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1. Covariance matrices

Consider now k random variables X1,X2, . . . , Xk such that

E(Xi) = µ i , i = 1, . . . , k , (1.1)

C(Xi,X j) = σ i j , i, j = 1, . . . , k . (1.2)

We often wish to compute the mean and variance of a linear combination of X1, . . . , Xk :

k

∑
i=1

aiXi = a1X1 +a2X2 + · · ·+akXk . (1.3)

It is easy to verify that

E

[

k

∑
i=1

aiXi

]

=
k

∑
i=1

aiµ i (1.4)

and

V

[

k

∑
i=1

aiXi

]

= E

{[

k

∑
i=1

ai (Xi −µ i)

][

k

∑
j=1

a j

(

X j −µ j

)

]}

=
k

∑
i=1

ai a j σ i j . (1.5)

Since such formulae may often become cumbersome, it will be convenient to use vector and matrix

notation

We define a random vector X and its mean value E(X) by:

X =







X1

...

Xk






, E(X) =







E(X1)
...

E(Xk)






=







µ1
...

µk






≡ µX . (1.6)

Similarly, we define a random matrix M and its mean value E(M) by:

M =











X11 X12 . . . X1n

X21 X22 . . . X2n

...
...

...

Xm1 Xm2 . . . Xmn











, E(M) =











E(X11) E(X12) . . . E(X1n)
E(X21) E(X22) . . . E(X2n)

...
...

...

E(Xm1) E(Xm2) . . . E(Xmn)











(1.7)

where the Xi j are random variables. To a random vector X , we can associate a covariance matrix

V(X) :

Σ (X) := V(X) := E
{

[X −E(X)] [X −E(X)]′
}

= E{[X −µX ] [X −µX ]′}
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= E

















(X1 −µ1)(X1 −µ1) (X1 −µ1)(X2 −µ2) . . . (X1 −µ1)(Xk −µk)
...

...
...

(Xk −µk)(X1 −µ1) (Xk −µk)(X2 −µ2) . . . (Xk −µk)(Xk −µk)

















=







σ11 σ12 . . . σ1k

...
...

...

σ k1 σ k2 . . . σ kk






= Σ . (1.8)

Similarly, we define the uncentered covariance matrix of X:

Σ̄ (X) := E(XX
′) . (1.9)

If a = (a1, . . . ,ak)
′
, we see that:

k

∑
i=1

aiXi = a′X . (1.10)

Basic properties of E(X) and V(X) are summarized by the following proposition.

1.1 Proposition Let X = (X1, . . . , Xk)
′

a k × 1 random vector, α a scalar, a and b fixed k × 1

vectors, and A a fixed g× k matrix. Then, provided the moments considered are finite, we have the

following properties:

(a) E(X +a) = E(X)+a ;

(b) E(αX) = αE(X) ;

(c) E(a′X) = a′E(X) , E(AX) = AE(X) ;

(d) V(X +a) = V(X) ;

(e) V(αX) = α2
V(X) ;

(f) V(a′X) = a′V(X)a , V(AX) = AV(X)A′ ;

(g) C(a′X, b′X) = a′V(X)b = b′
V(X)a .

1.2 Definition Let X = (X1, . . . , Xk)
′

a k × 1 random vector with finite second moments.

det[V(X)] is called the generalized variance of X.

1.3 Theorem Let X = (X1, . . . , Xk)
′
be a random vector with covariance matrix V(X) = Σ. Then

the following properties hold:

(a) Σ′ = Σ ;

(b) Σ is a positive semidefinite matrix;

(c) Σ is positive definite ⇔ Σ is nonsingular ;
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(d) 0 ≤ det(Σ) ≤ σ2
1 σ2

2 · · · σ2
k where σ2

i = V(Xi) , i = 1, . . . , k ;

(e) |Σ| = 0 ⇔ there is at least one linear relation between the random variables X1, . . . , Xk, i.e.,

we can find constants a1, . . . , ak, b not all equal to zero such that a1X1 + · · ·+ akXk = b with

probability 1;

(f) rank(Σ) = r < k ⇔ X can be expressed in the form

X = BY + c (1.11)

where Y is a random vector of dimension r whose covariance matrix is Ir, B is a k× r matrix

of rank r, and c is a k×1 constant vector.

