.52 1756.21

PD
I 2.32 3.24

D θ
� �

1837.81 1837.78

IDIC 1842.50 1844.30

IDICBP 1841.80 1843.30

BF21 0.2174
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select the basic SV model, they imply that different predictive distribution

should be used. From the theoretical analysis, as to predictive problem, the

model selection results suggest that the basic SV model with Bayesian predic-

tive distribution should be used because this decision can yield smallest risk

asymptotically when M1, M2, plug-in predictive distribution and Bayesian pre-

dictive distribution are candidate use.

7 Concluding remarks

In this chapter, instead of making refinements for BFs, we overviews some

alterative approaches developed in the recent literature for hypothesis testing

and model selection methods. The approaches are established after the

MCMC output is available. We show that these approaches not only have

good theoretical properties, but also, do not require tedious additional compu-

tational efforts. Hence, with the advance of MCMC techniques and expanding

computing facility, these approaches can be applied into a variety of complex

models, especially latent variable models.

As to the hypothesis testing, we overviews several statistics for hypothesis

testing which can be regarded as the MCMC version of the “trinity” of test

statistics widely used in the frequentist domain, namely, LR test, LM test,

and Wald test. Their asymptotic distributions are discussed based on a set

of regular conditions. Furthermore, we overview the well-known DIC and

its extensions. The asymptotic property of DICs are also discussed compared

with AIC. At last, we illustrate the methods using econometric models with

real data, some of which involve latent variables. The implementation is illu-

strated by R code with the MCMC output obtained by R2WinBUGS.
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Abstract
GMM methods for estimating dynamic panel regression models are heavily used in

applied work in many areas of economics and more widely in the social and business

sciences. Software packages in STATA and GAUSS are commonly used in these applica-

tions. We provide a new R program for difference GMM, system GMM, and within-group

estimation for simulation with the model we consider that is based on a standard first-order

dynamic panel regression with individual- and time-specific effects. The program lacks the

generality of a full package but provides a foundation for further development and is opti-

mized for speed, making it particularly useful for large panels and simulation purposes.

The program is illustrated in simulations that include both stationary and nonstationary

cases. Particular attention in the simulations is given to analyzing the impact of fixed

effect heterogeneity on bias in system GMM estimation compared with the other methods.

Keywords: Bias, Difference GMM, Dynamic panel, System GMM, Within-group

estimation

JEL Classification: C32, C33

1 Introduction

Longitudinal studies record changing information about the same cross section

units over time. The sample may relate to individuals, households, firms, or col-

lections of individuals in the form of cohorts or industries. The data may

involve economic characteristics such as income, expenditure, and employment

or indicators of health, well-being, and socioeconomic status. Longitudinal data

can be arranged in a matrix where each row tracks a different individual or unit
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thank Dr. Hyoungjong Kim for comments on the paper and assistance with the GMM R code

and verification of final results.
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(i) at different points in time (t), thereby constituting a panel {yit: i¼1, …, N;
t¼1, …, T} of observations of N individuals at T time periods leading to NT
total observations of a particular variable (or vector of variables) yit. Such data

are commonly known as panel data and models that represent their process of

generation are known as panel data models.

Panel data offer many more opportunities for learning about real world phe-

nomena than cross section data and time series data. Primary among these is the

capacity to measure changes in behavior or outcomes over time, to study the

duration of certain characteristics, and to record the timing and impact of

events. These appealing features have led to the creation of many longitudinal

studies at city, regional, national, and international levels. Among the earliest

studies of this type are the Panel Study of Income Dynamics (PSID)a which

commenced in 1968 as a survey of some 70,000 households in the United

States, the Dunedin Multidisciplinary Health and Development Studyb which

commenced in 1972 following a group of around 1000 individuals born in

New Zealand during 1972–73, and the Wisconsin Longitudinal Study,c follow-

ing 10,317 individual graduates from Wisconsin High Schools since 1957.

Recent longitudinal studies have broadened the fields of enquiry to include

topics that are becoming of growing importance to modern society. Among

many such examples, we mention here only two. One is the effect of aging

demographics in many countries of the world. Aging impacts individuals in

terms of income, retirement decisions, housing, health, general functionality,

day-to-day life, and well-being. Longitudinal survey information on these

aspects of aging population assists policy makers in designing programs to

address changing societal needs as demographics evolve. Two such studies

are the Australian Longitudinal Study on Agingd and the Singapore Life Panel.e

A second area where longitudinal data now plays a vital role is in assessing

the environmental impact of climate change. Rising temperatures and sea levels

associated with anthropogenic sources in the modern industrial age have major

global implications for human society and more generally for all life on Earth.

Methods by which such changes are being assessed have relied in the past on

the use of global climate models that simulate the evolution of atmospheric

and oceanic conditions in response to incoming radiation, the filtering effects

of aerosols, and the heat retention capacity of greenhouse gases at various sta-

tion locations around the globe. Observational data recorded at some of the

land-based stations may also be employed to assess the impact of the various

driving forces behind climate. Panel models have recently been designed and

estimated with both these data sources to determine Earth’s climate sensitivity

ahttps://psidonline.isr.umich.edu/.
bhttps://dunedinstudy.otago.ac.nz/.
chttps://www.ssc.wisc.edu/wlsresearch/.
dhttp://www.flinders.edu.au/sabs/fcas/alsa/alsa_home.cfm.
ehttps://slp.smu.edu.sg/sms/.
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to increases in greenhouse gas emissions (Magnus et al., 2011; Storelvmo et al.,

2016, 2018; Phillips et al., 2018).

Two important features of these climate econometric models are worth

noting: (i) panel dynamics are incorporated to capture internal dynamic work-

ings of the climate system and (ii) time-specific effects in each period are

included to capture the explicit influence on station level temperature of

aggregate variables that reflect prevailing global climate conditions. The sec-

ond specification builds simultaneity into the system that provides feedback

from global to station level data. This type of macro to micro feedback is to

be expected in complex interdependent systems such as global climate. But

it also manifests in many other settings where there is macroeconomic or

community-wide social influence on individual behavior. The dynamic panel

model that we use for illustration in the present study embodies this feedback

feature.

Since the early 1980s and, in particular since the study by Nickell (1981)

on dynamic panel bias, econometric methods have played a major role in the

development of suitable methodology for estimation and inference in dynamic

panel models. Prominent among these methods have been moment-based

methods such as generalized method of moments (GMM) which work from

clearly defined moment equations and carefully constructed instrumental vari-

ables based on both differences and levels of past observations.f GMM meth-

ods for estimating dynamic panel regression models are used in empirical

research throughout the social, business, and medical sciences. Several differ-

ent versions of these methods are available, including options for the inclusion

of certain instruments and the use of additional estimating equations or

moment conditions.

The present contribution provides a new suite of programs written in R.

The programs provide for estimation and inference based on so-called differ-

ence GMM (hereafter, diff-GMM), system GMM (hereafter, sys-GMM), and

within-group (WG) methods. These R programs complement software in

STATA,g GAUSS,h and the R plm package (Croissant and Millo, 2018) that

are presently available for applications. The new programs use fast compu-

tational algorithms that are particularly useful in large panels and simulation

exercises. The programs are written for a standard first-order dynamic panel

regression with individual- and time-specific effects. They lack the general-

ity of a software package. But the code provided can be varied and

extended to deal with models of greater complexity. The code has been

extensively tested against existing software packages in STATA.

fReaders are referred to the works of Arellano (2003), Baltagi (2013), Hsiao (2014), Pesaran

(2015), and Wooldridge (2010) for textbook discussions of these methods.
gSTATA is a registered trademark of StataCorp LLC.
hGAUSS is a registered trademark of Aptech Systems, Inc.
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Some illustrative simulations of the new programs are provided for a

dynamic panel autoregression that allows for stationary and nonstationary cases,

as well as time-specific effects that are determined by global driver variables.

The findings reveal some notably large bias effect differences between sys-

GMM estimation and the other methods. These biases are sourced in high levels

of fixed effect heterogeneity in relation to equation error variance, corroborat-

ing analytic evidence by Hayakawa (2007, 2015).

2 A dynamic panel model with macro drivers

To illustrate the main methods of estimating dynamic panel regressions, we use

the following model with both individual-specific and time-specific compo-

nents. The model differs from the usual formulation in that the time-specific

effects depend on global averages, thereby building into the framework a dis-

tinctive feedback and simultaneity. As discussed in Section 1, this type of feed-

back is likely to be present in many applications where macro level influences

affect micro observations via individual and firm decisions that are made while

cognizant of prevailing macro conditions.

Prominent examples occur in real estate and climate studies. For instance,

individual real estate sales in a specific region may depend on local dynamics

as well as regional determinants (such as immigration, and state, county, or city

policy decisions) and national level determinants (such as prevailing interest

rates and inflation). Likewise models of Earth’s climate may involve station

level dynamics with station level individual fixed effects as well as time-specific

effects that involve global influences including variations in solar radiation that

reach the Earth’s surface and growing levels of atmospheric carbon dioxide and

other greenhouse gases. In both cases, attention also needs to be given to poten-

tial nonstationary elements and trending behavior in the component variables,

such as secularly rising real estate prices, growth in greenhouse gas concentra-

tions, global temperature changes, shrinking glaciers, and rising sea levels.

The model we will use in our R simulation follows the design of the global

climate econometric model in Storelvmo et al. (2016) and the simulation

model used in Phillips (2018). It is designed to embody some of the character-

istic dependencies and interactions described earlier and is given by the

following two equations:

yit ¼ αi + β1yit�1 + β2xit�1 + λt�1 + uit (1)

λt�1 ¼ γ0 + γ1yt�1 + γ2xt�1 + γ3zt�1 (2)

where yt�1, xt�1ð Þ¼ N�1
PN

i¼1yit�1,N
�1
PN

i¼1xit�1

� �
are cross section aggre-

gates of yit�1 and xit�1, zt�1 is exogenous and uit is a disturbance.
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Eq. (1) has the usual dynamic panel form with both individual fixed effects

αi, time-specific effects λt, and predetermined inputs (yit�1, xit�1). Eq. (2) char-

acterizes the aggregate effects that influence individual members of the panel

yit. This equation presently includes only the aggregate predetermined variables

yt�1, xt�1, zt�1ð Þ and may be augmented by including a disturbance term uλt.
In this chapter, we will treat xit�1 and zit�1 as exogenous variables with

respective generating mechanisms

xit ¼ ρxxit�1 + vxit
zt ¼ μ0 + μ1t+ z

0
t , and z0t ¼ ρzz

0
t�1 + vzt:

For the purposes of this illustration of GMM methods, we will assume that

the equation errors uit, vxit, vztð Þ�d iidN 0, Σvð Þ over both indices i and t, withP
v¼diag(σu

2,σx
2,σz

2). The fixed effects are assumed to be drawn from

αi�d iidN 0, σ2α
� �

with zero mean as a standardization (given the presence

of γ0 in (2)).

Cross section aggregation of (1) and combination with (2) gives the aggre-

gate dynamic equation

yt ¼ α + γ0ð Þ+ β1 + γ1ð Þyt�1 + β2 + γ2ð Þxt�1 + γ3zt�1 + ut (3)

The stability condition for the aggregate dynamics in (3) is jβ1+γ1 j<1 and

the condition for the individual level dynamics in (1) is jβ1 j<1. Under these
conditions yit is generated by a stable dynamic system about a stochastic trend

xit and a stochastic trend with drift driven by the time-specific effects λt that are
in turn driven by the two nonstationary global variables xt and zt via (2). Simi-

larly, at the aggregate level, the global yt satisfies the stable dynamic Eq. (3)

about the aggregate stochastic trend xt and global stochastic trend with drift zt.
This type of behavior is to be anticipated in many socioeconomic and

geophysical contexts where stable dynamic forces interact with exogenously

driven trend mechanisms. For instance, in studying global climate systems,

energy balance considerations involve the interaction of incoming solar radia-

tion, internal heat generation within the Earth itself and from anthropogenic

surface sources with greenhouse gas, atmospheric pollutants, and aerosol pro-

duction. This interaction between stable solar radiation and trending atmo-

spheric conditions means that the both local and global climate systems may

be modeled as evolving dynamically around stochastic and deterministic trends.

We use within-group (WG), diff-GMM, and sys-GMM estimation of (1) and

estimate time-specific effects λt by global averaging of the fitted Eq. (1) using

the normalization α¼ 0 giving

λ̂t ¼ yt� β̂1yt�1� β̂2xt�1:

The resulting residual time series λ̂t is then used to estimate the parameters

of (2). Ordinary least squares (OLS) may be used in this regression. Recog-

nizing the nonstationarity of the series at the aggregate level, an efficient
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cointegration regression method may be employed such as dynamic least

squares (DOLS; Saikkonen, 1991; Phillips and Loretan, 1991; Stock and

Watson, 1993), fully modified least squares (FM-OLS; Phillips and Hansen,

1990), or a more recent efficient methods like trend IV regression (Phillips,

2014). The latter methods require further R programs and are therefore not

included here. In the present treatment, OLS is used.

3 R code for dynamic panel estimation

Unlike C and Gauss, R implements matrices in column-major storage order.

As we consider samples in which N>T, it is more efficient to store (y1t, …,

yNt)
0 as a column. With this feature taken into consideration, we explain the

R code developed here and applied in our simulation exercise.

3.1 Data generation

We first set N (nsize), T (tsize), and the number of initial observations

(burn) to discard:

nsize <- 1000
tsize <- 40
burn <- 20
t.all <- tsize + burn

The parameters to set for our simulation exercise are β1, β2, γ0, γ1, γ2, γ3, σα,
σu, σx, σz, μ0, μ1, ρx, and ρz. These are specified as follows:

beta1 <- .25
beta2 <- .1
gamma0 <- 5
gamma1 <- -.1
gamma2 <- .1
gamma3 <- 3
sigma <- list(alpha=5, u=1, x=1, z=1)
mu0 <- 1
mu1 <- .005
rho <- list(z=1, x=1)

As will become apparent in our discussion of the findings, the primary influ-

ences on performance in parameter estimation are the signal-to-noise ratios

SNRx¼σx/σu, SNRz¼σz/σu, the relative sample size ratio N
T, and the fixed effect

heterogeneity-to-noise ratio FNRα¼σα/σu. In particular, when FNRα�10 sys-

GMM estimation suffers from substantial bias. For the settings above, we have

jβ1+γ1 j¼0.15 and jβ1 j¼0.25<1. So both local and global stability conditions
hold. The settings ρx¼ρz¼1 and μ1¼0.005 imply that the xit are a collection of
independent stochastic trends and zt is a stochastic trend with drift. The

dynamic system then evolves locally and globally in a stable fashion around

stochastic and deterministic trends driven by the exogenous inputs xit and zt.
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Given these parameter values, we generate the panel data xit¼ρxxit�1+vxit
with vxit �N 0, σ2x

� �
as follows:

set.seed(1)
x <- sigma$x * matrix(rnorm(nsize*t.all), nsize, t.all)
for (j in 2:ncol(x)) x[,j] <- rho$x * x[,j-1] + x[,j]
if (rho$x==1) x <- x-x[,burn-1]

where we subtract xi,�1 from xit in case ρx¼1 in order to prevent xi0 from hav-

ing too large a cross-sectional variance due to large burn. The time series

zt¼μ0+μ1t+ zt
0 with zt

0¼ρzzt�1
0 +vzt is generated as follows:

trend <- mu0 + mu1 * seq(-burn+1, tsize)
z0 <- filter(rnorm(t.all), rho$z, method="recursive")
if (rho$z==1) z0 <- z0-z0[burn-1]
z <- trend + z0

where again z�1 is subtracted in case ρz¼1. The idiosyncratic errors

uit �N 0, σ2u
� �

and the individual effects αi �N 0, σ2α
� �

are drawn by the

following code:

alpha <- sigma$alpha * rnorm(nsize)
u <- sigma$u * matrix(rnorm(nsize*t.all), nsize, t.all)

With these components in hand, we recursively generate yit as follows:

xbar <- colMeans(x)
y <- matrix(NA, nsize, t.all)
y[,1] <- alpha + u[,1]
for (j in 2:ncol(y)) {

lambda <- gamma0 + gamma1 * mean(y[,j-1]) +
gamma2 * xbar[j-1] + gamma3 * z[j-1]

y[,j] <- alpha + beta1*y[,j-1] + beta2*x[,j-1] + lambda + u[,j]
}

(Note the line break in the algebra between lines 5 and 6 occurs after the “+,”

not before, because otherwise R regards the first line as a complete sentence

and ignores the subsequent line.) We finally trim the initial observations using

y <- y[, burn:t.all]
x <- x[, burn:t.all]
z <- z[ burn:t.all]

After this, y is the N� (T+1) matrix of yit, and x that of xit, for t¼0, 1, …, T.
The z object stores the (T+1)-vector of zt for t¼0, 1, …, T. xiT and zT are

not used for estimation.

For estimation, it is convenient to prepare the N�T matrices of yit, yit�1,

and xit�1 and the vectors yt,yt�1,xt�1 and zt�1 for t¼1, 2, …, T. Below, they
are called y2, y1, x1, y2bar, y1bar, x1bar, and z1, where the “2” suffix is

for no lag and the “1” for one lag.
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ybar <- colMeans(y)
xbar <- colMeans(x)

idx.lag0 <- 2:ncol(y)
idx.lag1 <- idx.lag0 - 1

y2 <- y[,idx.lag0]
y1 <- y[,idx.lag1]
x1 <- x[,idx.lag1]
z1 <- z[ idx.lag1]
y2bar <- ybar[idx.lag0]
y1bar <- ybar[idx.lag1]
x1bar <- xbar[idx.lag1]

3.2 Within-group estimation

We first estimate the model yit¼αi+β1yit�1+β2xit�1+θt+uit, where θt denotes
(unobserved) common time effects. The fastest method is to regress the “two-

way” within deviations (within-group and within-period deviations) of yit on
those of yit�1 and xit�1. The two-way within deviations are obtained by the

following user-written Within2 function:

Within2 <- function(x) {
z <- x - rep(colMeans(x), rep.int(nrow(x), ncol(x)))
z - rowMeans(z)

}

The first line inside the function removes the cross-sectional averages,i and

the second line the within-group averages. The within-group estimates of β1
and β2 are obtained by the following:

y2d <- Within2(y2)
y1d <- Within2(y1)
x1d <- Within2(x1)

wg <- .lm.fit(cbind(as.vector(y1d), as.vector(x1d)),
as.vector(y2d))$coef

The as.vector() function converts a matrix into a vector very fast.j The

dotted function .lm.fit() is considerably faster than the standard lm() func-

tion (see the help document and try benchmarking) and is only slightly

slower than manual calculation using solve(). The resulting wg object con-

tains the WG estimates β̂1 and β̂2. We have verified the results from this

procedure against Stata’s xtreg, fe.

iThis part of the code was inspired by http://www.gastonsanchez.com/visually-
enforced/how-to/2014/01/15/Center-data-in-R/.
jSee the benchmark reported by David Bellot in https://stackoverflow.com/
questions/3823211/convert-a-matrix-to-a-1-dimensional-array.
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The γj parameters are estimated by regressing θ̂t (which corresponds to

λt�1) on yt�1, xt�1, and zt�1. For this, θ̂t (plus a constant) is obtained as

yt� β̂1yt�1� β̂2xt�1. Note that the residual vector corresponds to (λ0, …,

λT�1) so these residuals may now be regressed on yt�1, xt�1, and zit�1:

EstimateGamma <- function(b) {
resid <- y2bar - b[1]*y1bar - b[2]*x1bar
.lm.fit(cbind(1, y1bar, x1bar, z1), resid)$coef

}
ghat <- EstimateGamma(wg)

The EstimateGamma() function accepts b and returns (γ̂0, γ̂1, γ̂2, γ̂3). This pro-

cedure uses the random objects y2bar, y1bar, x1bar, and z1, but can be

placed outside the replication loop for slight time saving because an object

inside a function is evaluated not when the function is defined but when

the object is actually evaluated. That is, y2bar, y1bar, and others inside the

EstimateGamma() function are updated every time the function is called. This

procedure is written as a function because the same procedure will be exe-

cuted for GMM as well as for WG.

3.3 Difference GMM

Croissant and Millo’s plm package is fully fledged but slow. To be suitable

for simulations, we manually implement the GMM proceduresk for our model

yit¼αi+β1yit�1+β2xit�1+dtδ+uit, t¼1, …, T, where αi are fixed effects, xit�1

is strictly exogenous, dt¼ (dt2, …, dtT) is the vector of time dummies with

dts¼1 if t¼ s and 0 otherwise, and uit are the serially uncorrelated idiosyn-

cratic errors. For notational brevity, let Tj¼T� j and qit¼ (xit�1, dt) so the

model is yit¼αi+β1yit�1+qitβq+uit, where βq¼ (β2, δ0)0.
For diff-GMM, the dependent variable vector for unit i is Δyi¼ (Δyi2, …,

ΔyiT)
0, the corresponding regressor matrix is

Xi ¼

Δyi1 Δqi2
Δyi2 Δqi3
⋮ ⋮

ΔyiT�1 ΔqiT

0BBBB@
1CCCCA

and the matrix of instruments is

kOur understanding of STATA’s implementation of difference and system GMM was assisted by

reading StataCorp (2015) and by studying output from the STATA xtabond2 package

(Roodman, 2009).
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Wi ¼
yi0 0 0 … 0 … 0 Δqi2
0 yi0 yi1 … 0 … 0 Δqi3
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … yi0 yiT�2 ΔqiT

0BB@
1CCA: (4)

Difference GMM makes use of the orthogonality condition E(Wi
0Δui)¼0,

where Δui¼ (Δui2, …, ΔuiT)
0. With the Wi disintegrated over t, these

orthogonality conditions are (i) E(yisΔ uit)¼0 for s� t�2 and t¼2, …, T,
(ii) E(

P
t¼2
T Δxit�1Δuit)¼0, and (iii) E(Δdt0Δuit)¼0 for t¼2, …, T. Because

xit is strictly exogenous to uit, the single moment restriction in (ii) may be

replaced with (ii0) E(xisΔ uit)¼0 for all s and t, but it is a common practice

to use (ii) instead of (ii0) in order to avoid using too many moment conditions.

Another way of understanding diff-GMM is as three-stage least squares

regression applied to the T1 differenced equations using Wi as instruments,

with the restriction that the slope parameters are the same for all t. According
to this interpretation, the “reduced-form” equations may be written as

Δyit�1 ¼ πt0 +
Xt�2

s¼0

πtsyis +ϕΔxit�1 + errorit, t¼ 2,…,T,

where the intercept πt0 is time specific due to the time dummies included in

the instrument set, but the coefficient ϕ of Δxit�1 is common for all t due
to the particular way in which Wi is constructed. In order to make ϕ different

across t, the Wi matrix should also include the interaction of Δxit�1 and the

time dummies (excluding the dummy for t¼2), which leads to T2 more instru-

ments. Interesting as it is to examine the effect of this modification for our

model and in general, in the remainder of this study we follow the convention

of industry practice and use (4) as the instrument matrix characterization for

diff-GMM.

The one-step efficient GMM estimator is computed as

S0wxA
�1
1 Swx

� ��1
S0wxA

�1
1 Swy,

where Swx¼
P

i¼1
n Wi

0Xi, Swy¼
P

iWi
0Δyi, A1¼

P
iWi

0H1Wi with H1¼D0D,
and D0 is the T2�T1 difference matrix such that D0(a1, …, at)

0 ¼ (Δa2, …,

Δat)
0. The two-step efficient GMM estimator is obtained by replacing A1 with

A2¼
P

iWi
0 eiei0Wi, where ei is the T2�1 vector of the residuals from the one-

step GMM.

Next we explain how to implement these estimators in R. As mentioned at

the outset, R stores matrices in column-major order. We accordingly store vari-

ables (such as yit, yit�1, and xit�1) as N�T matrices y2, y1, and x1 in order to

speed up calculation. It is not computationally efficient to loop over i and

t for calculation. Instead, we want to block-copy the columns of y2, y1, and
x1 to construct the required matrices. For this purpose, we choose to stack

variables across i first and then over t. Also, as R is particularly good at
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handling lists, we will sometimes store objects (especially for the instruments)

as list objects.

We first create time dummies. For this purpose, let dt¼ (dt2, …, dtT) be the
1�T1 vector of time dummies such that dts¼ I(s¼ t). To deal with time

dummies, we create a “list” of T objects containing the N�T1 matrices of

1N dt for t¼1, 2, …, T.

TD <- list()
TD[[1]] <- matrix(0,nsize,tsize-1)
for (j in 2:tsize) {
TD[[j]] <- matrix(0,nsize,tsize-1)
TD[[j]][,j-1] <- 1

}

The tth object in the TD list is the N�T1 matrix of 1N dt. For example, its

second object TD[[2]] is the N�T1 matrix with 1 in the first column and

0 everywhere else. We do not pursue computational efficiency because TD
is to be generated only once for each simulation setting.

To construct the regressor matrix and the instruments for diff-GMM, we

need the differenced time dummies. We store it as another list, called DTD,
of T1 objects for t¼2, …, T.

DTD <- list()
for (j in 1:(length(TD)-1)) DTD[[j]] <- TD[[j+1]]-TD[[j]]

The resulting DTD list contains the N�T1 matrices of differenced time

dummies 1NΔ d2, …, 1NΔ dt. The tth object in the list is 1NΔ dt+1.
The construction of the stacked dependent variable y is straightforward.

We only need to make sure that it is stacked over i first and then over t and
that the dimension is NT1�1 (for Δyi2, …, ΔyiT). To get Δyit, we difference

yit by

DiffMat <- function(x) x[,-1] - x[,-ncol(x)]
dy2 <- DiffMat(y2)

so that dy2 is the N�T1 matrix of Δyit for t¼2, …, T, and the dependent

variable vector Δyi is obtained by as.vector(dy2). For the regressor

matrix, the N�T1 matrix of Δyit�1 is obtained by

dy1 <- DiffMat(y1)

which is then stacked into a vector by as.vector(dy1), and the Δxit�1 part is

obtained similarly by

dx1 <- DiffMat(x1)

and then as.vector(dx1). Next, we need to stack the components of DTD ver-

tically. A short command for this is “do.call(rbind, DTD).”
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library(Matrix)
DTD.mat <- Matrix(do.call(rbind, DTD), sparse = TRUE)

We do not pay particular attention to pursuing time saving for the differenced

time dummies because this matrix is not repeatedly created over replications.

But it is notable that storing the time dummy matrix as an R sparse matrix

greatly helps to save computation time.l For the full regressor matrix, we hor-

izontally attach them by:

XD <- cbind(as.vector(dy1), as.vector(dx1), DTD.mat)

As DTD.mat is a sparse matrix, so is XD, which is crucial for speed gain. The

resulting XD matrix is an NT1� (T+1) sparse matrix of the regressors

(Δyit�1, Δxit�1, Δdt) stacked over i¼1, …, N first and then over t¼2,

…, T.
Next, for the instruments, we form a list object WD containing the N�L

instrument matrices (L¼ the number of columns of Wi) for t¼2, …, T.
The following function will do it.

MakeDgmmIV <- function(y1,dx1) {
n <- nrow(y1)
p <- ncol(dx1)
qsize <- p*(p+1)/2
z <- list()
m <- 1
mat0 <- matrix(0, n, qsize)
for (j in 1:p) {
z1 <- mat0
for (k in 1:j) {

z1[,m] <- y1[,k]
m <- m+1

}
z[[j]] <- cbind(z1, dx1[,j], DTD[[j]])

}
z

}
WD <- MakeDgmmIV(y1,dx1)

The above body of code creates the list of T1 instrument matrices, the jth
element of which contains the N�L matrix of instruments for t¼ j+1.

We want to stack the components of WD for later use. One method is the

short hand command do.call(rbind,WD), but this command is slightly bloated

lThe authors learned the importance of using R sparse matrices for time saving from infor-

mation on https://stackoverflow.com/questions/53744906/how-to-make-
crossprod-faster/53745063#53745063.
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and we can save time by the following iteration which is tailored for the pres-

ent study.

StackList <- function(aList, sparse = FALSE) {
p <- length(aList)
n <- nrow(aList[[1]])
z <- matrix(0, p*n, ncol(aList[[1]]))
i2 <- 0
for (j in 1:p) {

i1 <- i2+1
i2 <- i2+n
z[i1:i2,] <- aList[[j]]

}
if (sparse) Matrix(z, sparse = TRUE) else z

}

We will use StackList() whenever the components of a list object (containing

matrices with the same dimension) needs to be vertically attached. If the

sparse option is set, StackList() returns a sparse matrix. With this function

at hand, the stacked instrument matrix is obtained by the following:

WDmat <- StackList(WD, sparse = TRUE)

For the one-step diff-GMM, it remains to evaluate A1¼
P

iWi
0H1Wi, where

H1¼D0D. For this, it is fast and convenient to first obtain the stacked matrix

for DWi and then compute its cross product matrix. Noting that

DWi ¼

�Wi2

Wi2�Wi3

⋮
WiT�1�WiT

WiT

0BBBB@
1CCCCA,

we construct the stacked DWi matrix as follows:

GetDW <- function(W) {
x <- list()
x[[1]] <- -W[[1]]
for (j in 2:length(W)) x[[j]] <- W[[j-1]]-W[[j]]
append(x, list(W[[j]]))

}

Using this function, A1 is formed by the following

MakeA1 <- function(W) {
a <- StackList(GetDW(W), sparse = TRUE)
crossprod(a)

}
A1 <- MakeA1(WD)
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Unless T is small, it is extremely important to store the stacked DWi as a

sparse matrix, which is done inside the MakeA1 function above (see the

“sparse = TRUE” option).

Now that all the constituents are ready, we obtain the one-step efficient

GMM estimator as follows:

library(MASS) # for ginv() if necessary
EstimateGMM <- function(Swx, Swy, Omega, ginv. = FALSE) {

a <- if (ginv.) ginv(as.matrix(Omega))%*%Swx else
solve(Omega,Swx)

as.vector(solve(crossprod(a,Swx), crossprod(a,Swy)))
}

Swx <- crossprod(WDmat, XD)
Swy <- crossprod(WDmat, as.vector(dy2))
dg1 <- EstimateGMM(Swx, Swy, A1)

This code for the one-step efficient diff-GMM has been verified by compari-

son with results from STATA’s “xtabond” command.

The two-step efficient diff-GMM estimator is obtained by replacing A1

with A2¼
P

iWi
0 eiei0Wi, where ei are the residuals from one-step diff-

GMM (corresponding to Δuit). For this, we first get the residuals by

du <- dy2-as.vector(XD%*%dg1)

which is an N�T1 matrix of Δûit for i¼1, …, n (rows) and t¼2, …, T
(columns). Then A2 is obtained by first multiplying ei to each column of Wi

element-wise, adding up the results over t, and then getting the cross product

of the resulting N�L matrix, as follows:

ListMatCrossprod <- function(W,e) {
ans <- W[[1]]*e[,1]
for (j in 2:length(W)) ans <- ans + W[[j]]*e[,j]
ans

}

MakeClustCov <- function(W,du) {
crossprod(ListMatCrossprod(W,du))

}
A2 <- MakeClustCov(WD,du)

The result of ListMatCrossprod(WD,du) is an N�L matrix, which hardly

contains any zeros. It is thus unnecessary to convert it to a sparse matrix

before applying crossprod(). The two-step efficient diff-GMM estimator

is finally obtained by

dg2 <- EstimateGMM(Swx, Swy, A2)

where the “EstimateGMM” function has been defined before. If N<L, the A2
matrix is singular, but R’s solve() works in that case as well. The entire
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body of code for diff-GMM has been verified by comparing results with the

outputs from the xtabond command of STATA 14.

Given the two-step efficient difference GMM estimates in dg2, the γj esti-
mates can be computed using EstimateGamma(dg2) as before.

3.4 System GMM

System GMM additionally employs the moment restrictions

E yit�α�β1yit�1�β2xit�1�θtð Þ¼ 0, t¼ 1,…,T,
E Δyit�1 yit�α�β1yit�1�β2xit�1�θtð Þ½ � ¼ 0, t¼ 2,…,T:

Note the presence of the global intercept and the first moments considered

for t¼1, …, T.
The full system of equations is then written in stacked form as

Δyit
yit

� �
¼ Δyit�1 Δxit�1 Δdt 0

yit�1 xit�1 dt 1

� � β1
β2
δ
β0

0BB@
1CCA+

Δuit
αi + uit

� �

for t¼1, 2, …, T, where β0¼λ1 is the intercept of the levels equation, and

Δyi0, Δxi0, d1, and d0 are defined as zero. The instruments for these two equa-

tions are Wit
S¼diag(Wit

D,Wit
L), where Wit

D is row t�1 of Wi in (4) with Wi1
D

defined as 0, and Wit
L¼ [(Δyit�1)dt, 1].

For the implementation, let us first create data matrices for sys-GMM. We

combine dy2 and y2, dy1 and y1, and dx1 and x1 in a suitable way for sys-

GMM.

y2s <- rbind(cbind(0,dy2), y2)
y1s <- rbind(cbind(0,dy1), y1)
x1s <- rbind(cbind(0,dx1), x1)

The zeros above correspond to t¼1 in the differenced equation. Given them,

the dependent variable vector will be as.vector(y2s), and the regressor

matrix will be constructed by horizontally attaching as.vector(y1s), as.
vector(x1s), the matrix for time effects, and the vector for the constant

term in the levels equation.

For the time effects, we first prepend a zero matrix to the DTD list from

the diff-GMM part in order to handle t¼1 as follows:

ZeroMatOf <- function(x) matrix(0, nrow(x), ncol(x))
DTDS <- append(DTD, list(ZeroMatOf(DTD[[1]])), after = 0)

Then the full time effects matrix for sys-GMM is constructed as follows:

TDS <- mapply(rbind, DTDS, TD, SIMPLIFY = FALSE)
TDS.mat <- Matrix(do.call(rbind, TDS), sparse = TRUE)
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where we do not pursue computational efficiency because this part of the

regressor matrix is generated outside the replication loop. Next, the vector

for the constant term in the levels equation is 1t � [(0, 1)0 � 1N], which is con-

structed by

CONS <- Matrix(rep(rep(c(0,1), each=nsize), tsize),
sparse = TRUE)

The regressor matrix for sys-GMM is now created as follows:

XS <- Matrix(cbind(as.vector(y1s), as.vector(x1s),
TDS.mat, CONS), sparse = T)

The next target is the instrument matrix. We will reuse the matrix WD already

created for diff-GMM, but we prepend a zero matrix to WD to handle t¼1,

as follows:

WD <- append(WD, list(ZeroMatOf(WD[[1]])), after=0)

The length of WD is now T (it was previously T1), with the first matrix

(corresponding to t¼1) being the N�L zero matrix. The instrument matri-

ces for the levels equations are constructed by the following code:

MakeLgmmIV <- function(dy1) {
p <- ncol(dy1)
W <- list()
w0 <- cbind(matrix(0, nrow(dy1), p), 1)
W[[1]] <- w0
for (j in 1:p) {
w1 <- w0
w1[,j] <- dy1[,j]
W[[j+1]] <- w1

}
W

}
WL <- MakeLgmmIV(dy1)

The resulting WL (“L” for levels) is a length-T list of N�T matrices, the tth
of which is the matrix of (Δyit�1dt, 1), where the last 1 is for the universal

constant instrument for the levels GMM part. Given WD and WL, the full

instrument matrices for the system GMM is obtained by diagonally combin-

ing WD and WL. The Matrix library provides the following convenient bdiag
function for this purpose.

WS <- lapply(mapply(bdiag,WD,WL,SIMPLIFY=FALSE), as.matrix)

We convert the sparse matrix into a usual matrix by as.matrix because our

StackList() function operates on only usual matrices. Now, the stacked full

instrument matrix is obtained by
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WSmat <- StackList(WS, sparse = TRUE)

where WSmat is a sparse matrix.

It remains to construct the covariance matrix for the one-step sys-GMM.

The one-step (inefficient) sys-GMM by STATA’s xtdpdsys uses D0D for

the diff-GMM part, I for the levels GMM part, and zero for the covariance

part. The A1 variance matrix
P

iWi
0D0DWi is identical to that for diff-GMM

although the dimension of Wi changes due to the 0 part for t¼1. The levels

GMM part B1 is the cross product of the levels instrument matrix because

the identity transformation is used.

B1 <- crossprod(StackList(WL, sparse = TRUE))

Then Stata’s one-step covariance matrix for sys-GMM is diag(A1, B1)

AS1 <- bdiag(A1, B1)

and the corresponding one-step sys-GMM estimator is obtained by:

Swx <- crossprod(WSmat, XS)
Swy <- crossprod(WSmat, as.vector(y2s))
sg1 <- EstimateGMM(Swx, Swy, AS1)

For the two-step efficient sys-GMM, the one-step residuals eD and eL are first
obtained for Δuit and αi+uit, respectively. Then A2

D and A2
L are calculated by

combining the instruments and residuals for the differenced equations and the

levels equations, respectively, as before.

res <- as.vector(y2s)-as.vector(XS%*%sg1)
res <- matrix(res, nrow=2*nsize)
de <- res[1:nsize,]
ue <- res[seq(nsize+1,2*nsize),]

A2 <- MakeClustCov(WD,de)
B2 <- MakeClustCov(WL,ue)

The covariance part (of the differenced part and the levels part) is estimated

by
P

i W
0
D, iêD, i

� �
W0

D, iêL, i
� �0

, where WD,i and WL,i are the instrument

matrices for the difference GMM and the levels GMM, respectively, and

êD, i and êL, i are the corresponding residuals. This matrix is obtained by the

following code.

MakeClustCov2 <- function(W1,u1,W2,u2) {
wu1 <- ListMatCrossprod(W1,u1)
wu2 <- ListMatCrossprod(W2,u2)
crossprod(wu1,wu2)

}
AB <- MakeClustCov2(WD,de,WL,ue)

Dynamic panel GMM using R Chapter 5 135



Given A2, B2, and AB, the full two-step covariance matrix for sys-GMM is

constructed by attaching them into a single matrix:

AS2 <- rbind(cbind(A2,AB), cbind(t(AB),B2))

Then the two-step sys-GMM estimator is computed as follows:

sg2 <- EstimateGMM(Swx, Swy, AS2)

Given the estimates of β1 and β2, the γj parameters are estimated by invoking

EstimateGamma(sg2) as before. The code and algorithmic procedure have

been verified against xtdpdsys of STATA 14, as now described.

3.5 Code verification and comparison

We have generated data for N¼1000 and T¼40 (with burn¼20). The

dimension of y and x is N� (T+1) as verified by the following:

> dim(y)
[1] 1000 41
> dim(x)
[1] 1000 41

For this dataset, the WG, diff-GMM, and sys-GMM estimates are reported as

follows:

> cbind(wg, dg1[1:2], dg2[1:2], sg1[1:2], sg2[1:2]) wg
[1,] 0.2162380 0.2485650 0.2497906 0.2559667 0.2556852
[2,] 0.1061886 0.0995333 0.1007674 0.1008795 0.1009978

The two rows correspond to β1 and β2, respectively, and the five columns are

for WG, one-step diff-GMM, two-step diff-GMM, one-step sys-GMM, and

two-step sys-GMM, respectively.

Now we compare these results with the STATA outputs. For this, we first

create a long-format dataset, which is saved in STATA’s old .dta format:

w <- data.frame(id = as.vector(row(y)),
year = as.vector(col(y))-1,
y = as.vector(y), x = as.vector(x))

library(foreign)
write.dta(w, 'sample.dta')

Then we load the data from STATA 14 and estimate the coefficients by the

following STATA commands:

use sample, clear
xtset id year
local tmax = r(tmax)
xtreg y l.(y x) i.year, fe
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qui gen x1 = l.x
qui tab year, gen(yr_)
drop yr_1 yr_2

xtreg y l.(y x) yr_*, fe
xtabond y x1 yr_*
xtabond y x1 yr_*, two
xtdpdsys y x1 yr_*
xtdpdsys y x1 yr_*, two

The outputs from the last five STATA commands are tabulated in Table 1.

The estimates are identical to those obtained by our R code.

On a computer system with 2.9GHz Intel Core i7 CPU and 16GB 2133MHz

LPDDR3 RAM, one pass of the entire body of R estimation procedures took

approximately 4.2s to complete. To compare performance on the same system,

STATA 14 reported 4.1s for the two-step diff-GMM alone and 4.4s for the

two-step sys-GMM. Our R code is about twice as time efficient, though this

direct comparison is a little unfair because our R code reuses the diff-GMM code

in sys-GMM and STATA’s commands produce many ancillary test statistics as

well. The R plm package seems not to be optimized. The two-step diff-GMM

gave the same estimates as STATA in over 60s, and the two-step sys-GMM

used twice as long to produce estimates that are different from those delivered

by STATA and our R programs. Computation time fluctuates randomly, but

many trials in the course of our simulation exercise suggest that our R code

is more time efficient than the existing STATA and R packages for GMM

estimation of our dynamic panel data model.

4 Simulation results

We now report simulation results for various parameter settings. We start by

exploring the case where σα¼1, σx¼1, and σz¼1 (with σu¼1 throughout) for

N¼100 and 800 and T¼10 and 40. We compare the performance of WG,

TABLE 1 STATA output for the test data

Variable WG DGMM1 DGMM2 SGMM1 SGMM2

yit�1 0.2162380 0.2485650 0.2497906 0.2559667 0.2556852

xit�1 0.1061886 0.0995333 0.1007674 0.1008795 0.1009978

Time
dummies

Included, unreported

Note: DGMM and SGMM denote diff-GMM and sys-GMM, respectively. The “1” and “2” suffixes
denote the one-step and two-step procedures, respectively.
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diff-GMM, and sys-GMM estimators of β1 and β2 in the usual setting where

the moment restrictions for diff-GMM and those for sys-GMM are all strong.

For this case, we expect that WG produces biased estimates and its bias

depends intimately on T (Nickell, 1981), that the GMM estimates are consis-

tent, and that sys-GMM is more efficient than diff-GMM. Fig. 1 presents the

estimated densities of the estimators for this case.m For the AR coefficient

(β1), WG is certainly biased and diff-GMM is less biased. In this case, it is

apparent that sys-GMM is the least biased estimator and is evidently more effi-

cient than diff-GMM. For the β2 parameter, bias is unclear even for WG,

although the bias of WG is still larger than that of both GMM estimators.n

WhenN increases to 800 in Fig. 2, the same pattern is observed in a more exag-

gerated fashion. All the estimators are less scattered, and the bias of WG remains

about the same. Comparison with Fig. 1 reveals growing concentration, corrobor-

ating the consistency of the GMM estimators of β1 and β2, with sys-GMM clearly

more efficient than diff-GMM for β1 estimation. The bias ofWG is also evident for

β2 with N this large, although substantially smaller than for β1.
The bias of the WG estimator decreases as T increases (Nickell, 1981). For

example, when T¼40 and N¼800, the estimated densities are presented in

Fig. 3. Bias reduction is noticeable. Also, sys-GMM outperforms diff-GMM

only marginally in this case.
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FIG. 1 Estimated densities for N¼100 and T¼10 for σα¼1.

mUnlike WG and sys-GMM, diff-GMM sporadically produces very wild estimates. For N ¼ 200 and

T¼ 20, there were two instances (out of 1000) of the diff-GMM β1 estimates being smaller than �1

with a minimum of �3.8 and three instances larger than 1 with a maximum 5.7. This behavior is not

observed in the WG estimates or in the sys-GMM estimates. Oddly, the aberrant behavior of diff-

GMM occurs only for N ¼ 200 and T¼ 20. Possible reasons include proximity to singularity for

some datasets. Identifying the reasons for this behavior of diff-GMM requires further investigation

and is not pursued here.
nAs shown in Phillips and Sul (2007, proposition 2), the bias of WG estimates of coefficients of

exogenous variables in dynamic panel models is typically smaller than that of the autoregressive

coefficient, contrary to the claim in Nickell (1981).
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The weak-instrument problem is manifest when the FNRα ratio σα/σu¼5 or

10. Fig. 4A shows the estimated densities for N¼100 and T¼10 for σα¼5.

The performance of sys-GMM is remarkably poor for the autoregressive param-

eter (β1) in terms of both bias and efficiency, even though sys-GMM uses only

nine poor moment restrictions in addition to the many strong instruments

employed by diff-GMM. This phenomenon is intriguing because GMM proce-

dures typically attach small weights to noisy moment functions. It may be

related to inefficient one-step weighting matrix by STATA’s sys-GMM, whose

adverse effect has not died out in the second step estimation. That is, STATA’s

one-step sys-GMM ignores the presence of the fixed effects in the formation of

covariance matrix for the levels equations and assumes that the error term in the

levels equation has variance σu
2 and no serial correlation. As a result, STATA’s

one-step weight matrix is far from optimal especially if σu
2 is large. STATA’s

procedure also assumes that the differenced equations and the levels equations

are mutually uncorrelated, which is not true. When the initial one-step estimator

is largely biased due to extreme noise in a subset (the “levels” part) of the
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FIG. 2 Estimated densities for N¼800 and T¼10 for σα¼1.
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FIG. 3 Estimated densities for N¼800 and T¼40 for σα¼1.