1.4 Definition Let X1 and X2 two random vectors of dimensions k1 × 1 and k2 × 1 respectively

with finite second moments. The covariance matrix between X1 and X2 is defined by:

C(X1, X2) = E
{

[X1 −E(X1)] [X2 −E(X2)]
′} . (1.12)

If k1 = k2, det[C(X1, X2)] is called the generalized covariance between X1 and X2.

The following proposition summarizes some basic properties of C(X1, X2).

1.5 Proposition Let X1 and X2 two random vectors of dimensions k1 ×1 and k2 ×1 respectively.

Then, provided the moments considered are finite we have the following properties:

(a) C(X1, X2) = E [X1X
′
2]−E(X1)E(X2)

′
;

(b) C(X1, X2) = C(X2, X1)
′

;

(c) C(X1,X1) = V(X1) , C(X2,X2) = V(X2) ;

(d) if a and b are fixed vectors of dimensions k1 ×1 and k2 ×1 respectively, then

C(X1 +a, X2 +b) = C(X1, X2) ; (1.13)

(e) if α and β are two scalar constants,then

C(αX1, βX2) = αβC(X1, X2) ; (1.14)

(f) if a and b are fixed k1 ×1 and k2 ×1 vectors, then

C
(

a′X1, b′
X2

)

= a′C(X1, X2)b ; (1.15)

(g) if A and B are fixed matrices matrices with dimensions g1 × k1 and g2 × k2 respectively, then

C(AX1, BX2) = AC(X1, X2)B′ ; (1.16)
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(h) if k1 = k2 and X3 is a k×1 random vector, then

C(X1 +X2, X3) = C(X1, X3)+C(X2 ,X3) ; (1.17)

(i) if k1 = k2, then

V(X1 +X2) = V(X1)+V(X2)+C(X1, X2)+C(X2, X1) , (1.18)

V(X1 −X2) = V(X1)+V(X2)−C(X1, X2)−C(X2, X1) . (1.19)

1.6 Proposition Let

X =

(

X1

X2

)

(1.20)

be a k× 1 random vector with finite second moments, where X1 and X2 two random vectors of

dimensions k1 ×1 and k2 ×1 respectively, with

Σ : = V(X) =

(

Σ11 Σ12

Σ21 Σ22

)

, (1.21)

Σ11 := V(X1) , Σ22 := V(X2) , Σ12 := C(X1, X2) . (1.22)

Then, the following conditions are equivalent:

(a) Σ is nonsingular ;

(b) Σ11 and Σ22 −Σ21Σ
−1
11 Σ12 are nonsingular ;

(c) det(Σ11) > 0 and det(Σ22 −Σ21Σ
−1
11 Σ12) > 0 ;

(d) det(Σ) = det(Σ11)det(Σ22 −Σ21Σ
−1
11 Σ12) > 0 .

Further, if Σ11 is nonsingular, then

det(Σ) = det(Σ11)det(Σ22 −Σ21Σ
−1
11 Σ12) . (1.23)

2. Multinormal distribution

Consider two random vectors X1 and X2 with dimensions k1×1 and k2×1 respectively. If X1 and

X2 are independent, then

C(X1, X2) ≡ E[(X1 −µX1
)(X2 −µX2

)′] = 0 (2.1)

The reverse implication is not true in general, except in special cases. One such case is the one

where the random vector X = (X
′
1,X

′
2)

′ follows a multinormal distribution.

4



2.1 Definition We say that the k×1 random vector X follows a multinormal distribution with mean

µ and covariance matrix Σ, denoted X ∼ Nk [µ,Σ], if the characteristic function of x has the form:

E
[

eit′X]

= exp[iµ ′t− t′Σt/2] , t ∈ R
k , i =

√
−1 . (2.2)

When |Σ| 6= 0, the vector X has a density function of the form:

f (x) =
1

(2π)k/2 |Σ| 1
2

exp
[

− 1

2
(x−µ)′Σ−1 (x−µ)

]

(2.3)

If k = 1, then Σ = σ2 and

f (x) =
1√

2πσ
exp

[

− 1

2
(x−µ)

1

σ2
(x−µ)

]

=
1√

2πσ
exp

[

− 1

2

(x−µ)2

σ2

]

. (2.4)

Some important properties of the multinormal distribution are summarized in the following theorem.

2.2 Theorem If X ∼ Nk [µ, Σ] , then

(a) X + c ∼ Nk [µ + c, Σ] , for any fixed k×1 vector c;

(b) a′X ∼ N1 [a′µ, a′Σa] , for any fixed k×1 vector a;

(c) AX ∼ Ng [Aµ, AΣA
′] , for any fixed g× k matrix A ;

(d) if

X =

(

X1

X2

)

∼ Nk

[(

µ1

µ2

)

,

(

Σ11 Σ12

Σ21 Σ22

)]

, (2.5)

where X1 and X2 are vectors of dimensions k1 ×1 and k2 ×1,

µ1 = E(X1) , µ2 = E(X2) , Σ11 = C(X1, X1) , Σ22 = C(X2, X2) , (2.6)

Σ12 = C(X1, X2) = Σ
′
21 , (2.7)

then

(i) X1 ∼ Nk1
[µ1, Σ11] , X2 ∼ Nk2

[µ2, Σ22] ;

(ii) X1 and X2 are independent ⇔ Σ12 = 0 ;

(iii) the conditional distribution of X2 given X1 is normal with mean and et variance

E [X2 |X1] = µ2 +Σ21Σ
−1
11 (X1 −µ1) , (2.8)

V [X2 |X1] = Σ22 −Σ21Σ
−1
11 Σ12 , (2.9)

i.e.

X2 |X1 ∼ Nk2

[

µ2 +Σ21Σ
−1
11 (X1 −µ1) , Σ22 −Σ21Σ

−1
11 Σ12

]

. (2.10)
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2.3 Theorem If X ∼ Nk [µ, Σ] with |Σ| 6= 0, then

(X −µ)′Σ−1 (X −µ) ∼ χ2 (k) . (2.11)

PROOF Since Σ is a positive definite matrix (|Σ| 6= 0), there exists a nonsingular matrix P such

that

PΣP
′ = Ik (2.12)

hence

Σ = P
−1

(

P
′)−1

=
(

P
′
P

)−1
, (2.13)

Σ
−1 = P

′
P . (2.14)

Consequently,

(X −µ)′Σ−1 (X −µ) = (X −µ)′P ′
P (X −µ)

= [P (X−µ)]′ [P (X−µ)]

= v′v =
k

∑
i=1

v2
i (2.15)

where

v ≡ P [X−µ] = (v1, v2, . . . , vk)
′ . (2.16)

Since X ∼ N [µ, Σ] , we have X −µ ∼ N [0, Σ] , hence

P [X −µ] ∼ N
[

0, PΣP′] , (2.17)

and

v = P [X −µ] ∼ N [0, Ik] . (2.18)

Thus v1, . . . , vk are i.i.d. N [0, 1] and

(X −µ)′Σ−1 (X −µ) =
k

∑
i=1

v2
i ∼ χ2 (k) . (2.19)

3. Multiple linear regression

3.1. Existence and unicity

Consider the problem of finding a k×1 vector b such that

S(b) := E[(Y −X
′
b)2] (3.1)
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is minimal.

Let β be any k×1 vector such that

E[X(Y −X
′β )] = 0 . (3.2)

Then, for any b ∈ R
k,

S(b) = E{[(Y −X
′β )+(X ′β −X

′
b)]2}

= E[(Y −X
′β )2]+E[(X ′β −X

′
b)2]+2E[(X ′β −X

′
b)(Y −X

′β )]

= E[(Y −X
′β )2]+E[(X ′β −X

′
b)2]+2E[(β −b)′X(Y −X

′β )]

= E[(Y −X
′β )2]+E[(X ′β −X

′
b)2]+ (β −b)′E[X(Y −X

′β )]

= S(β )+E[(X ′β −X
′
b)2] ≥ S(β ) (3.3)

so that β minimizes S(b). If β and β ∗
are two such solutions, i.e.