Dynamic panel GMM using R Chapter 5 139



moment restrictions, the performance of the corresponding two-step estimator

can be compromised if N is not very large. An interesting modification of

sys-GMM to achieve improved performance would be the use of diff-GMM

as the initial estimator, or a three-step estimation in which σα
2/σu

2 is estimated

in the second step to form a feasible optimal weight and nonparametrically esti-

mated optimal weight is used in the third step. These topics are left for future

research.

With N increasing, the weak-instrument problem fades away. For N¼800,

Fig. 4B exhibits that sys-GMM is close to diff-GMM. We expect that sys-

GMM eventually surpasses diff-GMM when N further increases, as the cases

with σα¼1 above show.

When T increases to 40, the estimated densities change to Fig. 5 for

N¼100 in (A) and for N¼800 in (B). But increasing T does not remedy

the poor performance of sys-GMM.

The poor performance of sys-GMM for large σα/σu is drastically empha-

sized when σα¼10 (with σu¼1 as before). Fig. 6 shows the estimated
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FIG. 4 Estimated densities for σα¼5 and T¼10.
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densities for (N, T)¼ (100, 10) in (A) and (N, T)¼ (800, 10) in (B). Large N is

clearly required for sys-GMM to be useful in this case. In contrast, diff-GMM

performs well. This analysis is relevant for applied work. Using empirical

data on Earth’s temperature, downwelling radiation, and CO2 equivalent

greenhouse gas levels over 1964–2005 with N¼968 and T¼42, Phillips

(2018) found a σα/σu ratio of 15.043 and a sys-GMM estimate of β1 of

0.8665, more than six times larger than the diff-GMM estimate of 0.1346.

We have also examined different σx and σz values and results remain qual-

itatively the same in terms of relative performance: When σα¼1, sys-GMM is

better than diff-GMM; when σα¼5 or σα¼10, the performance of sys-GMM

is poorer than diff-GMM and unacceptably biased and inefficient for N¼100.

The distributions of the γ̂j estimators can be compared using the mathemati-

cal fact that β̂j + γ̂j is the same for all estimators (see Phillips, 2018, for this

invariance), though differences in variances of β̂j and γ̂j may make the γ̂j estima-

tors appear to be distributed much more closely. For example, for N¼800 and
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FIG. 5 Estimated densities for σα¼5 and T¼40.
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T¼10 with σα¼10, the estimated densities of γ̂1 and γ̂2 are given in Fig. 7. In

comparison to Fig. 6B, the panel for γ̂1 in Fig. 7 is a clear mirror image of the β̂1
panel in Fig. 6B, which matches the fact that the estimates of β̂j + γ̂j are identi-

cal. The distributions of γ̂2 look, on the other hand, similar to one another, unlike
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FIG. 6 Estimated densities for σα¼10 and T¼10.
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Fig. 6B. This apparent similarity happens because the variances of γ̂2 are sub-

stantially larger than those of β̂2—so the densities (of γ̂2) appear similar on

the given scale in Fig. 7, whereas the densities (of β̂2) are clearly differentiated

in Fig. 6B.

5 Conclusion

Longitudinal data are now an integral part of experimental and empirical stud-

ies across a range of disciplines from the medical to the social and business

sciences. As the number of such studies continues to grow, use of dynamic

panel regression methods that have been developed in econometrics can be

expected to become even more widespread than they are at present. Corre-

spondingly, this growth will stimulate demand for open source programs in

R that have been validated against existing proprietary software packages

such as STATA. The programs presented here provide such an alternative

and have the advantage of speed and code efficiency over existing software

that makes them particularly useful in simulation exercises, especially for

large panels.
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Abstract
Vector autoregressive moving average (VARMA) processes constitute a flexible class

of linearly regular processes with a wide range of applications. In many cases VARMA

models allow for a more parsimonious parametrization than vector autoregressive

(VAR) models. However, compared to VAR processes the relation between internal

parameters and external characteristics (e.g., the autocovariance function) is more

involved and estimation is harder since in general the maximum likelihood method here

needs numerical optimization. In this contribution we want to give a broad overview of

VARMA modeling with an emphasis on structure theory, estimation and practical

implementation with the free software environment R and specialized R packages. First

we present basic definitions and the interrelation between VAR, VARMA models

and state space models. We will show how to compute important characteristics like

autocovariance function, spectral density and impulse response functions and how to

compute predictions. Then we discuss parametrization issues, including the question

how to implement structural information. As mentioned above, estimation of VARMA

models is quite involved. Consequently a substantial part of the paper will deal with

maximum likelihood estimation and with alternative estimators which are cheaper

to compute, but in general not asymptotically efficient. In addition to parameter

estimation, model selection, in particular, choosing the best model order is treated.

Keywords: Vector autoregressive moving average process, State space model,

Identifiability, Parameter estimation, Model selection

1 Introduction

This contribution aims at giving an introductory survey to structure, estimation,

and computational aspects of vector autoregressive moving average (VARMA)

and linear state space models. VARMA, respectively, state space models consti-

tute a flexible class of linear dynamic systems for modeling of linearly regular,
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stationary processes. This contribution is neither self-contained nor does it treat

all relevant aspects in VARMA modeling. For the theory of stationary pro-

cesses we refer, e.g., to Rozanov (1967), Hannan and Deistler (2012), and

Brockwell and Davis (1991).

Structure theory is concerned with the analysis of the relation between

“external” characteristics of the observed process, such as the population

second moments, and the “internal” model parameters. One aspect is identi-

fiability, i.e., the question whether the external characteristics uniquely deter-

mine the model parameters. In addition here we consider the so-called

realization problem, i.e., the problem of constructing the underlying VARMA

(or state space) system from the population second moments of the observed

process as well as the continuity of this mapping. This can be seen as an

idealized “estimation” problem which gives insight for actual estimation.

For these problems see, e.g., Hannan and Deistler (2012), Caines (1988),

S€oderstr€om and Stoica (1989), Ljung (1999), L€utkepohl (2005), Kalman

(1974), and the references therein.

Estimation of VARMA or state space models is quite intricate in particular

for the multivariate case, for two reasons. First the parameter spaces are much

more complicated compared to the VAR case and second, in general, there does

not exist an explicit formula for the maximum likelihood estimate. We discuss

(Gaussian) ML estimation and the asymptotic properties of these estimates. In

addition we discuss estimation procedures, such as the Hannan–Rissanen–
Kavalieris procedure and the CCA subspace procedure, which are, e.g., used

as initial estimates for ML estimation.

In general an important part of an overall estimation procedure is model

selection, e.g., determining the maximum AR/MA orders (p,q) of a VARMA

model. Here we discuss this for the case of information criteria like AIC and

BIC. Important references for the estimation of VARMA and state space

models are Caines (1988), Hannan and Deistler (2012), Reinsel (1997),

Ljung (1999), L€utkepohl (2005), and Tsay (2014).

This contribution also tries to demonstrate the usage of the statistical computer

program R (R Core Team, 2015) for the modeling of multivariate time series

with VARMA or state space models. We mainly use the MTS package

(Tsay, 2015) and the dse package (Gilbert, 2015).

In econometrics the dominant approach for the modeling of multivariate

time series is the usage of VAR models. This differs, e.g., from system iden-

tification in (control) engineering, where mostly state space models are used.

The frequent use of VAR models in econometrics is explained by the fact that

the Yule–Walker estimates are easy to calculate and asymptotically efficient.

However, due to the vast increase of computation power nowadays also the

estimation of VARMA (state space) models does not cause substantial

computational problems. We hope that this contribution serves as a motiva-

tion for econometricians to try to fit VARMA (state space) models

more often.
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2 Vector autoregressive moving average models

We assume that the reader is familiar with basic concepts and results from the

theory of stationary processes, which may, e.g., be found in Rozanov (1967),

Hannan and Deistler (2012), and Brockwell and Davis (1991).

We consider VARMA models of the form

yt ¼ a1yt�1 +⋯+ apyt�p + Et + b1Et�1 +⋯ + bqEt�q (1)

where (Et j t2ℤ) is n-dimensional white noisea with a positive definite

covariance matrix

EtE0t ¼Σ> 0 (2)

and where aj2ℝn�n, j¼1,… , p and bj2ℝn�n, j¼1,… , q are real square

matrices. We will always assume stability, i.e.,

det a zð Þð Þ 6¼ 0 8|z|� 1 (3)

where a(z)¼ In�a1z�⋯�apz
p is the associated AR polynomial. The MA

polynomial is defined as b(z)¼ In+b1z+⋯+ bqz
q. In addition we assume that

the so-called inverse stability or strict miniphase condition

det b zð Þð Þ 6¼ 0 8|z|� 1 (4)

is satisfied. In Sections 3 and 7.1 we will also consider slightly more general

models of the form

a0yt ¼ a1yt�1 +⋯+ apyt�p + b0Et + b1Et�1 +⋯ + bqEt�q (5)

where a0¼b0 is a nonsingular matrix. Clearly by premultiplication both sides

of the above equation by a0
�1 we get a model of the form (1). Note that due to

the assumption a0¼b0 the noise (Et) is the same in (1) and (5). However, the

coefficient matrices are different in general, but (for simplicity of notation)

we will use the same symbols in (1) and (5). Given these assumptions, the

VARMA system (1) has a unique stationary solution given by

yt ¼
X
j�0

kjEt�j: (6)

The coefficients kj are obtained by the power series expansion of the

so-called transfer function

k zð Þ¼ a�1 zð Þb zð Þ¼
X
j�0

kjz
j |z|� 1: (7)

In the following z is used as a complex variable as well as for the backward

shift on the integers ℤ. Therefore, we can also write the process (yt) in the form

aA process (Et j t2ℤ) is called white noise if Et ¼ 0, EtE0s ¼ 0 for t 6¼ s and EtEt 0 is finite and

independent of t.
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yt ¼ a�1 zð Þb zð ÞEt ¼ k zð ÞEt:
Due to stability and inverse stability, it can be shown that the above

representation is the Wold representation of the VARMA process (yt j t2ℤ)
and (Et j t2ℤ) are the innovations of (yt), i.e., Et+1 is the prediction error for

the linear, least squares prediction ŷt + 1 of yt+1 given the infinite past

(yt,yt�1,…). See below for a more detailed discussion and Wold (1954) and

Rozanov (1967).

Note that VARMA processes have mean zero. In practice therefore in a

first step the data has to be demeaned before the VARMA modeling.

The transfer function k(z)¼a�1(z)b(z) is a rational matrix (i.e., a matrix

whose entries are rational functions of z). Vice versa any regularb process

(yt) where the transfer function corresponding to the Wold decomposition is

rational has a VARMA representation (1). However, in general only the

so-called miniphase condition

det b zð Þð Þ 6¼ 0 8|z|< 1 (8)

holds rather than the strict miniphase condition (4). For more details see

Section 3.

The sequence (kj j j2ℕ0) is called the impulse response function since it

represents the impact of a unit pulse on the future values of the process. To

say it in another way kj reflects the influence of the “shock” Et on the future

value yt+j. The impulse response function and the transfer function are in a

one-to-one relation given by (7). Note that by our assumptions we have

a(0)¼a0¼b0¼b(0)¼ In and thus k(0)¼k0¼ In.
For interpretation it is often convenient to normalize the error covariance

as EtEt0 ¼ In where Et ¼H�1Et and H�1Σ(H�1)0¼ In. The transformed errors

Et are called orthogonalized shocks and the correspondingly transformed

impulse response function

kj ¼ kjH j j2ℕ0

� �
(9)

is the so-called orthogonalized impulse response function. Clearly we have

yt ¼
X
j�0

kjEt�j ¼
X
j�0

kjHH
�1Et�j ¼

X
j�0

kjEt�j (10)

The transformation matrix H is only unique up to postmultiplication by

orthogonal matrices. From the point of view of interpretation the orthogonalized

impulse response function has the advantage that the orthogonalized shocks are

instantaneously and serially uncorrelated, i.e., EitEjs¼ 0 for i 6¼ j or t 6¼ s.

bA stationary process is called (linearly) regular if the h-step ahead prediction ŷt+ h for yt+h from

the infinite past (ys j s� t) converges to zero for h going to infinity. A process (yt) is regular if and

only if (yt) has a causal MA(∞) representation yt¼
P

j�0kjEt�j and if Et is obtained by a linear

transformation of ys, s� t.
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R Demonstration 1 We assume that the reader has some basic knowledge in

R (programming), see R Core Team (2015).c,d

The MTS package is an “all-purpose toolkit” for analyzing multivariate

time series. It handles a wide range of models, e.g., VAR, ARMA models,

multivariate volatility models, factor models and error-correction VAR

models for co-integrated time series. However, here we will use this pack-

age only for modeling by VARMA models and, in particular, by VARMA

models in echelon canonical form.

In addition we will use some own utility functions (in particular tools to

switch between MTS models and dse objects). These functions are not thor-

oughly tested, so they have to be used with some care. In particular there

is almost no check on the input parameters. The readers of this contribution

are free to use this code and to adapt it according to their own preferences

and needs. These data, including some data and an Rmd file which contains

all the examples and demonstrations of this chapter, are available at

https://github.com/WolfgangScherrer/VARMA-modeling.
We will often use a syntax like MTS::function (respectively, dse::function)

to clearly indicate which package is used.

The package MTS, which is kind of companion toolbox for the text book

(Tsay, 2014), uses a different notation for VARMA models

ϕ0yt ¼ϕ1yt�1 +⋯ +ϕpyt�p +ϕ0Et�θ1Et�1�⋯�θqEt�q

The AR and MA coefficients are collected in two matrices ϕ¼ (ϕ1,… ,ϕp)2
ℝn�np and θ¼ (θ1,… ,θq)2ℝn�nq.

The following R code shows how to construct a VARMA model and how to

compute and plot (see Fig. 1) the (orthogonalized) impulse response function.

> library(MTS) # load package
> source('tools.R') # load utility functions
>
> phi0 = matrix(c( 1.0, 0, 0,
+ -1.199, 1, 0,
+ -0.638, 0, 1), byrow = TRUE, nrow= 3)
> phi = matrix(c(0.762, 0, 0, -0.074, 0.137, -0.313,
+ -0.142, -0.470, 0.543, 0, 0, 0,
+ 0.920, -0.775, 0.064, 0, 0, 0),
+ byrow = TRUE, nrow= 3, ncol=6)
> theta = matrix(c( 0.694,-0.116,-0.150,-0.216, 0.269,-0.231,
+ -0.540,-0.253, 0.708, 0, 0, 0,

cThe computations were carried out with: R version 3.4.4 (2018-03-15), MTS: 1.0, dse:
2015.12.1, QZ: 0.1.6 and kableExtra 0.9.0.
dWe advise the reader to start experimenting with ARMA models for relatively small dimensions

n�3 in order to obtain compact outputs and “nice looking” plots.

Vector autoregressive moving average models Chapter 6 149

https://github.com/WolfgangScherrer/VARMA-modeling


+ 0.748,-0.760, 0.242, 0, 0, 0),
+ byrow = TRUE, nrow= 3, ncol=6)
> sigma = matrix(c(0.815, 0.154, 0.411,
+ 0.154, 0.716, 0.202,
+ 0.411, 0.202, 0.813), nrow=3)

The (orthogonalized) impulse response function may be computed with the

function VARMAirf. Note that VARMAirf assumes ϕ0¼ I (a0¼ I) and hence

we reparametrize the model by ϕ!ϕ0
�1ϕ and θ!ϕ0

�1θ.
The function VARMAirf returns a list with components psi and irf. The

component psi is the matrix (k0,k1,… ,kl)2ℝn�n(l+1). The component irf is

the matrixe vec k0
� �

, vec k1
� �

,…, vec kl
� �� �2ℝn2� l+ 1ð Þ, i.e., irf contains the

desired orthogonalized impulse response coefficients. Note that the MTS
package here uses two different methods to represent a 3-dimensional array

by a (2-dimensional) matrix!

VARMAirf uses the symmetric square root of Σ (computed via an eigenvalue

decomposition of Σ) and hence the lag zero coefficient k0 ¼ k0H¼H¼H0 is
symmetric.

Orthogonalized impulse response function
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FIG. 1 This picture shows the orthogonalized impulse response function of the example VARMA

model of R Demonstration (1).

evec denotes the vectorization operator, i.e. vec (X) is the mn-dimensional column vector obtained

by stacking the columns of the (m,n)-dimensional matrix X.
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VARMAirf always produces two plots (one for the (orthogonalized) impulse

response function and one for the cumulative (orthogonalized) impulse res-

ponse function). In order to be somewhat more flexible we have implemented

a simple function (plot3d) for plotting 3-dimensional arrays like the impulse

response function or the autocovariance function. The (i, j)-th panel plots the

respective (i, j)-component of kl as a function of the lag l¼0,1,2… and hence

shows influence of the j-th “orthogonalized shock” Ejt on the i-th component

yi,t+l.

> k = MTS::VARMAirf(Phi = solve(phi0,phi),
+ Theta = solve(phi0, theta),
+ Sigma = sigma, lag = 12, orth = TRUE)
>
> plot3d(k$irf, dim = c(3,3,13),
+ main='orthogonalized impulse response function',
+ labels.ij="partialdiff*y[i_*k]/partialdiff*epsilon[j_*0]",
+ type='o', lty='solid', col='brown4', pch=19, cex=0.5)

For a VARMA model (1), the best linear least squares one-step ahead prediction

for yt+1 given the infinite past yt, yt�1, … is given by

ŷt+ 1 ¼ a1yt +⋯ + apyt + 1�p + b1Et +⋯ + bqEt+ 1�q (11)

This is a consequence of the projection theorem. This theorem says that the

best approximation of an element in a Hilbert space by an element in a sub-

space is characterized by the fact that the approximation error is orthogonal

to all elements of the subspace, see, e.g., Bachman and Narici (2000). In our

context the underlying Hilbert space is the Hilbert space of square integrable

(scalar) random variables. Due to the strict miniphase assumption (4) we can

express Et as

Et ¼ b�1 zð Þa zð Þyt ¼
X
j�0

ljyt�j: (12)

This representation is called the AR(∞) representation of the process. Due

to (12) the prediction ŷt+ 1 is in fact a linear combination of the past and present

values yt, yt�1, …. The prediction errors

ût+ 1 ¼ yt+ 1� ŷt+ 1ð Þ¼ Et+ 1 (13)

are orthogonal to yt, yt�1, …. This shows that ŷt+ 1 is indeed the best linear

prediction for yt+1 and that the Et’s are the innovations of (yt).
The more general h-step ahead prediction ŷt+ h for yt+h given the infinite

past and the corresponding prediction errors ût+ h ¼ yt+ h� ŷt+ h are

ŷt+ h ¼
X∞
j¼h

kjEt+ h�j (14)
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ût+ h ¼
Xh�1

j¼0

kjEt+ h�j (15)

This again is a consequence of the projection theorem. In order to express

the forecast ŷt+ h as a function of the past and present observations (yt�j j j�0)

we use the AR(∞) representation (12). Clearly for h¼1 this corresponds to

(11). According to (15) the variance of the h-step ahead prediction error is

given by

Σh ¼ût+ hû
0
t+ h ¼

Xh�1

j¼0

kjΣk0j (16)

If we express this variance in terms of the orthogonalized impulse

response coefficients (9) we obtain Σh ¼
Ph�1

j¼0 kjk
0
j and thus the variance of

the i-th component of ût + h is given by

û2i, t+ h ¼
Xh�1

j¼0

Xn
l¼1

k
2

j, il ¼
Xn
l¼1

Xh�1

j¼0

k
2

j, il

 !
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

≕σhil

where kj, il is the (i, l)-th entry of kj. The ratio

chil ¼
σhilXn

m¼1
σhim

is the fraction of the prediction error variance of the i-th component due to the

l-th component of the (orthogonalized) shocks. Thus we have derived the

so-called forecast error variance decomposition (FEVD).

R Demonstration 2 The forecast error variance decompositionf may be com-

puted by the utility function fevd. This function takes as a main argument an

arbitrary orthogonal impulse response function (e.g., computed by ARMAirf)
and returns a list with two components. The first element vd is an (n,n,
hmax)-dimensional array where the (i, j, h)-th entry is equal to cij

h and the

second element v is an (n,hmax)-dimensional matrix where the (i, h)-element

is the variance of the i-th component of the h-step ahead forecast error, i.e.,P
m¼1
n σim

h . The maximum forecast horizon hmax is determined by the length

of the input.

A plot of this decompositiong may be obtained by plotfevd, see Fig. 2.

fIt seems that the function MTS::FEVdec has a bug. Furthermore the orthogonalization

scheme is “hardwired” (a Cholesky decomposition of Σ). Therefore, we have implemented

our own version.
gThe choice for the series.names will become clear later on.
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> out = fevd(k$irf, dim = c(3,3,13))
> plotfevd(out$vd,
+ series.names = c('consumption', 'investment', 'income'))

Note that yt ¼ 0 holds. The second moments of yt (autocovariances),

γj ¼yt+ jy0t may be computed by the so-called generalized Yule–Walker

equations. First note that

Et�iy
0
t�j ¼

X
l�0

 Et�iE0t�j�l

h i
kl
0 ¼ 0 for i< j

Σk0i�j for i� j

�
:

Postmultiplying the VARMA Eq. (1) on both sides by y0t�j and taking

expectation gives

γj ¼ a1γj�1 +⋯ + apγj�p + bjΣk
0
0 +⋯ + bqΣk0q�j for 0� j� q (17)

γj ¼ a1γj�1 +⋯+ apγj�p for j> q (18)

where we set a0¼b0¼ In. For given parameters (a1,… ,ap,b1,… ,bq,Σ) the

above equation system (together with the symmetry condition γj¼ γ� j
0 ) has a

unique solution (γj j j2ℤ).
The autocovariance sequence (γj j j2ℤ) defines the so-called spectral den-

sity of the process (yt) via

Forecast error variance decomposition
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FIG. 2 This picture shows the forecast error variance decomposition computed in R

Demonstration (2).
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f zð Þ¼ 1

2π

X∞
j¼�∞

γjz
j,z2ℂ (19)

Conversely the autocovariance sequence is obtained from the spectral den-

sity through the formula

γj ¼
Z π

�π
f e�iλ
� �

eiλjdλ (20)

In the literature the spectral density is often defined as a function of the

frequencies λ2 [�π,π], i.e., one considers the function f λð Þ¼ f e�iλ
� �

. In par-

ticular the covariance γ0 is equal to γ0¼
Ð
�π
π f(e� iλ)dλ. From this it can be

shown that f(e� iλ)Δ is a measure for the size of the contributions of the oscil-

lations with frequencies in the (small) frequency band [λ,λ+Δ] to the process

(yt). For a more detailed presentation, see Rozanov (1967).

The spectral density of a VARMA process may be directly expressed in

terms of the VARMA parameters (a1,… ,ap,b1,… ,bq,Σ). We have

f zð Þ¼ 1

2π
k zð ÞΣk∗ zð Þ¼ 1

2π
a�1 zð Þb zð ÞΣb∗ zð Þa�∗ zð Þ (21)

where

k∗ zð Þ¼ k z�1
� �� �0

, a∗ zð Þ¼ a z�1
� �� �0

, b∗ zð Þ¼ b z�1
� �� �0

and a�∗ zð Þ¼ a�1 z�1
� �� �0

:

Hence, there is an amazingly simple relation between the VARMA para-

meters and the second moments of the process. Formula (21) also implies that

f(�) is a rational matrix. As can be shown, conversely for any rational spectral

density there is an underlying VARMA system, see Rozanov (1967) and

Hannan and Deistler (2012).

An important special case is (vector) autoregressive (VAR) models

yt ¼ a1yt�1 +⋯ + apyt�p + Et

Of course the above statements apply also to this special case, but some

things are much simpler.

The one-step ahead prediction is

ŷt+ 1 ¼ a1yt +⋯ + apyt+ 1�p

and the h-step ahead prediction may be recursively (in h) computed by

ŷt+ 2 ¼ a1ŷt+ 1 + a2yt +⋯ + apyt+ 2�p

ŷt+ 3 ¼ a1ŷt+ 2 + a2ŷt+ 1 + a3yt +⋯+ apyt+ 3�p

⋮

As a special case of (17) and (18) we obtain the Yule–Walker equations
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γ0 ¼ a1γ�1 +⋯ + apγ�p +Σ (22)

γj ¼ a1γj�1 +⋯ + apγj�p for j> 0 (23)

Hence, we may compute the autocovariance function without computing

the impulse response function first.

R Demonstration 3 The autocovariance function of a VARMA process (yt) may

be computed with the function ARMAcov. This function returns a list with compo-

nents autocov and ccm, where autocov stores the autocovariances, i.e., the

matrix (γ0,γ1,… ,γl)2ℝn�n(l+1) and the (n�n(l+1)) matrix ccm contains the

autocorrelationsh ρj¼diag (γ0)
�1/2γj diag (γ0)

�1/2, j¼0, 1,… , l.

To be precise VARMAcov computes an approximation of the autocovar-

iance function by the finite sum
P

l¼0
m kj+lΣkj0, where the number m of lags

used corresponds to the optional parameter trun.
Note that VARMAcov always prints the computed autocovariances and

autocorrelations (called cross correlation matrices) and hence here we sup-

press the output of the next R block.

The plot of the autocorrelation function (see Fig. 3) is produced with the

utility function plot3d.

Autocorrelation function
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FIG. 3 This picture shows the autocorrelation function computed in R Demonstration (3).

hHere diag (γ0)
�1/2 denotes the diagonal matrix with diagonal elements (γ0, ii)

�1/2, i.e., the reci-

procals of the standard deviations of the components yit.
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> g = MTS::VARMAcov(Phi = solve(phi0,phi),
+ Theta = solve(phi0,theta),
+ Sigma = sigma, lag = 12)
> plot3d(g$ccm, dim = c(3,3,13),
+ main = 'auto correlation function',
+ labels.ij = "corr(list(y[i_*k],y[j_*0]))",
+ type = 'h', col = 'blue4', lwd = 5, lend = 1)

3 Identifiability of VARMA systems

One of the main problems in the statistical analysis of VARMA models is that

the (population) second moments of the observed process (yt) (i.e., its spectral
density or equivalently its autocovariance function) do not uniquely determine

the underlying VARMA system, unless additional assumptions have been

imposed. This is the so-called problem of (non-) identifiability. Note also that

in the Gaussian case the second moments completely describe the finite

dimensional marginal distributions of the observed process (yt). In this section

we first describe a procedure to construct a unique VARMA system for a

given spectral density and then a parametrization of VARMA systems which

is based on this construction. The discussion follows Hannan and Deistler

(2012) and the references given there.

Theorem 1 shows that there is a one-to-one relation between the spectral

density f(z) and the pair (Σ,k(z)) where Σ is the innovation variance and k(z)
is the transfer function corresponding to the Wold decomposition of the

process.

Theorem 1 (see, e.g., Rozanov, 1967; Deistler and Scherrer, 2018). For a
given rational, nonsingular spectral density, f say, there exists a unique factori-
zation as

f zð Þ¼ 1

2π
k zð ÞΣk∗ zð Þ

where k(z) is a rational function which has no poles for jz j �1 and no zeros
for jz j <1 and where k(0)¼ In holds. This transfer function corresponds to the
Wold decomposition of the process.

Thus under our assumptions k(z) and Σ are unique for a given spectral

density and the question of identifiability reduces to the question under which

assumptions k(z)¼a�1(z)b(z) uniquely determines a(z) and b(z). Such a pair

(a(z),b(z)) is called left matrix fraction description (LMFD) of the transfer func-

tion k(z). In the following we will consider VARMA systems of the form (5).

Let us first repeat some basic concepts and results for polynomial matrices.

A square polynomial matrix u(z) is called common left factor of a pair of

polynomial matrices (a(z),b(z)) if there exist polynomial matrices a zð Þ, b zð Þ� �
such that a zð Þ¼ u zð Þa zð Þ and b zð Þ¼ u zð Þb zð Þ. A square polynomial matrix
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u(z) is called unimodular if det u(z) is a nonzero constant. This condition is

equivalent to the requirement that the inverse matrix u�1(z) is polynomial

too. A pair (a(z),b(z)) is called left coprime if any common left factor is

unimodular.

The degree of a polynomial, c(z) say, is denoted by deg(c(z)) and for a

polynomial matrix a(z) the degree, deg(a(z)), is the maximum of the degrees

of its entries. Correspondingly the row degrees of a polynomial matrix are the

maximal degrees of the entries of the respective rows. A polynomial matrix

a(z) with row degrees (di, i¼1,…n) (where n is the number of rows of a(z))
is called row reduced if the so-called row end matrix

a r½ �≔ lim
z!0

diag zd1 ,…, zdn
� �

a z�1
� �

has full rank n.
Suppose we have given a rational transfer function k(z), i.e., a (square)

matrix where all entries are rational. We can easily construct a LMFD for

k(z), e.g., by setting a(z)¼c(z)In and b(z)¼c(z)k(z) where c(z) is the least

common multiple of the denominators of the entries kij(z) of the matrix k(z).
However, this simple approach in general leads to VARMA models of very

high orders (p,q). If we start from an arbitrary LMFD k zð Þ¼ a�1 zð Þb zð Þ then
premultiplying a zð Þ and b zð Þ by a nonsingular polynomial matrix u(z) leads to
an equivalent LMFD for k(z) since

u zð Þa zð Þð Þ�1 u zð Þb zð Þ� �¼ a�1 zð Þb zð Þ¼ k zð Þ:
Conversely if u(z) is a common left factor of a zð Þ, b zð Þ� �

, i.e., a zð Þ, b zð Þ� �¼
u zð Þ a zð Þ, b zð Þð Þ for some polynomial matrices a(z) and b(z), then (a(z),b(z))
is another LMFD of k(z), in other words we may “cancel” common left fac-

tors. By canceling all nonunimodular common left factors one can construct

a left coprime LMFD, (a(z),b(z)) say, of k. It can be shown that any other

LMFD a zð Þ, b zð Þ� �
then is of the form a zð Þ, b zð Þ� �¼ u zð Þ a zð Þ, b zð Þð Þ where

u(z) is polynomial and that a zð Þ, b zð Þ� �
is left coprime if and only if u(z) is

unimodular.

In the scalar case (n¼1) coprimeness means that the polynomials a(z) and
b(z) have no common roots. Together with the condition a(0)¼b(0)¼1 then

the LMFD (a(z),b(z)) is unique. Note also that the coprimeness condition

implies that the degrees of a(z) and b(z) are minimal among all LMFDs of k(z).
In the multivariate case (n>1), however, we still have the freedom to

premultiply (a(z),b(z)) by a unimodular matrix and thus we need additional

restrictions to get a unique LMFD.

In the following we describe a procedure to construct a VARMA system

from a given rational transfer function k(z)¼Pj�0kjz
j. Such procedures are

called realization algorithms. The basic equation is

a zð Þk zð Þ¼ b zð Þ
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Using the normalization k(0)¼k0¼ In this equation is rewritten as

a zð Þ k zð Þ� Inð Þ¼ b zð Þ�a zð Þ:
Note that (b(z)�a(z)) is a polynomial matrix of degree less than or equal

to r¼max(p,q). Therefore

a0km�a1km�1�⋯�apkm�p ¼ 0 8m> r¼ max p, qð Þ (24)

Let us define the infinite dimensional (block) Hankel matrix of the transfer

function as

H kð Þ ¼
k1 k2 k3 ⋯
k2 k3 k4 ⋯
k3 k4 k5 ⋯
⋮ ⋮ ⋮

0BB@
1CCA (25)

Then (24) can be written as

ar, ar�1,…, a1, �a0, 0, 0,…ð ÞH kð Þ ¼ 0 (26)

where we set aj¼0 for p< j� r. Due to the Hankel structure this relation

implies that H(k) has rank at most nr. Furthermore, it follows that the AR poly-

nomial a(z) is closely related to the left kernel of the Hankel matrix H(k).

Clearly a(z) is not uniquely determined from (26). A unique solution is

obtained as follows. We select the first linearly independent rows of H(k)

which form a basis for its row space. Let h(i, j) denote the j-th row in the

i-th block row of the Hankel matrix H(k), i.e., h(i, j) is the ((i�1)n+ j)-th
row of H(k). Note that, if h(i, j) is linearly dependent from the preceding rows,

the same holds for h(i+1, j). Therefore this basis can be described by a multi

index ν¼ (ν1,… ,νn) where νj is the number of block rows where the j-th row

is selected as basis row. The νj’s are called the Kronecker indices of the

Hankel matrix H(k) or of the underlying transfer function k(z). The sum

ν1+⋯+νn is equal to the rank of the Hankel matrix.

Now we express the rows h(νi+1, i), i¼1,… , n as a linear combination of

the preceding basis rows:

h νi + 1, ið Þ¼�
Xi�1

j¼1

a0, ijh νi + 1, jð Þ+
Xn
j¼1

Xνi
k¼1

ak, ijh νi + 1� k, jð Þ (27)

Since we only use basis rows we set ak,ij¼0 if h(νi+1�k, j) is not an

element of the basis, i.e., if νi+1�k>νj. Furthermore let a0,jj¼1, a0,ij¼0

for j> i and ak,ij¼0 for νi<k�p where p¼maxj¼1, …, nνj and define the

AR polynomial a(z)¼a0�a1z�⋯�apz
p with coefficient matrices ak¼ (ak,ij)i,j.

By construction b(z)¼a(z)k(z) is polynomial and hence (a(z),b(z)) is a LMFD of

the transfer function k(z) as desired. This LMFD has the following properties

(see, e.g., Hannan and Deistler, 2012)
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1. the row degrees of (a(z),b(z)) are ν1,… , νn.
2. aij(z) is divisible by znij where nij¼max(νi+1�νj, 1) for j> i and

nij¼max(νi+1�νj, 0) for j< i. The matrix a0¼a(0) is a lower left triangular

matrix with diagonal entries equal to 1.

3. b(0)¼a(0).
4. The pair (a(z),b(z)) is left coprime and row reduced.

A pair (a(z),b(z)) which satisfies these restrictions is said to be in eche-

lon canonical form. Vice versa, as can be shown, if a pair (a(z),b(z)) is in

echelon canonical form with row degrees ν1,… , νn then the Kronecker

indices of the corresponding transfer function k(z)¼a�1(z)b(z) are equal to

ν1,… , νn.
The set of all pairs (a(z),b(z)) corresponding to Kronecker indices

ν¼ (ν1,… ,νn) can be easily parametrized by the set of “free” coefficients

ak,ij and bk,ij which are not restricted to be equal to one or zero. These free

parameters are stacked to a vector θ 2 ℝd. Therefore we consider a set

Θν�ℝd of system parameters, where

d¼
X
i

X
j<i

min νi + 1, νj
� �

+
X
j�i

min νi, νj
� �

+ nνi

 !
(28)

The set Θν is equal to the set of parameters θ2ℝd which in addition satisfy

the conditions:

1. det(a(z)) 6¼0 for all z, |z | �1 and det(b(z)) 6¼0 for all z, |z | �1.

2. the row degrees of (a(z),b(z)) are equal to ν1,… , νn and (a(z),b(z)) is left
coprime and row reduced.

As can be shown, Θν is an open subset of ℝd. We now consider the mapping

π :Θν!Uν which attaches the transfer function k(z)¼a�1(z)b(z) to a parame-

ter vector θ2Θν. The set Uν is the set of all rational transfer functions with

Kronecker indices ν¼ (ν1,… ,νn) which have no poles and no zeros for

|z | �1. In order to introduce a topology for Uν, we identify the transfer func-

tions k(z) with the impulse response (kj j j2ℕ) and endow the set (ℝn�n)ℕ

with the product topology of the spaces ℝn�n. The set Uν is considered as a

subset of (ℝn�n)ℕ and endowed with the corresponding relative topology. This

topology is metrizable and convergence is equivalent to the convergence of

the impulse response coefficients, i.e., a sequence of transfer functions

k( j )(z)2Uν converges to k(0)(z)2Uν if and only if

k jð Þ
s ! k 0ð Þ

s 8s2ℕ:

As easily can be seen the function π is bijective and continuous. The con-

tinuity of the inverse map, which attaches the “free” parameters to a transfer

function in Uν according to Eq. (27), is a straightforward consequence of the

fact that we only use basis rows to construct the parameters.
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It is impossible to describe the set of all rational transfer functions with a

finite dimensional parametrization. Here we have decomposed the set of ratio-

nal transfer functions into disjoint pieces Uν each of which can be parame-

trized continuously with a finite dimensional parameter space. There exist

several other possibilities to break down the set of rational transfer functions

into pieces and to parametrize these pieces.

In actual applications one has to estimate the Kronecker indices from data.

In a multivariate setting this leads to a search over a substantial number of

Kronecker indices. Therefore, often one considers a somewhat simplified

parametrization where one only specifies the orders p, q and sets p¼q. If
a0¼b0¼ In, rk([ap,bp])¼n and (a(z),b(z)) are left coprime, then the para-

meters (a1,… ,ap,b1,… ,bp) are identifiable. The corresponding set of transfer
functions is the set Uν with Kronecker indices ν¼ (p,… ,p). The corres-

ponding parameter space Θν has dimension 2n2p. Even for moderate dimen-

sions n the number of free parameters to be estimated may be too high for a

given sample size. Hence, it is also common practice to consider subsets

where the degrees p and q are separately described, which gives a parameter

space of dimension n2(p+q). Here the conditions for identifiability are:

(a(z),b(z)) are left coprime, a0¼b0¼ In and rk(ap)¼n for p>q, rk(bq)¼n
for q>p and rk([ap,bq])¼n for p¼q. The price for these simplified parame-

trizations is that certain transfer functions cannot be described by this

approach.

The Kronecker indices νi of the transfer function can also be computed

from the block Hankel matrix of the autocovariance function (γk). This is an
immediate consequence of the formulai

H γð Þ ¼
γ1 γ2 γ3 ⋯
γ2 γ3 γ4 ⋯
γ3 γ4 γ5 ⋯
⋮ ⋮ ⋮

0BB@
1CCA¼

k1 k2 k3 ⋯
k2 k3 k4 ⋯
k3 k4 k5 ⋯
⋮ ⋮ ⋮

0BB@
1CCA

Σk00 0 0 ⋯
Σk01 Σk00 0 ⋯
Σk02 Σk01 Σk00 ⋯
⋮ ⋮ ⋮ ⋱

0BB@
1CCA (29)

Finally we want to remark that the Kronecker indices and the echelon

canonical form can be computed from a finite number of impulse response

coefficients. If s is an upper bound for the rank of the infinite Hankel matrix

then it suffices to consider the finite Hankel matrix

H
kð Þ
s+ 1 ¼

k1 k2 ⋯ ks+ 1
k2 k3 ⋯ ks+ 2
⋮ ⋮ ⋱ ⋮

ks+ 1 ks+ 2 ⋯ k2s+ 1

0BB@
1CCA (30)

iCompare also (18) and (24).
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R Demonstration 4 The utility function impresp2PhiTheta computes for a

given impulse response the Kronecker indices and the corresponding

VARMA model in echelon canonical form. The computations are based on

a finite submatrix Hf,p of the infinite dimensional Hankel matrix with f block
rows and p block columns. The numbers f, p are determined from the length

of the input sequence. The core computation is to determine a basis for the

row space. This is done via a QR decomposition of the transpose Hf,p
0 with

the R function qr. The output of impresp2PhiTheta is a list with components

Phi, Theta, Phi0 (these matrices contain the AR/MA parameters), kidx (the

vector of Kronecker indices), Hrank (the (computed) rank of the Hankel

matrix Hf,p
0 ) and Hpivot (as returned by qr()). Note that the first Hrank ele-

ments of the vector Hpivot contain the indices of the basis rows of Hf,p.

The function MTS::Kronspec determines the zero/one restrictions imposed

by the echelon canonical for given Kronecker indices (kdx) and prints a nice

representation of these restrictions (for output=TRUE).

> out = impresp2PhiTheta(k$psi)
> out$kidx # Kronecker indices
[1] 2 1 1
> # display the corresponding AR/MA restrictions
> junk = MTS::Kronspec(out$kidx)
Kronecker indices: 2 1 1
Dimension: 3
Notation:
0: fixed to 0
1: fixed to 1
2: estimation

AR coefficient matrices:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1 0 0 2 0 0 2 2 2
[2,] 2 1 0 2 2 2 0 0 0
[3,] 2 0 1 2 2 2 0 0 0
MA coefficient matrices:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 0 0 2 2 2 2 2 2
[2,] 2 1 0 2 2 2 0 0 0
[3,] 2 0 1 2 2 2 0 0 0
>
> all.equal(cbind(out$Phi0, out$Phi, out$Theta),
+ cbind(phi0, phi, theta))
[1] TRUE

The Kronecker indices are (2,1,1) and hence the rank of the Hankel matrix

is 2+1+1¼4 and the rows 1,2,3,4 (i.e., the first 4 rows) of H form a basis.

The number of “free parameters” is 24. The last statement of the above R
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code shows that the VARMA model we have started with is in echelon

canonical form.

R Demonstration 5 The package dse centers on linear, time invariant

ARMA models and state space models. One of the nice features of this pack-

age is the unified approach to handle these two model classes. The dse
package uses an object oriented approach (with the S3 class system) and

implements object classes for models, data sets and estimated models.

We start with discussing VARMA models. Note that dse uses yet another

convention for the sign of the AR/MA parameters:

a0yt + a1yt�1 +⋯ + apyt�p ¼ b0Et + b1Et�1 +⋯ + bqEt�q

(V)ARMA models are represented by ARMA objects (which are special TSmodel
objects). Note that the ARMA model class may represent more general models,

in particular models with exogenous inputs (i.e., VARMAX models) and

models with a trend component. In addition note that a0 and b0 may be dif-

ferent. However, here we will stick to the simple model above and assume

that a0¼b0.
The AR parameters aj2ℝn�n are stored in the (p+1,n,n)-dimensional

array A, where the i-th slot A[i, , ] corresponds to the matrix ai�12ℝn�n.

Analogously the MA parameters bj are stored in the (q+1,n,n)-dimensional

array B.
In order to be able to easily switch between MTS and dse models and

tools we have implemented two utility functions PhiTheta2ARMA and

ARMA2PhiTheta.
The following code chunk loads the dse package library and converts the

above VARMA model to a dse::ARMA object. In addition we check that we

can reconstruct the Theta, Phi parameters:

> library(dse)
Loading required package: tfplot
Loading required package: tframe
Attaching package: 'dse'
Die folgenden Objekte sind maskiert von 'package:stats':

acf, simulate
>
> arma = PhiTheta2ARMA(Phi = phi, Theta = theta, Phi0 = phi0,
+ output.names = c('consumption','investment','income'))
> arma

A(L) =
1-0.762L1+0.074L2 0-0.137L2 0+0.313L2
-1.199+0.142L1 1+0.47L1 0-0.543L1
-0.638-0.92L1 0+0.775L1 1-0.064L1
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B(L) =
1-0.694L1+0.216L2 0+0.116L1-0.269L2 0+0.15L1+0.231L2
-1.199+0.54L1 1+0.253L1 0-0.708L1
-0.638-0.748L1 0+0.76L1 1-0.242L1
>
> junk = ARMA2PhiTheta(arma, normalizePhi0 = FALSE)
> all.equal(cbind(phi, theta, phi0),
+ cbind(junk$Phi, junk$Theta, junk$Phi0))
[1] TRUE

The stability and the miniphase assumption now may be checked with the

function dse::polyrootDet(a)) which computes the roots of the determi-

nant of a polynomial matrix a(z)¼a0+a1z+⋯+apz
p with coefficients which

are stored in the 3-dimensional array a.

> # check the stability assumption
> min(abs(polyrootDet(arma$A)))>1
[1] TRUE
> # check the (strict) miniphase assumption
> min(abs(polyrootDet(arma$B)))>1
[1] TRUE

The “dse” package contains a number of useful utilities for polynomial matrices

(e.g., characteristicPoly, companionMatrix, polydet, ...).

4 State space models

State space models are an alternative way to describe processes with a rational

spectral density. We consider models of the form

xt+ 1 ¼Axt +BEt
yt ¼Cxt + Et

where (Et) is white noise with a positive definite variance Σ¼EtE0t, xt is an

unobserved random vector called state and A2ℝs�s, B2ℝs�n, C2ℝn�s are

parameter matrices. We always assume stability, i.e.,

λmax Að Þ< 1 (31)

and inverse stability (also called strict miniphase assumption)

λmax A�BCð Þ< 1: (32)

Here λmax(X) denotes the maximum of the moduli of the eigenvalues of a

square matrix X. Given these assumptions there exists a unique stationary

solution of this state space system

xt ¼ Is�Azð Þ�1zBEt ¼
X
j�0

AjBEt�1�j (33)
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yt ¼Cxt + Et ¼ C Is�Azð Þ�1zB+ In

� 	
Et ¼ Et +

X
j>0

CAj�1BEt�j (34)

Given the strict miniphase assumption it is easy to see that the “inverse”

system is

xt + 1 ¼ A�BCð Þxt +Byt ¼
X
j�0

A�BCð ÞjByt�j (35)

Et ¼�Cxt + yt ¼ yt�
X
j>0

C A�BCð Þj�1Byt�j (36)

Therefore (34) is the Wold decomposition of the process (yt) and the Et’s
are the innovations for (yt). It is immediate to see that the h-step ahead predic-

tion for yt+h given the infinite past (ys j s� t) is

ŷt+ h ¼CAh�1xt (37)

Clearly the transfer function

k zð Þ¼C Is�Azð Þ�1zB+ In (38)

is rational and correspondingly the spectral density of (yt) is rational. As can
be shown every rational (nonsingular) spectral density can be represented

(realized) by a state space system of the above form.

The impulse response coefficients, i.e., the coefficients of the MA(∞) repre-

sentation yt¼
P

j�0kjEt�j, respectively, the coefficients of the power series

expansion of the transfer function k(z)¼Pj�0kjz
j, immediately follow from (34)

kj ¼ In for j¼ 0

CAj�1B for j> 0

�
The state sequence (xt j t2ℤ) is an AR(1) process and the variance

P¼xtx0t is the (unique) solution of a so-called Lyapunov equation

P¼xt+ 1x0t+ 1 ¼ Axt +BEtð Þ Axt +BEtð Þ0 ¼APA0 +BΣB0

The autocovariance function of (yt) is given by

γj ¼ CPC0 +Σ for j¼ 0

CAj�1M for j> 0

�
where M¼xt+ 1y0t ¼APC0 +BΣ.
R Demonstration 6 State space models are implemented as SS objects in dse.
However, dse uses a different naming convention, i.e., A!F, B!K, and

C!H. To convert the above VARMA model to a state space model (in inno-

vation form), we may use the functionj toSS. The function is.innovSS checks

whether the input is an “innovation form state space” object.

jNote that the function toSS does not work for ARMA(p, q) models with q>p!
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> ss = dse::toSS(arma)
> ss

F =
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0 -0.074000 0.137000 -0.313000
[2,] 0 0 0 -0.088726 0.164263 -0.375287
[3,] 0 0 0 -0.047212 0.087406 -0.199694
[4,] 1 0 0 0.762000 0.000000 0.000000
[5,] 0 1 0 0.771638 -0.470000 0.543000
[6,] 0 0 1 1.406156 -0.775000 0.064000

H =
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0 1 0 0
[2,] 0 0 0 0 1 0
[3,] 0 0 0 0 0 1

K =
[,1] [,2] [,3]

[1,] 0.142000 -0.132000 -0.082000
[2,] 0.170258 -0.158268 -0.098318
[3,] 0.090596 -0.084216 -0.052316
[4,] 0.068000 0.116000 0.150000
[5,] 0.479532 -0.077916 0.014850
[6,] 0.215384 0.059008 -0.082300
>
> dse::is.innov.SS(ss)
[1] TRUE

We here get a model with a state space dimension s¼6.

The utility function SSirf and SScov compute the impulse response and

autocovariance function. The outputs returned by these function have the same

structure as the output of the corresponding MTS function, e.g., SScov returns a

list with components autocov and ccm where both of them are matrices of

dimension (n,n(l+1)). To compute the state variance P here the functionk

lyap is used.

The following code computes the impulse response function and the ACF

of the state space model. Of course, since this state space model and the

VARMA model above describe the same process the output must be identical

to the output we have computed above.

kAlternatively one may use the function dse::Riccati. However, for the model we use

here for testing purposes the (noniterative version) of Riccati stops with an error mes-

sage. The function lyap first computes a Schur decomposition of the state transition matrix

A (respectively, F). To this end the QZ package has to be installed.
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> k.ss = SSirf(ss, Sigma = sigma, lag.max = 12, orth = TRUE)
> all.equal(k, k.ss, check.attributes = FALSE)
[1] TRUE
>
> g.ss = SScov(ss, Sigma = sigma, lag.max = 12)
> all.equal(g, g.ss)
[1] TRUE

5 Identifiability of state space models

Similar to the VARMA case, the relation between the parameters (A,B,C,Σ) and
the second moments of the process (yt) is not one-to-one. Due to the spectral fac-
torization Theorem 1 again it suffices to consider the relation between the state

space parameters (A,B,C) and the corresponding transfer function (38).

A state space system (33), (34) is called controllable if the controllability

matrix

Cs ¼ B, AB,…, As�1B
� �2ℝs�ns

has rank s, it is called observable if the observability matrix

Os ¼ C0, A0C0,…, As�1
� �0

C0
� 	0

2ℝns�s

has rank s. A state space system is called minimal if the state dimension s is
minimal among all state space systems describing the same transfer function

k(z)¼C(Is�Az)�1zB+ In. It can be shown that a system is minimal if and only

it is controllable and observable, see Kalman (1963). This minimality condi-

tion is analogous to the left coprime condition for VARMA systems, since

it rules out redundant parameters. Even under minimality the state space para-

meters (A,B,C) are not uniquely determined from the transfer function.

As can be shown (Kalman, 1963), two minimal state space systems (A,B,C)

and ~A, ~B, ~C
�

) describe the same transfer function if and only if there exists a

nonsingular matrix T2ℝs�s such that

~A¼ TAT�1, ~B¼ TB, ~C¼CT�1 (39)

holds.

R Demonstration 7 The dse tools observability and reachability compute

the singular values of the observability, respectively, of the reachability

matrices.

> svO = dse::observability(ss)
> svR = dse::reachability(ss)
Singular values of reachability matrix for noise: 0.7443343
0.4589284 0.3712107 0.2409465 5.985088e-17 2.107293e-17
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> signif(rbind(svO,svR),4)
[,1] [,2] [,3] [,4] [,5] [,6]

svO 2.9990 2.6280 1.7220 0.9879 9.206e-01 4.450e-01
svR 0.7443 0.4589 0.3712 0.2409 5.985e-17 2.107e-17

Inspecting these singular values shows that the model is not reachable and

hence is not minimal.
One possibility to achieve a minimal model is to use a “balancing and

truncation” scheme. The dse package offers the function balanceMittnik
(model,n) to this end. The (optional) parameter n is the desired state dimen-

sion. Here we use n=4 based on the fact that only 4 of the reachability singu-

lar values are significantly greater than zero. The following code computes a

(minimal) state space model with a state space dimension 4 and checks that

this model really is an equivalent description of the process (yt):

> ssb = dse::balanceMittnik(ss, n=4)
> ssb

F =
[,1] [,2] [,3] [,4]

[1,] -0.1327857 0.1813460 0.3120305 0.3311117
[2,] -0.7805031 0.1090193 0.2904374 -0.1461123
[3,] 0.0715883 -0.6736422 0.6819328 0.2285732
[4,] -0.2674132 -0.4954136 -0.3930425 -0.2987692

H =
[,1] [,2] [,3] [,4]

[1,] 0.02484203 0.07963300 -0.4383435 0.184895023
[2,] -0.56526277 0.02998341 -0.2627269 0.183926049
[3,] -0.19050836 -0.45709445 -0.3611779 -0.001188339

K =
[,1] [,2] [,3]

[1,] -0.76035926 0.2878963 0.1622077
[2,] 0.01509112 -0.1126601 0.2372431
[3,] -0.21419099 -0.1738510 -0.1596715
[4,] -0.04079621 0.2276468 0.3100379

> k.ss = SSirf(ss, Sigma = sigma, lag.max = 12, orth = TRUE)
> all.equal(k, k.ss, check.attributes = FALSE)
[1] TRUE

To check the stability assumption we may use the function stability. For
the miniphase assumption there is no corresponding tool. However, it is

not difficult to check this assumption “manually” by computing the eigenva-

lues of (A�BC) (respectively, using the dse notation of (F�KH)):
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> dse::stability(ssb)
The system is stable.
[1] TRUE
attr(,"roots")

Eigenvalues of F moduli
[1,] -0.2859941+0.5749215i 0.6421272+0i
[2,] -0.2859941-0.5749215i 0.6421272+0i
[3,] 0.4656927+0.3115639i 0.5603051+0i
[4,] 0.4656927-0.3115639i 0.5603051+0i
>
> lambda = eigen(ssb$F - ssb$K %*% ssb$H)$values
> cat(ifelse((max(abs(lambda))<1),
+ 'The system is strictly miniphase\n',
+ 'The system is not strictly miniphase\n'))
The system is strictly miniphase

The set of all minimal systems (A,B,C) satisfying the stability and miniphase

assumption can be embedded in ℝs2+2ns, where the equivalence classes

corresponding to the nonsingular matrices T in (39) are manifolds of dimension s2.
In the following we present a procedure (see Ho and Kalman, 1966) to

construct a unique state space system from a given rational square transfer

function k(z) with k(0)¼ In. As we have seen in Section 3, a transfer function,

which has a power series expansion k(z)¼Pj¼0
∞ kjz

j which converges in a disc

around z¼0, is rational if and only if the corresponding Hankel matrix H(k)

(as defined in (25)) has finite rank. Now let S2ℝs�∞ be a matrix such that

the rows of SH(k) form a basis for the row space of H(k) and determine the

parameters (A,B,C) by solving the following equations

S
k2 k3 k4 ⋯
k3 k4 k5 ⋯
⋮ ⋮ ⋮

0@ 1A¼ASH kð Þ, B¼ S

k1
k2
k3
⋮

0BB@
1CCA,

k1 k2 k3 ⋯ð Þ¼CSH kð Þ

It is immediate to see that these parameters (A,B,C) are unique for given S
and that kj¼CAj�1B, j>0 holds as desired. Furthermore the system (A,B,C)
can be shown to be minimal. The matrix S is unique up to premultiplication

with nonsingular matrices T2ℝs�s. If we replace S by ~S¼ TS then we obtain
~A¼ TAT�1, ~B¼ TB, ~C¼CT�1
� �

by this procedure in accordance to the above

discussions. If we want to construct a unique state space system we thus have

to make a unique choice for a basis of the row space of the Hankel matrix.

One possibility is to chose the first linearly independent rows as basis. This

leads to state space systems in echelon canonical form. Similar to the

VARMA case one can also construct a parametrization of the set Uν of
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rational transfer functions with given Kronecker indices by state space sys-

tems, see, e.g., (Hannan and Deistler, 2012, chapter 2). Here we have only

presented one approach for parametrization of state space systems. Alternative

parameterizations are, e.g., overlapping parameterizations of the set of trans-

fer functions with a given rank of the Hankel matrix (see Hannan and

Deistler, 2012) or data driven local coordinates introduced by McKelvey

et al. (2004) and Ribarits et al. (2004).

In the special case where the Hankel matrix has rank s�n and where the

first s rows are linearly independent we may set S¼ (Is, 0s�∞). Then we obtain

a system of the form

A¼ 0s�n�n Is�n

A21 A22


 �
,B¼ B1

B2


 �
,C¼ In 0n�s�nð Þ

with B12ℝs�n�n, B22ℝn�n, A212ℝn�n, and A222ℝn�s�n. It can be shown that

this case is “generic” within the set of transfer functions where the Hankel matrix

has rank s. The corresponding Kronecker indices are given by ν¼ (p,… ,p) if
s¼pn and ν¼ (p,… ,p, p�1,… ,p�1) if s¼ (p�1)n+k, 0<k<n.

Similar to the VARMA case it suffices to consider a finite dimensional

part (30) of the Hankel matrix for the above construction.

R Demonstration 8 The utility function impresp2SS implements this

Ho-Kalman procedure, i.e., computes a state space model in echelon form

for a given impulse response function. By means of the functions

impresp2SS and impresp2PhiTheta we can easily switch forth and back

between VARMA and state space models.

> sse = impresp2SS(k$psi, type = 'echelon')$ss
> sse

F =
[,1] [,2] [,3] [,4]

[1,] 0.000 0.000 0.000 1.000
[2,] -0.142 -0.470 0.543 1.199
[3,] 0.920 -0.775 0.064 0.638
[4,] -0.074 0.137 -0.313 0.762

H =
[,1] [,2] [,3] [,4]

[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
K =
[,1] [,2] [,3]

[1,] 0.068000 0.116000 0.15000
[2,] 0.479532 -0.077916 0.01485
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[3,] 0.215384 0.059008 -0.08230
[4,] 0.193816 -0.043608 0.03230
> k.ss = SSirf(sse, Sigma = sigma, lag.max = 12, orth = TRUE)
> all.equal(k, k.ss, check.attributes = FALSE)
[1] TRUE

6 Maximum likelihood estimation

In this section we consider the Gaussian maximum likelihood estimation of

VARMA models or state space models. This is in our context the benchmark

procedure, which gives consistent and asymptotically efficient estimates.

If the innovations are Gaussian, then the same is true for the observations

yT ¼ y01,…, yT
0� �0

and thus �2T�1 times the log likelihood (omitting a con-

stant term) is given by

LT θ, Σð Þ¼ T�1 log detΓT θ, Σð Þ+ T�1y0TΓ
�1
T θ, Σð ÞyT (40)

where

ΓT θ, Σð Þ¼
γ0 θ, Σð Þ γ�1 θ, Σð Þ ⋯ γ�T + 1 θ, Σð Þ
γ1 θ, Σð Þ γ0 θ, Σð Þ ⋯ γ�T + 2 θ, Σð Þ

⋮ ⋮ ⋱ ⋮
γT�1 θ, Σð Þ γT�2 θ, Σð Þ ⋯ γ0 θ, Σð Þ

0BB@
1CCA

and γk(θ,Σ) denote the population covariances if θ is the parameter describing

the AR and MA polynomials a(z) and b(z) or the corresponding state space

parameters A, B, C and where Σ is the innovation variance. Note that the like-

lihood function depends on θ only via the transfer function k(z) and this trans-

fer function may described either by a VARMA model or a state space model.

The ML estimate θ̂, Σ̂
� �

is the minimizer of the negative log likelihood

function (40) over a suitably defined parameter space (Θ�S)� (ℝd�ℝn�n),

where S denotes the set of all symmetric and positive definite n�n matrices.

The required regularity conditions on the parameter space are as follows:

l The parameter space Θ is an open subset of ℝd.

l The systems corresponding to θ2Θ satisfy the stability and inverse stabil-

ity assumption.

l The mapping attaching the transfer function to the parameter θ is injective

(identifiability). This mapping as well as its inverse is continuous.

Such parameterizations are, e.g., the echelon form parametrization and the

overlapping parametrization as described in Sections 3 and 5. Of course in

most applications the Kronecker indices are not known a priori and have to

be determined by a model selection step, see Section 8.

If there is a θ02Θ which corresponds to the true VARMA/state space sys-

tem generating the data then the ML estimate can be shown to be consistent,
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asymptotically normal and asymptotically efficient under general conditions,

see Hannan and Deistler (2012).

A main problem in VARMA estimation is that in general there is no

explicit formula describing this minimizer as a function of the data and thus

numerical optimization procedures have to be used. The above formula (40)

is not suited for numerical implementation, since it would need the inverse

(and determinant) of a high dimensional (nT�nT) matrix. There are several

numerically efficient algorithms to compute the log likelihood function which

exploit the block Toeplitz structure of ΓT. In particular we mention the

Kalman filter (see, e.g., Deistler and Scherrer, 2018) which gives the factori-

zation of the joint density function g(y1,… ,yT) as a product of the conditional
probability density functions g(yt jyt�1,… ,y1). The negative log likelihood

function (up to additive and multiplicative constants) is equal to

LT θ, Σð Þ¼ 1

T

XT
t¼1

log det Σt|t�1

� �
+ tr Σt|t�1et|t�1e

0
t|t�1

� 	� 	
where et|t�1 is the prediction error of the least squares prediction for yt given
the observations y1,… , yt�1 and Σt|t�1 is the variance of et|t�1. As noted above

these quantities may be efficiently computed by the Kalman filter.

For t going to infinity we have

Σt|t�1�Σ
� �! 0, et|t�1� Et

� �! 0 and Et� etð Þ! 0

where (compare (12))

et ¼
Xt�1

j¼0

ljyt�j

For the VARMA case the residuals et may be computed by the recursion

et ¼ yt�a1yt�1�⋯�apyt�p�b1et�1�⋯�bqet�q for t¼ 1,2,…

where we set et¼yt¼02ℝn for t�0. An analogous recursion is used for state

space models.

This leads to an approximation of the negative log likelihood function

log det Σð Þ+ tr Σ�1 1

T

XT
t¼1

ete
0
t

 !

For given k(z), i.e., given θ, the minimizer for Σ is the sample variance of

the residuals et

Σ̂¼ 1

T

XT
t¼1

ete
0
t
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Plugging this estimate into the (approximate) log likelihood function leads to

log det Σ̂
� �

+ n (41)

This approximation of the likelihood function is often used for the estimation

of VARMA or state space systems, see, e.g., the dse package by Paul Gilbert,

the MTS package by Tsay and the MATLAB® SYSID toolbox by Ljung. Ljung

(1999) called the corresponding method prediction error method (PEM).

As can be shown estimates obtained from this approximation are asymp-

totically equivalent to the exact ML estimates in the sense that
ffiffiffi
T

p
times

the difference of the estimates converges to zero. In finite sample there is

some evidence, that the exact ML estimates perform (slightly) better.

In a number of packages neither the stability nor the inverse stability con-

dition are built in the parametrization so that in finite sample the estimation

may lead to nonstable or nonminiphase systems.

The negative log likelihood function may have several local minima and

therefore we have to start the numerical optimization with a “good” initial esti-

mate in order to mitigate this problem. Nevertheless, also using good initial

estimates the optimization may get stuck in a local minimum of the likelihood

function.

The optimization of the likelihood function is far from trivial, in particular,

if the dimension of the parameter space is large. The numerical burden may

be reduced if one performs only one Gauss–Newton step commencing from

an initial estimate. This is justified by the fact, that this simplified estimate

is asymptotically equivalent to a full ML estimate, if we start with a consistent

initial estimate. This result does not mean that in finite samples the estimate

could not be improved by iterating the optimization steps (such as Gauss–
Newton steps).

An alternative is to use the EM (expectation–maximization) algorithm for

optimization of the likelihood function as proposed by Shumway and Stoffer

(1982) and Gibson and Ninness (2005).

7 Initial estimates

As discussed in the previous section, ML estimation requires consistent initial

estimates. Here we describe two popular procedures, one for the VARMA

case and one for the state space case, to obtain such initial estimates.

7.1 Estimation of VARMA models—The Hannan, Rissanen,
Kavalieris procedure

We describe an algorithm for estimating the VARMA parameters for given p,
q which was first proposed for the scalar case by Åstr€om and Mayne (1982)

and analyzed by Hannan and Rissanen (1982) and further investigated by

Hannan et al. (1986).
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A general problem in VARMA estimation is, that the past Et’s are not

directly observed, in contrary to the past y0t s. The basic idea is to replace the past
Et’s by suitable estimates and then to obtain estimates for the parameters aj, bj by
a least squares type formula. In order to obtain the estimates for the innovations

Et we use a “long” autoregression, i.e., an AR ~pð Þ model with a large ~p. In other

words we approximate the AR(∞) representation (12) by an AR(~p) model with

a large ~p. For given ~p, the AR parameters and the innovation variance are esti-

mated by solving the Yule–Walker equations (23), (22), where we replace the

population autocovariances γk by their sample counterparts

γ̂k¼
1

T

XT�k

t¼1

yt+ k� yð Þ yt� yð Þ0, for T> k� 0

γ̂k¼ 02ℝn�n, for k� T

γ̂0k¼ γ̂0�k, for k� 0

Here T denotes the sample size and y¼ 1
T

PT
t¼1yt is the sample mean. Let

~Σ~p denote the estimate for Σ for a given order ~p. For estimation of ~p we use

the AIC information criterion (see, e.g., Akaike (1974))

AIC ~pð Þ¼ log det ~Σ~p +
2

T
~pn2
� �

: (42)

The estimate for ~p is the minimizer of AIC ~pð Þ within a given range

0� ~p� ~pmax . The idea of information criteria like (42) is to formulate a trade

off between the fit of the model as described by log det ~Σ~p and the dimension

of the space of free system parameters required to obtain this fit, which here is

d ~pð Þ¼ ~pn2. The AIC criterion used in this step may be shown to be optimal

for estimating AR(∞) systems, see Shibata (1980).

From the estimates ~p and the AR(~p) parameters ~aj, j¼ 1,…, ~p we get esti-

mates of the innovations by

~Et ¼ yt� ~a1yt�1�⋯� ~a~pyt�~p, t> ~p

In the next step we consider the “regression”

yt ¼ a1yt�1 +⋯ + apyt�p + b1~Et�1 +⋯ + bq~Et�q + ut (43)

and estimate the parameters aj, bj by ordinary least squares. Strictly speaking

(43) is not a regression, since the error ut is not orthogonal to the regressors

yt�1,…,yt�p,~Et�1,…,~Et�q. In this step a priori restrictions such as zero restric-

tions on the entries of the parameter matrices may easily be incorporated.

In particular, it is also straightforward to estimate ARMA systems in echelon

canonical form.
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This regression step could also be iterated, i.e., given estimates âi, b̂i we
can reestimate the innovations by

~E 2ð Þ
t ¼ yt� â1yt�1�⋯� âpyt�p� b̂1~E

2ð Þ
t�1�⋯� b̂q~E

2ð Þ
t�q (44)

and then use these “new” estimates ~E 2ð Þ
t for an additional regression step.

As an estimate for the innovation variance Σ we either use the sample var-

iance of the residuals of the regression step (43) or the sample variance of the

estimates of the innovations computed by (44).

As can be shown, see, e.g., Hannan et al. (1986), this Hannan–Rissanen–
Kavalieris procedure gives consistent estimates, provided that (p,q) have been
chosen appropriately. However, it does not give asymptotically efficient

estimates.

7.2 Estimation of state space models—The CCA subspace method

First note that if we had observed the state in (33) and (34), then the estima-

tion of the parameters A, B, C would be rather easy. There exist several

procedures for estimating the state, but here we only consider one. In order

to motivate the procedure called CCA (see, e.g., Larimore, 1983) consider

the following equations. By Eqs. (33) and (34) it follows that for h�1

yt+ h ¼CAh�1xt+ 1 + Et+ h +CBEt+ h�1 +⋯ +CAh�2BEt+ 1

From the inverse system (35) and (36), we can represent the state xt+1 as a
function of the past yt

0s

xt+ 1 ¼Byt + A�BCð ÞByt�1 +⋯+ A�BCð Þh�1Byt+ 1�h + A�BCð Þhxt+ 1�h

Combining these two equations we get

yt+ 1

yt+ 2

⋮
yt+ h

0BBB@
1CCCA¼

C

CA

⋮
CAh�1

0BBB@
1CCCA B, A�BCð ÞB,…, A�BCð Þh�1B
� 	 yt

yt�1

⋮
yt + 1�h

0BBB@
1CCCA+

+

Et+ 1
CBEt+ 1 + Et + 2

⋮
CAh�2BEt+ 1 +⋯+ Et+ h

0BBB@
1CCCA+

C

CA

⋮
CAh�1

0BBB@
1CCCA A�BCð Þhxt + 1�h

Denoting the sum of the last two terms on the right-hand side by ut leads to
the “regression”

y+
t ¼OhKh|fflffl{zfflffl}

≕β

y�t + ut ¼ βy�t + ut
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where

y+
t ¼ y0t+ 1, y

0
t+ 2,…, y0t+ h

� �0
y�t ¼ y0t�1,…, y0t+ 1�h

� �0
Oh ¼ C0, A0C0,…, Ah�1

� �0� 	0
Kh ¼ B, A�BCð ÞB,…, A�BCð Þh�1B

� 	
:

Strictly speaking this is not a regression since the error ut is not orthogonal
to the regressors (yt

0,… ,yt+1�h)
0. However, for large h this can be ignored.l The

coefficient matrix β is of rank s (for h� s) and thus we estimate β¼OhKh by a

reduced rank regression technique (see Anderson, 1951) as follows: Let

Γ̂+ ¼ 1

T

XT
t¼1

y+
t y +

t

� �0
, Γ̂� ¼ 1

T

XT
t¼1

y�t y�t
� �0

and Ĥ¼ 1

T

XT
t¼1

y +
t y�t
� �0

The OLS estimate

β̂¼ Ĥ Γ̂�� ��1

typically has full rank (nh). Therefore, we use a weighted singular value

decomposition to obtain an estimate of rank s. Let

Γ̂ +
� 	�1=2

β̂ Γ̂�� �1=2 ¼UΣV 0 ¼U1Σ1V
0
1 +U2Σ2V

0
2

where Σ1 is the diagonal (s� s) matrix consisting of the s largest singular values
and Σ2 is the diagonal matrix composed of the remaining (nh� s) singular

values. Here X1/2 denotes a symmetric square root of a positive definite matrix

X and X�1/2 denotes the inverse, if it exists. The final estimate for β then is

~β¼ Γ̂+
� 	1=2

U1Σ1V
0
1

� �
Γ̂�� ��1=2

This leads to a state estimation of the form

~xt + 1 ¼ S~βy�t

where S2ℝs�nh is chosen such that Sy+
t y

�
t has full row rank s. Common

choices for S are, e.g., S¼U1
0 or S¼ (Is, 0) in the case that the first s rows of

the Hankel matrix y+
t y

�
t are linearly independent. Given ~xt we estimate C

by a regression of yt onto ~xt and the matrices A and B by regressing ~xt+ 1 onto
~xt and the residuals of the former regression.

It can be shown that this procedure gives consistent estimates (see, e.g.,

Deistler et al., 1995) and asymptotically efficient estimates (see Bauer, 2005)

under suitable assumptions, in particular requiring that h tends to infinity with

lNote that Et+j is orthogonal to yt
� for j>0 and that (A�BC)hxt+1�h converges to zero for h!∞

due to the strict miniphase assumption.
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the sample size going to infinity. Typically h is determined by estimating the

order of an AR approximation of the system as described in (42). Despite the

fact that CCA is asymptotically efficient, in many cases it is only used as an ini-

tial estimate for likelihood estimation. For example, the MATLAB
®

system

identification toolbox (ML Sysid TB, n.d. (R2017b)) proposes such an approach.

There are several other subspace methods, see, e.g., for early references

Aoki and Havenner (1991), Larimore (1983), Van Overschee and De Moor

(1994), and Verhaegen (1994).

8 Model selection

In practice, in most cases specification parameters such as (p,q) for the VARMA

case, or the state space dimension s for the state space case, or the Kronecker

indices ν are not known a priori and have to be estimated from data.

The most used estimators are derived from so-called information criteria. For

simplicity of presentation we discuss this procedure for the case of Kronecker

indices only, see Sections 3 and 5. The so-called BIC (Bayesian information

criterion), see Schwarz (1978), is defined as

BIC νð Þ≔ min
θ2Θν,Σ>0

LT θ, Σð Þð Þ+ log Tð Þ
T

d νð Þ (45)

where ν¼ (ν1,… ,νn) is the vector of Kronecker indices, Θν�ℝd(ν) is

the corresponding parameter space as described in Sections 3 and 5, and d(ν)
is the dimension of the parameter space Θν, see (28). The estimate for ν is

obtained by minimizing BIC(ν) over the set of all Kronecker indices up to a cer-
tain (user defined) upper bound, νi�νmax. Again the idea of BIC is to formulate

a trade off between fit and complexity. As has been shown in Hannan (1980),

(Hannan and Deistler, 2012, chapter 5) under suitable assumptions this proce-

dure gives a consistent estimator for the Kronecker indices, whereas the AIC cri-

terion AIC νð Þ¼ min LT θ, Σð Þð Þ+ 2
T d νð Þ typically over-estimates the Kronecker

indices. This is a consequence of the smaller weight of the penalty term d(ν).
It should be noted, however, that the estimation of the order does not come

without a price in the sense that “naive” confidence bounds, obtained from the

asymptotic distribution of the ML-estimates for known ν are not reliable in

the case where ν has to estimated, see Leeb and P€otscher (2005). Consistent
estimation of Kronecker indices also does not necessarily lead to optimal pre-

diction, see, e.g., Shibata (1980).

Due to the high numerical burden of the ML estimation and the fact that

the information criterion often has to be computed for a substantial number

of parameter spaces, the minimum of the negative log likelihood in (45) is

often approximated by the negative log likelihood evaluated at a suitable (ini-

tial) estimate of the system leading to

log det Σ̂
� �

+
logT

T
d νð Þ:
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An alternative method for estimation of the Kronecker indices is based

on the fact that the linear dependency relations of the Hankel matrix of

the impulse response are the same as for the Hankel matrix of the autocovar-

iances, see (29). Tsay (2014) has proposed a recursive test procedure, using

canonical correlations, to estimate the Kronecker indices from data.

Once the Kronecker indices (or the orders (p,q)) have been estimated it

may still be advisable to further reduce the dimension of the parameter

space, e.g., by “hard-thresholding” where insignificant coefficients are set to

zero. This approach is implemented in the MTS package in the procedures

refVARMA and refKronfit.
R Demonstration 9 In order to illustrate the estimation of VARMA and

state space models we use the following three quarterly time series from

the “FRED (Federal Reserve Economic Data)” database (https://fred.

stlouisfed.org):

l DPIC96 Real Disposable Personal Income

l GPDIC1 Real Gross Private Domestic Investment

l PCECC96 Real Personal Consumption Expenditures

The variables are measured in Billions of Chained 2009 Dollars. We consider

the quarterly growth rates (i.e., the differences of the log values) and demean

and scale the growth rates such that the sample variance is equal to one. The

whole date set is split into two parts: The data from 1958 to 1991 (136 obser-

vations) are used for the estimation of the models and the data from 1992 to

the end of 2017 (104 observations) are used for the comparison of the models

(in terms of their predictive power).

We use a matrix y to store the data (for estimation with the MTS tools) and

a TSdata object which is used for the estimation by dse tools. For a plot of

these data, see Fig. 4.

> # read the data into an R data.frame object
> data = read.delim(file = 'prCoIn_Quarterly.txt',header=TRUE)
> data$DATE = as.Date(data$DATE)
>
> # compute the quarterly growth rates
> data$consumption = c(NA,diff(log(data$PCECC96)))
> data$investment = c(NA,diff(log(data$GPDIC1)))
> data$income = c(NA,diff(log(data$DPIC96)))
>
> # skip the data before 1958
> d = as.POSIXlt(data$DATE)
> data = data[d >= as.POSIXlt('1958-01-01'), ]
> d = d[d >= as.POSIXlt('1958-01-01')]
>
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> # collect the time series to be analyzed in the matrix "y"
> y = cbind(data$consumption,data$investment,data$income)
> colnames(y) = c('consumption','investment','income')
> rownames(y) = paste(format(data$DATE,'%Y'),
+ quarters(data$DATE),sep=' ')
>
> n = ncol(y) # number of variables
> T.obs = nrow(y) # total sample size
> T.est = sum(d < as.POSIXlt('1992-01-01')) # estimation sample
>
> # demean and scale the data
> y = scale(y, center = colMeans(y[1:T.est,]),
+ scale = sqrt((T.est-1)/T.est)*apply(y[1:T.est,],
+ MARGIN = 2, FUN = sd))
>
> data.start = c(1900 + d[1]$year, d[1]$mon %/% 3 +1)
> data.end = c(1900 + d[T.obs]$year, d[T.obs]$mon %/% 3 +1)
> est.end = c(1900 + d[T.est]$year, d[T.est]$mon %/% 3 +1)
>
> # construct "dse" TSdata objects
> sample = dse::TSdata(output = y)
> sample = tframed(sample,list(start=data.start, frequency=4))
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FIG. 4 Plot of the “consumption” data set, see R Demonstration (9).
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> estimation.sample = tfwindow(sample, end = est.end)
>
> # plot the data
> par(oma = c(0,0,0,0), mar = c(2,2,1,0)+0.1, tcl = -0.2,
+ mgp = c(1.25, 0.15, 0), cex.main = 1, cex.axis = 0.75)
> tfplot(sample)

R Demonstration 10 In order to evaluate the “fit” of a given model on a data

set we may use the dse::l() function which in particular computes the (log)

likelihood of the model. The output of this command is a TSestModel which

is an object which stores the model, the data and the estimation results.

> arma = l(arma, estimation.sample)
> summary(arma)
neg. log likelihood = 506.1354 sample length = 136

consumption investment income
RMSE 0.9304949 1.232342 0.7825009
ARMA:
inputs:
outputs: consumption investment income

input dimension = 0 output dimension = 3
order A = 2 order B = 2 order C =
26 actual parameters 6 non-zero constants

trend not estimated.

Forecasts may be computed by the dse functions forecast, horizon-Forecasts
and featherForecasts. The function dse::forecast computes the out-of-

sample forecasts for a given model and sample. In the example below we

compute the forecasts for 2018–2020, i.e., for forecast horizons h¼1,

2,… , 12. The corresponding MTS function (for estimated VARMA models)

is MTS::VARMApred. We also show how to produce a plot of the forecast.

However, to save space the plot is not included here.

> # compute the "out-of-sample" forecast for 3 years
> z = suppressWarnings(forecast(arma,data=sample,horizon=4*3))
>
> tfplot(z,start=c(2010,1)) # plot the end of the sample
> # extract the "out-of-sample" forecast for 2018
> window(z$forecast[[1]], end=c(2018,4))

Series 1 Series 2 Series 3
2018 Q1 -0.28900612 -0.04738126 -0.15876220
2018 Q2 -0.14087985 -0.19181475 -0.32920728
2018 Q3 -0.04276265 -0.11987410 -0.02930487
2018 Q4 0.05460322 0.11196985 0.08652213
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The function dse::horizonForecasts computes the h-step ahead forecasts for

all time points within a sample. The forecasts are “aligned” with the original

data, such that it is easy to compute the forecast errors. In the code below we

use the state space model sse (which is equivalent to the VARMA model

arma) in order to show that the syntax is independent of the object class.

The optional parameter discard.before means that predictions based on data

up to this time point should be discarded (i.e., are set to zero).

> z = suppressWarnings(horizonForecasts(sse, sample,
+ horizons = c(1,4), discard.before = T.est))
> # plot a subsample
> tfplot(z, start = c(1991,1), end = c(1995,4))

> # extract the forecasts/errors for "income"
> junk = cbind(sample$output[,3], t(z$horizonForecasts[,3]),
+ sample$output[,c(3,3)] - t(z$horizonForecasts[,3]))
> colnames(junk) = c(colnames(z$data$output)[3],
+ t(outer(c('pred h=','err h='),c(1,4),paste,sep=“)))
> rownames(junk) = rownames(y)
> round(junk[(T.est-3):(T.est+8),],4)

income pred h=1 pred h=4 err h=1 err h=4
1991 Q1 -0.7447 0.0000 0.0000 -0.7447 -0.7447
1991 Q2 -0.2067 0.0000 0.0000 -0.2067 -0.2067
1991 Q3 -0.5754 0.0000 0.0000 -0.5754 -0.5754
1991 Q4 -0.0239 0.0000 0.0000 -0.0239 -0.0239
1992 Q1 1.4128 -0.2206 0.0000 1.6334 1.4128
1992 Q2 0.1890 0.4206 0.0000 -0.2316 0.1890
1992 Q3 -0.4929 -0.2781 0.0000 -0.2148 -0.4929
1992 Q4 -0.5981 0.1570 -0.3521 -0.7550 -0.2460
1993 Q1 -0.3536 0.2433 0.2014 -0.5970 -0.5550
1993 Q2 -0.7867 -0.3533 -0.1527 -0.4334 -0.6340
1993 Q3 -0.9186 0.0992 0.0316 -1.0178 -0.9502
1993 Q4 -0.2453 0.0967 0.1324 -0.3421 -0.3778

R Demonstration 11 Of course it is easy to estimate autoregressive models

with both packages. Here we use dse::estVARar which is based on the

Yule–Walker equations. The order is estimated by the AIC information cri-

terion. (The estimated order is p¼2.) This VAR model will serve as a kind

of benchmark model.

> model.VAR = dse::estVARXar(estimation.sample, aic = TRUE)
> summary(model.VAR)
neg. log likelihood = 510.5801 sample length = 136
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consumption investment income
RMSE 0.9402565 0.8669979 0.930077
ARMA: model estimated by estVARXar
inputs:
outputs: consumption investment income

input dimension = 0 output dimension = 3
order A = 2 order B = 0 order C =
18 actual parameters 6 non-zero constants

trend not estimated.

The dse package offers a number of functions to estimate state space mod-

els. The package author suggest to use bft (brute force technique), so we

follow this advice. The main idea of this technique (which is a particular

subspace algorithm) is as follows. First estimate a “long” AR model, i.e.,

with a high order p. Next convert this model to a state space model and

then use a model reduction technique to construct a state space model of

the desired order s. This procedure is repeated for a number of AR orders

p and state space dimensions s and finally the model which is the best in

terms of an information criterion is returned.

The following R code estimates two state space models, the first one uses

“BIC” as selection criterion (and returns a state model of order s¼1) and

the second one uses “AIC” (which results in s¼3).

> model.BFTbic = dse::bft(estimation.sample,
+ criterion = 'tbic', verbose = FALSE)
> summary(model.BFTbic)
neg. log likelihood = 531.3362 sample length = 136

consumption investment income
RMSE 0.9710178 0.8961374 0.9726227
innovations form state space: nested model a la Mittnik
inputs:
outputs: consumption investment income

input dimension = 0 state dimension = 1 output dimension = 3
theoretical parameter space dimension = 6
7 actual parameters 0 non-zero constants
Initial values not specified.

>
> model.BFTaic = dse::bft(estimation.sample,
+ criterion = 'taic', verbose = FALSE)
> summary(model.BFTaic)
neg. log likelihood = 513.1865 sample length = 136

consumption investment income
RMSE 0.9312625 0.8933566 0.9239323
innovations form state space: nested model a la Mittnik
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inputs:
outputs: consumption investment income

input dimension = 0 state dimension = 3 output dimension = 3
theoretical parameter space dimension = 18
27 actual parameters 0 non-zero constants
Initial values not specified.

Next we try to enhance these models with maximum likelihood. The

corresponding function is dse::estMaxLik which takes an “initial” model

as main argument. Note that both model.BFTbic and model.BFTaic are

TSestModel objects and thus contain the (estimation) data.

> model.BFTbicML = estMaxLik(model.BFTbic)
> summary(model.BFTbicML)
neg. log likelihood = 528.7699 sample length = 136

consumption investment income
RMSE 0.9584305 0.8920208 0.9712616
innovations form state space: Estimated with max.like/optim
( converged ) from initial model: nested model a la Mittnik
inputs:
outputs: consumption investment income

input dimension = 0 state dimension = 1 output dimension = 3
theoretical parameter space dimension = 6
7 actual parameters 0 non-zero constants
Initial values not specified.

>
> model.BFTaicML = estMaxLik(model.BFTaic)
> summary(model.BFTaicML)
neg. log likelihood = 509.5183 sample length = 136

consumption investment income
RMSE 0.9301279 0.8753634 0.9262648
innovations form state space: Estimated with max.like/optim
( converged ) from initial model: nested model a la Mittnik
inputs:
outputs: consumption investment income

input dimension = 0 state dimension = 3 output dimension = 3
theoretical parameter space dimension = 18
27 actual parameters 0 non-zero constants
Initial values not specified.

The function dse::estMaxLik can also deal with VARMA models. However,

one first has to find an appropriate initial estimate and we could not a find a

suitable dse function for this purpose. (Of course one could first estimate a

state space model and then convert this to a VARMA model.) estMaxLik uses

a simple (and flexible) scheme to deal with constraints. It simply treats coef-

ficients (of the initial model) which are zero or one as fixed. One may also

impose more complicated constraints with the function dse::fixConstants.
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However, it is not possible to impose a constraint like a0¼b0 and thus it is

not clear how to estimate VARMA model in echelon canonical form.

For these reasons, we use the MTS package for estimation of VARMA

models. A VARMA(p,q) model (without further structure) may be estimated

with MTS::VARMA (or MTS::VARMAcpp where the computation of the likelihood

is implemented in C++). The initial estimate is computed by the HRK algo-

rithm. The output of this function is a list which in particular contains the

estimated AR ($Phi) and MA ($Theta) parameters. In the following R code

an ARMA(1,1) model is estimated. In order to be able to easily compare this

ARMA model with the above estimated state space models we convert the

result of MTS::VARMA to a dse::TSestModel object.