S(β ) = S(β ∗) , (3.4)

we must have

S(β ∗) = S(β )+E[(X ′β −X
′β ∗)2] (3.5)

hence

E[(X ′β −X
′β ∗)2] = S(β ∗)−S(β ) = 0 (3.6)

and

X
′β = X

′β ∗
a.s. (3.7)

Even if β is not unique, S(β ) and X ′β are unique. Consequently, there is a unique approximation

(or “fitted value”)

P (Y ; X) := X
′β (3.8)

and a unique residual

U(Y ; X) := Y −P(Y ; X) = Y −X
′β (3.9)

where β is any vector such that

E[X(Y −X
′β )] = 0 . (3.10)

This yields the following unique decomposition:

Y = P(Y ; X)+U(Y ; X) = X
′β +U(Y ; X) (3.11)

where

E[XU(Y ; X)] = 0 . (3.12)

This entails:

E[P(Y ; X)U(Y ; X)] = E[β ′
XU(Y ; X)]

7



= β ′
E[XU(Y ; X)] = 0 , (3.13)

E(Y 2) = E[P(Y ; X)2]+E[U(Y ; X)2] . (3.14)

We call the ratio

R2
0(Y ; X) :=

E[P(Y ; X)2]

E(Y 2)
(3.15)

the uncentered R-square of Y on X . Clearly,

E[U(Y ; X)2]

E(Y 2)
= 1−R2

0(Y ; X) . (3.16)

β is any solution of the equation

E(XX
′)β = E(XY ) (3.17)

where

E(XX
′) = [σ̄ i j] := Σ̄(X) , E(XY ) := C̄(X, Y ) , (3.18)

σ̄ i j = E[XiX j] = ρ̄ i j σ̄ i σ̄ j, σ̄ ii = [E(X2
i )]1/2 = σ̄2

i = σ̄(Xi)
2, (3.19)

ρ̄ i j =
E[XiX j]

σ̄(Xi)σ̄(X j)
=

σ̄ i j

σ̄ i σ̄ i

, (3.20)

for i, j = 1, . . . , k. σ̄ i j is called the uncentered covariance between Xi and X j, and ρ̄ i j uncentered

correlation between Xi and X j. Equation (3.17) is called the uncentered normal equation for the

linear regression of Y on X . For any β that satisfies (3.17),

E[(X ′β )2] = β ′
E(XX

′)β = β ′
E(XY ) , (3.21)

E[U(Y ; X)2] = E[U(Y ; X)(Y −X
′β )] = E[U(Y ; X)(Y −X

′β )]

= E[U(Y ; X)Y ] = E[(Y −X
′β )Y ] = E[Y 2]−E[(X ′β )Y ]

= E[Y 2]−β ′
E(XY )

= E[Y 2]−β ′
E(XX

′)β

= E[Y 2]−E[(X ′β )2] . (3.22)

Due to the unicity of X ′β and U(Y ; X), E[(X ′β )2] and E[U(Y ; X)2] are also uniquely defined

irrespective of the solution β of the normal equation.

If the matrix E(XX
′) is invertible, then β is unique with

β = [E(XX
′)]−1

E(XY ) . (3.23)

In this case,

E[(X ′β )2] = E(XY )′[E(XX
′)]−1

E(XY ) , (3.24)
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E[U(Y ; X)2] = E[Y 2]−E(XY )′[E(XX
′)]−1

E(XY ) . (3.25)

3.1 Theorem Let X1, . . . , Xk, Y be random variables with finite second moments, let X be defined

as in (1.6), and set

argminS(b) :=
{

β ∈ R
k : S(β ) = min

b∈Rk
S(b)

}

. (3.26)

Then, there exists a vector β ∈ R
k such that

S(β ) = min
b∈Rk

S(b) . (3.27)

Further,

{β ∈ argminS(b)} ⇔ {E[X(Y −X
′β )] = 0} , (3.28)

{β , β ∗ ∈ argminS(b)} ⇒ {X ′β = X
′β ∗} . (3.29)

3.2 Proposition IDENTIFICATION OF LINEAR REGRESSION BY MOMENT EQUATIONS. Let

X1, . . . , Xk, Y be random variables with finite second moments, let X be defined as in (1.6),
Z := (X ′,Y )′, and a = (a1, a2, . . . , ak+1)