> out = MTS::VARMACpp(y[1:T.est,], p=1, q=1,
+ include.mean = FALSE, details = FALSE)
Number of parameters: 18
initial estimates: 0.3866 0.2347 -0.1595 0.4197 -0.0479 0.2851

0.7382 -0.2265 -0.1591 -0.3344 -0.2207 0.4608
0.0312 -0.0298 -0.31 -0.5184 0.1628 0.1548

Par. lower-bounds: -0.0731 -0.105 -0.5698 -0.0226 -0.3748 -0.1097
0.2556 -0.5831 -0.5899 -0.8385 -0.619 -0.0013
-0.4539 -0.4132 -0.7546 -1.0476 -0.2554 -0.3303

Par. upper-bounds: 0.8462 0.5743 0.2508 0.862 0.279 0.6799
1.2207 0.1301 0.2717 0.1696 0.1777 0.9228
0.5162 0.3535 0.1346 0.0108 0.581 0.6398

Final Estimates: 0.2272581 0.3050181 0.2507603 0.2214819
0.08512909 -0.1097409 0.255627 0.1300933
-0.3924509 -0.158361 0.1776507 0.02029747
-0.2315791 -0.1815723 -0.02620168 -0.03041847
-0.1641312 0.3666428

Warning in sqrt(diag(solve(Hessian))): NaNs wurden erzeugt

Coefficient(s):
Estimate Std. Error t value Pr(>jtj)

consumption 0.22726 0.21633 1.051 0.2935
investment 0.30502 0.16703 1.826 0.0678 .
income 0.25076 0.17576 1.427 0.1537
consumption 0.22148 NA NA NA
investment 0.08513 NA NA NA
income -0.10974 0.11572 -0.948 0.3430
consumption 0.25563 0.26996 0.947 0.3437
investment 0.13009 NA NA NA
income -0.39245 0.22166 -1.771 0.0766 .

-0.15836 0.25571 -0.619 0.5357
0.17765 0.18415 0.965 0.3347
0.02030 0.16113 0.126 0.8998

-0.23158 0.10343 -2.239 0.0252 *
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-0.18157 NA NA NA
-0.02620 0.11180 -0.234 0.8147
-0.03042 0.20751 -0.147 0.8835
-0.16413 NA NA NA
0.36664 0.19471 1.883 0.0597 .

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
---
Estimates in matrix form:
AR coefficient matrix
AR( 1 )-matrix

[,1] [,2] [,3]
[1,] 0.227 0.3050 0.251
[2,] 0.221 0.0851 -0.110
[3,] 0.256 0.1301 -0.392
MA coefficient matrix
MA( 1 )-matrix

[,1] [,2] [,3]
[1,] 0.1584 -0.178 -0.0203
[2,] 0.2316 0.182 0.0262
[3,] 0.0304 0.164 -0.3666

Residuals cov-matrix:
[,1] [,2] [,3]

[1,] 1.02816104 0.06541693 0.4179515
[2,] 0.06541693 1.11927510 0.2405560
[3,] 0.41795146 0.24055595 0.9005352
----
aic= 0.02976334
bic= 0.4152618
>
>
> model.ARMA11 = PhiTheta2ARMA(out$Phi, out$Theta,
+ output.names = seriesNames(sample)$output)
> model.ARMA11 = dse::l(model.ARMA11, estimation.sample)
> summary(model.ARMA11)
neg. log likelihood = 566.4137 sample length = 136

consumption investment income
RMSE 1.039684 1.063949 0.9585752
ARMA:
inputs:
outputs: consumption investment income

input dimension = 0 output dimension = 3
order A = 1 order B = 1 order C =
18 actual parameters 6 non-zero constants

trend not estimated.
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Next we estimate VARMA models in echelon canonical form (with MTS::
Kronfit) for Kronecker indices ν¼ (1,0,0), ν¼ (1,1,0), ν¼ (1,1,1), and

ν¼ (2,1,1). The output of these computations is not shown to save space.

> out = suppressWarnings(MTS::Kronfit(da = y[1:T.est,],
+ kidx = c(1,0,0), include.mean = FALSE))
> model.ARMA100 = PhiTheta2ARMA(out$Phi, out$Theta, out$Ph0,
+ fix = T, output.names = seriesNames(sample)$output)
> model.ARMA100 = dse::l(model.ARMA100, estimation.sample)
>
> out = suppressWarnings(MTS::Kronfit(da = y[1:T.est,],
+ kidx = c(1,1,0), include.mean = FALSE))
> model.ARMA110 = PhiTheta2ARMA(out$Phi, out$Theta, out$Ph0,
+ fix = T, output.names = seriesNames(sample)$output)
> model.ARMA110 = dse::l(model.ARMA110, estimation.sample)
>
> out = suppressWarnings(MTS::Kronfit(da = y[1:T.est,],
+ kidx = c(1,1,1), include.mean = FALSE))
> model.ARMA111 = PhiTheta2ARMA(out$Phi, out$Theta, out$Ph0,
+ fix = T, output.names = seriesNames(sample)$output)
> model.ARMA111 = dse::l(model.ARMA111, estimation.sample)
>
> out = suppressWarnings(MTS::Kronfit(da = y[1:T.est,],
+ kidx = c(2,1,1), include.mean = FALSE))
> model.ARMA211 = PhiTheta2ARMA(out$Phi, out$Theta, out$Ph0,
+ fix = T, output.names = seriesNames(sample)$output)
> model.ARMA211 = dse::l(model.ARMA211, estimation.sample)

Note that the VARMA model which has been used throughout the first sec-

tions of this contribution is a “rounded” version of the last model estimated,

i.e., the model for ν¼ (2,1,1).

> all.equal(list(Ph0=phi0,Phi=phi,Theta=theta),
+ lapply(out[c('Ph0','Phi','Theta')],round,3))
[1] TRUE

R Demonstration 12 We have 10 candidate models, the VAR(2) model

(labeled VAR in the following), the two state space models estimated with

dse::bft (BFTbic and BFTaic), the two state space models estimated with

dse:estMaxLik (BFTbicML and BFTaicML), the VARMA(1,1) model (ARMA11)
obtained by MTS:VARMAcpp and the four echelon form VARMA models

(ARMA100, ARMA110, ARMA111, and ARMA211) which have been estimated

by MTS:Kronfit. The dse package provides some nice tools to compare

and evaluate a set of estimated models. We start with evaluation the “in-

sample” performance of the models with dse::informationTests.
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> info = dse::informationTests(model.VAR, model.BFTbic,
+ model.BFTbicML, model.BFTaic, model.BFTaicML,
+ model.ARMA11, model.ARMA100, model.ARMA110,
+ model.ARMA111, model.ARMA211)

We do not show the output of this procedure but collect the (relevant) results in

Table 1. The information criteria of course heavily depend on the number of

“free” parameters of the respective models. As noted above the default strategy

of dse is to consider the coefficients of the parameter matrices which are not

equal to one or zero as “free” and to consider the zero/one coefficients as “fixed.”

l For a general state space model this gives 2ns+ s2 parameters. However,

this does not account for the fact that the parameter matrices are only

unique up to state space transformations, see (39). Therefore dse::infor-
mationTests also uses the so-called “theoretical number of parameters”:

2ns. In Table 1 we report the values of the information criteria based on

this “theoretical number of parameters.”

l For VARMA models in echelon form the “actual number of parameters” is

not correct, since it does not account for the constraint a0¼b0. The function
dse::fixConstants allows to set any coefficient as “fixed” or as “free.”

In order to force dse::informationTests to use the correct number of

free parameters 2n(ν1+⋯+νn) for a model in echelon form, we use

dse::fixConstants and “fix” all zero/one coefficients and all entries of

b0. This is accomplished in the code above by calling PhiTheta2ARMA with

the optional argument fix=TRUE.

The “out-of-sample” performance of these model is evaluated by considering

the 1-step ahead prediction errors. The code below computes sample covari-

ance of the h¼1,2,3,4-step ahead prediction errors on the “validation” sample

1992 to the end of 2017. The results of these computations (for the 1-step

ahead prediction error) are summarized in Table 2.

> z = dse::forecastCov(model.VAR, model.BFTbic,
+ model.BFTbicML, model.BFTaic, model.BFTaicML,
+ model.ARMA11, model.ARMA100, model.ARMA110,
+ model.ARMA111, model.ARMA211, data = sample,
+ horizons = 1:4, discard.before = T.est)
>
> # extract MSE for each series and the total MSE
> mse = array(0, dim = c(ncol(y)+1,4,n.estimates),
+ dimnames = list(c(colnames(y),‘total’),
+ paste(‘h=’,1:4,sep=”), estimates))
> for (k in (1:n.estimates)){
+ for (h in (1:4)){
+ mse[,h,k] = c(diag(z$forecastCov[[k]][h,]),
+ sum(diag(z$forecastCov[[k]][h,])))
+}}
> mse = aperm(mse,c(2,3,1))
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TABLE 1 In-sample (information) criteria of the estimated models.

#par port like aic bic gvc rice fpe

VAR 18 129.6 510.6 1057.2 1129.4 1058 1058.8 1057.2

BFTbic 6 144 531.3 1074.7 1098.7 1074.8 1074.9 1074.7

BFTbicML 6 148.7 528.8 1069.5 1093.6 1069.6 1069.7 1069.5

BFTaic 18 123.7 513.2 1062.4 1134.6 1063.2 1064.1 1062.4

BFTaicML 18 124.7 509.5 1055 1127.2 1055.9 1056.7 1055.1

ARMA11 18 249.3 566.4 1168.8 1241 1169.6 1170.5 1168.9

ARMA100 6 156.1 529.5 1070.9 1095 1071 1071.1 1070.9

ARMA110 12 138.6 519.4 1062.9 1111 1063.2 1063.6 1062.9

ARMA111 18 124.6 509.5 1055 1127.2 1055.9 1056.7 1055.1

ARMA211 24 121.4 506.1 1060.3 1156.5 1061.7 1063.3 1060.3

aic, Akaike information criterion; bic, Bayes information criterion; fpe, final prediction error; gvc, generalized cross validation; like, neg. log likelihood; #par, number of
parameters; port, portmanteau test; rice, rice criterion.



TABLE 2 The (out-of-sample) mean squared errors of the estimated models for the 1-step ahead prediction.

Consumption Investment Income Total rVAR

VAR 0.283 0.291 1.006 1.580 0.0%

BFTbic 0.357 0.348 0.988 1.693 �7.1%

BFTbicML 0.308 0.304 0.989 1.601 �1.3%

BFTaic 0.247 0.330 1.017 1.593 �0.8%

BFTaicML 0.260 0.299 0.987 1.546 2.2%

ARMA11 0.277 0.458 0.986 1.721 �8.9%

ARMA100 0.281 0.339 1.006 1.626 �2.9%

ARMA110 0.295 0.277 0.993 1.565 0.9%

ARMA111 0.260 0.300 0.989 1.549 2.0%

ARMA211 0.273 0.355 0.973 1.601 �1.3%

The column total is the sum of the MSE values for the three series (consumption, investment and income). The last column reports the percentage improvement as
compared to the VAR model.



9 Discussion and notes

l The ARMA211 model is the most complex model (24 free parameters) and

thus it is no surprise that this model is optimal in terms of the likelihood.

l The models BFTaicML, ARMA11, ARMA111 are obtained by optimizing the

likelihood over essentially the same set of models (VARMA(1,1) or state

space models with a state space dimension s¼3). Accordingly BFTaicML,
ARMA111 have the same likelihood value. However, ARMA11 is much worse.

This is an indication that the initial estimate is crucial for the ML

estimation.

l The models BFTaicML, ARMA111 are the best models with respect to the

information criteria. Only the BIC criterion picks the more parsimonious

model BFTbicML.
l The MSE values of the predictors are quite similar for most of the models

(and time series). Therefore the ranking has to be interpreted with some

care. For a careful analysis one should test whether the differences are

“statistically significant,” e.g., by a Diebold Mariano test.

l The models BFTaicML, ARMA111 are also the best models in terms of out-

of-sample prediction.

l By construction the ML estimates BFTbicML, BFTaicML yield better like-

lihood values than the corresponding initial estimates BFTbic and

BFTaic. For the data considered here the ML estimates also give better

predictions, i.e., there is a (small) performance gain.

l The ARMA11 model performs badly.

l Of course the above statements are not valid in general. The results

heavily depend on the data considered.

l None of the above estimation schemes guarantees stable and miniphase mod-

els. So to be sure one should check the estimated models as described above.

9.1 Summary

In this contribution we provide an introduction to VARMA modeling of mul-

tivariate time series. The purpose of this contribution is threefold. We want to

describe the structure of VARMA and state space modeling and the problems

arising from this structure. Second we describe parameterizations and estima-

tion methods and their properties. This includes both (real valued) parameter

estimation and model selection. Third we describe actual computations using

R and two appropriate R packages.

In econometrics the dominant approach is still VAR modeling. Despite the

greater complexity of VARMA and state space estimation (e.g., more compli-

cated parameter spaces, no explicit expressions for the ML estimates) and not

yet fully developed R packages, as compared to VAR modeling, we think that

VARMA or state space modeling of economic time series is an interesting and

important alternative.
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Abstract
This chapter provides a survey of various multivariate GARCH specifications that

model the temporal dependence in the second moment of multivariate return series pro-

cesses. The survey is focused on feasible multivariate GARCH models for large-scale

applications, as well as on recent contributions in outlier-robust MGARCH analysis

and the use of high-frequency returns or the score for covariance modeling. We discuss

their likelihood-based estimation and application to forecasting and simulation with

software implementations in the R-programming language.

Keywords: Comovement, Distribution, Time series, Volatility

1 Introduction

Many problems in both finance and economics require the specification and

estimation of a time-varying covariance matrix for asset returns. Examples

include portfolio allocation and risk management, derivatives pricing on more

than one underlying contract, and contagion modeling of volatility shock

transmission. A simple solution is to use the EWMA model of RiskMetrics

(Mina et al., 2001). It predicts the next period’s covariance as a weighted

average of past “de-meaned” returns and uses exponential weighting to give

more weight to the more recent return observations (Mina et al., 2001). Over

the past two decades, it has become popular to use more flexible models for

covariance prediction, while preserving the property that the conditional
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covariance matrix of the next period’s asset return vector is a measurable

function of the current and past returns. Most of these models fall in the class

of Multivariate Generalized AutoRegressive Conditional Heteroskedasticity

(MGARCH) models for modeling the multivariate dynamics of asset returns.

A realistic MGARCH model for asset returns should capture better the

stylized facts of the presence of conditional heteroskedasticity, fat tails, and

time variation in their comovement. It should also allow for flexible and fea-

siblea estimation as the number of variables increases. It should allow for the

modeling of covariance spillovers and feedbacks, with estimated coefficients

which have an economic or financial interpretation. In practice, these ideal

characteristics form a set of trade-offs which must be balanced based on the

specific application to which the model is applied. For instance, flexible

dynamics for a large number of assets usually leads to infeasible estimation,

or what is called the curse of dimensionality. Feasible estimation on the other

hand, based on some factor representation for instance, trades off a significant

degree of the rich dynamics present in more fully parameterized models.

Multivariate GARCH models have been extensively reviewed in Bauwens

et al. (2006), Engle (2009), Silvennoinen and Teräsvirta (2009), and Francq

and Zakoian (2011). Zivot and Wang (2006), Sheppard (2009), Laurent (2013),

and Ghalanos (2015b) discuss their implementation in S-PLUS, MATLAB®,

Ox, and R. Our contribution is to provide a survey of feasible models and their

applications based on existing implementations in the R-programming language.

We also discuss recent advances in using either the score or high-frequency

returns as drivers of the time variation of the MGARCH model parameters and

using robust procedures to dampen the effect of outliers on the MGARCH pre-

dictions. Our survey is focused on the specification of the MGARCH model

and the estimation using likelihood-based methods. While most of discussion

is about the second moment, we also overview the use of MGARCH models

for estimating higher order comoments. We do not discuss the specification

of the conditional mean, nor discuss the techniques used for evaluation of

MGARCH models, for which we refer the reader to (Laurent et al., 2012, 2013;

Patton and Sheppard, 2009). Table 1 presents an overview of themainR packages

currently available for MGARCH analysis of financial return series.

The remainder of this chapter is organized as follows: we begin with a

short section on the generalization of univariate GARCH models to the mul-

tivariate domain, briefly reviewing the BEKK model which forms the founda-

tion for factor and orthogonal factor models, followed by a review of

multivariate distributions and the challenge of incorporating the skewness

and fat tails in the multivariate dynamics while retaining feasibility of estima-

tion. The key feasible models reviewed are those arising from linear combina-

tions of univariate GARCH models, namely, the orthogonal and generalized

aWe define feasible in this chapter in a broad computational sense for anything between 10 and

500 assets.

194 PART II Multivariate Models



orthogonal GARCH model, the nonlinear combination-type models forming

the class of Generalized Dynamic Models (which includes the dynamic corre-

lation models), and sections on the use of realized measures and the condi-

tional score as drivers for the time variation of the conditional covariance

matrix. Each section includes a short overview of existing R packages, while

the illustration section and the Supplementary Material in the online version at

https://doi.org/10.1016/bs.host.2019.01.001 provide a larger scale application

using a number of different models to illustrate their use in a risk management

context.

2 Multivariate generalization of GARCH models

The generalization of univariate GARCH models to the multivariate domain

is conceptually simple, replacing the variance by the covariance matrix and

TABLE 1 Multivariate GARCH packages in R

Package Models Distributions Features

gogarch GOGARCH Multivariate Normal Max-Likelihood,
Method of Moments, NLS
and ICA, Prediction

rmgarch CHICAGO,
(a)(F)DCC

Multivariate Normal,
Laplace, Student,
maGH, Copula-Student

Max-Likelihood (2 step),
Prediction, Simulation,
Filtering, Testing

bayesDccGarch DCC Multivariate Normal MCMC

ccgarch E(CCC),
E(DCC),
E(STCC)

Multivariate Normal,
Student

Estimation and Testing

GAS GAS Multivariate Normal,
Student

Max-Likelihood,
Prediction, Simulation,
and Testing

lgarch CC-log
GARCH

Multivariate Normal Estimation and Simulation

mgarchBEKK BEKK,
mGJR

Multivariate Normal Estimation and Simulation

xdcclarge cDCC Multivariate Normal Estimation
(Composite Likelihood
with shrinkage)

Note: The table provides a nonexhaustive list of packages and the models and features they support
for the estimation of multivariate GARCH models in R. We would be remiss if we did not pay
special tribute to the S+GARCH/FinMetrics module of S-PLUS which provided the first software
implementation of MGARCH models over two decades ago (see Zivot and Wang (2006)), the
G@RCH Ox package of S�ebastien Laurent, and the MFE MATLAB® Toolbox of Kevin Sheppard.
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using an exterior product of the vector of returns. Consider a set of N assets

whose log returns rt are observed for T periods, with conditional mean

μt ¼E rtj Ft�1½ �, where Ft�1 is the σ field generated by the past realizations

of rt, i.e., Ft�1 ¼ σ rt�1, rt�2,…ð Þ
rt Ft�1 ¼ μt + εtj
εt ¼H

1=2
t zt,

(1)

with Ht being the N�N positive definite conditional covariance matrix of rt
and zt an N�1 i.i.d. random vector with first and second moments:

E zt½ � ¼ 0

Var zt½ � ¼ IN ,
(2)

with IN denoting the identity matrix of order N. The conditional covariance

matrix Ht of rt may be defined as:

Var rt Ft�1jð Þ¼Vart�1 rtð Þ¼Vart�1 εtð Þ
¼H

1=2
t Vart�1 ztð Þ H

1=2
t

� �0
¼Ht

(3)

The literature on the dynamics governing Ht may be broadly divided into

direct multivariate extensions, factor models, and linear combination of uni-

variate GARCH models (Generalized Orthogonal GARCH) and nonlinear

combination of univariate GARCH models (the broader class of Dynamic

Correlation models). The usual trade-off of model parametrization and

dimensionality clearly applies here, with the fully parameterized models

offering the richest dynamics at the cost of increasing parameter size, making

it unfeasible for modeling anything beyond a couple of assets. The need to

invert the covariance matrix in many MGARCH parameterizations introduces

estimation problems for large systems, as the eigenvalues of the covariance

matrix decrease exponentially fast toward zero, even when the covariance is

not singular.

A direct extension of univariate GARCH dynamics to the multivariate

domain was proposed by Bollerslev et al. (1988), where each element of the

conditional covariance matrix Ht is composed of linear combinations of the

lagged errors and cross product errors and lagged values of Ht. The VEC

(p,q) model is defined as:

vech Htð Þ¼ c+
Xp
i¼1

Aivech εt�iε
0
t�i

� �
+
Xq
j¼1

Bjvech Ht�j

� �
, (4)

where c is the N(N+1)/2�1 intercept, vech is the operator that stacks the

lower triangular portion of the N�N symmetric matrix as an N(N+1)/2 vector,

and matrices Ai and Bj are square of order N(N+1)/2, giving a total of
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1
2
N4 +N3 +N2 + 1

2
N variables! Because Ht is symmetric, vech(Ht) contains all

the unique elements in Ht. The richness of the model is immediately visible,

as the variance of each individual asset is a function of its own squared errors

and variances, all other squared errors and variances and all other cross lagged

errors and covariances, and similarly modeled for the off-diagonal elements

(covariances). There is obviously a high cost to modeling the full interaction

of lags and cross lags and hence the contagion effect, where the (co)variance

of an asset may be influenced by the lagged (co)variance of other assets.

Moreover, the requirement that Ht be positive definite for all values of εt in
the sample space is difficult to impose during estimation.

The Diagonal VEC (DVEC) model was suggested by the same authors to

partly alleviate the dimensionality problem,b by foregoing the effect of cross

lags on individual variances and covariances, modeling Ai and Bj as diagonal

matrices. Additionally, the diagonal representation, usually expressed in terms

of Hadamard products, also benefits from simpler conditions for imposing

positive definiteness of Ht, derived in Attanasio (1991), which is a drawback

of the full VEC model for which such conditions are hard to arrive at.

To overcome the difficulties of imposing positive definiteness in the VEC

model and the high dimensionality, while not giving up as much as the DVEC,

the BEKK—Baba, Engle, Kratt, and Kroner—model of Engle and Kroner

(1995) was proposed on the premise that comovements of financial assets are

driven by a set of underlying factors (K). In terms ofMGARCH categories, it lies

somewhere between the direct extension VEC model, for which it is a special

case,c and a class of factors models most of which can be expressed as special

cases of the BEKK model (and discussed in Section 4). In the BEKK(p,q,K)
model, the conditional covariance matrix Ht is governed by the following

dynamics,

Ht ¼C0C +
XK
k¼1

Xq
j¼1

A0
jkεt�jε

0
t�jAjk +

XK
k¼1

Xp
j¼1

B0
jkHt�jBjk, (5)

where C, Ajk, and Bjk are N�N matrices, with C being upper triangular.

A direct advantage of the BEKK model over the VEC model (4), is that posi-

tivity of Ht is easy to impose. The number of parameters is significantly less

in the full BEKK model, being 5
2
N2 + 1

2
N, and only about 5

3
times bigger than

the DVEC model. Unlike the DVEC model, the BEKK specification does

model the dependence of conditional variances (covariances) subject to the

lagged values of all other variances (covariances), hence capturing the spill-

over effect. However, the parameterization is difficult to understand. The

quadratic form of the model means that certain sign restrictions are necessary

to ensure identifiability, which for simple models such as when K¼1 and

bThe DVEC requires 3
2
N2 +Nð Þ parameters.

cIn fact, for each BEKK model there is an equivalent VEC representation.
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p¼q¼1 is a simple matter of ensuring the positivity of the upper diagonal

elements of A11 and B11. Consistency of the Gaussian QML estimator of the

BEKK model was proved by Jeantheau (1998) under the log-moment condition,

asymptotic normality of the Quasi Maximum Likelihood (QML) estimates of

the BEKK model was established by Comte and Lieberman (2003), while

Hafner and Preminger (2009) established the asymptotic normality of the

VEC model (in which the BEKK is nested) under the existence of sixth order

moments.

The dynamics of both the VEC and BEKK models can be reduced to

achieve dimensionality reduction gains, leading to several variants such as diag-

onal and scalar models, as well as the use of covariance targeting to reduce the

number of parameters in the estimation of the intercept. In case of the BEKK

(1,1,1) model, covariance targeting is achieved by setting:

C0C¼H�A0HA�B0HB, (6)

where H is the unconditional covariance matrix of ε which may be consis-

tently estimated by the sample covariance matrix. In order for Ht to be posi-

tive definite in the presence of covariance targeting, the eigenvalues of the

intercept must be positive and checked during estimation. This is a highly

nonlinear constraint which may lead to estimation problems and issues of

convergence. Finally, covariance stationarity in the diagonal BEKK(p,q,1)
models is simply a vectorized form of the scalar case so that the element-wise

sum of the squared diagonal parameters is less than unity:Xp
j¼1

a2nn, j +
Xq
j¼1

b2nn, j < 1, (7)

for all n¼1,… , N. It would appear that covariance targeting for large-

dimensional systems eliminates N(N+1)/2 parameters from the estimation,

thus making it more feasible. However, this is only partly true. In the absence

of covariance targeting, we can guarantee positive definiteness of the inter-

cept, by construction, through C0C. With covariance targeting, the added con-

straint of positive definiteness provides for two possible avenues. The first

one imposes a proper constraint by adding N(N+1)/2 parameters to the esti-

mation so that the intercept, Ω , calculated through targeting, is constrained

to be positive definite. The requirement for a matrix M to be positive definite

is guaranteed if and only if there is a positive definite matrix B>0 with

B2¼M . The matrix B is called the “square root” of M. This matrix B is

unique, but only under the assumption B>0. In terms of the optimization

problem, we can include the following constraint to ensure the positive defi-

niteness of the intercept Ω : B2�Ω¼0. If Ω has a “square root,” then it is

positive semidefinite. One therefore models the lower triangular part of B
which creates an added N(N+1)/2 parameters in the optimization problem.

Thus in this case, the full constraint reintroduces back into the model the same

number of parameters eliminated because of covariance targeting in the first
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place, which is possibly one of the reasons it has not been considered in many

applications. The second approach, which does not introduce this constraint,

involves the use of a global optimization approach since checking for positive

and real eigenvalues as an “arbitrary” constraint introduces nonsmoothness

and discontinuity in the likelihood, and is likely to lead to many local minima.

3 Multivariate distributions

While univariate GARCH models can easily be extended to have non-Normal

distributions which capture asymmetry and fat tails, the concept of a multivar-

iate distribution is far more complicated and forms a constraining element in

the MGARCH data modeling process. Within financial applications the

emphasis has mostly been on either the elliptical methodology, whereby the

transition from the univariate to the multivariate domain has been achieved

through the construction of densities that are quadratic form functions of the

margins, or through copulas, where the dependency structure is separate from

the marginal dynamics. A key step in the maximization of the likelihood func-

tion of a multivariate density with GARCH dynamics is to appropriately scale

the data so that they are i.i.d.d This implies that a multivariate density with

conditional mean μt and conditional variance Ht can be scaled so that:

f rt η, Ft�1jð Þ ¼ Htj j�1=2g H
�1=2
t rt�μtð Þ ηj

� �
, (8)

where g(…) is the conditional density of the standardized errors and η may

optionally represent asymmetry and shape (tail heaviness) parameters. An

interesting property describing multivariate distribution is that of tail depen-

dence, which describes the conditional probability of joint exceedance over

a large threshold given that some components already exceed that threshold.

Tail dependence indexes describe the amount of dependence in the upper right

or lower left tail of the distribution and can be used to analyze return comove-

ments for extreme random events. They can be defined and analyzed by using

the copula of the distribution (see Chan and Li (2007)), which is discussed in

Section 3.5.

A set of measures which capture the cross variation in asymmetry and tail

behavior, generalizing the concept of covariance to higher comoments, are

those of coskewess and cokurtosis, and defined as the third and fourth standar-

dized cross central moments, respectively. For a vector of returns r with

mean μ , the coskewness (M3) and cokurtosis (M4) can be represented as:

M3 ¼E r�μð Þ r�μð Þ0� r�μð Þ0� �
M4 ¼E r�μð Þ r�μð Þ0� r�μð Þ0� r�μð Þ� �

,
(9)

dThe weaker assumption that they are a martingale difference sequence with respect to the condi-

tioning information leads to a quasi-likelihood approach.
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where � is the kronecker product. These measures have proven to be particu-

larly important in portfolio type applications (see for instance Kraus and

Litzenberger (1976) and Harvey and Siddique (2000)). As shown in

Section 4, at least one of the MGARCH models presented has closed form

expressions for these measures, making it particularly flexible for portfolio

modeling. Since it has long been established that the returns of financial assets

exhibit characteristics such as fat tails and asymmetry, distributions which

allow for such parameters may be important. Balancing the need for flexible

distributions which allow for individual measures of asymmetry and tail

dependence with parsimonious representations which do not suffer from the

curse of dimensionality and are closed under linear affine transformations is

a challenging proposition.

The class of elliptical distributions, introduced by Kelker (1970), may be

considered as generalizations of the multivariate Normal distribution and

therefore share many of its desirable properties, while also allowing for some

tail dependence. Very generally, an elliptical distribution can be considered as

an affine transformation of a spherical distribution, the latter being a distribu-

tion which is invariant under rotations and reflections. Within this class of dis-

tributions belong the multivariate Student and Laplace distributions, neither of

which allow for asymmetry.e In the next subsections we consider four popular

choices of multivariate distributions which have been used in MGARCH

modeling; the multivariate Normal, Student, and Laplace distributions and

the multivariate Generalized Hyperbolic which is a flexible distribution from

the mean–variance mixture family, and nests the former three distributions

and skewed variations of those as special cases. We also provide a section

on the Copula distribution which provides a great deal of flexibility in the

modeling of the margins seperately from the joint dynamics.

3.1 Multivariate Normal

Traditionally, because of its tractability and desirable features, the multivari-

ate Normal distribution, uniquely determined by its mean and covariance,

has dominated financial modeling. It possesses many desirable features such

as invariance under affine linear transformations, infinite divisibility, self-

decomposability, and formation of subsequences, making it ideal for the

regressive and autoregressive modeling as well as portfolio modeling. It also

forms a sufficient condition for the use of mean–variance analysis developed

by Markowitz (1952) and used extensively in industry to this date. Even when

the underlying data generating process is not conditionally multivariate

eSkewed versions of these distributions have been introduced in the literature, see, for example,

Bauwens and Laurent (2005) for a version of a skewed multivariate Student distribution, and

Bauwens and Laurent (2005), Kotz et al. (2002), Kozubowski and Podgórski (2001), and

Arslan (2010) for skewed multivariate Laplace variants.
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Normal, it will still yield consistent estimates of the MGARCH parameters, as

shown by Bollen and Inder (2002) (see also Gourieroux (1997) for its asymp-

totic properties in the context of MGARCH), making it a rather forgiving dis-

tribution in terms of consistency in the presence of misspecification.

However, the absence of tail dependence and asymmetry may lead to signifi-

cant underestimation of extreme events, making it unsuitable for many finan-

cial applications.

A vector of N returns at time t, rt, with conditional mean μt and conditional

convariance matrix Ht, follows a multivariate Normal distribution if rt�MN

(μt,Ht). Because of the affine linear transformation and scaling property of this

distribution, the distribution of the errors rt�μt¼εt�MN(0,Ht) is also multi-

variate Normal with zero mean, and the scaled errors Ht
�1/2εt¼ zt�MN(0,IN)

are again multivariate Normal with identity matrix IN. The likelihood at time

t of the errors is given by:

pt εt θjð Þ¼ 1

2πð ÞN=2 Htj j1=2
exp �1

2
ε0tH

�1
t εt

� 	
(10)

All margins and conditionals of a multivariate Normal distribution are also

multivariate Normal.

3.2 Multivariate Student

The multivariate Student distribution takes one extra parameter, the shape

parameter ν, which is inherited from the derivation of this distribution as a

mixture of a multivariate Normal and a Gamma. This gives rise to symmetric

tail dependencef and also necessitates restrictions on its lower bounds in order

to ensure existence of moments.g Formally, Ht, with conditional mean μt,
conditional covariance matrix Ht, and conditional shape parameter ν, follows
a multivariate Student distribution if rt�MT(μt,Ωt,ν), where Ωt is a scale

matrix such that Ht ¼ ν
ν�2ð ÞΩt. The likelihood at time t of the errors εt¼ rt�μt

is given by:

pt εt θjð Þ¼
Γ

1

2
ν +Nð Þ

� 	
Γ

1

2
ν

� 	
νN=2πN=2 Ωtj j1=2

1 +
1

ν
ε0tΩ

�1
t εt


 ��1
2
ν +Nð Þ

: (11)

Similar to the Normal, and elliptical distributions in general, the distribu-

tion is invariant under a linear affine transformation so that if r is distributed
as multivariate Student, then if z¼Ay+b, z� t(Aμ+b,AΩA0,ν) is a univariate

fSince multivariate Student distributions are radially symmetric, the upper and lower tail depen-

dence are the same.
gν>1 for existence of the mean, and ν>2 for existence of the covariance.
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Student distribution with the same shape parameter. The fact that all affine

transformations have the same shape parameter ν may be quite restrictive in

practice. Extensions to this distribution have been proposed for instance by

Bauwens and Laurent (2005) who generalize the univariate skew-Student of

Fernández and Steel (1998) to the multivariate case, while allowing each

margin to have a different asymmetry coefficient but common shape parame-

ter. The square of the asymmetry parameter is nicely interpretable as the ratio

of probability masses above and below the mode. In an empirical application

using the time-varying correlation model of Tse and Tsui (2002) and four

daily stock market indexes, they find empirical evidence of outperformance

vs the multivariate Student. An interesting extension which allows for vector-

valued shape parameters is proposed in Serban et al. (2007) and evaluated as

part of horse race of MGARCH models with different multivariate distribu-

tions in Rossi and Spazzini (2010).

The multivariate Normal and Student distributions are available in theR pack-

age mvtnorm, and the rmgarch package in the context of DCC modeling, while

the sn package implements the multivariate skew Student of Azzalini (2013).

3.3 Multivariate Laplace

The Laplace distribution has a special place alongside the Normal distribution,

being stable under geometric rather than ordinary summation, thus making it

suitable for stochastic modeling. In regression modeling, when the errors have

a Laplace distribution, then the least absolute deviation estimate (lad) is also

the maximum likelihood estimate, equivalent to the least squared deviation esti-

mate when the errors have a Normal distribution. This can be easily inferred

from the density function of the Laplace which differs mainly from the Normal

by including a term for the mean absolute rather squared deviation of a random

variable. It also arises as a special case in the Generalized Error distribution

with shape parameter¼1, and the Geometric Stable distribution with stability

parameter¼2, and zero skewness and location (also called the Linnik distri-

bution with stability parameter¼2). Because it has tails heavier than the Nor-

mal distribution, it is more suitable for the modeling of financial returns. In

the multivariate setting, the multivariate Laplace has been analyzed, among

others, by Anderson (1992) as part of the multivariate Linnik distribution,

Marshall and Olkin (1993) and Kalashnikov (1997) as a multivariate distribu-

tion generated by i.i.d. univariate Laplace margins, and Fernandez et al.

(1995) as a natural generalization of the univariate model to N dimensions in

the framework of the multivariate exponential power distribution.

There are numerous generalizations of univariate to multivariate

Laplace distributions; we follow Kozubowski et al. (2013) who define a

Generalized Laplace distribution as location-scale mixtures of normal dis-

tributions where rt�ML(μt,Ht), with conditional mean μt and conditional
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covariance Ht. The mixing distribution is the standard exponential. The

likelihood at time t of the errors is given by:

pt εt θjð Þ ¼ 2

2πð Þn=2 Hj j1=2
ε0tH

�1
t εt
2

� 	 2�nð Þ=4
K 2�nð Þ=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε0tH

�1
t εt

q� 	
, (12)

where K is the modified Bessel function of the third kind. As in the case

of the multivariate Student, the multivariate Laplace has the affine linear

transformation property, and the margins of a multivariate Laplace are also

Laplace. However, unlike the multivariate Normal, but similar to the multi-

variate Student, uncorrelatedness does not imply independence. Extensions

to the multivariate Laplace have attempted to introduce asymmetry, as in

Kozubowski and Podgórski (2001), which is propagated by the location

vector making the distribution no longer location shift invariant and the

distribution of the errors (i.e., centering by a constant) no longer belongs

to the same family. An alternative skewed representation by Arslan (2010)

does not suffer from this drawback. The multivatiate Laplace in the context

of DCC model distributions is available in the rmgarch R package of

Ghalanos (2015b).

3.4 Multivariate Generalized Hyperbolic distribution

The multivariate Generalized Hyperbolic distribution (MGH) arises as a special

case of the normal mean–variance mixture distribution family which takes the

following form:

r¼d μ+Wγ +
ffiffiffiffiffi
W

p
AZ, (13)

where Z�Nq(0, Iq), W2ℝ+
1, A2ℝN�q, and μ , γ2ℝN. The basic premise

behind this distribution is to introduce noise in the covariance matrix and

mean vector of a multivariate Normal distribution through the mixing variable

W. The vector-valued variable γ introduces asymmetry, and when it is equal

to zero, r is distributed as a scale mixture of Normal distributions. Different

mixing distributions for W give rise to different families of distributions.

When the mixing variable W is Generalized Inverse Gaussian (GIG), the

N-dimensional GH distribution of Barndorff-Nielsen (1977) arises, which

allows for the modeling of multivariate data with some very desirable features

such as the ability to model skewness individually for each dimension. Addi-

tionally, the distribution has the property of infinite divisibility (inherited

from the GIG mixing distribution), and is closed under margining, condi-

tioning, and linear affine transformations, and in the case of the NIG distri-

bution is also closed under convolution when the margins have the same

skew and shape parameters. Formally, the N-dimensional Generalized Hyper-

bolic distribution of the random vector r2ℝN, r�GH(λ,α,μ,Δ,δ,β ), with
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(λ,α,δ)2ℝ1 representing the shape parameters, β2ℝN the asymmetry para-

meters, Δ the N�N scaling matrix, and μ2ℝN the location parameters, is

given by:

f rð Þ¼ cK
λ�N

2
α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2� r�μð Þ0Δ r�μð Þ

q� 	
eβ

0 r�μð Þ

c¼ α2�β0Δβð Þλ=2

2πð ÞN2 ffiffiffiffiffiffiffi
Δj jp
αλ�

N
2δλKλ δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2�β0Δβ

p� � , (14)

with the mixture representation given by the following:

r|W¼
w� NN μ+wβΔ,wΔð Þ

W� GIG λ, δ2, α2�β0Δβ
� � , (15)

where Kλ is the Bessel function of the third kind.

In the one-dimensional case, the distribution reduces to:

f rð Þ¼ α2�β2
� �λ=2ffiffiffiffiffi

2π
p

αλ�1=2δλKλ δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2�β2

p� �Kλ�1=2 α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + r�μð Þ2

q� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + r�μð Þ2

q� 	1=2�λ
eβ r�μð Þ: (16)

A number of different parameterizations exist for the multivariate and

univariate case, and for GARCH modeling we seek to find one which is loca-

tion scale invariant. An extensive review of the Generalized Hyperbolic distri-

bution can be found in Prause (1999), and the R package ghyp provides both

the univariate and multivariate representations with functions for easily switch-

ing between parameterizations. The univariate GH distribution has been applied

in a number of different GARCH applications, and in Section 4 we describe

how a large-dimensional problem can be reduced to the univariate estimation

of the independent margins of an affine multivariate GH distribution.

3.5 Copula distributions

Copula functions were introduced by Sklar (1959) as a tool to connect disparate

marginal distributions together to form a joint multivariate distribution. They

were extensively used in survival analysis and the actuarial sciences for many

years before being introduced in the finance literature by Frey and McNeil

(2003) and Li (2000). They have since been very popular in investigating the

dependence of financial time series of various assets classes and frequencies,

an excellent reference for which is available in McNeil et al. (2015).

An N-dimensional copula C(u1,… ,uN) is a distribution in the unit hyper-

cube [0,1]N with uniform margins. Sklar (1959) showed that every joint
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distribution F of the random vector X¼ (x1,… ,xN) with margins F1(x1), … ,

FN(xN) can be represented as:

F x1,…, xNð Þ¼C F1 x1ð Þ,…, FN xNð Þð Þ (17)

for a copula C, which is uniquely determined in [0,1]N for distributions F
under absolutely continuous margins and obtained as:

C u1,…, uNð Þ¼F F�1
1 u1ð Þ,…, F�1

N uNð Þ� �
: (18)

The density function may conversely be obtained as:

f r1,…, rNð Þ¼ c F1 r1ð Þ,…, FN rNð Þð Þ
YN
i¼1

fi rið Þ, (19)

where fi are the marginal densities and c is the density function of the copula

given by:

c u1,…, uNð Þ¼ f F�1
1 u1ð Þ,…, F�1

N uNð Þ� �
QN
i¼1

fi F�1
i uið Þ� � , (20)

with Fi
�1 being the quantile function of the margins. A key property of copu-

las is their invariance under strictly increasing transformation of the compo-

nents of r, so that, for example, the copula of the multivariate Normal

distribution FN(μ,H) is the same as that of FN(0,R ) where R is the correlation

matrix implied by the covariance matrix, and the same for the copula of the

multivariate Student distribution reviewed in detail in Demarta and McNeil

(2005). The density of the Normal copula, of the N-dimensional random

vector r in terms of the correlation matrix R, is then:

c u;Rð Þ¼ 1

Rj j1=2
e�

1
2
u0 R�1�INð Þu, (21)

where ui¼Φ�1(Fi(ri)) for i¼1,… , N, representing the quantile of the proba-

bility integral transformed (PIT) values of r. Because the Normal copula can-

not account for tail dependence, the Student copula has been more widely

used for modeling of financial assets. The density of the Student copula, of

the N-dimensional random vector r in terms of the correlation matrix R and

shape parameter ν, can be written as:

c u; R, νð Þ¼
Γ

ν +N

2

� 	
Γ

ν

2

� �� �N
1 + ν�1u0R�1u
� �� ν+Nð Þ=2

Rj j1=2 Γ
ν +N

2

� 	� 	N

Γ
ν

2

� �QN
i¼1

1 +
u2i
ν

� 	� ν+ 1ð Þ=2 , (22)

where ui ¼ tν
�1 F ri; νð Þð Þ, where tν

�1 is the quantile function of the Student

distribution with shape parameter ν.
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While Pearson’s product moment correlation totally characterizes the

dependence structure in the multivariate Normal case, where zero correlation

also implies independence, it can only characterize the ellipses of equal den-

sity when the distribution belongs to the elliptical class. In the latter case for

instance, with a distribution such as the multivariate Student, the correlation

cannot capture tail dependence determined by the shape parameter. Further-

more, it is not invariant under monotone transformations of original variables,

making it inadequate in many cases. An alternative measure which does not

suffer from this is Kendall’s τ (see Kruskal (1958)) based on rank correlations

which makes no assumption about the marginal distributions but depends only

on the copula C. It is a pairwise measure of concordance calculated as:

τ ri, rj
� �¼ 4

ð1
0

ð1
0

C ui, uj
� �

dC ui, uj
� ��1: (23)

For elliptical distributions, Lindskog et al. (2003) proved that there is a

one-to-one relationship between this measure and Pearson’s correlation

coefficient ρ given by:

τ ri, rj
� �¼ 1�

X
x2ℝ

 ri ¼ rf g2
� � !

2

π
arcsinρij, (24)

which under certain assumptions (such as in the case of the multivariate

Normal) simplifies to 2
π arcsinρij.

h Kendall’s τ is also invariant under mono-

tone transformations, making it rather more suitable when working with none-

lliptical distributions.i

The univariate density estimation and subsequent PIT transformation of

the margins provide for a great deal of flexibility, with the possibility of

adopting a parametric, semiparametric, or empirical approach. The first

method, whereby the margins and transformations are performed using a para-

metric density, was termed the Inference Functions for Margins by Joe (1997)

who also established the asymptotic theory for it. The semiparametric method

uses a distribution which couples together tails fitted by the generalized

Pareto distributionj with a kernel-based interior and described in Davison

and Smith (1990), and offers a rather flexible method for capturing fat tails

hAnother popular measure is Spearman’s correlation coefficient ρs which under Normality equates

to 6
π arcsin

ρij
2
, and it is usually very close in result to Kendall’s measure.

iA useful application arises in the case of the multivariate Student distribution, where a maximum

likelihood approach for the estimation of the correlation matrix R becomes computationally

unfeasible for large dimensions. In this case, an alternative approach is to estimate the sample

counterpart of Kendall’s τ from the transformed margins and then translate that into the correla-

tion matrix as detailed in (24), providing for a method of moments type estimator.
jFor which a Probability Weighted Moment (PWM) approach exists which is quite robust (see, for

example, Hosking et al. (1985)).
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observed in practice.k Finally, the empirical approach, also called pseudo-

likelihood, was investigated by Genest et al. (1995) and asymptotic properties

established under the assumption that the sequence of r is i.i.d. The ability to

estimate the model in two steps together with the option of choosing different

distributions for each of the margins makes for a very computationally tracta-

ble and flexible system.

The extension of the static copula approach to dynamic models, and in

particular GARCH, was investigated by Patton (2006) who extended and

proved the validity of Sklar’s theorem for the conditional case and discussed

further in Section 5. The copula R package of Hofert et al. (2018) provides an

extensive set of methods for working with commonly used elliptical, Archi-

medean, nested Archimedean, extreme-value and other copula families, as

well as their rotations, mixtures, and asymmetrizations.

4 Generalized Orthogonal GARCH models

Factor ARCH (F-ARCH) models, originally introduced by Engle et al. (1990),

and further discussed in Engle (2009), are based on the assumption that

returns are generated by a set of unobserved underlying factors that are con-

ditionally heteroscedastic, while the dependence framework is nondynamic

as a consequence of large-scale estimation in a multivariate setting. The main

advantage of this and related factor-type models is that it avoids estimating

off-diagonal components of the MGARCH parameter matrices, thus avoiding

the curse of dimensionality. In the F-ARCH model, the factors are assumed to

be correlated which may be undesirable if it turns out that they represent gen-

uinely different common components driving the returns. In the Orthogonal

(O-) and Generalized Orthogonal (GO-) GARCH models it is instead assumed

that the returns rt are linked to a set of unobserved factors ft through a linear

invertible map A. Consider a set of N assets whose returns rt are observed for t
periods, with conditional mean E rtj Ft�1½ � ¼ μt, as in (1). The orthogonal-type

GARCH models map rt�μt onto a set of uncorrelated factors ft (or “structural
errors”),

rt ¼ μt + εt t¼ 1,…,T (25)

εt ¼ Af t: (26)

Differences between the models are based on the specification of the linear

map A. In the O-GARCH model of Ding (1994) and Alexander (2001), A is

an orthogonal matrix, estimated from unconditional information (full sample

correlation matrix), so that ft¼A0εt is the principal component vector with

orthogonal factors and A¼Λ1/2PΣ1/2 with Σ¼diag{σ1,… ,σN} calculated

from sample information, Λ the N�N diagonal matrix of eigenvalues of the

kThis is implemented in the spd package of Ghalanos (2012).
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unconditional correlation matrix, and P the associated orthogonal eigenvec-

tors.l The conditional covariance matrix, Ht �E rt�μtð Þ rt�μtð Þ0j Ft�1

� �
, of

the returns is given by:

Ht ¼AVtA
0, (27)

where Vt ¼Et�1 f tf t
0ð Þ ¼ diag v2f1, t ,…, v2ft,N

n o
are the factor conditional var-

iances which are assumed to follow univariate GARCH-type processes. A key

benefit of this approach is that the number of factors can be restricted to be less

than N, with a choice of heuristic or more complex methods for determining

the cutoff dimension (see for instance Marchenko and Pastur (1967)). However,

because one can always rediscover uncorrelated sources by certain statistical

transformations, O-GARCH models suffer from identification issues in the

presence of weakly correlated data as a result of using only unconditional infor-

mation. As Van der Weide (2002) notes, orthogonal matrices form only a very

small subset of all possible linear maps and indentification is only guaranteed

when the variances of the transformed components are unique. In the GO-

GARCH model, the linear map A is decomposed as:

A¼Λ1=2PU, (28)

where U is an orthogonal matrix restricted to have determinant 1, and coin-

cides with the O-GARCH model when U is the identity matrix. The calcula-

tion of U requires the use of conditional information, and while whitening is

not sufficient for independence, it is nevertheless an important step in the pre-

processing of the data in the search for independent factors, since by exhaust-

ing the second-order information contained in the sample covariance matrix it

makes it easier to infer higher order information, reducing the problem to one

of rotation (orthogonalization). The factors have the following specification:

f t ¼V
1=2
t zt, (29)

where Vt ¼E f tf
0
tj Ft�1

� �
is a diagonal matrix with elements (vf1,t

2 ,… ,vft,N
2 )

which are the conditional variances of the factors, and zt¼ (z1t,… , zNt)
0. The

random variable zit is independent of zjt�s 8 j 6¼ i and 8s, with E zitj Ft�1½ � ¼ 0

and E[zi
2]¼1, this implies that E f tj Ft�1½ � ¼ 0 and E εtj Ft�1½ � ¼ 0. The factor

conditional variances, vfi,t
2 , can be modeled as a GARCH-type process. The

unconditional distribution of the factors is characterized by:

E f t½ � ¼ 0 E f t f t
0½ � ¼ IN (30)

which, in turn, implies that:

E εt½ � ¼ 0 E εtε
0
t

� �¼AA0: (31)

lWhere P satisfies P0¼P�1, P0P¼ IN, and PP0¼ IN.
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It follows that the returns can be expressed as:

rt ¼ μt +Af t: (32)

The conditional covariance matrix, Ht|Ft�1, of the returns is the same as in

(27). In the original paper of of Van der Weide (2002), U was parameterized

by means of rotation matrices with components of the Euler angles. This

follows from the fact that every N-dimensional orthogonal matrix U with

det(U)¼1 can be represented as a product of
N N�1ð Þ

2
rotation matrices (U):

U¼
Y
i>j

Gij θij
� �

, �π<θij<π, (33)

where Gij(θij) performs a rotation in the plane spanned by the ith and jth
vectors of the canonical bases of ℝN over the angle θij. To illustrate this,

consider the hypothetical example in Van der Weide (2002) where Uθ has

the following two-dimensional map:

Uθ ¼ 1 0

cosθ sinθ

� 	
(34)

where θ measures the degree to which the uncorrelated components are

mapped in the same direction. When θ¼0, the map is not invertible giving

rise to perfect correlation between the observed variables, whereas when

θ¼1/2π they are completely uncorrelated. Taking the conditional variance

of the components to be (v1,t,v2,t), their ratio zt ¼ v1, t
v2, t

and strictly positive, then

the correlation ρt can be expressed as:

ρt ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + zt tan2θ
p : (35)

Since zt will have finite lower and upper bounds in finite samples, then it

follows that the conditional correlation ρt will also be bounded. The illustra-

tion also shows that even though U is constant, it still gives rise to time-

varying correlations which increase on average when the components are

mapped in the same direction.

A number of ways have been proposed to estimate U. In Van der Weide

(2002), a joint maximum likelihood approach was used to estimate all para-

meters in the model, making the procedure computationally unfeasible for

anything other than a few assets. Alternative approaches such as nonlinear

least squares and method of moments for the estimation of U have been pro-

posed in van der Weide (2004) and Boswijk and van der Weide (2011),

respectively. Alternatively, the matrix U can be estimated in a separate step

by Independent Component Analysis (ICA) as in Broda and Paolella (2009)

and Zhang and Chan (2009) which leads to fast estimation of very large

systems. ICA is a computational method for separating multivariate mixed sig-

nals, y¼ [r1,… ,rN]
0, into additive statistically independent and non-Gaussian
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components, s¼ [s1,… ,sN]
0, such that y¼Bs. The independent source vector,

s2ℝN, is assumed to be sampled from a joint distribution f(s ),

f s1,…, sNð Þ¼ f s1ð Þf s2ð Þ…f sNð Þ, (36)

where s is not directly observable, nor is the particular form of the individual

distributions, f(si), usually known.m This forms the key property of indepen-

dence, namely, that the joint density of independent signals is simply the

product of their margins. The estimate of the linear mixing matrix B can be

obtained via estimation methods based on a choice of criteria for measuring

independence which include the maximization of non-Gaussianity through

measures such as kurtosis and negentropy, minimization of mutual informa-

tion, likelihood, and infomax. This follows from the Central Limit Theorem

which states that mixtures of independent variables tend to become more

Gaussian in distribution when they are mixed linearly, hence maximizing

non-Gaussianity leads to independent components (see Hyvarinen and Oja

(2000) for more details).n The FastICA of Hyvarinen and Oja (2000) is a very

efficient batch algorithm which can be used to estimate the components either

one at a time by finding maximally non-Gaussian directions or in parallel by

maximizing non-Gaussianity or the likelihood. It should be noted that since

ICA is a linear noiseless model,o the implication for this two-stage estimation

in the GO-GARCH model is that uncertainty plays no part in the derivation of

U and hence does not affect the standard errors of the independent factors.

The fast estimation procedure of the GO-GARCH model proposed by

Broda and Paolella (2009) and Zhang and Chan (2009) can be summarized

as follows. First, the FastICA algorithm is applied to the whitened data

zt ¼ bΣ�1=2bεt , where bΣ 1=2
is obtained from the eigenvalue decomposition of the

OLS residuals covariance matrix, returning an estimate of ft. Second, because
of the assumption of independence, the likelihood function of the GO-GARCH

model is greatly simplified so that the conditional log-likelihood function

is expressed as the sum of the individual log-likelihoods derived from the

mIf the distributions are known the problem reduces to a classical maximum likelihood parametric

estimation.
nEstimation by minimization of the mutual information was first proposed by Comon (1994) who

derived a fundamental connection between cumulants, negentropy, and mutual information. The

approximation of negentropy by cumulants was originally considered much earlier in Jones and

Sibson (1987), while the connection between infomax and likelihood was shown in Pearlmutter

and Parra (1997), and the connection between mutual information and likelihood was explicitly

discussed in Cardoso (2000).
oAccording to Hyvarinen and Oja (2000), this can be partially justified by the fact that most of the

research on ICA has also concentrated on the noise-free model and it has been shown with over-

whelming empirical support across a number of different disciplines to be a very good approxima-

tion to a more complex model with noise added. As the estimation of the noise-free model has

proved to be a very difficult task in itself, the noise-free model may also be considered a tractable

approximation of the more realistic noisy model.
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conditional marginal densities of the factors, plus a term for the matrix A,
estimated in the first step by the ICA algorithm:

L bεt θ,Ajð Þ¼ T log A�1


 

+XT

t¼1

XN
i¼1

log F f itj θið Þð Þ, (37)

where θ is the vector of unknown parameters in the marginal densities, for

some distribution F. In the model of Van der Weide (2002), this distribution

is the multivariate Normal, whereas in Broda and Paolella (2009) the multi-

variate affine GH distribution (maGH) of Schmidt et al. (2006) is used which

is an alternative nonelliptical representation of the GH distribution with inde-

pendent margins allowed to take separate values for skew and shape.p Based

on the parametrization of Schmidt et al. (2006), the vector of returns rt, which
is expressed as a linear transformation of independent factors ft2ℝN as in

(32), is conditionally maGH distributed

rt|Ft�1 �maGHN μt,Ht,ωð Þ, (38)

where ω¼ (ω1,… ,ωN)
0 and ωi¼ (λi,αi,βi)

0 represent the conditional shape

and skew parameter vectors, respectively. In the model of Broda and

Paolella (2009), which they term the Conditionally Heteroscedastic Indepen-

dent Component Analysis of Generalized Orthogonal GARCH (CHICAGO),

the standardized random variables zit are assumed to be conditionally

distributed as a standardized GH as discussed in (16), with a location-scale

invariant parameterization such as the (ρ, ζ) or (ξ, χ).q An interesting property

of the GO-GARCH model, arising from its affine representation, is the ability

to identify closed-form expressions for the conditional coskewness and cokur-

tosis of asset returns.r The conditional comoments of rt of order 3 and 4 are

represented as tensor matrices,

M3
t ¼AM3

f , t A
0 � A0ð Þ,

M4
t ¼AM4

f , t A
0 � A0 � A0ð Þ, ’

(39)

where Mf,t
3 and Mf,t

4 are the (N�N2) conditional third comoment matrix and

the (N�N3) conditional fourth comoment matrix of the factors, respectively.

Mf,t
3 and Mf,t

4 are given by

pAs Schmidt et al. (2006) point out, the margins of a random vector that is GH distributed are not

mutually independent for some choice of the scaling matrix. Echoing similar observations,

Ferreira and Steel (2006) developed a multivariate skew-Student density with independent

margins.
qSee Section 2.3.5 of the rugarch R package vignette of Ghalanos (2018) for details about the

generalized hyperbolic distribution.
rIt is possible to go beyond these moments, but the notation becomes cumbersome and the benefits

are likely to be marginal.
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M3
f , t ¼ M3

1, f , t,M
3
2, f , t,…, M3

N, f , t

h i
(40)

M4
f , t ¼ M4

11, f , t,M
4
12, f , t,…,M4

1N, f , t|…|M4
N1, f , t,M

4
N2, f , t,…,M4

NN, f , t

h i
, (41)

where Mk,f,t
3 , k¼1,… , N and Mkl,f,t

4 , k, l¼1,… , N are the (N�N) submatrices

of Mf,t
3 and Mf,t

4 , respectively, with elements

m3
ijk, f , t ¼E fi, tfj, tfk, tj Ft�1

� �
m4

ijkl, f , t ¼E fi, tfj, tfk, tfl, tj Ft�1

� �
:

Since the factors fit can be decomposed as zit
ffiffiffiffiffi
hit

p
, and given the assump-

tions on zit, then E fi, tfj, tfk, tj Ft�1

� �¼ 0. It is also true that for i 6¼ j 6¼k 6¼ l

E fi, tfj, tfk, tfl, tj Ft�1

� �¼ 0 and when i¼ j and k¼ l,

E fi, tfj, tfk, tfl, tj Ft�1

� �¼ v2itv
2
kt:

Thus, under the assumption of mutual independence, all elements in the

conditional comoments matrices with at least three different indices are zero.

Finally, standardizing the conditional comoments one obtains conditional cos-

kewness and cokurtosis of rt,

Sijk, t ¼
m3

ijk, t

hi, thj, thk, t
� � ,

Kijkl, t ¼
m4

ijkl, t

hi, thj, thk, thl, t
� � , (42)

where Sijk,t represents the asset coskewness between elements i, j, k of rt, hi,t the
standard deviation of ri,t, and in the case of i¼ j¼k represents the skewness

of asset i at time t, and similarly for the cokurtosis tensor Kijkl,t. Two natural

applications of return comoments matrices are Taylor-type utility expansions

in portfolio allocation and higher moment news impact surfaces (see, for

example, Chapter 5 of Jondeau et al. (2007)).s

An important question that can also be addressed in this framework is the

determination of the portfolio conditional density, an issue of vital importance

in risk management application. For instance, the N-dimensional NIG distri-

bution which arises as a special case of the GH distribution when λ¼ �0.5

is closed under convolution and particularly suited to problems in portfolio

and risk management where a weighted sum of assets is considered. However,

when the distributional parameters α and β, representing skew and shape, are

allowed to vary per asset, as will likely be the case unless restrictions are

imposed, this property no longer holds and numerical methods such as that

sAn interesting extension with time varying dynamics for the skew and shape parameters, follow-

ing the extension initially proposed by Hansen (1994), is discussed in the IFACD model of

Ghalanos et al. (2015).
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of the Fast Fourier Transform (FFT) are needed to derive the weighted density

by inversion of the characteristic function of the scaled parameters.t In the

case of the NIG distribution, this is greatly simplified because of the represen-

tation of the modified Bessel function for the GIG shape index (λ) with value

�0.5 which was derived in Barndorff-Nielsen and Bläsild (1981); otherwise

the characteristic function of the GH involves the evaluation of the modified

Bessel function with complex arguments, which complicates the inversion.

Let Rt
p be the portfolio return formed from a set of allocations weights wt,

Rp
t ¼w0

trt ¼w0
tmt + w0

tAV
1=2
t

� �
zt, (43)

where Vt
1/2 is estimated from the GARCH dynamics of ft. The model allows to

express the portfolio variance, skewness, and kurtosis in closed form,

σ2p, t ¼w0
tHtwt,

sp, t ¼ w0
tM

3
t wt � wtð Þ

w0
tHtwt

� �3=2 ,

kp, t ¼ w0
tM

4
t wt � wt � wtð Þ
w0
tHtwt

� �2 ,

(44)

where Ht and Mt
3 and Mt

4 are derived in (27) and (39), respectively. The port-

folio conditional density may be obtained via the inversion of the characteris-

tic function through the FFT method as in Chen et al. (2007) or by simulation.

Provided that zt is a N-dimensional vector of innovations, marginally

distributed as one-dimensional standardized GH, the density of weighted asset

return, witrit, is

wi, tri, t ¼ wi, tmi, t +wi, tzi, tð Þ�GHλi wi, tμi +wi, tmi, t, wi, tj jδi, αi
wi, tj j ,

βi
wi, tj j

� 	
, (45)

where w0
t is equal to w0

tAV
1=2
t , and wi, t is the ith element of wt, mi,t the condi-

tional mean of the ith underlying asset.u In order to obtain the density of the

portfolio, the individual weighted densities of zi,t must be summed. The char-

acteristic function of the portfolio return Rt
p is

φR uð Þ¼
Yn
i¼1

φwZi uð Þ

¼ exp iu
Xd
j¼1

μj +
Xd
j¼1

λj
2
log

γ

υ

� �
+ log

Kλj δj
ffiffiffi
υ

p� �
Kλj δj

ffiffiffi
γ

p� � ! ! !
, (46)

tThis effectively means that the weighted density is not necessarily NIG distributed.
uHere, μ is the distributional location parameter in the (α,β,δ,μ) parameterization of the GH dis-

tribution. See Prause (1999) for details.
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where γ¼ α2j �β
2

j , υ¼ α2j � βj + iu
� �2

, and αj, βj, δj, μj
� �

are the scaled versions

of the parameters (αi,βi,δi,μi) as shown in (45). The density may be accurately

approximated by FFT as follows,

fR rð Þ¼ 1

2π

ð +∞

�∞
e �iurð ÞφR uð Þdu� 1

2π

ðs
�s

e �iurð ÞφR uð Þdu: (47)

Once the density is formed by FFT inversion of the characteristic function,

distribution, quantile, and sampling functions can be created.

The rmgarch R package of Ghalanos (2015b) implements all methods

and properties described in this section for working with the GO-GARCH

model with either a multivariate Normal or multivariate affine GH distribu-

tion, while the gogarch package of Pfaff (2009) implements maximum like-

lihood, method of moments, nonlinear least squares, and ICA estimation

methods under the multivariate Normal. As a simple illustration we show in

code Snippet 1 how one can define a GO-GARCH model based on the ICA

method in the rmgarch package and estimate it. Note the ability to use par-

allel computational resources (makeCluster) to estimate the univariate

GARCH model of the independent margins following the estimation of the

mixing matrix A. Table 2 provides the methods and functions available for

working with the model which include forecasting, filtering,v simulation,

visual inference, and computation of the weighted density, among others.

We refer the reader to the documentation of the package for more details,

as well as the documentation of the gogarch package for examples and meth-

ods available.

5 Conditional correlation GARCH models

Conditional correlation models are founded on a decomposition of the condi-

tional covariance matrix into conditional standard deviations and correlations,

so that they may be expressed in such a way that the univariate and

1 library(rmgarch)
2 data("dji30ret")
3 cl<-makeCluster (4)
4 spec <-gogarchspec(mean.model=list(model="AR"), lag=1,
5 variance.model=list(model="eGARCH", variance.targeting=TRUE),
6 distribution.model="manig", ica="fastica")
7 model <-gogarchfit(spec , data=dji30ret [,1:4], cluster=cl)
8 stopCluster(cl)

SNIPPET 1 GO-GARCH example.

vFiltering new data with an existing set of parameters is equivalent to a 1-step ahead forecast.
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TABLE 2 rmgarch GO-GARCH model functions and methods

Functions/

methods Description

Input

classes

gogarchspec Model specification NA

gogarchfit Model estimation 1

gogarchforecast 1- to n-ahead forecasts 2

gogarchsim Simulation 2,3

gogarchfilter 1-ahead ahead filtering 2,3

convolution Calculates the weight density by FFT 2,3,4,5,6

fitted Conditional mean equation fitted/forecasted
values

2,3

residuals Conditional mean equation residuals 2,3

coef Coefficients of model 2,3

show Summary of output 2,3,4,5,6

nisurface News impact surface 2,3

gportmoments Geometric portfolio moments 2,3,4,5,6

rcor Conditional correlations 2,3,4,5,6

rcov Conditional covariance 2,3,4,5,6

sigma Conditional margin volatilities 2,3,4,5,6

rcoskew Conditional coskewness 2,3,4,5,6

rcokurt Conditional cokurtosis 2,3,4,5,6

betacovar Conditional covariance beta to a benchmark 2,3

betacoskew Conditional coskewness beta to a benchmark 2,3

betacokurt Conditional cokurtosis beta to a benchmark 2,3

dfft FFT density function (interpolated) 7

pfft FFT distribution function (interpolated) 7

qfft FFT quantile function (interpolated) 7

nportmoments First four conditional portfolio moments from FFT
interpolated density using quadrature integration

7

gogarchroll Rolling estimation/forecasting 1

Note: The table provides a list of the methods and functions for working with GO-GARCH models
based on the ICA transformation in the rmgarch package. The input classes are as follows:
1¼goGARCHspec, 2¼goGARCHfit, 3¼goGARCHfilter, 4¼goGARCHforecast, 5¼goGARCHsim,
6¼goGARCHroll, 7¼goGARCHfft, NA¼not a method.
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multivariate dynamics may be separated. In the constant conditional correla-

tion (CCC) model of Bollerslev (1990), the covariance matrix can be decom-

posed into

Ht ¼DtRDt ¼ ρij
ffiffiffiffiffiffiffiffiffiffiffi
hiithjjt

p
, (48)

where Dt ¼ diag
ffiffiffiffiffiffiffiffiffi
h11, t

p
,…,

ffiffiffiffiffiffiffiffiffiffi
hNN, t

p� �
, and R is the positive definite CCC

matrix. The conditional variances, hii,t, which can be estimated separately,

are univariate GARCH processes:

ht ¼ω+
Xp
i¼1

Aiεt�i ⊙ εt�i +
Xq
i¼1

Biht�i, (49)

where ω2ℝN, Ai and Bi are N�N diagonal matrices, and ⊙ denotes the

Hadamard operator. The conditions for the positivity of the covariance matrix

Ht are that R is positive definite, and the elements of ω and the diagonal ele-

ments of the matrices Ai and Bi are positive. In the extended CCC model

(E-CCC) of Jeantheau (1998), the assumption of diagonal elements on Ai

and Bi was relaxed, allowing the past squared errors and variances of the

series to affect the dynamics of the individual conditional variances, and

hence providing for a much richer structure, albeit at the cost of an increase

in parameters.

The decomposition in (48) allows the log-likelihood at each point in time

(LLt), in the multivariate Normal case, to be expressed as

LLt ¼ 1

2
log 2πð Þ+ log Htj j+ ε0tH�1

t εt
� �

¼ 1

2
log 2πð Þ+ log DtRDtj j+ ε0tD�1

t R�1D�1
t εt

� �
¼ 1

2
log 2πð Þ+ 2log Dtj j+ log Rj j+ z0tR�1zt
� �

,

(50)

where zt¼Dt
�1εt. This can be described as a term (Dt) for the sum of the uni-

variate GARCH model likelihoods, a term for the correlation (R), and a term

for the covariance which arises from the decomposition.

The assumption of constant correlation may in practice be unrealistic.

When this assumption does not hold, a class of models termed Dynamic Con-

ditional Correlation (DCC), due to Engle (2002) and Tse and Tsui (2002), and

discussed at length in Engle (2009), allow for the correlation matrix to be time

varying with dynamics, such that

Ht ¼DtRtDt, (51)

where the time-varying correlation matrix, Rt, must be constrained to be posi-

tive definite. The most popular of these DCC models, due to Engle (2002),

achieves this constraint by modeling a proxy process, Qt as:
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Qt ¼Q + a zt�1z
0
t�1�Q

� �
+ b Qt�1�Q
� �

¼ 1�a�bð ÞQ + azt�1z
0
t�1 + bQt�1

, (52)

where a and b are nonnegative scalars controlling the reaction to shocks and

persistence, respectively, with the condition that a+b<1 imposed to ensure

stationarity and positive definiteness of Qt. Q is the unconditional matrix of

the standardized errors zt which enters the equation via the covariance target-

ing part 1�a�bð ÞQ, and Q0 is positive definite. The correlation matrix Rt

is then obtained by rescaling Qt such that,

Rt ¼ diag Qtð Þ�1=2Qt diag Qtð Þ�1=2: (53)

The log-likelihood function in (49) can be decomposed more clearly

into a volatility and correlation component by adding and subtracting

εt
0Dt

�1Dt
�1εt¼ zt

0zt, so that:

LL¼ 1

2

XT
i¼1

N log 2πð Þ+ 2log Dtj j+ log Rtj j+ z0tR�1
t zt

� �

¼ 1

2

XT
i¼1

N log 2πð Þ+ 2log Dtj j+ ε0tD�1
t D�1

t εt
� �

�1

2

XT
i¼1

z0tzt + log Rtj j+ z0tR�1
t z0t

� �
¼ LLV θ1ð Þ+ LLR θ1, θ2ð Þ,

(54)

where LLV(θ1) is the volatility component with parameters θ1, and

LLR(θ1,θ2) the correlation component with parameters θ1 and θ2. In the

Multivariate Normal and Laplace cases, the volatility component is the

sum of the individual GARCH likelihoods which can be jointly maximized

by separately maximizing each univariate model. In other distributions, such

as the multivariate Student discussed in Section 3.2, where additional distri-

butional parameters must be the same for all margins for that distribution to

be closed under summation and affine linear transformations, the estimation

must be performed in one step. The seperability of the likelihood into two

parts, together with the use of covariance targeting, means that very large-

scale systems may be estimated quickly and in parallel. However, as the

number of variables grows, it becomes questionable whether the scalar

model can adequately capture the complex dynamics of the underlying

process.
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In Cappiello et al. (2006), the scalar DCC is generalized to include asym-

metry and lagged interactions in the form of the Asymmetric Generalized

DCC (AGDCC) where the dynamics of Qt are:

Qt ¼ Q�A0QA�B0QB �G0Q�
G

� �
+A0zt�1z

0
t�1A

+B0Qt�1B+G0z�t z
0�
t G,

(55)

where A, B, and G are the N�N parameter matrices, zt
� are the zero-threshold

standardized errors which are equal to zt when less than zero and zero other-

wise, Qt and Q
�
the unconditional matrices of zt and zt

�, respectively. Because
of its high dimensionality, restricted models have been used including the sca-

lar, diagonal, and symmetric versions with the specifications nested being

l DCC: G¼ 0½ �, A¼ ffiffiffi
a

p
,B¼ ffiffiffi

b
p

l ADCC: G¼ ffiffiffi
g

p
,A¼ ffiffiffi

a
p

,B¼ ffiffiffi
b

p
l GDCC: G¼ [0].

Covariance targeting in such high-dimensional models where the parameters

are no longer scalars creates difficulties in imposing positive definiteness during

estimation while at the same time guaranteeing a global optimum solution. More

substantially, Aielli (2013) points out that the estimation of Qt as the empirical

counterpart of the correlation matrix of zt in the DCC model is inconsistent since

E ztzt½ � ¼E Rt½ � 6¼E Qt

� �
. He proposes instead the cDCC model which includes a

corrective step which eliminates this inconsistency, albeit at the cost of targeting

which is no longer allowed. Whether the identified inconsistency is significant

enough to merit widespread adoption is still an open question, since the elimi-

nation of the two-step approach also eliminates most of the advantages of using

a DCC-type model over the BEKK, a point emphasized by Caporin and McAleer

(2012) who questioned the merits of the DCC model over the BEKK model with

covariance targeting which has more consistent properties.

Other notable DCC extensions have included the Smooth and double Smooth

Transition Conditional Correlationmodels of Silvennoinen and Teräsvirta (2009)
and the Regime Switching Dynamic Correlation of Pelletier (2006). An interest-

ing compromise in the modeling of the dynamics in the AGDCC context was

proposed by Billio et al. (2006) in terms of a block-diagonal structure so that

the dynamics among groups of highly correlated securities is the same. The

model may parsimoniously be represented as:

Qt ¼ cc0 +
XP
j¼1

Igaj
� �

Igaj
� �0⊙ εt�jε

0
t�j +

XQ
j¼1

Igbj
� �

Igbj
� �0⊙Qt�j, (56)

where Ig is the assets�groups logical matrix of group exclusive membership.

This is a very flexible representation allowing a large range of representations,

from a single group driving all dynamics (like the DCC), to each asset having

its own group (like the GDCC). Unfortunately, without specialized restrictions

correlation targeting is lost, but the model still remains feasible for a not too
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large number of groups. Finally, Kroner and Ng (1998) formulated an omni-

bus model which nests the VEC, BEKK, F-GARCH, CCC, and DCC, and

termed the Generalized Dynamic Covariance (GDC) Model:

Ht ¼DtRtDt +Φ⊙Θt, (57)

where Dt¼dij,t, dii, t ¼
ffiffiffiffiffiffiffi
θii, t

p 8i, and dij,t¼0 8 i 6¼ j, ⊙ is the Hadamard opera-

tor, Rt¼ρij,t, and Θ¼θij,t following BEKK dynamics as in (5). Depending on

the parameter restrictions, various models arise such as the BEKK model when

R is diagonal and Φ with off-diagonal values of 1. Other restrictions, leading to

othermodels, are given in Proposition 1 ofKroner andNg (1998). The authors also

describe in the same paper an asymmetric version of this model by adjusting the

BEKK dynamics in θij,t to incorporate an asymmetry term for the zero-threshold

shocks, which is a natural generalization from such univariate models as the

GJR-GARCHandT-GARCHofGlosten et al. (1993) and Zakoian (1994), respec-

tively. Like in the case of the family GARCH model of Hentschel (1995) where

comparison of nested models was made via the news impact curve of Engle and

Ng (1993), the authors generalize the curve to a surface function providing for

some revealing visual insights into the different multivariate dynamics.

An interesting extension, which makes use of the flexible decomposition

of the covariance matrix given in (48), is in the use of copula distributions

introduced in Section 3.5. The extension of the static copula approach to

dynamic models, and in particular GARCH, was investigated by Patton

(2006) who extended and proved the validity of Sklar�s theorem for the condi-

tional case. One simple direction is to introduce correlation dynamics to a

copula distribution, with different marginal dynamics and distributions. Let

the n-dimensional random vector of asset returns rt¼ rit, … , rNt follow a cop-

ula GARCH model with joint distribution given by:

F rtj μt, htð Þ¼C F1 r1tj μ1t, h1tð Þ,…, FN rNtj μNt, hNtð Þð Þ (58)

where Fi, i¼1,… , N is the conditional distribution of the ith marginal series

density, C is the N-dimensional copula. The conditional mean E[rit jℑt�1]¼μit
and the conditional variance hit follows, for simplicity of exposition, a

GARCH(1,1) process:

rit ¼ μit + εit,εit ¼
ffiffiffiffiffi
hit

p
zit, (59)

hit ¼ω + αiε
2
t�1 + βihit�1 (60)

where zit are i.i.d. random variables which conditionally follow some distribu-

tion with the requisite properties. Consider a Student copula with conditional

density at time t is given by:

ct uit,…, uNt Rt, νjð Þ¼ ft F
�1
i uit νjð Þ,…, F�1

i uNt νjð Þ Rt, ηj� �
QN
i¼1

fi F�1
i uit νjð Þ νj� � , (61)
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where uit¼Fit(rit jμit,hit,ξi) is the probability integral transform of each series

by its conditional distribution Fit with any additional distributional parameters

represented by ξi and estimated via the first-stage GARCH process, Fi
�1(uit jν)

represents the quantile transformation of the uniform margins subject to the

common shape parameter of the multivariate Student density, ft(.jRt,ν) is

the multivariate density of the Student distribution with conditional correla-

tion Rt and shape parameter ν, and fi(.jν) is the univariate margins of the mul-

tivariate Student distribution with common shape parameter ν. The dynamics

of Rt are assumed to follow an AGDCC model, though it is more common to

use a restricted scalar DCC model for not too large a number of series. The

joint density of the two-stage estimation is then given by:

f rt μt, ht,Rt, νjð Þ¼ ct uit,…, uNt Rt, νjð Þ
YN
i¼1

1ffiffiffiffiffi
hit

p fit zit ξijð Þ (62)

where the likelihood is composed of a part due to the joint DCC copula

dynamics and a part due to the first-stage univariate GARCH dynamics.

A DCC-Student Copula model with Student margins was estimated by

Ausin and Lopes (2010) using a Bayesian setup who used this to study a risk

management application for the DAX and Dow Jones indices.

The rmgarch R package includes the CCC, DCC, aDCC, and Flexible DCC

models with multivariate Normal, Laplace, and Student distributions, as well as

the Copula Normal and Student. The bayesDccGarch of Fiorucci et al. (2016)

provides a Bayesian estimation framework for DCC models described in

Fioruci et al. (2014), and the ccgarch package of Nakatani (2008) has estimation,

simulation, and testing funtions for the CCC, DCC, and extended CCC models

and discussed in Nakatani and Teräsvirta (2009). As a simple illustration we

show in code Snippet 2 how one can define a DCC model in the rmgarch

package and estimate it. Note again the ability to use parallel computational

1 library(rmgarch)
2 data("dji30ret")
3 cl<-makeCluster (4)
4 uspec = multispec(list(
5 ugarchspec(mean.model=list(armaOrder=c(1,0)),variance.model=

list(model="eGARCH")),
6 ugarchspec(mean.model=list(armaOrder=c(1,1)),variance.model=

list(model="sGARCH")),
7 ugarchspec(mean.model=list(armaOrder=c(2,0)),variance.model=

list(model="gjrGARCH")),
8 ugarchspec(mean.model=list(armaOrder=c(1,0)),variance.model=

list(model="csGARCH"))
9 ))

10 spec <-dccspec(uspec , model = "DCC", distribution="mvnorm")
11 model <-dccfit(spec , data=dji30ret [ ,1:4])
12 stopCluster(cl)

SNIPPET 2 DCC example.

220 PART II Multivariate Models



resources (makeCluster) to estimate the univariate GARCH models in the first-

stage prior to the second-stage estimation of the joint dynamics. Table 3 provides

the methods and functions available for working with the model which include

forecasting, filtering, simulation, and visual inference, among others. We refer

the reader to the documentation of the package for more details, and Section 7

of Engle et al. (1990) for the approximation to multistep ahead forecasting.

6 BIP and GAS MGARCH models

The estimated covariance updating equation of MGARCH models is mostly

used as a filter to predict the conditional covariance based on the observed

return series. The already discussed MGARCH models tend to use the same

filter irrespective of the shape of the distribution function. This typically leads

TABLE 3 rmgarch DCC model functions and methods

Functions/

methods Description

Input

classes

dccspec Model specification for the univariate GARCH models,
conditional mean, joint dynamics, and distribution

NA

dccfit Model estimation 1

dccforecast 1- to n-ahead forecasts 2

dccsim Simulation 1,2

dccfilter 1-ahead ahead filtering 2,3

fitted Conditional mean equation fitted/forecasted values 2,3,4,5,6

residuals Conditional mean equation residuals 2,3

coef Coefficients of model 2,3

show Summary of output 2,3,4,5,6

nisurface News impact surface 2,3

rcor Conditional correlations 2,3,4,5,6

rcov Conditional covariance 2,3,4,5,6

sigma Conditional margin volatilities 2,3,4,5,6

dccroll Rolling estimation/forecasting 1

Note: The table provides a list of the methods and functions for working with DCC models in the
rmgarch package. The input classes are as follows: 1¼DCCspec, 2¼DCCfit, 3¼DCCfilter,
4¼DCCforecast, 5¼DCCsim, 6¼DCCroll, NA¼not a method. Distributions allowed as
Multivariate Normal, Laplace, and Student (QML), with a number of different options for the
first-stage GARCH model dynamics, and the asymmetric or symmetric DCC, or the flexible DCC
model of Billio et al. (2006) for the joint dynamics.
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to a large spike in the conditional covariance prediction following an extreme

return realization. In order to dampen the effect of outliers on covariance pre-

dictions, Boudt and Croux (2010) and Boudt et al. (2013) recommend to use

robust MGARCH filters that have the property of Bounded Innovation Propa-

gation (BIP). The resulting model is called BIP-MGARCH for which they

propose robust M-estimators under the assumption of elliptical innovations.

The BIP-BEKK model corresponding to the BEKK model in (5) is given by:

Ht ¼C0C +
XK
k¼1

Xq
j¼1

A0
jkeεt�jeε0t�jAjk +

XK
k¼1

Xp
j¼1

B0
jkHt�jBjk, (63)

with

eεt ¼ εt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w ε0tH

�1
t εt

� �q
: (64)

The weight function w(	) must be such that the effect of εt on Ht is

bounded. Boudt and Croux (2010) use the following weight function

w zð Þ¼
1 if z
 c1

1� 1� c1=zð Þ3 if c1 < z
 c2

c2=zð Þ 1� 1� c1=c2ð Þ3
� �

else:

8>><>>: (65)

They set the parameters c1 and c2 equal the 99% and 99.9% quantile of the

distribution of the squared Mahalanobis Distances (MD) εt
0Ht

�1εt. The left

panel of Fig. 1 shows this weight function in case the conditional distribution

of εt is bivariate Normal (top plot) or Student t4 (bottom plot). Note that only

the observations with an extremely large MD are downweighted and that the

weighting depends on the distributional assumption. In the right panel we also

plot the function w(z)z, which is of interest since if z is the squared MD of eεt,
then w(z)z is the squared MD of εt. Note that the downweighting is such that

the function w(z)z is nondecreasing and bounded by w(c2)c2. The smoothness

of the weight function is needed to avoid numerical problems in the parameter

estimation.

The BIP-BEKK model can be seen as an ad hoc robustification of the

BEKK filters. Similar BIP-DCC filters were proposed in Boudt et al. (2013).

An elegant alternative to take the shape of the distribution function into account

is the class of Generalized Autoregressive Score (GAS) and Dynamic Score

models, proposed by Creal et al. (2013) and Harvey (2013) at Vrije Universiteit

Amsterdam and Cambridge University, respectively. They developed a general

framework to specifying the time-varying parameters of a conditional distribu-

tion function. The key feature of their framework is that the score of the condi-

tional density function is used as the driver of the time variation in the

parameters, making it possible to obtain the likelihood in closed form through

a standard prediction error decomposition.
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More formally, suppose that the variable of interest is rt with conditional

density function f(…). The conditional density depends on a vector of time-

varying parameters denoted by θt2Θ�ℜJ. It typically contains the unique

elements in the conditional covariance matrix Ht, but may also consist

of location and shape parameters, among others. Usually, the parameter

space of θt is restricted by various conditions, such as the requirement of pos-

itive definiteness for the conditional covariance. The standard solution under

the GAS framework is to work with parameter transformations such that the

parameter of interest θt is in the parameter space. More precisely, when

the unrestricted parameter vector is denoted by eθt 2ℜJ, the GAS model

uses a link function Λ(	) to map the transformed parameter eθt 2ℜJ into

the parameter of interest θt. The evolution in the time-varying parameter

vector eθt is driven by the scaled score of the conditional density function,

defined as:

st ¼ St
∂ log f rt θtjð Þ

∂eθt ,
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FIG. 1 Plot of the functions w(z) and w(z)z used in the bivariate BIP-BEKK model. The para-

meters c1 and c2 equal to the 99% and 99.9% quantiles of the squared MD under Gaussian (upper

panel) and Student t4 innovations (lower panel).
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where the matrix St is a J�J positive definite scaling matrix known at time t.w

The quantity st indicates the direction to update the vector of parameters

from θt, to θt + 1, acting as a steepest ascent algorithm for improving the

model’s local fit given the current parameter position. This updating proce-

dure resembles the well-known Newton–Raphson algorithm.

The updating equation for the unconstrained parameter vector is given by

a linear function of the score, together with an autoregressive component:eθt + 1 ¼ κ +Ast +Beθt, (66)

where κ, A, and B are matrices of coefficients with proper dimensions.

A general implementation of univariate and multivarate GAS models can

be found in the R package GAS (Ardia et al., 2018b; Catania et al., 2017).

As a simple illustration we show in code Snippet 3 how one can define a mul-

tivariate GAS model in the GAS package and estimate it. Table 4 provides the

methods and functions available for working with the model which include

forecasting, filtering, simulation, and inference, among others. We refer the

reader to the documentation of the package for more details.

The approach of specifying the time variation in all the distribution para-

meters jointly as a function of the conditional score is unfortunately not fea-

sible in large-scale applications due to a curse of dimensionality. Creal et al.

(2011) acknowledge this shortcoming and propose to use a time-varying

copula specification in order to model the variances separately from the

correlations. As in the DCC model of Engle (2002), it is then straightforward

to combine the conditional variances and correlations into an estimate for

the conditional covariance matrix Ht. We illustrate this copula-approach

next in the case of a GAS variance model assuming a Student t marginal dis-

tribution, and a GAS correlation model under the assumption of a bivariate

t-copula specification.

In terms of modeling the conditional variance dynamics, we focus here on

the case where a Student t distribution is assumed. Several GAS models exist

1 library("GAS")
2 data("dji30ret", package = "GAS")
3 mGASSpec <- MultiGASSpec(Dist = "mvt",
4 ScalingType = "Identity",
5 GASPar = list(scale = TRUE , correlation = TRUE))
6 model <- MultiGASFit(data = dji30ret[, 1:4],
7 GASSpec = mGASSpec)

SNIPPET 3 GAS example.

wCreal et al. (2013) suggest to set the scaling matrix St to a power γ>0 of the inverse of the Infor-

mation Matrix of eθt to account for the variance of the score. When γ¼0, St equals the identity

matrix and there is no scaling. If γ¼1 (resp. γ¼ 1
2
), the conditional score is premultiplied by

the inverse of (the square root of ) its covariance matrix.
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under this framework. The Beta-t-EGARCH model introduced by Harvey et al.