′ be a (k +1)×1 fixed vector. If

E[X(a′
Z)] =  and E[(a′

Z)Y ] = 1 , (3.30)

then ak+1 6= 0, and for

β = − 1

ak+1

(a1, a2, . . . , ak)
′ , (3.31)

we have:

E[X(Y −X
′β )] = 0 , (3.32)

E[(Y −X
′β )2] = E[Y 2]−β ′

E(XX
′)β > 0 , (3.33)

ak+1 =
1

E[(Y −X ′β )2]
. (3.34)

If E(XX
′) is invertible, then

(a1, a2, . . . , ak)
′ = −ak+1[E(XX

′)]−1
E(XY ) , (3.35)

ak+1 =
1

E[Y 2]−E(XY )′[E(XX
′)]−1E(XY )

. (3.36)

It follows from Proposition 3.2, that 1/ak+1 is the residual variance from the linear regression

of Y on X , while each coefficient

β i = − ai

ak+1

(3.37)

is the coefficient of Xi in this regression (1 ≤ i ≤ k), in the sense that β = (β 1, . . . , β k)
′ provides

a solution of the normal equation (3.17). This holds irrespective of the rank of E(XX
′). When

E(XX
′) is singular, the normal equation has other solutions. ak+1 is unique in all cases. There

9



exists a vector a such that (3.30) holds as soon as

rank[E(XX
′)] ≥ 1 . (3.38)

3.2. Partial covariances and correlations

3.3 Definition Let Z a random vector of dimension k, and Y , X two random variables, all with

finite second moments. The parameter

C̄(X , Y ; Z) := C̄[U(X ; Z), U(Y ; Z)] = E[U(X ; Z)U(Y ; Z)] (3.39)

is called the uncentered partial covariance between X and Y with respect to Z, and the correlation

ρ̄(X , Y ; Z) := ρ̄[U(X ; Z), U(Y ; Z)] =
E[U(X ; Z)U(Y ; Z)]

σ̄ [U(X ; Z)]σ̄ [U(Y ; Z)]
(3.40)

is called the uncentered partial correlation between X and Y with respect to Z.

Let I be a vector of n elements from the subset of {1, 2, . . . , k}, i.e.

I := (i1, . . . , in) , i j ∈ {{1, 2, . . . , k} , j = 1, . . . , n (3.41)

and define

XI := (Xi1 , Xi2,, . . . , Xin)
′ , (3.42)

X|I := XĪ = (X j1 , X j2,, . . . , X jk−m
)′ (3.43)

where Ī = { ji : ji /∈ I, j1 < j2 < · · · < jn−k}. Note that (i1, i2, . . . , in) may be a permutation of

(1, 2, . . . , k). To simplify notation, we also define: for 1 ≤ i ≤ j ≤ k,

X|i := X|{i} = (X1, . . . , Xi−1, Xi+1, . . . , Xk)
′, (3.44)

X|i j = X|{i, j} = (X1, . . . , Xi−1, Xi+1, . . . , X j−1, X j+1, . . . , Xk)
′. (3.45)

We also denote

X =

[

X|k
Xk

]

, X|k =







X1

...

Xk−1






, (3.46)

E(XY ) =

[

E(X|kY )
E(XkY )

]

(3.47)

where X|k and E(X|kY ) are (k − 1)× 1 vectors. Let us partition E(XX
′) and [E(XX

′)]−1
as

follows:

E(XX
′) =

[

Σ̄|k Σ̄k(|k)
Σ̄′

k(|k) Σ̄kk

]

(3.48)
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where Σ̄|k is the (k−1)× (k−1) matrix and σ k|k the (k−1)×1 vector defined by

Σ̄|k := E[X|kX
′
|k] , Σ̄k(|k) := E[XkX|k] , Σ̄kk := E(X2

k ) , (3.49)

and

[E(XX
′)]−1 =

[

[Σ̄−1]|k [Σ̄−1]k(|k)
[Σ̄−1]′

k(|k) [Σ̄−1]kk

]

(3.50)

where [Σ̄−1]|k is a (k−1)× (k−1) matrix, [Σ̄−1]k(|k) a k−1)×1 vector, and [Σ̄−1]kk is a scalar.