(2008) uses the exponential function as link function. The Beta-t-GARCH

model of Harvey et al. (2008) and the t-GAS model of Creal et al. (2013) use

no transformation. The latter then leads to a GAS volatility model that is the

close to the GARCH(1,1) model and for which the estimates are published on

https://vlab.stern.nyu.edu. Under this model, the conditional variance for asset

i with zero mean and νi degrees of freedom is given by:

hii, t+ 1 ¼ωi + αi
νi + 3

νi

νi + 1

νi�2 + E2i, t=hii, t
E2i, t�hii, t

 !
+ βihii, t: (67)

Note that if νi¼∞ , the GAS-t volatility model collapses to a traditional

GARCH model and the score has a quadratic impact on the conditional vari-

ance. This can be seen as well in Fig. 2, where we show the scaled score for

various value of νi. Note that, the more fat-tailed the return distribution is, the

more their effect on future variance is dampened due to to downweighting

TABLE 4 GAS multivariate GAS model functions and methods

Functions/methods Description Input classes

MultiGASSpec Model specification NA

MultiGASFit Model estimation 1

getFilteredParameters 1-ahead ahead filtering 1

ConfidenceBands Confidence bands for the filtered
parameters

1

getMoments Extract conditional moments 1, 3, 5

getForecast Extract parameter forecast 3, 5

LogScore Extract log scores 3, 5

MultiGASFor 1- to h-ahead forecasts 2

MultiGASSim Simulation 2

residuals Conditional mean equation residuals 2

coef Coefficients of model 2

show Summary of output 3,4,5

summary Summary of output 2

MultiGASRoll Rolling estimation/forecasting 1

Note: The table provides a list of the methods and functions for working with multivariate GAS
models in the GAS package. The input classes are as follows: 1¼mGASSpec, 2¼mGASFit,
3¼mGASFor, 4¼mGASSim, 5¼mGASRoll.
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when νi is small. This is desired, since in case of a fat-tailed distribution, a

large value of Ei,t/hi,t
1/2 may as well be a tail realization and thus does not neces-

sitate a substantial increase in the conditional variance.

We now discuss the GAS correlation model under the assumption of a

bivariate t-copula specification. Besides the use of hyperspherical coordinate

transformation, Creal et al. (2011) discuss also the approach to decompose

the correlation matrix Rt as Δt
�1QtΔt

�1, where Qt is a symmetric positive def-

inite matrix and Δt is a diagonal matrix whose nonzero elements equal the

square root of the diagonal elements of Qt. They then use the GAS framework

in (66) to obtain a score-driven calibration of the time variation in vech(Qt).

The score takes the shape of the student t copula into account, together with

the surprise in the realized correlations compared to the predicted ones. We

refer to Creal et al. (2011) for the general specification, and limit ourselves

here to summarizing the discussion in Creal et al. (2011) regarding the bivari-

ate case with fixed unit variance, correlation parameter ρt, and Gaussian cop-

ula. Then, the scaled score is given by:

st ¼ 2

1�ρ2t
� �2 1 + ρ2t

� �
y1, ty2, t�ρtð Þ�ρt y

2
1, t + y

2
2, t�2

� �� �
: (68)
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FIG. 2 Scaled score used as driver in the t-GAS conditional variance model for various values

of νi when hii,t¼1.
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The first term increases the conditional correlation when the realized cor-

relation exceeds the conditional correlation, while the second term attenuates

this correlation increase in case of a large dispersion in the input vector. In

fact, the correlation signal of (1,1) is much stronger than (1/4,4), even though

their cross product is the same. Boudt et al. (2012) present similar expressions

for the scaled score in case of the t-copula. The most important change is that,

alike in the univariate case, the input data are then also downweighted when

they have a large Mahalanobis distance. The more fat-tailed the t-copula is,

the larger the downweighting in order to compensate for the fact that large

deviations of realized correlations from predicted ones may be tail events

and thus do not necessarily imply changes in the conditional correlation.

The application of the GAS framework to create MGARCH models is still

an active field of research, as can be seen on the overview website at http://

www.gasmodel.com/. A large number of authors have worked out the GAS

dynamics in case of a more flexible distribution function, like the univariate

skewed t distribution (see, e.g., Harvey and Sucarrat (2014) and Ardia et al.

(2018a)), the generalized hyperbolic skewed t distribution (Lucas et al.,

2014), or the Wishard distribution (Gorgi et al., 2019) and general finite mix-

ture of distributions (Catania, 2016). Others have generalized the GAS speci-

fication to account for regime switches (Boudt et al., 2012; Catania, 2018). In

terms of attempts at obtaining GAS models that are feasible in high dimen-

sions, we refer the reader to Boudt et al. (2012) and Lucas et al. (2017) for

an analysis assuming (block) equicorrelation, and to Creal et al. (2011,

2014) for the use of dynamic factors under the GAS framework.

7 MGARCH models using high-frequency returns

Availability of intraday return data has spawned a new class of conditional

covariance models; most of which are correlaries to traditional multivariate

approaches including MGARCH. These models contain more information

about covariation between assets than traditional approaches due to frequent

measurement throughout the trading day. They involve the extra, and often

expensive (in terms of data acquisition), step of calculating a realized covari-

ance matrix to replace the cross product of errors in the traditional GARCH

equations. This data expense can be justified for those that need a relatively

short response time; these realized covariance models are expected to perform

well during market shocks where the level of volatility and correlation is sub-

ject to abrupt changes. In a less expensive option Payseur (2008) and Laurent

et al. (2012) use realized covariance on a set of high-frequency data to evalu-

ate which low-frequency option is the best for the proposed data and applica-

tion; this work should be extended to include the Realized GARCH models in

this section. The availability of R packages in the realm of conditional covari-

ance modeling using intraday data is sparse; however, we summarize the pop-

ular realized models below and highlight packages that do exist. We hope that
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this summary can help spur contributions to current packages or the creation

of new packages.

First, some notation, all of the conditional covariance measures in this sec-

tion require a realized covariance measure, Vt�1, on day t�1 as an input for

the conditional covariance calculation, Ht, on day t. Various realized covari-

ance measures exist. The standard one is the sum of outer products of all

high-frequency returns in a day

Vt ¼RC
mð Þ
t ¼

Xm
i¼1

rt, ir
0
t, i, (69)

where m is an equally spaced subinterval within the trading day, such as 5min

or 10s, rt,i is a vector of asset returns for day t and intraday period i.
Andersen et al. (2003) show that, in the special case that prices are reali-

zation of a Brownian semimartingale diffusion, RCt
(m) converges to the

integrated covariance as the frequency of the intradata approaches infinity

(m!∞); therefore, realized covariance provides an accurate measure of daily

covariance. In practice, microstructure noise and jumps in the price level of an

asset introduce bias in the diagonal elements of the covariance matrix—the

variances. Covariance estimation of asset pairs over short time periods under-

estimates the degree of dependence between assess due to asynchronicity

between asset observations, commonly known as the Epp’s effect (Epps,

1979). Finally, the outer product of intraday returns does not necessarily lead

to invertable positive semidefinite covariance matrices which are needed port-

folio and risk managent.

Various methods address the above challenges, but unfortunately there is

no “one-size-fits-all” method. Barndorff-Nielsen and Shephard (2004) use

bipower covariation to create a jump-robust estimator. Boudt et al. (2011)

use outlyingness covariation and Mancini and Gobbi (2012) use a threshold

approach to create jump-robust esimates that also lead to positive semidefinite

matrices. Zhang (2011) uses a two-timescale approach to eliminate micro-

structure bias, while Boudt and Zhang (2015) adds robustness to price jumps

to this method. By averaging across different frequencies the estimator of Aı̈t-

Sahalia et al. (2005) yields an unbiased and positive semidefinate covariance

matrix, while Barndorff-Nielsen et al. (2009, 2011) achieve the same by using

with a kernel approach. All of the estimators above are available in R in the

highfrequency package of Boudt et al. (2018). Further realized covariance

kernel improvements by Hautsch et al. (2010), Lunde et al. (2016), and

Boudt et al. (2017) are not yet included in this package.

Squaring intraday returns leaves out information from close of day t�1 to

open of day t, this overnight period accounts for a large percentage of daily

volatiliy. The literature presents two approaches in dealing with this issue.

The first approach consists of adding a squared overnight return to the rea-

lized covariance, (Vt�1+ηt�2ηt�2
0 ) where ηt�2 is the close-to-open return of
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the previous day; and use close-to-close squared daily returns as the bench-

mark. A second approach is to model the open-to-close intraday covariance

only; and benchmark the realized results to squared open-to-close return.

These two approaches trade-off the lack of precision in estimating integrated

covariance using ηt�2ηt�2
0 with the information loss from ignoring overnight

return. For the rest of this section we use Vt�1 to represent both cases.

Estimated correctly, realized covariance provides an accurate measure of

daily covariance. Below we discuss possible enhancements to MGARCH

models that use Vt�1 instead of the traditional daily squared return.

7.1 Realized BEKK

The general framework covered below follows from the BEKK(p,q,1) model

(Eq. 5), with the de-meaned squared return, εt�jεt�j
0 , replaced by Vt�j.

Ht ¼CC0 +
Xq
i¼1

A0
iVt�iAi +

Xp
j¼1

B0
jHt�jBj: (70)

To reduce the number of parameters estimated all of the methods we cover

use covariance targeting, with H set to an estimate of the unconditional

covariance.

Ht ¼H +
Xq
i¼1

A0
iVt�iAi +

Xp
j¼1

B0
jHt�jBj: (71)

The realized multivariate BEKK model is far from parsimonious so the

approaches below further restrict A and B leading to realized multivariate

scalar-BEKK models. To solve the problem of producing positive definite

covariance matrices all of the dynamic models below use the Wishart distribu-

tion. The Wishart distribution is the distribution of the sample variance of

independent zero-mean multivariate normal vectors (Wishart, 1928).

Restricting (70) yields the exponentially weighted moving average

(EWMA) model. Fleming et al. (2001), De Pooter et al. (2008), and

Bannouh et al. (2009) specify Ht using its lagged value and the realized varia-

bility of the previous day:

Ht ¼α exp �αð ÞVt�1 + exp �αð ÞHt�1, (72)

where α is the decay parameter.

7.2 HEAVY

Barndorff-Nielsen et al. (2011) and Fleming et al. (2003) use the following

realized scalar-BEKK(1,1,1) model with covariance targeting:

Ht ¼ 1�αH�βHð ÞH + αHVt�1 + βHHt�1, (73)
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where αH, βH�0 and αH+βH
1. Noureldin et al. (2012) extend this approach

by considering the joint prediction of the covariance matrix and the realized

measure using a system of two equations. Eq. (73) referred to as the HEAVY-

P equation is coupled with the HEAVY-V equation for predicting the realized

measure. Denote the latter by Mt¼Et�1(Vt). Then the HEAVY-V equation is

Mt ¼ 1�αM�βMð ÞV + αMVt�1 + βMMt�1, (74)

where αM, βM�0 and αM+βM
1. Note that the joint approach allows for

multistep covariance forecasts.

The multivariate HEAVY model is currently implemented in Keven Shep-

pard’s MFE toolbox in MATLAB® (Sheppard, 2013).

7.3 Realized DCC

Bauwens et al. (2012) include the realized covariance into the conditional

covariance matrix by extending the DCC model of Engle (2002), as corrected

by Aielli (2013). The cRDCC model of Bauwens et al. (2012) takes the fol-

lowing form:

Ht ¼DtRtDt

Rt ¼ diag Qtð Þ�1=2Qt diag Qtð Þ�1=2

Qt ¼ 1�α�βð ÞQ + αP∗
t�1 + βQt�1,

(75)

where Pt
∗¼diag(Qt)

1/2Dt
�1VtDt

�1diag(Qt)
1/2 and Vt is the realized covariance

measure. To reduce the number of parameters to be estimated, Bauwens et al.

(2012) recommend to use correlation targeting, by replacing Q by the mean of

Pt
∗. Like the traditional (c)DCC model, the realized version can be estimated

in two steps, where first univariate models are fitted to estimate the volatilities

Dt, which are then used to estimate the conditional correlation Rt. Bollerslev

et al. (2018) extend this model by accounting for leverage effects using rea-

lized semicorrelations.

7.4 Other approaches

There are other approaches for using realized covariance to forecast conditional

variance that are not covered above. Callot et al. (2017) propose aLASSO approach

that is promising for large-scale matrices and also is available in the lassovar
R-package. The other approaches below are not covered in any R-Packages

and mostly suffer from the curse of dimensionality. Bauer and Vorkink (2011)

proposed a multivariate heterogenous autoregressive, or HAR (Corsi, 2009),

model based on the log-matrix covariance specification of Chiu et al. (1996).

Golosnoy et al. (2012) extend the work of Gourieroux et al. (2009) with a

Conditional AutoregressiveWishart (CAW) analysis of realized covariancematri-

ces. Chiriac and Voev (2011) use a multivariate ARFIMA model to forecast rea-

lized covariances.
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8 Illustration

We conclude this overview with a simple illustration of using MGARCH

models for portfolio analysis in R. For detailed horse races among MGARCH

models, we refer to Laurent et al. (2012), Santos et al. (2013), and Laurent

et al. (2013), among others.

The illustration involves estimating MGARCH models and using those

estimates to characterize the conditional distribution of the return of a portfo-

lio invested in 10 Vanguard mutual funds, which were chosen as a represen-

tative sample of a diversified portfolio with historical data going back at

least as far as 2000. Besides four equity funds (Vanguard 500 (VFINX), Van-

guard European (VEURX), Vanguard Pacific (VPACX), and Vanguard Emerging

Mkts (VEIEX) Stock Index Investor) and two bonds funds (Vanguard Long-Term

Bond Index Investor (VBLTX) and Vanguard Long-Term Investment-Grade

Investor (VWESX)), we have funds active in real estate (VGSIX), energy

(VGEN), precious metals, and mining (VGPM) and alternatives (Vanguard

Market Neutral Investor (VMNFX)).

Daily January 2000–July 2018 return data were downloaded from Yahoo

Finance using the quantmod package of Peterson and Carl (2018). We then

use PerformanceAnalytics of Ryan and Ulrich (2018) to obtain a first visu-

alization of the data. Fig. 3 shows on the diagonal the univariate distribution

of the daily ETF returns. We clearly see cross-sectional heterogeneity in the

scale and shape of the distribution, as well as large differences in the correla-

tion between the ETFs. Additional rolling window plots indicate time-varying

volatility and correlations.

Henceforth, we split our sample into an estimation sample and evaluation

sample. The estimation period ranges from 2000-01-04 to 2006-12-31, while

the out-of-sample forecast period ranges from 2007-01-03 to 2018-07-30,

and thus includes the global financial crisis of 2007/2008. In practice we rec-

ommend to reestimate frequently the model, as compared to a simple split-

sample evaluation. Reestimating the model allows to account for changes in

relationships. However, for this simple exposition we fix the estimated para-

meters during the prediction period.

We estimate the following set of models:

l Normal GARCH-DCC model of Engle (2002) using the rmgarch

package of Ghalanos (2015a).

l skewed t GAS-DCC model using the GAS package of Ardia et al.

(2018b) for the estimation of the conditional variance, and the ccgarch pack-

age of Nakatani (2014) for the estimation of the DCC correlations.

l The CHICAGO model, consisting of a GO-GARCH model with mul-

tivariate affine NIG distributions (as in Broda and Paolella (2009)) and the

component GARCH(1,1) model of Engle and Lee (1999), using the rmgarch

package of Ghalanos (2015a). The component GARCH(1,1) models allows to

capture permanent and transitory components of the underlying volatility

dynamics.
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For each of the models, we only include a constant in the conditional mean

equation. It is unlikely that any of these three methods correspond to the true data

generating process. Instead, as noted, e.g., in Caporin and McAleer (2013), we

should consider the obtained correlations as filters of the true conditional

correlations.

Once the DCC parameters have been estimated, it is straightforward to

compute the corresponding correlations over the test period. As an example,

we plot in Fig. 4 the obtained conditional correlation between US equity

returns (VFINX), on the one hand, and bonds, real estate, and equity neutral

funds on the other hand. Note the negative correlation between bond and

equity returns over the evaluation period, while equity and real estate have

a strong positive correlation over the period. The equity fund returns and

the equity market neutral have a correlation that fluctuates around zero.

FIG. 3 Univariate and bivariate distribution plots of the daily 2000–2012 returns of the ETFs

with tickers VFINX (US stocks), VEURX (European stocks), VPACX (Pacific stocks), VEIEX

(Emerging Mkts stocks), VGSIX (Real Estate), VGENX (Energy), VGPMX (Precious Metals

and Mining), VBLTX (Long-Term Bond), VMNFX (Market Neutral), VWESX (Long-Term

Investment-Grade).
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The dynamics in the conditional correlations are driven by the shocks in

the underlying asset returns. This propagation can be visualized using a news

impact curve, as depicted in Fig. 5 for the case of the bond–equity correlation.

Correlations rise (resp. fall) in case of large returns of the same (resp.

opposite) sign.

The use of the normal GARCH-DCC model and the CHICAGO model in

R has the advantage of directly yielding a complete characterization of the

conditional portfolio return distribution. The joyplots in Fig. 6 show the

time-varying conditional distribution of the daily returns for the portfolio that

is equally weighted in the 10 ETFs.x

We clearly see a strong time variation in the fitted distribution function,

with a time variation that is aligned with normal and market turbulent

regimes. Note in particular the large expansion in the portfolio variance in

2008, and the presence of volatility clusters.

Jan 03 2007 Jan 02 2009 Jan 03 2011 Jan 02 2013 Jan 02 2015 Jan 03 2017

DCC correlation 2007−01−03 / 2018−07−30
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FIG. 4 Forecasted stock–bond, stock–real estate, and stock–equity market neutral correlations.

xThe term “joyplot” was coined on twitter in April 2017 by Jenny Bryan as a series of statistical

data graphed in such a way that they resemble the cover artwork of the Joy Division’s Unknown

Pleasures album.
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The MGARCH specification matters as can be seen in the disagreement

between the Normal GARCH-DCC and the CHICAGO distributions in

Fig. 6. This also leads to substantial differences in downside risk assessments,

for which the 1% and 5% Value-at-Risk risk measure is a standard (in addi-

tion to expected shortfall; Jorion (1997)). They correspond to the 1% and

5% quantile of the return distribution.

Fig. 7 shows the daily 1% Value-at-Risk predictions for the equally

weighted portfolio obtained using the Normal GARCH-DCC and the CHI-

CAGO MGARCH models. We clearly see that the time-varying covariance

matrix is an important driver of the time variation in downside risk as

measured by the 1% Value-at-Risk. The red diamonds in the graph indicate

the so-called exceedances where the observed return is more negative than

the predicted Value-at-Risk. Further statistical tests, such as the test for

2008 2010 2012 2014 2016 2018

−
0.

05
0.

00
0.

05

Returns
Return < VaR
VaR

DCC−MVNORM

2008 2010 2012 2014 2016 2018

−
0.

05
0.

00
0.

05

Returns
Return < VaR
VaR

CHICAGO

FIG. 7 Daily 1% Value-at-Risk predictions over the period January 2007–July 2018.
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correct unconditional coverage (UC) proposed by Kupiec (1995) and test for

correct conditional coverage (CC) proposed by Christoffersen (1998), can

be used to evaluate whether the risk model is reliable. As already mentioned,

a detailed evaluation of MGARCH models is beyond the scope of this illustra-

tion, and would require a rolling estimation approach, with period reestima-

tion of the model, instead of the simple split-sample setup used in this

illustration. In the Supplementary Material in the online version at https://

doi.org/10.1016/bs.host.2019.01.001, we provide example code to do so for

the DCC and CHICAGO model.

9 Conclusion

The joint analysis of more than 10 financial return series is a challenging empir-

ical task. It needs to take into account the nonnormality of the return series,

their time-varying volatility and correlation, and avoid the curse of dimension-

ality while preserving sufficient flexibility in order to avoid severe model mis-

specification. This chapter has provided an overview of recent advances in the

field, and, when available, their implementation in R packages.

We end the overview chapter on feasible MGARCH models with a call for

more research on feasible MGARCH models. Our field experience is that most

of the large financial institutions are not willing to put a flexible MGARCH

model into production. They still base their risk models on the EWMA model

or some modification of it, since the simple EWMA model tends to be more

reliable than the flexible ones in practice. An important research direction is

thus to put reliability as a primary objective when developing the next genera-

tion of flexible MGARCH models. We believe that publishing the code using

open source software like R will help in achieving this objective of reliability,

since open sourcing allows code to be more actively vetted by a large commu-

nity whose feedback helps in developing better models.
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Sklar, A., 1959. Fonctions de r�epartition à n dimensions et leurs marges. 8, Publ. Inst. Statist.

Univ. Paris, p. 11 1.

Tse, Y., Tsui, A., 2002. A multivariate generalized autoregressive conditional heteroscedasticity

model with time-varying correlations. J. Bus. Econ. Stat. 20 (3), 351–362.

Van der Weide, R., 2002. Go-garch: a multivariate generalized orthogonal garch model. J. Appl.

Econ. 17 (5), 549–564.

van der Weide, R., 2004. Wake me up before you go-garch. In: Computing in Economics and

Finance. Society for Computational Economics.

Wishart, J., 1928. The generalized product moment distribution in samples from multinomial pop-

ulation. Biometrika 20, 32–52.

Zakoian, J., 1994. Threshold heteroskedastic models. J. Econ. Dyn. Control. 18 (5), 931–955.

Zhang, L., 2011. Estimating covariation: Epps effect, microstructure noise. J. Econ. 160 (1),

33–47.

Zhang, K., Chan, L., 2009. Efficient factor garch models and factor-dcc models. Quant. Finan.

9 (1), 71–91.

Zivot, E., Wang, J., 2006. Modelling financial time series with S-PLUS. Springer.

242 PART II Multivariate Models

http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0665
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0665
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0670
https://CRAN.R-project.org/package=PerformanceAnalytics
https://CRAN.R-project.org/package=PerformanceAnalytics
http://cran.r-project.org/web/packages/gogarch
http://cran.r-project.org/web/packages/gogarch
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0685
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0685
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0690
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0690
https://CRAN.R-project.org/package=quantmod
https://CRAN.R-project.org/package=quantmod
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0700
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0700
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0705
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0705
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0705
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0710
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0710
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0715
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0715
https://www.kevinsheppard.com/MFE_Toolbox#Last_Updated
https://www.kevinsheppard.com/MFE_Toolbox#Last_Updated
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0725
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0725
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0725
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0730
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0730
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0730
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0735
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0735
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0740
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0740
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0745
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0745
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0750
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0750
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0755
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0760
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0760
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0765
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0765
http://refhub.elsevier.com/S0169-7161(19)30001-X/rf0770


Part III

Miscellaneous Topics



This page intentionally left blank



Chapter 8

Modeling fractional responses
using R

Joaquim Jose Santos Ramalho*
Department of Economics and BRU-IUL, Instituto Universitário de Lisboa (ISCTE-IUL),

Lisboa, Portugal
*Corresponding author: e-mail: jjsro@iscte-iul.pt

Abstract
Often, the dependent variable in regression models has a fractional nature, being

bounded in the unit interval. Several variants of cross-sectional and panel data fractional

regression models have recently been proposed. This chapter shows how to estimate

most of those models by using three R packages: frm, frmhet, and frmpd.
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1 Introduction

Fractional responses, i.e., variables bounded by 0 and 1, are a very common

type of dependent variable in econometric models. Examples of such vari-

ables include firm market shares, proportion of debt in the financing mix of

firms, fraction of land allocated to agriculture, and proportion of exports in

total sales and data envelopment analysis efficiency scores. The bounded

nature of these variables and, in some cases, the possibility of nontrivial prob-

ability mass accumulating at one or both the boundaries imply that specific

econometric methodology has to be applied in this context.

Formal models for fractional response variables were first suggested by

Papke and Wooldridge (1996). They developed the now commonly called frac-

tional regression models, which require only the specification of the conditional

mean of the response variable and are estimated by quasi-maximum likelihood

(QML). Recently, several extensions have been proposed in the literature.

Ramalho et al. (2011) suggested alternative specifications for Papke and

Wooldridge (1996) conditional mean models, the use of two-part models in

cases where a significant proportion of observations at either 0 or 1 are present
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and various specification tests for both types of models. Ramalho and Ramalho

(2017) developed a new class of exponential-fractional estimators that are

robust to neglected heterogeneity and accommodate endogenous explanatory

variables. These estimators were extended to a panel data framework by

Ramalho et al. (2018), a setting which has also been considered by Papke

and Wooldridge (2008).

Given the very recent developments in this research field, most economet-

ric software still does not possess simple, canned commands for applying

most of the proposed models and tests. For this reason, I have written three

R packages (frm, frmhet, and frmpd), which are available on the Compre-

hensive R Archive Network (https://cran.r-project.org), that allow easy

implementation of the most popular features of fractional regression models.

The main aim of this chapter is to explain in detail how to use those

packages in practice. To this end, I use the dataset RRC2018iv.txt, which,
in addition to the financial information of 620 Portuguese firms for the

2007–2011 period considered by Ramalho et al. (2018), includes two gener-

ated variables that will be used as instruments in some of the examples

provided in the chapter. The number of observations per firm ranges from

one to five, yielding an unbalanced panel of 1843 observations. The aim

is to model the proportion of debt in firms’ capital structure. The dependent

variable is Leverage and the explanatory variables are Growth, Size, Profit-
ability, and Tangibility. The file also contains the variables Ident, which

identifies the firms, Year, which indicates the year of the observation, and

ProfitIVa and ProfitIVb, the two generated instrumental variables. The fol-

lowing R code fragment will load the dataset in R and allows to treat each

column name as a vector representing the aforementioned variables:

data <- read.table("http://home.iscte-iul.pt/~jjsro/data_code
/RRC2018iv.txt",header=TRUE)

attach(data)

We may check that Leverage is bounded by 0 and 1, with 16.2% of observa-

tions at the lower bound, but no observations at the upper bound:

> summary(Leverage)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.02502 0.18368 0.23613 0.39118 0.98170
> mean(Leverage==0)
[1] 0.1622355

The outline of the remaining sections in this chapter is as follows. Section 2

reviews in a comprehensive way the base econometric models for fractional

responses, discussing their estimation and evaluation and showing how to cal-

culate partial effects and making prediction. Section 3 introduces the
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exponential-fractional estimators, which are extended for a panel data setting

in Section 4. In all sections, for each topic I first present, at a theoretical level,

the relevant econometric models and tests and then immediately show how to

implement them using R.

2 The base case: Cross-sectional data and no unobserved
heterogeneity

This section deals with the most common econometric methods for fractional

responses in a cross-sectional framework. Therefore, we only need to load the

package frm and we will work only with 2007 data:

library(frm)
Y <- Leverage[Year==2007]
X <- cbind(Growth, Size, Profitability, Tangibility)
X <- X[Year==2007,]

2.1 Conditional mean models

Let yi denote the fractional response variable, defined on the interval 0,1½ �, to
be explained for individual i, i ¼ 1, …, N, and let xi denote a k-vector of
explanatory variables. The standard fractional regression model used in the

cross-sectional context is defined by the following conditional expectation:

E yijxið Þ¼G xiyð Þ, (1)

where y is the vector of parameters of interest and G �ð Þ is a (nonlinear) func-
tion bounded on the unit interval. Possible choices for G xiyð Þ are the follow-

ing functional forms: exiy

1 + exiy
(logit), F xiyð Þ (probit), e�e�xiy (loglog), 1� e�exiy

(cloglog), and 1
2
+ 1

p arctan xiyð Þ (cauchit).
Papke and Wooldridge (1996) proposed to estimate the model defined by

Eq. (1) by QML based on the Bernoulli log-likelihood function. Under suitable

regularity conditions and assuming that (1) holds, the resultant QML estimator

ŷ is consistent and asymptotically normal and is efficient in a class of estimators

containing all linear exponential family-based QML and weighted nonlinear least

squares estimators. The asymptotic distribution of the QML estimator is given byffiffiffiffi
N

p
ŷ�y0

� � �!d N 0,Vð Þ, (2)

where V ¼ A�1BA�1, with A¼E �ryy0LL yð Þ½ � and B¼E ryLL yð Þry0LL yð Þ½ �.
Consistent estimators for A and B are given by Â¼N�1

PN
i¼1ĝ

2
i x

0
ixi

Ĝi 1� Ĝi

� �� 	�1
and B̂¼N�1

PN
i¼1û

2
i ĝ

2
i x

0
ixi Ĝi 1� Ĝi

� �� 	�2
, respectively, where

Ĝi ¼G xiŷ
� �

, ûi ¼ yi� Ĝi, and ĝi ¼ g xiŷ
� �

¼ ∂G xiŷ
� �

=∂ xiŷ
� �

.
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Using R, estimates for y may be obtained by using the command glm,
which is included in the base installation of R. However, here I consider

the package frm, which includes many other features that are specific for

fractional regression models. The main estimation command of this package

has also the name frm, which is an extension of the command glm. To esti-

mate a logit fractional regression model, the following code may be applied:

> frm(y=Y,x=X,linkfrac="logit")

*** Fractional logit regression model ***

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -1.327157 0.798204 -1.663 0.096 *
Growth 0.004894 0.003752 1.304 0.192
Size 0.001633 0.070879 0.023 0.982
Profitability -3.374131 0.959341 -3.517 0.000 ***
Tangibility 1.111818 0.368599 3.016 0.003 ***

Note: robust standard errors

Number of observations: 379
R-squared: 0.067

By default, the variance of each regression coefficient is computed in a robust

way and is based on the expected information matrix, as in (2). We may add the

option var.eim=F if, instead, the observed information matrix is to be consid-

ered and the option var.type to use other variance formulas, such as cluster
to compute a cluster–robust estimator. The R2 measure provided in the output

is calculated as the square of the correlation coefficient between the actual

and fitted values of the dependent variable. To implement any of the other

four alternative functional forms mentioned above one just needs to change

the option linkfrac to the name of the desired specification.

2.2 Two-part models

In economics and other social sciences, it is common to observe a substantial

proportion of limit values in samples of fractional data. However, most samples

cluster only at zero or one and not at both boundaries simultaneously. Examples

include the proportion of exports in total sales (Wagner, 2003), the proportion

of deaths caused by traffic accidents across districts (Ospina and Ferrari,

2012), employer 401(k) contribution match rates (Papke and Wooldridge,

1996) and data envelopment analysis efficiency scores (Ramalho et al., 2010).

In the first two examples samples cluster at zero but there are no observations

at one, and in the last two examples it occurs the opposite.

Although the models discussed in the previous section can be used in the

presence of boundary values of fractional responses, this may not be the best
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option when the number of corner observations is large. For the most common

case, the observation of extreme values at only one of the boundaries, a better

approach may be the use of a two-part fractional regression model (Ramalho

et al., 2011). This model first uses a binary regression model to explain the

probability of observing a specific boundary value (0 or 1) and then uses a

conditional mean model (one of those described in the previous section) to

explain the value observed for the remaining values of the fractional response.

To simplify the exposition, next we focus on the case where we have limit

observations only at zero.a The two-part fractional regression model may be

expressed as

E yijxið Þ¼ Pr yi > 0jxibð Þ �E yijxif ,yi > 0
� �

¼Gb xibybð Þ �Gf xif yf
� �

,
(3)

where xib and xif are the explanatory variables used in the binary and frac-

tional components of the model, respectively, yb and yf are vectors of variable
coefficients and Gb �ð Þ and Gf �ð Þ may be specified in exactly the same way

as the G �ð Þ function considered in the previous section, since both must be

also bounded by 0 and 1. The two components of (3) are assumed to be inde-

pendent and hence estimated separately: while the binary component is esti-

mated by maximum likelihood (ML) using the whole sample, the fractional

component is estimated by QML using only the subsample of nonzero obser-

vations. Clearly, the adaptation of this formulation for the case where the

boundary value observed with a nontrivial probability is 1 is straightforward.

As calculated before, the Leverage variable has 16.2% of observations

at 0, but no observations at 1. Therefore, a natural candidate for modeling that

variable is the two-part model just described. With frm, we can use any com-

bination of functional forms for the binary and fractional parts of the model.

For example, for estimating a two-part model based on cauchit binary and

loglog fractional specifications, we may use the following code:

> frm(y=Y,x=X,type="2P",linkbin="cauchit",linkfrac="loglog")

*** Binary component of a two-part model - cauchit ***

Estimate Std. Error t value Pr(>jtj)
INTERCEPT 4.680859 2.047746 2.286 0.022 **
Growth 0.008303 0.009789 0.848 0.396
Size -0.320178 0.169118 -1.893 0.058 *
Profitability -7.873038 2.180580 -3.611 0.000 ***
Tangibility 5.484858 1.710037 3.207 0.001 ***

aActually, we may also have observations at one, but it is assumed that they are generated by the

same mechanism as the other nonzero values of the response variable.
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Number of observations: 379
R-squared: 0.1

*** Fractional component of a two-part model - loglog ***

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -0.692913 0.421335 -1.645 0.100
Growth 0.003689 0.002121 1.739 0.082 *
Size 0.037108 0.037704 0.984 0.325
Profitability -1.366118 0.535941 -2.549 0.011 **
Tangibility 0.425081 0.209386 2.030 0.042 **

Note: robust standard errors

Number of observations: 310
R-squared: 0.043

*** Two-part model - binary cauchit + fractional loglog ***

R-squared: 0.073

To estimate this two-part model, we needed to add the options type="2P" (the

default option is "1P", which indexes the standard fractional conditional

mean models of the previous section) and linkbin. If we were interested

only in the binary or the fractional component of the two-part model, then

we could have used the option type="2Pbin" or "2Pfrac", respectively,

dropping from the command line the options "linkfrac" (in the former

case) or "linkbin" (in the latter case).

Three R2 measures are provided, one for each part of the model and a

global statistic based on the predicted values of yi according to Eq. (3). Note

that the variance of each regression coefficient in the binary model is com-

puted, by default, in an efficient way (V ¼ A�1), since this model is estimated

by ML. Also by default the same covariates are used in each part of the

model. To use a different set of explanatory variables in the fractional speci-

fication we would need to specify the option x2. For example, we may rees-

timate the previous model without the covariates that are nonsignificant at

the 10% level:

> frm(y=Y,x=X[,2:4],x2=X[,c(1,3:4)],type="2P",linkbin=
"cauchit",linkfrac="loglog")

*** Binary component of a two-part model - cauchit ***
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Estimate Std. Error t value Pr(>jtj)
INTERCEPT 5.037010 1.987137 2.535 0.011 **
Size -0.347119 0.164126 -2.115 0.034 **
Profitability -7.210996 2.044513 -3.527 0.000 ***
Tangibility 5.295094 1.662974 3.184 0.001 ***

Number of observations: 379
R-squared: 0.096

*** Fractional component of a two-part model - loglog ***

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -0.285641 0.077475 -3.687 0.000 ***
Growth 0.003694 0.002096 1.762 0.078 *
Profitability -1.301778 0.542970 -2.398 0.017 **
Tangibility 0.406902 0.208460 1.952 0.051 *

Note: robust standard errors

Number of observations: 310
R-squared: 0.04

*** Two-part model - binary cauchit + fractional loglog ***

R-squared: 0.072

Finally, note that by default the frm command with the option type="2P",
"2Pbin", or "2Pfrac" assumes that the relevant boundary value for defining

the two-part model is zero. If, in contrast, that value is one, then we can use

the option inflation=1 (the default option is inflation=0).

2.3 Partial effects

In nonlinear regression models, such as the ones considered in this chapter,

the magnitude of the regression coefficients cannot be compared across mod-

els based on different functional forms. However, it is relatively easy to

calculate partial effects with a meaningful and comparable interpretation.

For conditional mean models (from now on called “one-part” models), the

average effect on y of a unitary change in xj is given by:

∂E yijxið Þ
∂xij

¼ yjg xiyð Þ, (4)

where g xiyð Þ is given by G xiyð Þ 1�G xiyð Þ½ � (logit), f xiyð Þ (probit),

e�xiyG xiyð Þ (loglog), exiy 1�G xiyð Þ½ � (cloglog) or 1
p

1

xiyð Þ2 + 1 (cauchit). For two-

part models, partial effects are given by:
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∂E yijxið Þ
∂xij

¼ ∂Pr yi > 0jxibð Þ
∂xij

�E yijxif ,yi > 0
� �

+
∂E yijxif ,yi > 0

� �
∂xij

� Pr yi > 0jxibð Þ

¼ ybjgb xiyð Þ �Gf xif yf
� �

+ yfjgf xiyð Þ �Gb xibybð Þ,
(5)

where gb xiyð Þ¼ ∂Gb xiyð Þ=∂ xiyð Þ and gf xiyð Þ¼ ∂Gf xiyð Þ=∂ xiyð Þ. Note that in

this case the independent analysis of the partial effects

∂Pr yi > 0jxibð Þ
∂xij

¼ ybjgb xiyð Þ (6)

and

∂E yijxif ,yi > 0
� �

∂xij
¼ yfjgf xiyð Þ (7)

may be also of interest.

Because the partial effects depend on the value of the explanatory variables,

in empirical work it is customary to measure them in two main ways: (i) repla-

cing xi by some specific values, such as the mean of each covariate or the char-

acteristics of a particular individual (conditional partial effect); or (ii) calculating

the average partial effect of all sampling units (average partial effect).

The package frm contains the command frm.pe that allows easy calcula-

tion of both conditional and average partial effects based on formulas

(4)–(7) and reports not only their estimated values but also standard errors

and statistical significance. In all cases, we first need to estimate the rele-

vant model using the appropriate type option (1P for (4), 2P (5), 2Pbin
(6), and 2Pfrac (7)) and store the results as an R object. For example, to

estimate average partial effects for a one-part fractional regression model,

the following code may be used (note the use of the option table=F in

the command frm to suppress the output):

> res <- frm(y=Y,x=X,linkfrac="logit",table=FALSE)
> frm.pe(res,APE=TRUE,CPE=FALSE)

*** Average partial effects ***

Fractional logit model

Estimate Std. Error t value Pr(>jtj)
Growth 0.0009 0.0007 1.302 0.193
Size 0.0003 0.0125 0.023 0.982
Profitability -0.5969 0.1686 -3.541 0.000 ***
Tangibility 0.1967 0.0643 3.058 0.002 ***
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In the calculation of the standard errors it is taken into account the option that

was previously chosen for estimating the model.

Conditional partial effects require the use of the option at. We may

choose to evaluate the covariates at their mean or median values or provide

a numeric vector containing specific values for each explanatory variable, as

follows:

> frm.pe(res,APE=FALSE,CPE=TRUE,at="median")

*** Conditional partial effects ***

Fractional logit model

Estimate Std. Error t value Pr(>jtj)
Growth 0.0009 0.0007 1.301 0.193
Size 0.0003 0.0126 0.023 0.982
Profitability -0.6000 0.1696 -3.537 0.000 ***
Tangibility 0.1977 0.0652 3.032 0.002 ***

------------------
Note: covariates evaluated at median (or mode, for dummies)

values

> frm.pe(res,APE=FALSE,CPE=TRUE,at=c(0,7,0.1,0.5))

*** Conditional partial effects ***

Fractional logit model

Estimate Std. Error t value Pr(>jtj)
Growth 0.0009 0.0007 1.302 0.193
Size 0.0003 0.0133 0.023 0.982
Profitability -0.6331 0.1789 -3.538 0.000 ***
Tangibility 0.2086 0.0688 3.032 0.002 ***

------------------
Note: covariates evaluated at the following values:

Growth Size Profitability Tangibility
0.0 7.0 0.1 0.5

For the other three types of partial effects the procedure is similar. In the case

of the overall partial effects in two-part models, the current version of frm.pe
requires both the binary and fractional specifications to use the same

covariates.
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2.4 Specification tests

The crucial assumption underlying all fractional regression models discussed in

this chapter is the correct specification of the conditional mean of y, that is the
G �ð Þ function in (1) and the Gb �ð Þ and Gf �ð Þ functions in (5). Therefore, it is

important to test the statistical validity of this assumption. To this end, there are

three main tests that may be applied: (i) a RESET-type test, which was proposed

by Papke and Wooldridge (1996); (ii) the goodness-of-functional form (GOFF)

tests developed by Ramalho et al. (2011) and Ramalho et al. (2014); and (iii) the

P test for general nonnested hypotheses proposed by Davidson and MacKinnon

(1981), which was adapted to the fractional framework by Ramalho et al. (2011).

The RESET test is based on the fact that, using standard approximation

results for polynomials, any index model of the form L xiyð Þ can be approxi-

mated by the model M xiy +
PJ

j¼1fj xiyð Þj+ 1
h i

for J large enough, where

L �ð Þ and M �ð Þ are any mathematical functions. Thus, to test the functional

form assumed for G �ð Þ in one-part models, we may consider the generalized

specification

E yijxið Þ¼G xiy +
XJ
j¼1

fj xiŷ
� �j+ 1

" #
(8)

and test for H0: f ¼ 0, where f is a J-dimensional vector. In practice, typi-

cally, J � 3. This test may be also used to assess the suitability of the func-

tional form assumed in the separate components of two-part models: we just

need to replace G �ð Þ by Gb �ð Þ or Gf �ð Þ in Eq. (8).

The GOFF tests have three main variants, each one based on a different

generalization of G �ð Þ. The generalizations underlying the GOFF1 and

GOFF2 versions are, respectively, the following:

E yijxið Þ¼G xiyð Þa (9)

and

E yijxið Þ¼ 1� 1�G xiyð Þ½ �a, (10)

where a > 0. Both (9) and (10) induce (complementary forms of ) asymmetry in

G �ð Þ and reduce to this function when a ¼ 1. Therefore, to test the functional

form assumed for G �ð Þ, we may test for H0: a ¼ 1. The third variant, called

generalized GOFF (GGOFF) test, is based on an alternative generalization of

G �ð Þ that is a mixture of both (9) and (10) and allows not only a wider variety

of asymmetric forms for E yijxið Þ, but also for many different symmetric shapes:

E yijxið Þ¼ lG xiyð Þa1 + 1�lð Þ 1� 1�G xiyð Þ½ �a2f g, (11)

where 0 < l < 1 and a1, a2 > 0. In this case, the hypothesis to be tested is

H0: a1 ¼ a2 ¼ 1. As for RESET, all GOFF tests may be straightforwardly
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adapted to separately testing the specifications assumed for Gb �ð Þ and Gf �ð Þ
in the binary and fractional components of two-part models.

While the RESET and GOFF tests may only be applied to assess the suit-

ability of the functional form assumed in one-part models or in the separate

components of two-part models, the P test may be used not only for that but

also to test the full specification of two-part models against both one-part mod-

els and other two-part models, and vice versa. Suppose that L �ð Þ and M �ð Þ are
competing specifications for E yijxið Þ, each representing a one-part or a two-part
model. Following Ramalho et al. (2011), testing the suitability of L xiyð Þ after
taking into account the information provided by the alternative specification

M xi�ð Þ corresponds to test for H0: d2 ¼ 0 in the auxiliary regression

y�L xiŷ
� �h i

¼ l xiŷ
� �

xid1 + d2 M xi�̂ð Þ�L xiŷ
� �h i

+ error, (12)

where ŷ and �̂ are previously obtained by estimating separately each model

and l xiŷ
� �

¼ ∂L xiŷ
� �

=∂ xiŷ
� �

. To perform the opposite test, i.e., testing the

suitability of M xiyð Þ after taking into account the information provided by

L xi�ð Þ, we just need to reverse the roles of the two models in regression (12).

To apply the three classes of tests, we may use the commands frm.reset,
frm.ggoff, and frm.ptest included in the package frm. In all cases, LM

and Wald versions of the tests are available. When testing the binary com-

ponent of two-part models, LR versions of the RESET and GOFF tests are

also available.

To illustrate the application of the tests, suppose that we are considering

the following alternative models: logit one-part model, cauchit one-part

model, and binary cauchit + fractional probit two-part model. First, we need

to estimate all models. In the case of the two-part model, we need to estimate

it not only separately (options type="2Pbin" and type="2Pfrac") but,

because of the P test, also as a whole (option type="2P"):

logit1 <- frm(y=Y,x=X,type="1P",linkfrac="logit",table=FALSE)
cauchit1 <- frm(y=Y,x=X,type="1P",linkfrac="cauchit",table=

FALSE)
cauchit2b <- frm(y=Y,x=X,type="2Pbin",linkbin="probit",table=

FALSE)
probit2f <- frm(y=Y,x=X,type="2Pfrac",linkfrac="probit",table=

FALSE)
caupro2 <- frm(y=Y,x=X,type="2P",linkbin="cauchit",linkfrac=

"probit",table=FALSE)

Then, we apply LM and Wald versions of both the RESET test based on 1

(number 2 of the vector defined by lastpower.vec) and 2 (number 3 of the

same vector) fitted powers and the GOFF tests to the two one-part models:
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> frm.reset(logit1,lastpower.vec=c(2:3),version=c("Wald","LM"))

*** RESET test ***

H0: Fractional logit model

Version Statistic p-value
LM(2) 2.375 0.123

Wald(2) 1.781 0.182
LM(3) 2.452 0.293

Wald(3) 2.237 0.327

> frm.ggoff(logit1,version=c("Wald","LM"))

*** GGOFF test ***

H0: Fractional logit model

Test Version Statistic p-value
GOFF1 LM 2.442 0.118
GOFF1 Wald 1.919 0.166
GOFF2 LM 2.425 0.119
GOFF2 Wald 2.111 0.146
GGOFF LM 2.445 0.294
GGOFF Wald 2.059 0.357

> frm.reset(cauchit1,lastpower.vec=c(2:3),version=c("Wald",
"LM"))

*** RESET test ***

H0: Fractional cauchit model

Version Statistic p-value
LM(2) 4.676 0.031 **

Wald(2) 3.576 0.059 *
LM(3) 4.856 0.088 *

Wald(3) 3.754 0.153

> frm.ggoff(cauchit1,version=c("Wald","LM"))

*** GGOFF test ***

H0: Fractional cauchit model

Test Version Statistic p-value
GOFF1 LM 4.229 0.040 **
GOFF1 Wald 3.292 0.070 *
GOFF2 LM 3.481 0.062 *
GOFF2 Wald 2.822 0.093 *
GGOFF LM 5.238 0.073 *
GGOFF Wald 3.920 0.141



Clearly, the cauchit specification does not seem appropriate.

The same tests are now applied separately to the individual components of the

two-part model (in the binary case, we also calculate an LR version of the tests):

> frm.reset(cauchit2b,lastpower.vec=c(2:3),version=c("Wald",
"LM","LR"))

*** RESET test ***

H0: Binary probit component of a two-part model

Version Statistic p-value
LM(2) 1.117 0.291
LR(2) 1.060 0.303

Wald(2) 1.061 0.303
LM(3) 2.850 0.241
LR(3) 2.208 0.332

Wald(3) 2.946 0.229

> frm.ggoff(cauchit2b,version=c("Wald","LM","LR"))

*** GGOFF test ***

H0: Binary probit component of a two-part model

Test Version Statistic p-value
GOFF1 LM 1.256 0.262
GOFF1 LR 1.180 0.277
GOFF1 Wald 1.193 0.275
GOFF2 LM 0.777 0.378
GOFF2 LR 0.760 0.383
GOFF2 Wald 0.721 0.396
GGOFF LM 3.326 0.190
GGOFF LR 2.747 0.253
GGOFF Wald 3.452 0.178

> frm.reset(probit2f,lastpower.vec=c(2:3),version=c("Wald",
"LM"))

*** RESET test ***

H0: Fractional probit component of a two-part model

Version Statistic p-value
LM(2) 0.624 0.430

Wald(2) 0.613 0.434
LM(3) 0.625 0.732

Wald(3) 0.613 0.736

Modeling fractional responses using R Chapter 8 257



> frm.ggoff(probit2f,version=c("Wald","LM"))

*** GGOFF test ***

H0: Fractional probit component of a two-part model

Test Version Statistic p-value
GOFF1 LM 0.625 0.429
GOFF1 Wald 0.613 0.434
GOFF2 LM 0.623 0.430
GOFF2 Wald 0.613 0.434
GGOFF LM 0.625 0.732

In this case, there is no statistical evidence against the conditional mean

assumptions made.

Finally, we test the logit one-part model against the estimated two-part

model using the P test (Wald version):

> frm.ptest(logit1,caupro2,version="Wald")

*** P test ***

H0: Fractional logit model
H1: Binary cauchit + Fractional probit two-part model

Version Statistic p-value
Wald 1.834 0.067 *

H0: Binary cauchit + Fractional probit two-part model
H1: Fractional logit model

Version Statistic p-value
Wald 1.150 0.251

At a 10% significance level, the correct specification of the one-part model is

rejected, while the two-part model seems to be a suitable specification for our data.

3 Linearized- and exponential-fractional estimators

The previous models do not allow for omitted covariates, be they correlated

(endogeneity) or not (neglected heterogeneity) with the included regressors.

In this section we still focus on a cross-sectional framework, but consider

alternative regression models where those issues may be present. The relevant

R package for this section is frmhet:

library(frmhet)

258 PART III Miscellaneous Topics



3.1 Framework

Economic theory often postulates that a response variable depends on both

observed and unobserved variables. However, the econometric models

described above assume that all relevant variables are observed. Because it

is not easy to work with unobservables in the framework of Eq. (1),

Ramalho and Ramalho (2017) consider alternatively the structural model

yi ¼G xiy + uið Þ, (13)

where ui denotes the unobservables. In this model, observed and omitted vari-

ables are treated in a similar manner and we have what Heckman (2000) calls

a “well-posed economic model” where “all of the input processes, observed

and unobserved by the analyst, and their relationship to outputs” are specified.

From (13), it follows that

E yijxið Þ¼Eu G xiy+ uið Þ½ � ¼
Z
U

G xiy + uið Þf uijxið Þdui, (14)

where Eu �½ � denotes expectation with respect to the conditional distribution of

u and U and f uijxið Þ denote, respectively, the sample space and the condi-

tional (on the observables) density of u. Clearly, in this setting conditioning

on xi does not remove the dependency of the model on the unobservables

and the QML estimator based on Eq. (1) will no longer be consistent, even

if xi and ui are not correlated.

To overcome the inconsistency of standard estimators in this context, and to

avoid making distributional assumptions as seems to be required by (14),

Ramalho and Ramalho (2017) propose rewriting model (13) in such a way that

observed and unobserved covariates become additively separable. Their pro-

posal requires the G xiy+ uið Þ function to be decomposed as G1 exp xiy+ uið Þ½ �
such that (13) may be re-written as:

yi ¼G1 exp xiy+ uið Þ½ �, (15)

where G1 �ð Þ is an invertible function. Let H1 ¼G1 �ð Þ�1
. Then, from (15) it

follows that:

H1 yið Þ¼ exp xiy + uið Þ: (16)

This equation is the basis for the so-called exponential-fractional regression

model (EFRM) proposed by Ramalho and Ramalho (2017). The EFRM

includes as particular cases the logit (H1 yið Þ¼ yi
1�yi

) and cloglog

(H1 yið Þ¼� ln 1� yið Þ) models. The other specifications considered in the

previous section (probit, loglog, and cauchit) cannot be used in this frame-

work, because they cannot be decomposed as in (15).

An alternative to the EFRM is the linearized-fractional regression model

(LFRM), which is given by:

H yið Þ¼ xiy+ ui, (17)
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where H¼G �ð Þ�1
. The LFRM applies to all previously discussed specifica-

tions. For the logit and cloglog models, H yið Þ¼ lnH1 yið Þ. For the models

where H1 yið Þ does not exist, H yið Þ¼F�1 yið Þ (probit), � ln � ln yið Þ½ � (loglog),
or tan p yi�0:5ð Þ½ � (cauchit).

The main advantage of LFRM over EFRM is its simplicity: Eq. (17) repre-

sents a linear regression model and, with exogenous regressors, may be esti-

mated by OLS, while Eq. (16) represents an exponential regression model

and is typically estimated by QML. On the other hand, while the LFRM is

not defined for both the boundary values of the fractional response, the EFRM

accommodates the value zero of yi. Since, as discussed in Section 2.2, most

samples of fractional responses include observations at (only) one of the lim-

its, this is a very important advantage of the EFRM relative to the LFRM.b

3.2 Neglected heterogeneity

Assume that ui and xi are uncorrelated. In particular, without any loss of general-

ity, provided that xi contains a constant term, assume that E exp uið Þjxi½ � ¼ 1.

Under this assumption, and after transforming the dependent variable as indicated

above, the EFRM (16) may be estimated as a standard exponential regression

model using, as in Santos Silva and Tenreyro (2006), Poisson- or Exponential-

based QML. Because in the next section we allow for endogenous regressors

and Poisson-QML is not well suited to deal with endogenous covariates in

models with multiplicative heterogeneity (Windmeijer and Santos Silva, 1997),

package frmhet considers only Exponential-based QML estimation.

To estimate a logit fractional regression model allowing for neglected het-

erogeneity, the command frmhet, with the option type="GMMx", is applied

> frmhet(y=Y,x=X,type="GMMx",link="logit")

*** Fractional logit regression model ***
*** Estimator: GMMx

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -0.884512 1.242392 -0.712 0.477
Growth 0.008382 0.005555 1.509 0.131
Size 0.025152 0.104372 0.241 0.810
Profitability -4.276801 1.370205 -3.121 0.002 ***
Tangibility 1.151494 0.456426 2.523 0.012 **

Note: robust standard errors

Number of observations: 379

bNote that, if needed, we can redefine the response variable and model its complementary, which

means the EFRM is applicable irrespective of the (original) boundary value that is observed with a

nonzero probability.
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Note that the dependent variable is introduced in its original fractional form,

since the transformation H1 yið Þ is automatically applied by the command

according to the selected specification. While in the frm package the model

functional form was specified using the option linkfrac, here the

corresponding definition is simply link, since frmhet is only implemented

for conditional mean models. By default, the variance is calculated in a

robust way, but a cluster–robust option is also available.

Ramalho and Ramalho (2017) designated the Exponential-based QML

estimator by GMMx because the EFRM (16) may be also represented in a

moment condition form that is particularly useful for dealing with endogene-

ity. Dividing both sides of (16) by exp xiyð Þ and subtracting one, the EFRM

may be equivalently expressed as:

H1 yið Þ
exp xiyð Þ�1¼ exp uið Þ�1: (18)

Under the conditions stated above, it follows that

E
H1 yið Þ
exp xiyð Þ�1





xi� �
¼ 0, (19)

which may be used to generate a set of moment conditions and allow estima-

tion of y. In particular, GMMx is based on the following orthogonality

conditions:

E x0i
H1 yið Þ
exp xiyð Þ�1

� �
 �
¼ 0, (20)

which correspond to the first-order conditions defining Exponential-based

QML estimators.

Using the command frmhet with the option type="LINx", we may also

estimate the LFRM (17). In this case, because yi is zero for some firms,

we obtain an error message in the application of the command:

> frmhet(y=Y,x=X,type="LINx",link="logit")
Error in frmhet(y = Y, x = X, type = "LINx", link = "logit") :
0/1 values for the response variable: LIN estimators require

adjustment

To overcome this situation, we may add an arbitrary constant to all observa-

tions of yi (for example, 0.001 or 0.000001) or we may drop observations with

yi ¼ 0, as follows:

> frmhet(y=Y,x=X,type="LINx",link="logit",adjust=0.001)

*** Fractional logit regression model ***
*** Estimator: LINx
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*** Adjustment: 0.001 added to all observations

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -0.860114 1.566791 -0.549 0.583
Growth 0.007329 0.007316 1.002 0.316
Size -0.165517 0.140634 -1.177 0.239
Profitability -6.940474 1.757618 -3.949 0.000 ***
Tangibility 2.671571 0.681805 3.918 0.000 ***

Note: robust standard errors

Number of observations: 379

> frmhet(y=Y,x=X,type="LINx",link="logit",adjust=0.000001)

*** Fractional logit regression model ***
*** Estimator: LINx
*** Adjustment: 1e-06 added to all observations

Estimate Std. Error t value Pr(>jtj)
INTERCEPT 0.413200 2.990148 0.138 0.890
Growth 0.008621 0.014070 0.613 0.540
Size -0.411956 0.270661 -1.522 0.128
Profitability -13.044430 3.628739 -3.595 0.000 ***
Tangibility 4.735408 1.270253 3.728 0.000 ***

Note: robust standard errors

Number of observations: 379

> frmhet(y=Y,x=X,type="LINx",link="logit",adjust="drop")

*** Fractional logit regression model ***
*** Estimator: LINx
*** Adjustment: all boundary observations dropped

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -1.746243 1.266901 -1.378 0.168
Growth 0.010851 0.006185 1.754 0.079 *
Size -0.002671 0.117436 -0.023 0.982
Profitability -2.825326 1.631900 -1.731 0.083 *
Tangibility 1.389850 0.517068 2.688 0.007 ***

Note: robust standard errors

Number of observations: 310
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Note how the magnitude of the parameter estimates is highly sensitive to the

constant added to yi and how dropping observations with yi ¼ 0 may lead to

different conclusions in terms of the significance of the variables, which is

in accordance with the Monte Carlo results obtained by Ramalho and

Ramalho (2017). Clearly, the LFRM should be avoided when there are bound-

ary observations for the response variable.

The RESET test may be implemented in this context using the command

frmhet.reset. For example, for computing the GMMx estimator, we may

use a logit or a cloglog specification. Based on a RESET test with two fitted

powers, the former functional form is preferable:

> res <- frmhet(y=Y,x=X,type="GMMx",link="logit",table=FALSE)
> frmhet.reset(res,lastpower.vec=3,version="Wald")

*** RESET test ***
Fractional logit regression model

H0: Estimator: GMMx

Version Statistic p-value
Wald(3) 2.412 0.299

> res <- frmhet(y=Y,x=X,type="GMMx",link="cloglog",table=FALSE)
> frmhet.reset(res,lastpower.vec=3,version="Wald")

*** RESET test ***
Fractional cloglog regression model

H0: Estimator: GMMx

Version Statistic p-value
Wald(3) 740.519 0.000 ***

3.3 Endogenous regressors

Now, we assume that one or more explanatory variables are endogenous. Let

zi denote an s-vector of instrumental variables, including the exogenous

explanatory variables. The estimators of the previous section may be straight-

forwardly extended to deal with endogeneity. For example, Ramalho and

Ramalho (2017) GMMz estimator is defined by the following moment condi-

tions, which is an adaptation of (20):

E z0i
H1 yið Þ
exp xiyð Þ�1

� �
 �
¼ 0: (21)
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Similarly, we may define a LINz estimator, which in this case is also com-

puted as a GMM estimator, based on:

E z0i H yið Þ� xiy½ �� �¼ 0: (22)

Suppose that Profitability is the endogenous variable and ProfitIVa the

instrumental variable. Then, the logit version of the GMM estimator may be

obtained as follows:

> Z <- cbind(Growth, Size, Tangibility, ProfitIVa)
> Z <- Z[Year==2007,]
> frmhet(y=Y,x=X,z=Z,type="GMMz",link="logit")
ALGORITHM DID NOT CONVERGE

However, the optimization algorithm behind frmhet did not converge in this

example. Whenever this happens, there are two main alternatives that we

may try to obtain the estimates. The first is simply to provide a numeric

vector containing starting values for the parameters to be optimized, using

the option start:

> frmhet(y=Y,x=X,z=Z,type="GMMz",link="logit",start=c(-1,0,0,
-8,3))

*** Fractional logit regression model ***
*** Estimator: GMMz

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -2.240221 1.485953 -1.508 0.132
Growth 0.024997 0.019006 1.315 0.188
Size 0.178961 0.166608 1.074 0.283
Profitability -11.168674 6.182291 -1.807 0.071 *
Tangibility 1.648019 0.947288 1.740 0.082 *

Note: robust standard errors

Number of observations: 379

The other alternative is to change some of the control parameters used by nlmimb,
the R command on which frmhet is based. Below, we change the maximum

number of iterations and evaluations of the objective function allowed:

> frmhet(y=Y,x=X,z=Z,type="GMMz",link="logit",control=
list(iter.max=300,eval.max=400))

*** Fractional logit regression model ***
*** Estimator: GMMz
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Estimate Std. Error t value Pr(>jtj)
INTERCEPT -2.240220 1.485953 -1.508 0.132
Growth 0.024997 0.019006 1.315 0.188
Size 0.178961 0.166608 1.074 0.283
Profitability -11.168673 6.182291 -1.807 0.071 *
Tangibility 1.648019 0.947288 1.740 0.082 *

Note: robust standard errors

Number of observations: 379

The results obtained in both cases are virtually identical. See the help file for

nlmimb to find all control parameters that may be changed.c

When the number of instruments is larger than the number of endogenous

covariates, then Hansen (1982) J test statistic of overidentifying moment con-

ditions is also reported in the output of frmhet. For example, if we use also

ProfitIVb as instrument, we find that we cannot reject the exogeneity of the

variables contained in zi:

> Z <- cbind(Growth, Size, Tangibility, ProfitIVa, ProfitIVb)
> Z <- Z[Year==2007,]
> frmhet(y=Y,x=X,z=Z,type="GMMz",link="logit")

*** Fractional logit regression model ***
*** Estimator: GMMz

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -1.227499 1.029194 -1.193 0.233
Growth 0.006670 0.006838 0.975 0.329
Size 0.039852 0.090423 0.441 0.659
Profitability -2.410194 2.759632 -0.873 0.382
Tangibility 1.102152 0.462752 2.382 0.017 **

Note: robust standard errors

Number of observations: 379

J test of overidentifying moment conditions: 0.6598782
(p-value: 0.4166029 )

cThe frm command considered in Section 2 is based on the R command glm. If we find

convergence problems with frm, we may use a similar procedure to change the control

parameters used by glm.
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One important feature of GMMz and LINz estimators is that they do not require

the specification of a reduced formmodel for the endogenous explanatory variable,

which is in clear contrast to most instrumental variables that have been proposed

for nonlinear regression models. However, if we have information about the

reduced form of the endogenous covariate, then a potentially more efficient esti-

mator may be constructed, based onWooldridge (2015) control function approach.

Denote by xi2 the set of k2 endogenous explanatory variables and assume

that a linear reduced form with additive disturbances v can be found for the

monotonic transformation S xi2ð Þ:
S xi2ð Þ¼ zip + vi, (23)

where p is an s � k2 matrix of reduced form parameters. Assume also that

ui ¼ vir + Ei, (24)

where vi is independent of both zi and Ei. Replacing ui in (16) by the right-hand

side of (24) and vi by its OLS estimate v̂i ¼ S xi2ð Þ� zip̂, and repeating all previ-

ous procedures that led to Eq. (20), we obtain a new set of moment conditions,

E w0
i

H1 yið Þ
exp xiy+ v̂irð Þ�1

� �
 �
¼ 0, (25)

where w0
i ¼ xi, v̂ið Þ0. Ramalho and Ramalho (2017) designated the GMM esti-

mator of y and r based on (25) by GMMxv. A LINxv estimator may also

be constructed in a similar way, based on:

E w0
i H1 yið Þ� xiy+ v̂irð Þ½ �� �¼ 0: (26)

To use the command frmhet to obtain GMMxv or LINxv estimators, we

may apply command lines similar to those illustrated above for GMMz, but

with the option type="GMMxv" or "LINxv" and, in addition, we need to indi-

cate, through the option var.endog, the name of the vector that contains the

values of the endogenous covariate (or of some transformation of it, in case

the S �ð Þ function in Eq. (23) is not linear).d Continuing the example above,

suppose that we assume a linear form for S �ð Þ. Thus, the GMMxv is imple-

mented as follows:

> Profit2007 <- Profitability[Year==2007]
> frmhet(y=Y,x=X,z=Z,var.endog=Profit2007,type="GMMxv",

link="logit",control=list(iter.max=300,eval.max=400))

*** Fractional logit regression model ***
*** Estimator: GMMxv

dNote that the current GMMxv/LINxv versions of frmhet only allow for one endogenous

explanatory variable. In contrast, GMMz/LINz allow for multiple endogenous covariates.
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Estimate Std. Error t value Pr(>jtj)
INTERCEPT -0.950287 1.114195 -0.853 0.394
Growth 0.009339 0.005580 1.674 0.094 *
Size 0.040577 0.089653 0.453 0.651
Profitability -5.754944 3.423699 -1.681 0.093 *
Tangibility 1.097722 0.484070 2.268 0.023 **
vhat 2.096154 4.389900 0.477 0.633

Reduced form:
Estimate Std. Error t value Pr(>jtj)

Z_INTERCEPT 0.000813 0.036972 0.022 0.982
Z_Growth 0.000755 0.000204 3.694 0.000 ***
Z_Size 0.004382 0.003271 1.340 0.180
Z_Tangibility -0.027189 0.019124 -1.422 0.155
Z_ProfitIVa 0.155413 0.028526 5.448 0.000 ***
Z_ProfitIVb 0.243621 0.030669 7.943 0.000 ***

Note: robust standard errors

Number of observations: 379

Note that for this class of estimators, the output includes also the results of the

estimation of the reduced form model.

If, for example, an exponential form is assumed for S �ð Þ, then we must

first create the exponential transformation of Profitability:

> Profit2007exp <- exp(Profit2007)
> frmhet(y=Y,x=X,z=Z,var.endog=Profit2007exp,type="GMMxv",

link="logit",control=list(iter.max=300,eval.max=400))

*** Fractional logit regression model ***
*** Estimator: GMMxv

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -0.930133 1.134409 -0.820 0.412
Growth 0.009246 0.005557 1.664 0.096 *
Size 0.038834 0.090336 0.430 0.667
Profitability -5.774066 3.441828 -1.678 0.093 *
Tangibility 1.103188 0.481986 2.289 0.022 **
vhat 1.811518 3.791412 0.478 0.633

Reduced form:
Estimate Std. Error t value Pr(>jtj)

Z_INTERCEPT 1.003007 0.042115 23.816 0.000 ***
Z_Growth 0.000859 0.000237 3.630 0.000 ***
Z_Size 0.004450 0.003725 1.195 0.232
Z_Tangibility -0.030065 0.021838 -1.377 0.169
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Z_ProfitIVa 0.177334 0.033847 5.239 0.000 ***
Z_ProfitIVb 0.279039 0.038986 7.157 0.000 ***

Note: robust standard errors

Number of observations: 379

The xv-type estimators require heavier assumptions than the z-type estimators,

namely the correctness of both Eqs. (23) and (24), but have the attractive fea-

ture of providing a simple test for endogeneity. Indeed, such a test may be

implemented as a test for the significance of the parameter r associated to

v̂i (denoted by vhat in the output). In this example, we fail to reject the null

hypothesis of exogeneity of Profitability.
Finally, there is a seventh estimator that may be obtained using frmhet:

QMLxv. This estimator, proposed by Wooldridge (2005), is based on the

original formulation of conditional mean models described in Section 2.1,

but uses a control function approach similar to that described above to deal

with endogeneity issues. However, unlike GMMxv and LINxv, it does not

allow for other sources of heterogeneity. To implement the QMLxv estima-

tor, simply use the option type="QMLxv" in frmhet.

3.4 Smearing estimation of partial effects

So far, the discussion concerning EFRM and LFRM has been focused on the

estimation of the parameters that appear in the structural model (13). As in the

standard case, we may be also interested in computing partial effects in order

to measure how unitary changes in xij affect the value of yi. Unfortunately,
calculating partial effects in the framework of transformation regression mod-

els is not trivial. On the one hand, differentiating the base model (13) in order

to xij would give a simple expression for a partial effect conditional on both

observables and unobservables. However, since there are no interesting values

to plug-in for ui, what we need are partial effects conditional only on observa-

bles, E yijxið Þ. On the other hand, computing partial effects directly from (16)

or any of the other transformation regression models considered above allows

the analysis to be conditional only on observables, since the unobservables are

additively separable. However, what we get directly is the the effect of a uni-

tary change in xij on E H1 yið Þjxi½ �, instead of the desirable quantity E yijxið Þ.
Duan (1983) suggested the so-called smearing technique that allows to

estimate partial effects on E yijxið Þ after estimating a transformation regression

model. His technique was adapted by Ramalho and Ramalho (2017) for

EFRM and LFRM and requires that the dependence between observables

and unobservables, if any, is restricted to the conditional mean. Following

these authors, from (14) we may compute partial effects conditional only on

observables using the following expression:
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∂E yijxið Þ
∂xij

¼ yj

Z
U

g xiy + uið Þf uijxið Þdui: (27)

This expression still depends on ui. To remove this dependency, Ramalho and

Ramalho (2017) used a two-step procedure. First, y is estimated by any of the

GMM/LIN estimators described above and the residuals ûi for all sampling

units are obtained, where ûi¼ H1 yið Þ
exp xiŷð Þ�1 (GMMx/GMMz), ûi¼ H1 yið Þ

exp xi ŷ + v̂ ir̂ð Þ�1

(GMMxv), ûi¼H1 yið Þ�xiŷ (LINx/LINz) or ûi¼H1 yið Þ� xiŷ + v̂ir̂
� �

(LINxv).

Then, for individual i, the partial effects are estimated using:

d∂E yijxið Þ
∂xij

� �
¼ 1

N
ŷj
XN

m¼1
g xiŷ + ûim
� �

, (28)

where the unknown error distribution is estimated by the empirical distribu-

tion of the GMM or LIN residuals calculated in step 1. Note that this calcula-

tion has to be made independently for each sampling unit.

It is possible to calculate partial effects using the command frmhet.pe
contained in package frmhet. This command works in a similar way to

the command frm.pe described in Section 2.3, but has an additional option

called smearing. By default, smearing=T and formula (28) is used. For com-

parison purposes, we may define smearing=F, in which case the naive esti-

mator
d∂E yijxið Þ
∂xij

h i¼ ŷjg xiŷ
� �

is calculated. For example:

> res <- frmhet(y=Y,x=X,type="GMMx",link="logit",table=FALSE)
> frmhet.pe(res,smearing=TRUE,APE=TRUE,CPE=FALSE)

*** Average partial effects (conditional only on observables,
based on the smearing estimator)

Fractional logit regression model
Estimator: GMMx

Estimate Std. Error t value Pr(>jtj)
Growth 0.0010 0.0007 1.541 0.123
Size 0.0031 0.0128 0.242 0.809
Profitability -0.5265 0.1658 -3.176 0.001 ***
Tangibility 0.1418 0.0548 2.587 0.010 ***

> frmhet.pe(res,smearing=FALSE,APE=TRUE,CPE=FALSE)

*** Average partial effects (conditional on both observables
and unobservables, with error term = 0)
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Fractional logit regression model
Estimator: GMMx

Estimate Std. Error t value Pr(>jtj)
Growth 0.0019 0.0012 1.548 0.122
Size 0.0057 0.0236 0.242 0.809
Profitability -0.9688 0.2995 -3.235 0.001 ***
Tangibility 0.2608 0.0997 2.616 0.009 ***

Notice how the estimated partial effects are substantially different in each

case, confirming the importance of using a smearing estimator in this context.

4 Panel data estimators

All estimators discussed so far were developed assuming the availability of

cross-sectional data. Specific estimators for panel data fractional regression

models may also be constructed. In this section, we review the main panel

data estimators for fractional responses and show how to obtain them using

the frmpd package and the full dataset:

library(frmpd)
Y <- Leverage
X <- cbind(Growth, Size, Profitability, Tangibility)

4.1 Framework

In a panel data setting, it is common to include time-invariant unobserved hetero-

geneity in the regression model. Let ai denote those individual effects. As in the

previous section, it is not straightforward to work with ai in the framework of

Eq. (1), but it is possible to use a similar methodology that allows easier handling

of not only individual effects, but also of time-varying unobservables (’it). In

particular, Ramalho et al. (2018) proposed using the following structural model:

yit ¼G xity + ai +’itð Þ, (29)

t ¼ 1, … T.
The G �ð Þ function in (29) has to have exactly the same properties of that

considered in Eq. (13), which implies that the estimators described in this sec-

tion are also only available for logit and cloglog models. Using similar argu-

ments to those used to derive Eqs. (16) and (18), we now have the following

transformation regression models:

H1 yitð Þ¼ exp xity + ai +’itð Þ (30)

and, depending on the assumptions made on ai,
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H1 yitð Þ
exp xityð Þ�1¼ exp ai +’itð Þ�1 (31)

or

H1 yitð Þ
exp ai + xityð Þ�1¼ exp ’itð Þ�1: (32)

Based on these equations, Ramalho et al. (2018) proposed six alternative

panel data GMM estimators, which differ on the assumptions about the corre-

lation between ai, ’it and the covariates. Indeed, some estimators allow for ai
and xit to be correlated, while others require them to be not correlated.

Regarding ’it, we may have the following cases:

l strict exogeneity: E exp ’itð Þjai,xi1,…,xiT½ � ¼ 1

l weak exogeneity: E exp ’itð Þjai,xi1,…,xit½ � ¼ 1

l contemporaneous exogeneity: E exp ’itð Þja,xit½ � ¼ 1

l contemporaneous endogeneity: E exp ’itð Þja,xit½ � 6¼ 1

In all cases, ai and ’it are assumed to be not correlated and the latter not to be

serially correlated. The estimators next discussed may be used with both bal-

anced and unbalanced data.e

4.2 Pooled random and fixed effects estimators

There are two simple pooled estimators that may be used in this framework.

The first is a ‘pooled random effects’ estimator (GMMpre). Assuming that

xit and ai are independently distributed, we may treat ai + ’it as a single error

term and use Eq. (31) as basis for consistent estimation of y. Therefore,
assuming contemporaneous exogeneity for xit, the GMMpre estimator is sim-

ply the pooled GMMx estimator defined in (20). In case of endogenous xit,
GMMpre corresponds to the pooled GMMz estimator defined by (21).

The second estimator is a “pooled fixed effects” (GMMpfe) estimator,

allowing xit and ai to be correlated and interpreting ai as a vector of

individual-specific intercepts to be estimated simultaneously with y. From

Eq. (32), estimates for y and ai may be obtained by GMM estimation based on:

E xit,aið Þ0 H1 yið Þ
exp xity+ aið Þ�1

� �
 �
¼ 0: (33)

eNote that the frmpd package does not allow for NA values. If you have missing data for

some variables in some years for some individuals, your database should include only the

individuals/years for which all variables were observed. Lines with missing data should be

removed before using frmpd.
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As shown by Dhaene and Jochmans (2017), there is no incidental parameters

problem in this case. Moreover, see Ramalho et al. (2018), when there are no

boundary values estimation may be based on the alternative set of moment

conditions

E x0it
H1 yitð Þ
exp xityð Þ

H1 yið Þ
exp xityð Þ

� ��1

�1

" #( )
¼ 0 , (34)

where l is the mean over t of lit and the individual effects do not need to be

estimated. Consistency of the GMMpfe estimator requires a strict exogeneity

assumption for xit. It is also possible to deal with endogenous regressors repla-

cing xit by zit in (33) or (34). In this case, we may use lags and/or leads of the

regressors as instruments or use external instruments.

Under exogeneity, the GMMpre estimator may be obtained using the

frmpd package as follows:

> frmpd(id=Ident,time=Year,y=Y,x=X,x.exogenous=TRUE,type=
"GMMpre",link="logit")

*** Fractional logit regression model ***
*** Estimator: GMMpre
*** Exogeneity: TRUE
*** Use first lag of instruments: FALSE

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -1.085236 0.892587 -1.216 0.224
Growth 0.002032 0.003004 0.676 0.499
Size 0.063387 0.083947 0.755 0.450
Profitability -4.293260 1.163781 -3.689 0.000 ***
Tangibility 0.712524 0.331692 2.148 0.032 **

Note: cluster standard errors

Number of observations (initial): 1843
Number of observations (for estimation): 1843
Number of cross-sectional units (initial): 620
Number of cross-sectional units (for estimation): 620
Average number of time periods per cross-sectional unit

(initial): 2.972581
Average number of time periods per cross-sectional unit

(for estimation): 2.972581

By default, the variance of the parameter estimates is estimated in a cluster–
robust way, but a simpler robust estimator of the type considered in the
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previous sections is also available by setting var.type="robust". Both vari-

ance estimators may be bootstrapped using the option bootstrap=TRUE.
For example, using a cluster–robust estimator based on 100 bootstrap repli-

cations the following results are obtained (set.seed(300) ensures that you

obtain the results below):f

> set.seed(300)
> frmpd(id=Ident,time=Year,y=Y,x=X,x.exogenous=TRUE,type=

"GMMpre",link="logit",bootstrap=TRUE,B=100,control=
list(iter.max=300,eval.max=400))

11111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111

*** Fractional logit regression model ***
*** Estimator: GMMpre
*** Exogeneity: TRUE
*** Use first lag of instruments: FALSE

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -1.085236 0.901134 -1.204 0.228
Growth 0.002032 0.003459 0.587 0.557
Size 0.063387 0.083618 0.758 0.448
Profitability -4.293260 1.290966 -3.326 0.001 ***
Tangibility 0.712524 0.344081 2.071 0.038 **

Note: bootstrap standard errors

Number of observations (initial): 1843
Number of observations (for estimation): 1843
Number of cross-sectional units (initial): 620
Number of cross-sectional units (for estimation): 620
Average number of time periods per cross-sectional unit

(initial): 2.972581
Average number of time periods per cross-sectional unit

(for estimation): 2.972581

With contemporaneous endogeneity, we need to change the option x.exoge-
nous to FALSE and provide the name of the matrix containing the instru-

ments. In the following example, we consider again ProfitIVa and

ProfitIVb as instruments for Profitability:

fWhenever a bootstrap replication is concluded, a number is reported: 1 means that convergence

in estimation was achieved; 0 means the opposite, meaning that at the end less than B bootstrap

replications were taken into account in the estimation of the parameter variance.
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> Z <- cbind(Growth, Size, Tangibility, ProfitIVa, ProfitIVb)
> frmpd(id=Ident,time=Year,y=Y,x=X,z=Z,x.exogenous=FALSE,type=

"GMMpre",link="logit")

*** Fractional logit regression model ***
*** Estimator: GMMpre
*** Exogeneity: FALSE
*** Use first lag of instruments: FALSE

Estimate Std. Error t value Pr(>jtj)
INTERCEPT -1.624264 0.923614 -1.759 0.079 *
Growth 0.005763 0.003608 1.597 0.110
Size 0.124290 0.094188 1.320 0.187
Profitability -7.193148 2.235043 -3.218 0.001 ***
Tangibility 0.774943 0.337719 2.295 0.022 **

Note: cluster standard errors

Number of observations (initial): 1843
Number of observations (for estimation): 1843
Number of cross-sectional units (initial): 620
Number of cross-sectional units (for estimation): 620
Average number of time periods per cross-sectional unit

(initial): 2.972581
Average number of time periods per cross-sectional unit

(for estimation): 2.972581

J test of overidentifying moment conditions: 0.1725407
(p-value: 0.6778636)

To obtain the GMMpfe estimator, it is only necessary to change the option

type to "GMMpfe". Note that if the sample contains the value zero, the opti-

mization process will tend to be very time-consuming for large N, since in

such a case estimation will be based on Eq. (33) and there are N + k para-

meters to be estimated.

In all cases, a set of time dummies may be automatically added to the

model by defining the option tdummies=TRUE.

4.3 Fixed effects estimators based on quasi- and mean-differences

Because model (30) is basically the expression of an exponential regression

model, the quasi- and mean-difference transformations commonly applied to

exponential models to eliminate fixed effects may also be applied to Eq. (30).

In particular, Ramalho et al. (2018) adapted to the fractional framework three

estimators that use alternative transformations.
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The first estimator is based on the following set of moment conditions

x0i, t�1

H1 yitð Þ
exp xityð Þ�

H1 yi, t�1ð Þ
exp xi, t�1yð Þ

� �
 �
¼ 0 (35)

and assumes weak exogeneity. Ramalho et al. (2018) denoted this estimator

by GMMww, because in the exponential regression case it was originally pro-

posed by Wooldridge (1997) and Windmeijer (2000). This is the most flexible

estimator, because xit may contain endogenous covariates and lagged values

of the response variable. As instruments, lagged values of xi,t�1 or external

instruments (zi,t�1) may be used.

The second estimator, based on Chamberlain (1992) proposal for the expo-

nential regression model, is denoted by GMMc and uses:

x0i, t�1

exp xi, t�1yð Þ
exp xityð Þ H1 yitð Þ�H1 yi, t�1ð Þ

� �
 �
¼ 0: (36)

Again, the weak exogeneity assumption is enough for consistent estimation of

y and xit may contain lagged dependent variables. However, this estimator

cannot be used when some explanatory variable is endogenous.

Finally, the third estimator (GMMbgw) is based on the mean differenced

transformation used by Blundell et al. (2002) for exponential models. The

moment conditions derived by Ramalho et al. (2018) for fractional regression

models are given by:

x0it H1 yitð Þ� H1 yið Þ
exp xiyð Þ exp xityð Þ

" #( )
¼ 0: (37)

This estimator requires strict exogeneity and cannot be applied with endoge-

nous covariates and lagged dependent variables.

All three estimators are easily obtained with the frmpd package. The pro-

cedure is similar to that illustrated before for the GMMpre estimator, the

only difference being the option defined for type: GMMww, GMMc, or GMMbgw.
Note that in all cases you should define the options y, x, and, if needed, z
as, respectively, yit, xit, and zit: GMMww, GMMc, and GMMbgw will apply the

appropriate lags whenever appropriate. Continuing the preceding example,

the GMMww estimator could be obtained as follows:

> frmpd(id=Ident,time=Year,y=Y,x=X,z=Z,x.exogenous=FALSE,type=
"GMMww",link="logit")

*** Fractional logit regression model ***
*** Estimator: GMMww
*** Exogeneity: FALSE
*** Use first lag of instruments: TRUE
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Estimate Std. Error t value Pr(>jtj)
Growth 0.003760 0.003040 1.237 0.216
Size 0.015257 0.254081 0.060 0.952
Profitability -10.847346 3.194634 -3.395 0.001 ***
Tangibility 0.497086 0.856810 0.580 0.562

Note: cluster standard errors

Number of observations (initial): 1843
Number of observations (for estimation): 1157
Number of cross-sectional units (initial): 620
Number of cross-sectional units (for estimation): 441
Average number of time periods per cross-sectional unit

(initial): 2.972581
Average number of time periods per cross-sectional unit

(for estimation): 2.623583

J test of overidentifying moment conditions: 0.6223896
(p-value: 0.4301607)

In this illustration, the first lag of ProfitIVa and ProfitIVb (included in the

matrix Z) were used as instruments for the first lag of Profitability (included

in the matrix X).

4.4 Correlated random effects estimators

Finally, a “correlated random effects” estimator (GMMcre) similar in spirit to

the QML estimators proposed by Papke and Wooldridge (2008) and

Wooldridge (2010) may be constructed. These estimators use flexible func-

tional forms for representing the relationship between ai and xit. For example,

assuming balanced panel data, ai may be modeled as a linear function of all

exogenous variables:

ai ¼c0 + zic1 + �i, (38)

where zi � T�1
PT

t¼1zit, c¼ c0,c1ð Þ is a vector of parameters to be estimated

and �i is a disturbance term that is uncorrelated with all the other variables

and error terms. Plugging (38) into (30), it follows thatg

H1 yitð Þ
exp xity +c0 + zic1ð Þ�1¼ exp �i +’itð Þ�1 (39)

and, therefore, GMMcre is based on the following moment conditions:

gWithout loss of generality, since (38) contains a constant term, it is assumed that E exp �ið Þ½ � ¼ 1.
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E xit, 1,zið Þ0 H1 yið Þ
exp xity+c0 + zic1ð Þ�1

� �
 �
¼ 0: (40)

A similar analysis may be carried out in the case of unbalanced data, but

based on

ai ¼
XT
r¼2

dTi ,rc0r +
XT
r¼2

dTi ,rzic1r + �i, (41)

where Ti is the number of observations available for individual i and dTi,r is a

dummy variable which is equal to unity if Ti ¼ r and data exist on the full set

of variables. See Wooldridge (2010) for details and alternative expressions for ai.
An example of the application of the GMMcre estimator is the following:

> frmpd(id=Ident,time=Year,y=Y,x=X,x.exogenous=TRUE,type=
"GMMcre",link="logit",control=list(iter.max=1000,
eval.max=2000))

*** Fractional logit regression model ***
*** Estimator: GMMcre
*** Exogeneity: TRUE
*** Use first lag of instruments: FALSE

Estimate Std. Error t value Pr(>jtj)
Growth 0.001147 0.001602 0.716 0.474
Size -0.398295 0.281773 -1.414 0.157
Profitability -1.499670 0.919217 -1.631 0.103
Tangibility -0.458599 0.665933 -0.689 0.491
INTERCEPT_2 0.976489 1.712421 0.570 0.569
INTERCEPT_3 0.459833 1.896913 0.242 0.808
INTERCEPT_4 -2.202255 1.216480 -1.810 0.070 *
INTERCEPT_5 -2.472313 1.653173 -1.495 0.135
Growth_mean_2 0.005858 0.010211 0.574 0.566
Growth_mean_3 0.005029 0.011575 0.435 0.664
Growth_mean_4 0.013685 0.011367 1.204 0.229
Growth_mean_5 -0.005388 0.020946 -0.257 0.797
Size_mean_2 0.257174 0.321049 0.801 0.423
Size_mean_3 0.317949 0.343350 0.926 0.354
Size_mean_4 0.472391 0.301710 1.566 0.117
Size_mean_5 0.609260 0.261945 2.326 0.020 **
Profitability_mean_2 -7.343594 2.511484 -2.924 0.003 ***
Profitability_mean_3 -4.417342 2.403205 -1.838 0.066 *
Profitability_mean_4 1.293648 2.125925 0.609 0.543
Profitability_mean_5 -8.953168 2.665799 -3.359 0.001 ***
Tangibility_mean_2 2.242842 0.955192 2.348 0.019 **
Tangibility_mean_3 1.077881 1.284365 0.839 0.401
Tangibility_mean_4 3.051096 0.969771 3.146 0.002 ***
Tangibility_mean_5 1.295880 1.119023 1.158 0.247
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Note: cluster standard errors

Number of observations (initial): 1843
Number of observations (for estimation): 1681
Number of cross-sectional units (initial): 620
Number of cross-sectional units (for estimation): 458
Average number of time periods per cross-sectional unit

(initial): 2.972581
Average number of time periods per cross-sectional unit

(for estimation): 3.670306

Papke and Wooldridge (2008) correlated random effects QML estimator,

which requires a probit specification, is also available in the frmpd package

by defining the option type=QMLcre (and, naturally, link="probit").

5 Future developments

The three packages described in this chapter allow practitioners to apply a

range of different methodologies to the analysis of responses variables that

represent a single proportion. However, sometimes, the joint behavior of a

multivariate fractional variable is of interest. Models for the multivariate case

have been analyzed by Mullahy (2015) and were further developed by

Murteira and Ramalho (2016). Some of the proposed models are relatively

complex and, to the best of our knowledge, there is no R package available

for estimating them. The developing of such an R package is in my research

agenda for the near future.
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Abstract
The main purpose of the present chapter is to introduce the reader to game theory through

R. Specifically, it focuses on cooperative games with transferable utility and it introduces

well-known punctual solutions, the voting power index and the claims problems. Further-

more, we introduce a modern application of cooperative game theory to the marketing

field, where we develop a framework to distribute revenues among Internet selling chan-

nels. For the sake of comprehensiveness, after theoretical explanation, the reader may find

the R code to execute the examples.

Keywords: Cooperative game, Shapley value, Nucleolus, Claims problem, Bank-

ruptcy, Attribution model, R package game theory

1 Introduction

There exists a large number of social and economic situations where the agents

are strategic dependent, i.e., each agent’s outcome is influenced by the other

agents’ decision. The economics field that studies such situations is game the-

ory, whose influence in economic modeling is extraordinary. Specifically, the

current chapter focuses on the situations where cooperation among agents

is necessary and mutually beneficial, such as the formation of a cartel among

companies, or the financial support through crowdfunding. By doing so, we

use the cooperative game theory, which not only models the cooperation among

agents (in terms of gains and costs) but also provides solutions to determine the

way to share the benefit obtained from the cooperation among agents. These

situations, where collaboration and conflict of interest arise naturally, are called

games, and the agents, players, who may be individuals, nations, political

parties, associations, companies, etc.