We can write:

Y = X
′β +U(Y ; X)

=
k

∑
i=1

Xiβ i +U(Y ; X) , (3.51)

Xk = P(Xk; X|k)+U(Xk; X|k)

= P(Xk; X|k)+Uk (3.52)

where

Uk := U(Xk; X|k) := Xk −P(Xk; X|k) , E[X|kUk] = 0 . (3.53)

Thus,

E[U(Y ; X)Uk] = 0 , (3.54)

E[P(Xk; X|k)Uk] = 0 , (3.55)

E[XiUk] = 0 , for i 6= k , (3.56)

E[XkUk] = E[P(Xk; X|k)Uk]+E[U(Xk; X|k)Uk] = E(U2
k ) , (3.57)

E[YUk] =
k

∑
i=1

E(XiUk)β i +E[U(Y ; X)Uk]

= E(XkUk)β k = E(U2
k )β k . (3.58)

If E[U2
k ] > 0, it follows that

β k =
E(UkY )

E(U2
k )

=
E(UkY )

σ̄(Uk)σ̄(Y )

σ̄(Y )

σ̄(Uk)

= ρ̄(Uk,Y )
σ̄(Y )

σ̄(Uk)
(3.59)
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so that β k is unique in this case. This holds even if the matrix E(XX
′) is singular. The condition

E[U2
k ] > 0 is also necessary for unicity of the value of β k. If E[U2

k ] = 0, Xk is a linear transformation

of the elements of X|k: there is linear dependence between of Xk on X|k.

Consider the decomposition:

Y = P(Y ; X|k)+U(Y ; X|k) . (3.60)

Then

E[U(Y ; X|k)P(Y ; X|k)] = 0 , (3.61)

E[U(Y ; X|k)Y ] = EU(Y ; X|k)P(Y ; X|k)]+E[U(Y ; X|k)U(Y ; X|k)]

= E[U(Y ; X|k)U(Y ; X|k)]

= E[U(Xk; X|k)U(Y ; X|k)] , (3.62)

and, if E[U2
k ] > 0,

β k =
E[U(Xk; X|k)Y ]

E[U(Xk; X|k)2]

=
E[U(Xk; X|k)U(Y ; X|k)]

E[U(Xk; X|k)2]

=
E[U(Xk; X|k)U(Y ; X|k)]

σ̄(Xk; X|k)2

=
E[U(Xk; X|k)U(Y ; X|k)]

σ̄(Xk; X|k)σ̄(Y ; X|k)

σ̄(Y ; X|k)

σ̄(Xk; X|k)

= ρ̄(Xk,Y |X|k)
σ̄(Y ; X|k)

σ̄(Xk; X|k)
(3.63)

where

σ̄(Xk; X|k) := [E[U(Xk; X|k)
2]1/2 , σ̄(Y ; X|k) := [E[U(Y ; X|k)

2]1/2 , (3.64)

ρ̄(Xk,Y |X|k) :=
E[U(Xk; X|k)U(Y ; X|k)]

σ̄(Xk; X|k)σ̄(Y ; X|k)
. (3.65)

Note also that

β [U(Y ; X|k); U(Xk; X|k)] =
E[U(Xk; X|k)U(Y ; X|k)]

E[U(Y ; X|k)2]

=
E[U(Xk; X|k)U(Y ; X|k)]

E[U(Xk; X|k)2]

E[U(Xk; X|k)
2]

E[U(Y ; X|k)2]

= β k

E[U(Xk; X|k)
2]

E[U(Y ; X|k)2]
(3.66)
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may be interpreted as the “effect” of U(Y ; X|k) on U(Xk; X|k) [or Y on Xk after removing X|k].

4. Sources and additional references

Good overviews of various notions associated with covariances, correlations and regression may be

found in Hannan (1970, Chapter 1), Theil (1971, Chapter 4), Kendall and Stuart (1979, Chapters

26-28), Rao (1973, Section 4g), Drouet Mari and Kotz (2001), and Anderson (2003, Chapter 1).

See also Lehmann (1966).
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