Handbook of Statistics, Vol. 41. https://doi.org/10.1016/bs.host.2018.11.003

© 2019 Elsevier B.V. All rights reserved. 281

https://doi.org/10.1016/bs.host.2018.11.003


It is noteworthy that the importance of the role to be developed by game

theory is to provide, from a quantitative rather than a qualitative point of

view, the objective tools that promote the cooperation and solve potential

conflict. Specifically, the analysis of such situations from a formal and an axi-

omatic point of view becomes essential as the complexity of the situation and

the assets to be distributed increases.

The current chapter presents some applications of game theory to

economic problems, following Cano-Berlanga et al. (2017b). First, Section 2

provides some basics about cooperative game theory and the main solutions,

through the computation of some real examples. Second, Section 3 applies

the game theory analysis to a marketing problem. Specifically, it solves the

case of distributing sales revenues among all the channels that induce the

purchasing process. Finally, Section 4 analyzes the conflicting claims problems

through the most used solutions and gives some real examples. The examples of

this chapter are driven by the R package Gametheory.

2 Cooperative game theory

Game theory is the discipline that studies how agents make strategic decisions.

It was initially developed in economics to understand a large collection of eco-

nomic behaviors, including firms, markets, and consumers. Specifically, a game

is the mathematical formalization of such conflicts, originated by Antoine

Cournot (1801–1877) in 1838 with his solution of the Cournot duopoly.

Modern game theory begins with the publication of the book “Theory of

Games and Economic Behavior” written by von Neumann and Morgenstern

(1944), who considered cooperative games with several players. Indeed,

according to Maschler (1979) after this initial point, game theory was devel-

oped extensively in the 1950s by numerous authors. Later on, the application

field of game theory was not unique to economics and we may find game the-

ory in social network formation, behavioral economics, ethical behavior and

biology, among others.

Game theory is divided into two branches, called the noncooperative and

the cooperative. These two branches differ in how they formalize interdepen-

dence among the players. In noncooperative game theory, a game is a detailed

model of all the moves available to the players. In contrast, cooperative game

theory abstracts away from this level of detail and describes only the outcomes

that result when the players come together in different combinations.

Formally, in a cooperative game we have a finite set of players

N¼f1,2,…,n}, which can be grouped into 2N subsets of N, called coalitions.
Coalitions are represented in capital letters and the corresponding lower case

letter will represent the number of players in the coalition; so, the coalition S
has s players. In addition, the coalition without players is called the empty

coalition and it is represented by ∅. The game assigns to each coalition a real
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value v(S), the worth of S. Usually, this number can be interpreted as a mea-

sure of what the coalition can achieve on its own. Formally,

Definition 1. A cooperative game, or simply a game, is a pair (N, v), where N
is a finite set of players and v is a function, the characteristic function

v : 2N !

where vðSÞ 2 for all S� 2N , and v(∅) ¼ 0. Let GN denote the class of all

cooperative games with player set N.

During many years of study and developing of cooperative game theory,

most of the results obtained have been based on the fulfillment of some prop-

erties by the characteristic function. We present below three of the properties

considered as basic requirements.

Monotonicity: If the number of players in the coalition increases, the

benefits should not decrease.

Superadditivity: The union of coalitions with no common players is beneficial

Convexity: The higher the coalition, the higher each player’s marginal

contribution.

Cooperative game theory centers its interest on particular sets of strategies

known as “solution concepts” or “equilibria” based on what is required by

norms of (ideal) rationality. Among the several types of games, this chapter

focuses on cooperative games with transferable utility.
Specifically, a coalitional game with transferable utility involving a set of

agents, hereinafter a cooperative game, can be described as a function that

associates with each group of agents (or coalition), a real number which is

denoted as the worth of the coalition. If a coalition forms, then it can divide

its worth in any possible way among its members. This is possible if money

is available as a medium of exchange, and if each player’s utility for money

is linear (see Aumann, 1960).

Furthermore, A solution on cooperative games is a correspondence that

associates with each game a nonempty set of payoff vectors in N whose

coordinates add up to v(N). One of the most important solutions is the core

and it selects for each game all the payoff vectors such that no coalition could

simultaneously provide a higher payoff to each of its members. The Core is a

multivalued solution but the ones we present here, the Shapley value

(Shapley, 1953) and the nucleolus (Schmeidler, 1969) are point solutions.

2.1 The core

The concept of the core, one of the most important solution concepts in coop-

erative game theory, is the one that selects for each game all the payoff vectors
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such that no coalition could simultaneously provide a higher payoff to each of

its members. It is based on the idea of imputations. Formally, for each game

ðN,vÞ 2 GN the imputations set is IðvÞ¼ fx2n j xi � vðfigÞ,Pi2Nxi ¼ vðNÞg
the set of allocations that are individually rational and efficient.

Formally, the core of a game, which was formulated by Edgeworth

(1881) and first defined into game theory by Gillies (1953), is the set

of those imputations where each coalition gets at least its worth, that is

CðvÞ :¼fx2 IðvÞ j Pi2S � vðSÞ for all S�Ng.
We may say that the allocations in the core are stable allocations since no

coalition S will have incentives to deviate in order to obtain a strictly better

payoff than what a core element assigns.

The core of a cooperative game is a polyhedric set, closed and bounded in

n. In particular it is a convex polyhedron, i.e., it may be an empty set or if it

is nonempty it may have either a single point or infinite elements.

Finally, it is noteworthy that the core is a multivalued solution, but the

ones presented next are single-valued.

2.2 The Shapley value

The Shapley value (Shapley, 1953) is based on the following idea:

consider players arriving one at each time. Calculate for each player the

amount by which his arrival increases the worth of the coalition consisting

of all the players who arrived before him. We call this difference the marginal

contribution of the player to the coalition. Therefore, if he is the first to arrive,

his contribution is simply his own worth. Suppose that all orders of arrivals

are equally like, then his payoff is the average of his contributions for all

possible arrival orders. Formally, given a game ðN,vÞ 2 GN , for each i 2 N
and each S�N, we call the marginal contribution of an agent i to the coali-
tion S, vðS[figÞ� vðSÞ:

According to this solution the worth of the grand coalition is distributed

assuming that all orders of agents’ arrivals to the grand coalition are equally

probable and in each order, each agent gets his marginal contribution from the

coalition that he joins. Therefore, for each ðN,vÞ 2 GN , the Shapley value, f(v),
associates to each i 2 N, the amount fi(v) ¼ P

S�Nnfig½ðs!ðn� s�1Þ!Þ=n!�
vðS[figÞ� vðSÞð Þ:

Usually, assigning the marginal contribution to each player is not effi-

cient, and, therefore, it is not a solution. In order to avoid the problem of

inefficiency, we may consider that players join the coalition following a cer-

tain ordering, and, then, consider each players’ marginal contribution. Note

that this distribution, called the vector of marginal contributions, is efficient,

but depends on an arbitrary ordering of the players. This distribution is

called the marginal contribution vector associated with y and we denote it

by my(v).
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Definition 2. Let myðvÞ 2Rn be the vector of marginal contributions asso-

ciated to an ordering y¼ði1,…, inÞ, where, for each player i 2 N,

my
i1
ðvÞ :¼ vði1Þ,

my
i2
ðvÞ :¼ vði1, i2Þ� vði1Þ,

…

my
in
ðvÞ :¼ vði1,…inÞ� vði1,…in�1Þ:

Obviously, up to this point, the ordering determines the marginal contri-

butions, so the revenues obtained. In order to solve this arbitrariness of the

players, Shapley (1953) proposes a distribution that considers all possible

orderings. Specifically, he assumes that each ordering has the same proba-

bility of being considered. Therefore, he considers the average of all the

marginal contributions according to all possible orderings (see Table 1).

Definition 3. Let (N, v) be a game, the Shapley value of this game,

fðvÞ¼ ðf1ðvÞ,…fnðvÞÞ, for each player i 2 N, is defined as,

fiðvÞ :¼
1

n!

X
i2Sn

my
i ðvÞ

where the summation is applied on the set Sn of all the orderings, and my(v) is
the associated vector of marginal contributions.

TABLE 1 Formal computation of the Shapley value for the three-players

game

Arrival ordering, u my
1ðvÞ my

2ðvÞ my
3ðvÞ

y ¼ (1, 2, 3) v (1) v (12) � v (1) v (123) � v (12)

y ¼ (1, 3, 2) v (1) v (123) � v (13) v (13) � v (1)

y ¼ (2, 1, 3) v (12) � v (2) v (2) v (123) � v (12)

y ¼ (2, 3, 1) v (123) � v (23) v (2) v (23) � v (2)

y ¼ (3, 1, 2) v (13) � v (3) v (123) � v (13) v (3)

y ¼ (3, 2, 1) v (123) � v (23) v (23) � v (3) v (3)

fi(v) 1
3!

P
my

1ðvÞ 1
3!

P
my

2ðvÞ 1
3!

P
my

3ðvÞ

The rows represent the players’ arrival ordering (y) and the columns their marginal contribution (my
i ).
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Note that the Shapley value selects an efficient allocation, always exists

and it is unique. That is, whatever the characteristics of the game is, we can

always compute it, and the result is a univalued distribution. Furthermore, if

the game is supperaditive, then the Shapley value is individual rational; and,

if the game is convex, the Shapley value belongs to the set of solutions whose

allocation cannot be improved by any group of players, known as the Core of

the game (Gillies, 1953; Shapley, 1953). Consequently, we can argue that the

allocation proposed by the Shapley value is somewhat stable, since no player

or group of players could improve on it. Furthermore, it is noteworthy that the

Shapley value considers the following two key features:

Marginal contribution: the Shapley value does not share the individual

revenue according to the worth of the individual coalitions, it measures

the individual contribution of each player to each coalition. Therefore,

the players are awarded by their contribution in each of the possible cases.

Temporal sequence: the ordering in which the player joint to the coali-

tion is a conflict issue. For avoiding it, the Shapley value computes each

player’s marginal contribution taking into the account all the possible

orderings.

Finally, Shapley (1953) shows that this solution is the unique solution that

jointly satisfies the following properties:

l Efficiency: The Shapley value distributes all gains or costs among players.

l Symmetry: If two players make equal contributions to the game, i.e., if

they are substitutes, they should receive the same amount.

l Dummy player: If a player does not provide any additional benefit to the

other players, he should not receive any additional payment. In terms of

the game if the player’s marginal contribution is equal to zero, then he

must receive an allocation equal to his individual worth.

l Additivity: The player’s allocation for a sum of two games is the sum of

the player’s allocations for each individual game.

In order to illustrate we first take the example proposed by Lemaire (1991)

where three individuals can collaborate by investing in common funds. This

particular game is defined as follows

vð1Þ¼ 46125:0

vð2Þ¼ 17437:5

vð3Þ¼ 5812:5

vð12Þ¼ 69187:5

vð13Þ¼ 53812:5

vð23Þ¼ 30750:0

vð123Þ¼ 90000:0
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With this data we can compute the Shapley value. At this point we would

like to highlight that the way of getting any solution is a two-step process. We

always proceed following the same scheme:

Setup the game: this is done by using the command DefineGame(). The user
needs to provide the number of players and coalitional values.

Solution choice: the user can obtain the desired solution by applying any

TU-Game method over the defined game.

To start the process we introduce the worth of the coalitions with the com-

mand DefineGame. After that, R is ready to perform the Shapley value

solution, which returns the following output:

> COALITIONS <– c(46125,17437.5,5812.5,69187.5,53812.5,
30750,90000)

> LEMAIRE<–DefineGame(3,COALITIONS)
> summary(LEMAIRE)

Characteristic form of the game

Number of agents: 3

Coalition Value(s)

Value
1 46125.0
2 17437.5
3 5812.5
12 69187.5
13 53812.5
23 30750.0
123 90000.0

> NAMES <– c("Investor 1","Investor 2","Investor 3")
> LEMAIRESHAPLEY <– ShapleyValue(LEMAIRE,NAMES)
> summary(LEMAIRESHAPLEY)

Shapley value for the given game

Shapley value
Investor 1 51750
Investor 2 25875
Investor 3 12375
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2.3 The nucleolus

As we have seen the Shapley value is an attractive single-valued solution

with nice properties that takes into account the marginal contributions of the

players, but we cannot ensure that in belongs to the core. Belonging to the core

very important in cooperative games since the core selects the distributions

preserving the cooperation. In contrast, the nucleolus will always select an

imputation in the core if the core is nonempty. The underlying idea in the nucle-
olus (Schmeidler, 1969) consists in observing the dissatisfaction level of the

coalitions on a proposed distribution of the worth of the grand coalition.

To introduce this solution, some additional notation is needed. For each

ðN,vÞ 2 GN , x2n and each coalition S�N,eðx,SÞ¼ vðSÞ�P
i2S xi is the

excess of coalition S with respect to x and represents a measure of dissatisfac-

tion of such a coalition at x. This difference indicates how well or badly a given

coalition is treated. Note that a payoff vector belongs to the core if all this dif-

ferences are greater or equal than zero. The vector eðxÞ¼ feðx,SÞgS�N provides

the excesses of all coalitions to x. Given x2n,y(x) is the vector that results from x
by permuting the coordinates in a decreasing order, y1(x) � y2(x) �⋯ � yn(x).
Finally, �L stands for the lexicographic order, that is, given x,y2n,

x�L y if there is k 2 N such that for all j � k, xj ¼ yj and xk+1 � yk+1.
The nucleolus looks for an individually rational distribution of the worth

of the grand coalition in which the maximum dissatisfaction is minimized.

Formally, for each ðN,vÞ 2 GN , the nucleolus gnu is the vector gnu(v) ¼ x 2
I(v) such that y(e(x)) �Ly(e(y)) for all y 2 I(v). That is, it selects the element

in the core, if this is nonempty, that lexicographically minimizes the vector of

nonincreasing ordered excesses of coalitions. In order to compute this solution

we consider the following linear programming model, which looks for an

imputation that minimizes the maximum excess e among all coalitions.

Formally,

min e
x

subject to vðSÞ�
X

i2Sxi � e, 8S�N,S 6¼∅
X

i2Nxi ¼ vðNÞ
e2, xj 2;8j2N

In order to calculate the nucleolus solution we simply apply the command

Nucleolus() over the formerly defined game. Once the instruction is exe-

cuted, the computer returns the first linear program to check that everything

is running smoothly, followed by a large output related to the optimization

process as follows.

> LEMAIRENUCLEOLUS<-Nucleolus(LEMAIRE)
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Model name: Nucleolus of a gains game
C1 C2 C3 C4

Minimize 0 0 0 –1
R1 0 0 0 1 >= 0
R2 1 0 0 –1 >= 46125
R3 0 1 0 –1 >= 17437.5
R4 0 0 1 –1 >= 5812.5
R5 1 1 0 –1 >= 69187.5
R6 1 0 1 –1 >= 53812.5
R7 0 1 1 –1 >= 30750
R8 1 1 1 0 = 90000
Kind Std Std Std Std
Type Real Real Real Real
Upper Inf Inf Inf Inf
Lower 0 0 0 0

Model name: ’Nucleolus of a gains game ’ - run #1
Objective: Minimize(R0)

SUBMITTED
Model size: 8 constraints, 4 variables, 19 non-zeros.
Sets: 0 GUB, 0 SOS.

Using DUAL simplex for phase 1 and PRIMAL simplex for phase 2.
The primal and dual simplex pricing strategy set to ’Devex’.

Found feasibility by dual simplex after 4 iter.

Optimal solution –6562.5 after 5 iter.

Excellent numeric accuracy jj*jj = 0

MEMO: lp_solve version 5.5.2.0 for 64 bit OS, with 64 bit
LPSREAL variables.
In the total iteration count 5, 0 (0.0) were bound flips.
There were 2 refactorizations, 0 triggered by time and 0 by
density.

... on average 2.5 major pivots per refactorization.
The largest [LUSOL v2.2.1.0] fact(B) had 18 NZ entries,
1.0x largest basis.
The constraint matrix inf-norm is 1, with a dynamic
range of 1.
Time to load data was 0.009
seconds, presolve used 0.000 seconds,
... 0.000 seconds in simplex solver, in total 0.009
seconds.

Using DUAL simplex for phase 1 and PRIMAL simplex for phase 2.
The primal and dual simplex pricing strategy set to ’Devex’.

[...some output omitted...]
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>summary(LEMAIRENUCLEOLUS)

Nucleolus of a gains game for the given coalitions
v(S) x(S) Ei

1 46125.0 52687.50 –6562.50
2 17437.5 24468.75 –7031.25
3 5812.5 12843.75 –7031.25

Next, by analyzing costs instead of gains, we introduce cost allocation pro-

blems, usually called airport problems (Littlechild and Thompson, 1977).

Consider, for instance, several airlines that are jointly using an airstrip. Obvi-

ously, different airlines will have different needs for the airstrip. The larger

the planes an airline flies, the longer the airstrip it needs. An airstrip that

accommodates a given plane accommodates any smaller airplane at no extra

cost. The airstrip is large enough to accommodate the largest plane any airline

flies. How should its cost be divided among the airlines?

Note that under this illustration, several situations may be considered. For

instance, consider farmers that are distributed along an irrigation drain. The

farmer closest to the water gate only needs that the segment to his field would

be maintained. Accordingly, the second closest farmer needs that the first two

segments be maintained (the segment that goes from the water gate and the

first farmer, and that segment from the first farmer to his field), and so on.

The cost of maintaining a segment used by several farmers is incurred only

once, independently of how many farmers use it. How should the total cost

of maintaining the ditch be shared?

In order to illustrate this, consider the following cost airport game,

vð1Þ¼ 26

vð2Þ¼ 27

vð3Þ¼ 55

vð4Þ¼ 57

vð12Þ¼ 53

vð13Þ¼ 81

vð14Þ¼ 83

vð23Þ¼ 82

vð24Þ¼ 84

vð34Þ¼ 110

vð123Þ¼ 108

vð124Þ¼ 110

vð134Þ¼ 110

vð234Þ¼ 110

vð1234Þ¼ 110
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After defining the game in R, we can see what would be the imputations

using the nucleolus, taking into the account that the user must set the option

“cost” within the nucleolus command,

> COALITIONS<–c(26,27,55,57,53,81,83,82,84,110,108,110,110,
110,110)
> AIR<–DefineGame(4,COALITIONS)
> AIRNUCLEOLUS<–Nucleolus(AIR,type="Cost")

Model name:
C1 C2 C3 C4 C5 C6

Minimize 0 0 0 0 1 –1
Kind Std Std Std Std Std Std
Type Real Real Real Real Real Real
Upper Inf Inf Inf Inf Inf Inf
Lower 0 0 0 0 0 0
Model name: Nucleolus of a cost game

C1 C2 C3 C4 C5 C6
Maximize 0 0 0 0 1 –1
R1 0 0 0 0 0 1 >= 0
R2 1 0 0 0 1 –1 <= 26
R3 0 1 0 0 1 –1 <= 27
R4 0 0 1 0 1 –1 <= 55
R5 0 0 0 1 1 –1 <= 57
R6 1 1 0 0 1 –1 <= 53
R7 1 0 1 0 1 –1 <= 81
R8 1 0 0 1 1 –1 <= 83
R9 0 1 1 0 1 –1 <= 82
R10 0 1 0 1 1 –1 <= 84
R11 0 0 1 1 1 –1 <= 110
R12 1 1 1 0 1 –1 <= 108
R13 1 1 0 1 1 –1 <= 110
R14 1 0 1 1 1 –1 <= 110
R15 0 1 1 1 1 –1 <= 110
R16 1 1 1 1 0 0 = 110
Kind Std Std Std Std Std Std
Type Real Real Real Real Real Real
Upper Inf Inf Inf Inf Inf Inf
Lower 0 0 0 0 0 0

Model name: ’Nucleolus of a cost game ’ - run #1
Objective: Maximize(R0)

SUBMITTED
Model size: 16 constraints, 6 variables, 61 non-zeros.
Sets: 0 GUB, 0 SOS.

Quantitative Game Theory Applied to Economic Problems Chapter 9 291



Using DUAL simplex for phase 1 and PRIMAL simplex for phase 2.
The primal and dual simplex pricing strategy set to ’Devex’.

Found feasibility by dual simplex after 4 iter.

Optimal solution 13 after 7 iter.

Excellent numeric accuracy jj*jj = 0

[...some output omitted...]

> summary(AIRNUCLEOLUS)

Nucleolus of a cost game for the given coalitions

v(S) x(S) Ei
1 26 13.00 –13.00
2 27 13.50 –13.50
3 55 40.75 –14.25
4 57 42.75 –14.25

2.4 Voting power

Shapley and Shubik (1954) propose the specialization of the Shapley value to
voting games that measures the real power of a coalition.a The Shapley and

Shubik index works as follows. There is a group of individuals all willing

to vote on a proposal. They vote in order and as soon as a majority has voted

for the proposal, it is declared passed and the member who voted last is given

credit for having passed it. Let us consider that the members are voting ran-

domly. Then we compute the frequency with which an individual is the one

that gets the credit for passing the proposal. That measures the number of

times that the action of that individual joining the coalition of their predeces-

sors makes it a winning coalition. Note that if this index reaches the value of

0, then it means that this player is a dummy. When the index reaches the value

of 1, the player is a dictator.

During Autumn 2014 Artur Mas (member of the Democratic Party of

Catalunya (CiU) and President of Catalunya) said to Oriol Junqueras (leader

of the Republican Party of Catalunya (ERC)) that “alternative majorities are

possible” after discussing the referendum proposal of November 9 (Manchón,

2014). To conclude our paper we analyze these words through Shapley–Shubik
power index. As aforementioned, this voting power index often reveals

surprising power distribution that is not obvious on the surface. In order to

aVoting games are modeled by simple games. Those are cooperative games that can model vari-

ous voting systems and the characteristic function is v(S) 2{0, 1}, for all coalitions S�N, where

v(N) ¼ 1 and v(S) � v(T) if S�T.
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compare the power index of CiU and ERC we use the results of the elections of

2003, 2006, and 2012, whose results are displayed in Table 2.

To perform the Shapley–Shubik power index one simply provides the

number of members of each party and the minimum amount of votes needed

to pass a vote. For instance, for the 2003 elections, the reader only needs to

define an object containing the seats distribution, and another object with

the labels of the parties for the analyzed period. Therefore, the Shapley–
Shubik power index, with a minimum amount of votes to pass a voting of

68 is

> #2003 Elections
> SEATS<–c(46,42,23,15,9)
> PARTIES<–c("CiU","PSC","ERC","PP","ICV")
> E2003<–ShapleyShubik(68,SEATS,PARTIES)
> summary(E2003)

Distribution of the agents

CiU PSC ERC PP ICV
46 42 23 15 9

Minimum amount of votes to pass a vote: 68

Shapley-Shubik Power Index

CiU PSC ERC PP ICV
0.40000000 0.23333333 0.23333333 0.06666667 0.06666667

> # 2006 Elections
> SEATS<–c(48,37,21,14,12,3)
> PARTIES<–c("CiU","PSC","ERC","PP","ICV","C’s")
> E2006<–ShapleyShubik(68,SEATS,PARTIES)
> summary(E2006)

TABLE 2 Catalan seats distribution after elections of 2003, 2006, and 2012

Year CiU PSC ERC PP ICV C’s CUP

2003 46 42 23 15 9 — —

2006 48 37 21 14 12 3 —

2012 50 20 21 19 13 9 3
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Distribution of the agents

CiU PSC ERC PP ICV C’s
48 37 21 14 12 3

Minimum amount of votes to pass a vote: 68

Shapley-Shubik Power Index

CiU PSC ERC PP ICV C’s
0.40000000 0.23333333 0.23333333 0.06666667 0.06666667 0.00000000

> # 2012 Elections
> SEATS<–c(50,20,21,19,13,9,3)
> PARTIES<–c("CiU","PSC","ERC","PP","ICV","C’s","CUP")
> E2012<–ShapleyShubik(68,SEATS,PARTIES)
> summary

Distribution of the agents

CiU PSC ERC PP ICV C’s CUP
50 20 21 19 13 9 3

Minimum amount of votes to pass a vote: 68

Shapley-Shubik Power Index

CiU PSC ERC PP ICV
0.53333333 0.13333333 0.13333333 0.13333333 0.03333333
C’s CUP
0.03333333 0.00000000

Having a look to the data of 2003 it might seem that PSC might have much

more power than ERC (19 less seats in the camera), and the same should

apply to year 2006. After executing ShapleyShubik() (results displayed in

Table 3) one can see there are no differences in power among ERC and PSC

for the chosen years. Another interesting case is the dummy player, both C’s

(in 2006) and CUP (in 2012) parties, never become pivotal players. Further-

more, one might consider that President Mas was right as there are two more

parties with the same Shapley–Shubik power index.

3 Marketing and game theory

Following Cano-Berlanga et al. (2017a) we provide an actual and interesting

implementation of game theory in marketing. Specifically, through the defini-

tion of coalitions, we determine how the revenues obtained in an online sale
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should be distributed among the different channels used by the consumer. By

doing so, next we introduce some basics about the purchasing procedure from

the theoretical point of view.

3.1 The classic consumer theory

von Neumann and Morgenstern (1944) analyze how consumers make pur-

chasing decisions. Specifically, they study the properties of the individuals’

preferences that are transferred into a utility function. This function measures

the satisfaction or benefit obtained by the consumer from a specific purchas-

ing (i.e., a combination of goods’ basket). Consequently, the purchase process

is obtained through an optimization problem, where the consumer maximizes

his utility function taking into account his budget constraint. Formally,

Max uðx1,x2,…,xnÞ
s:a:

Xn
i¼1

pi � xi ¼m

The solution of this problem leads us to a demand function with a negative

relationship between the quantity, xi, and its price, pi. It is noteworthy that the

demand function plays a key-role in the literature, since its proper estimation

allows us to know (i) the individuals’ reactions when prices change, and,

(ii) how the demand of a certain good reacts to its economic context. To illustrate

the aforementioned comments, we present a synthetic linear demand function,

xi ¼AiðEÞ�b � pi
whose parameters have the following interpretation:

xi: purchased quantity of good i.
Ai(E): relationship of xi with the context. This magnitude explains the

interaction between the demand of the analyzed good among a large list

of factors, such that complementary products, substitute goods and income

of the buyer.

b: individuals’ reaction to changes in the price. The higher the b, the more

sensitive the consumer is to changes in prices.

TABLE 3 Shapley–Shubik power index of the catalan parliament

Year CiU PSC ERC PP ICV C’s CUP

2003 0.400 0.233 0.233 0.067 0.067 — —

2006 0.400 0.233 0.233 0.067 0.067 0.000 —

2012 0.533 0.133 0.133 0.133 0.033 0.033 0.000
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In this regard, quantitative research of demand functions has provided differ-

ent developments on how individuals take purchasing decisions in more com-

plex contexts. For instance, Berry et al. (1995) provide a sophisticated study

about the demand in automobile sector. Nonetheless, demand models are

extremely complicated to estimate: they require a large amount of data, signif-

icant computational power and a precise econometric estimation that guaran-

tees a proper statistical behavior. Though quantitative estimation of demand

function is such a difficult task, its econometric specification sheds additional

light regarding the purchasing process. Therefore, from an empirical perspec-

tive, a demand function takes the following expression,

xi ¼AiðEÞ�b � pi + ei,
where the error ei is introduced to our simple linear demand. The error plays a

fundamental role on the consumers’ purchasing mechanism, as it provides a

random component in the original model. On the one hand, the new term mea-

sures the consumers’ response to news and different stimulations related to a

nondeterministic way of the purchasing dynamics of xi. On the other hand, the

qualitative impact of ei is extraordinary, since it explains how exogenous phe-

nomena might alter the purchasing decision. Indeed, the better modeling of

the error term has improved the understanding of some economics fields.

For instance, Engle (1982) dramatically enhances the comprehension of

Financial Markets thanks to his ARCH model, which is a refinement on

how to model ei in stock returns time series (see Bollerslev, 1987).b

In our context, ei has two main implications. First, it transforms the ini-

tial model to a more realistic approach, since it relaxes the strong rationality

hypothesis of the consumer theory. Second, ei tell us that applying the right

amount of positive pressure, individuals may be exogenously influenced in

order to increase the sales of a good (see Scott, 1976, Tybout, 1978,

Prabhu and Stewart, 2001, among others). Therefore, even if the demand

function remains unknown a marketer can raise his success via publicity, i.e.,

advertisements.

3.2 Attribution models

In the digital media era, consumers are viewing ads nearly everywhere, through

several different marketing channels (organic search, email, display ads, social

media, for instance). With a high volume of conversions, a marketer may wonder

what channel is more efficient and what channels must be reinforced to improve

future sales. Hence, the concept ofAtribution arises naturally. Attribution concept
was originated in psychology and was introduced in marketing during the

early 1970s. Within that period of time we find several studies which try to

evaluate the success of different marketing techniques (Kannan et al., 2016;

bSuch sophistication was awarded with the Economics Nobel Prize in 2003.

296 PART III Miscellaneous Topics



Li and Kannan, 2014; Mizerski, 1978; Settle and Golden, 1974; Swinyard and

Ray, 1977, among others), but the concept of marketing attribution has evolved

with the departure from traditional selling strategies. Nowadays, attribution may

be defined as the quantification of the influence that each advertising impression

has on a consumers’ conversions.

Several attribution commonly use single and fractional source. Nonethe-

less, the problem concerning to these methods is that according to the chosen

model, a bias that generates a conflict between the different digital marketing

channels may not be avoid. Henceforth, more complex perspectives are avail-

able to overcome this issue. At this point, it is noteworthy that digital market-

ing channels are not isolated, indeed there exists positive feedback between

them increasing the likelihood of purchasing. Consequently, Google Analytics
360 has based its new Data-Driven Attribution model on cooperative game
theory and the Shapley value.

In this context, we propose a fair distribution of the revenues among the

considered channels, in order to facilitate the cooperation and to guarantee

its stability. By doing so, and due to the features of the analyzed problem,

we define the worth of each coalition taking into the account the observed

frequencies, i.e., the sequences of touch points (last click, first click, time

decay, among others). Then, we use the Shapley value to allocate all the rev-

enues among the different channels.

3.2.1 Sales game

Consider that for a period of time we study the sale success for three channels:

Direct, Organic, and CPC (hereinafter, players 1, 2, and 3, respectively). To

apply the proposed model, we need not only the independent sales of each chan-

nel, but also the sales obtained by the interaction of the channels (see Table 4).

TABLE 4 Data base

Channels I(R)

1 19786

2 20837

3 24008

12 898

13 822

23 822

123 194

Data obtained from each of the channels and their interaction.
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Given this information about the frequencies, the associated cooperative

game is built as follows. Note that, for the sake of simplifying the implemen-

tation of the game and its computation, we apply the matrix format through,

B	’¼ vðSÞ
where B is a binary squared matrix of dimension 2n � 1, containing the coef-

ficients related to I(R) and taking into the account if the players are part

of the coalition S; ’ is a vector composed by the values I(R); and, v(S) denotes
the worth of the coalitions. Applying it for a three-players game, we obtain

the following expression,

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

1 1 0 1 0 0 0

1 0 1 0 1 0 0

0 1 1 0 0 1 0

1 1 1 1 1 1 1

2
6666666666664

3
7777777777775

	

Ið1Þ
Ið2Þ
Ið3Þ
Ið12Þ
Ið13Þ
Ið23Þ
Ið123Þ

2
6666666666664

3
7777777777775

¼

vð1Þ
vð2Þ
vð3Þ
vð12Þ
vð13Þ
vð23Þ
vð123Þ

2
6666666666664

3
7777777777775

Hence, it is easy to show how the coalitions are built. For instance,

vð2Þ¼ Ið2Þ,vð12Þ¼ Ið1Þ+ Ið2Þ + Ið12Þ,vð23Þ¼ Ið2Þ+ Ið3Þ+ Ið23Þ,
vð123Þ¼ Ið1Þ+ Ið2Þ+ Ið3Þ + Ið12Þ+ Ið13Þ+ Ið23Þ+ Ið123Þ,

that is,

vð2Þ¼ 20837,vð12Þ¼ 19786 + 20837 + 898,vð23Þ¼ 20837 + 24008 + 822,

vð123Þ¼ 19786 + 20837 + 24008 + 898 + 822 + 822 + 194:

By using the total number of frequencies obtained in the Table 4, we

obtain the value of each coalition (see Fig. 1 and Table 5).

Once the grand coalition N is achieved, in order to cooperate and maxi-

mize each agent’s gains, how will the profits be distributed among the

players? Solving this question, many solutions concepts are proposed in the

literature (see Matsumoto and Szidarovszky, 2016, for instance) satisfying

two minimal requirements:

l Individual rationality: An allocation x satisfies individual rationality if

each player receives a payoff greater or equal to what can be guaranteed

on his own, without cooperating with anyone else, i.e., xi � v(i) for all
i 2 N.

l Efficiency: An allocation x(N) is efficient if it distributes the worth of the

grand coalition v(N) among all players, i.e., xðNÞ¼ x1 +⋯ + xn ¼ vðNÞ.
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FIG. 1 Graphic representation of a three-players sales channels game. The areas which corre-

spond to the individual coalitions show each player’s influence on the total game. The intermedi-

ate coalitions areas represent the position and the final composition, approximately.

TABLE 5 Worth of the sales channels

game characteristic function

Coalition v(S)

1 19786

2 20837

3 24008

12 41521

13 44616

23 45667

123 67367

Data from Table 4.
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Among all the proposed solutions, we use the Shapley value, due to the fact

that it considers the concept of marginality (a key issue in our framework),

and it satisfies a set of properties that may be considered as compulsory con-

ditions in our context.

Hence, organizing the information as in Section 2.2, we can check that the

Shapley value (fi) is the average value of each player’s marginal contribu-

tions, taking into the account all the possible orderings. Specifically, in our

example, we obtain Table 6.

Note that the Shapley value proposes an allocation that ensures to each

player a larger amount than the worth of the individual coalition (individual

rationality), and the sum of the all the payments corresponds with the worth

of the grand coalition (efficiency).

The R code to reproduce this example is as follows:

> Marketing <– c(19786, 20837, 24008, 41521, 44616, 45667, 67367)
> Sales<–DefineGame(3,Marketing)
> Attribution<–ShapleyValue(Sales)
> summary(Attribution)

Shapley Value for the given game

Shapley Value
[1,] 20710.67
[2,] 21761.67
[3,] 24894.67

4 Claims problems

Finally, we propose the study of conflicting claims problems. A conflicting

claims problem is a particular case of the distribution problem, in which the

amount to be distributed, the endowment E, is not enough to satisfy the

agents’ claims on it. This model describes the situation faced by a court that

has to distribute the net worth of a bankrupt firm among its creditors.

TABLE 6 The Shapley value applied to the

data obtained from Table 5

Player Shapley value (fi)

1 20710.67

2 21761.67

3 24894.67
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But, it also corresponds with cost-sharing, taxation, or rationing problems.

The formal analysis of situations like these, which originates in a seminal

paper by O’Neill (1982), shows that a vast number of well-behaved solutions

have been defined for solving conflicting claims problems, being the propor-
tional, the constrained equal awards, the constrained equal losses, the Tal-
mud and the random arrival rules the prominent concepts used.c

An illustrative example of conflicting claims problems is the fishing quotas

reduction, in which the agent’s claim can be understood as the previous captures,

and the endowment is the new (lower) level of joint captures (Gallastegui et al.,

2003; Iñarra and Skonhof, 2008). A similar example is given by milk quotas

among European Union (EU) members.d In both examples, proportionality is

the main principle used. Another example of conflicting claims situations is

the September 11 Victim Compensation Fund (VCF), where the income each

victim would have earned in a full lifetime was estimated and the individual

claim is the legal right to be compensated. Similarly, bankruptcy laws consider

the claimants identity to establish a priority rule. Specifically, bankruptcy codes

normally list all claims that should be treated identically in various categories

and assigns to them lexicographic priorities (Kamiski, 2006). Pulido et al.

(2002, 2008) analyze, under the name of bankruptcy problems with references,

the real-life case of allocating a given amount of money among the various

degree courses that are offered at a (public) Spanish university. The (verifiable)

monetary needs of each course constitute their claims. Additionally, there exist

reference values for each course, which are set by the government indepen-

dently, below their claims. Other relevant practical cases also involving more

complex rationing situations could be protocols for the reduction of pollution

(Gim�enez-Gómez et al., 2016), water distribution in drought periods, or even

some resource allocation procedures in the public health care sector, in which

past consumption could be considered as an entitlement, and current needs as

a claim (see, for instance, Hougaard et al., 2012, Moreno-Ternero and

Roemer, 2012). The formalization of such problems is as follows.

4.1 Claims rules

Consider a set of agents N¼ 1,2,…,nf g and amount E2 + of an infinite

divisible resource, the endowment, that has to be allocated among them. Each

agent has a claim, ci 2 + on it. Let c 
 (ci)i2N be the claims vector.

A conflicting claims problem is a pair (E, c) with
Pn

i¼1 ci >E. Without

loss of generality, we will order the agents according to their claims c1 � c2
�⋯ � cn and we will denote by B the set of all conflicting claims problems.

cThe reader is referred to Moulin (2002) and Thomson (2003, 2013) for reviews of this literature.
dQuotas were introduced in 1984. Each member state was given a reference quantity which was

then allocated to individual producers. The initial quotas were not sufficiently restrictive to rem-

edy the surplus situation and so the quotas were cut in the late 1980s and early 1990s. Quotas will

end on April 1, 2015.
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Given a conflicting claims problem, a rule associates within each problem

a distribution of the endowment among the agents. A rule is a single-valued

function ’ :B!n
+ such that 0 � ’i(E, c) � ci, for all i 2 N (nonnegativity

and claim-boundedness); and
Pn

i¼1’iðE,cÞ¼E (efficiency). Next, we present
the most used rules.

The proportional (P) rule recommends a distribution of the endowment

which is proportional to the claims: for each ðE,cÞ 2B and each i 2 N,

Pi(E, c) 
 lci, where l¼ EX
i2N

ci
:

The constrained equal awards (CEA) rule (Maimonides, twelfth century)

proposes equal awards to all agents subject to no one receiving more than

his claim: for each (E, c) 2B and each i 2 N, CEAiðE,cÞ
 min ci,mf g, where
m is such that

P
i2N min ci,mf g¼E:

The constrained equal losses (CEL) rule (Maimonides, twelfth century

(Aumann and Maschler, 1985) chooses the awards vector at which all agents

incur equal losses, subject to no one receiving a negative amount: for each

ðE,cÞ 2B and each i 2 N, CELiðE,cÞ
 max 0,ci�mf g, where m is such thatP
i2N max 0,ci�mf g¼E.

The Talmud (T) rule (Aumann and Maschler, 1985) proposes to apply the

constrained equal awards rule, if the endowment is not enough to satisfy the

half-sum of the claims. Otherwise, each agent receives the half of his claim

and the constrained equal losses rule is applied to distribute the remaining

endowment: for each ðE,cÞ 2B, and each i 2 N, Ti(E, c) 
 CEAi(E, c/2) if
E�P

i2N ci=2; or TiðE,cÞ
 ci=2 +CELiðE�P
i2N ci=2,c=2Þ, otherwise.

The random arrival (RA) rule (O’Neill, 1982). Consider that each claim

is fully honored following an order of the claimants’ arrival, until the

endowment runs out. In order to remove the unfairness of the first-come

first-served scheme associated with any particular order of arrival, the rule

proposes to take the average of the awards vectors calculated in this way

when all orders are equally probable: for each ðE,cÞ 2B, and each i 2 N,

RAiðE,cÞ 
 1
jNj!

P
�2N minfci, maxfE�P

j2N, j�icj,0gg:
The adjusted proportional (AP) rule (Curiel et al., 1987) is a composition

of minimal rights and the proportional rule. First, we attribute to each claim-

ant his minimal right and revise his claim down. Then, the proportional rule

is applied to distribute the remaining endowment according to the revised

claims: for each ðE,cÞ 2B and each i 2 N, APiðE,cÞ¼miðE,cÞ+
PðE�P

i2NmiðE,cÞ,c�mðE,cÞÞ.

4.2 Obtaining fishing quotas

As an illustration, we replicate Gallastegui et al. (2003). They analyze the dis-

tribution of Northern European Anglerfish Fishery quotas among EU countries

in terms of the allocations recommended by different solutions and how this

302 PART III Miscellaneous Topics



may affect the sustainable growth of the fishing catches. Specifically, they con-

sider seven countries (France, Spain, UK, Ireland, Belgium, Netherlands, and

Germany). Each country has a claim, which depends on its historical fishing

catches (13,952; 6256; 4348; 2196; 927; 299; 158, respectively).

To replicate the study of Gallastegui et al. (2003) we can execute the

commands one by one or use Allrules() to run all of them at once. By doing

so, we create objects containing the individual claims and labels of the differ-

ent countries. After that, running Allrules() is straightforward, i.e.,

AllRules(13500,CLAIMS,COUNTRIES). R displays the following magnitudes

for this particular case, and also includes the Gini Index of every rule to

check inequality among them,

> ## replication of Gallastegui et al. (2003), Table 7.
> CLAIMS <– c(158,299,927,2196,4348,6256,13952)
> COUNTRIES <– c("Germany","Netherlands","Belgium",
"Ireland","UK","Spain","France")
> INARRA <– AllRules(13500,CLAIMS,COUNTRIES)
> summary(INARRA)

Claims of the Agents

Germany Netherlands Belgium Ireland UK
158 299 927 2196 4348

Spain France
6256 13952

Assignments according to the following rules

Proportional CEA CEL Talmud RA
Germany 75.81 158.00 0.00 79.0 73.73
Netherlands 143.46 299.00 0.00 149.5 139.53
Belgium 444.79 927.00 0.00 463.5 436.92
Ireland 1053.67 2196.00 0.00 1098.0 1071.42
UK 2086.22 3306.67 662.67 2174.0 2147.42
Spain 3001.71 3306.67 2570.67 3128.0 3101.42
France 6694.34 3306.67 10266.67 6408.0 6529.57

Displaying the output of the allocations is undertaken by running PlotAll().
Graphical analysis of the inequality among rules is performed by LorenzRules
() (Figs. 2 and 3).

> plot(INARRA,5) ## Display allocations for UK

> LorenzRules(INARRA) ## Inequality graph
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5 Concluding remarks

The present chapter explains an R package for cooperative games. This kind

of games, as aforementioned, may be used to many different applications,

such as investments and insurance, joint development of projects, production

and transportation planning, and environmental economics, among others. In

this regard, we provide to the reader a compatible framework with the Google

approach. Additionally, we show its application to the attribution context, and

we evaluate the impact of a digital campaign on the purchasing process. In

doing so, we define a way to transfer the consumers’ conversions into a con-

vex cooperative game, and we apply the Shapley value to our data.

Last but not least, we would like to mention that game theory offers a wide

range of solutions. Therefore, users have a considerable number of options to

calculate different allocations. For instance, in R there are more game theory

packages available, such as: Games which provides Statistical Estimation of

Game-Theoretic Models; coopProductGame, which computes cooperative

game and allocation rules associated with linear production programming pro-

blems; GameTheoryAllocation which features new allocations to the frame-

work presented in this chapter and EvolutionaryGames, which models

situations where strategical behavior appears.
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