Jean-Marie Dufour February 22, 2021

McGill University ECON 763 Financial econometrics Mid-term exam

Time allowed: 1.5 hour

- 40 points 1. Answer by TRUE, FALSE or UNCERTAIN to each one of the following statements. Justify briefly your answer. (Maximum: one page per question.)
 - (a) If a random variable X has mean mean zero and variance equal to one, then $\mathbb{P}[|X| > 2] \le 0.25$.
 - (b) The mean of a random variable is always smaller than its median.
 - (c) Any strictly stationary Gaussian process is in L_2 .
 - (d) The Wold theorem holds for finite-order moving average processes but not autoregressive processes.
 - (e) Hilbert space theory is not applicable to non-stationary processes.
 - (f) When applied to second-order stationary processes, the projection theorem (from Hilbert space theory) implies that optimal forecasts are uncorrelated with the past of the process.
 - (g) The Wiener-Kolmogorov optimal forecasting formula is only applicable to finite-order moving average processes.
 - (h) Non-invertible moving processes have no autocorrelation generating function.
- 40 points 2. Consider the following models:

$$X_t = 10 + u_t + 0.5 u_{t-1} \tag{1}$$

where $\{u_t : t \in \mathbb{Z}\}\$ is an *i.i.d.* N(0,1) sequence. For each one of these models, answer the following questions.

(a) Is this model stationary? Why?

- (b) Is this model invertible? Why?
- (c) Compute:
 - i. $E(X_t)$; ii. $\gamma(k)$, k = 1, ..., 8; iii. $\rho(k)$, k = 1, 2, ..., 8.
- (d) Graph $\rho(k)$, k = 1, 2, ..., 8.
- (e) Find the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} and u_{t-4} in the moving average representation of X_t .
- (f) Find the autocovariance generating function of X_t .
- (g) Compute the first two partial autocorrelations of X_t .
- (h) If $X_{10} = 11$, compute the best linear forecast of X_{11} based on X_{10} (only). Justify your answer.
- (i) If $u_{10} = 1$ and $X_{10} = 11$, can you compute the best linear forecast of X_{11} and X_{12} based on the past X_t up to time 10? If so, compute these optimal forecasts.
- 20 points 3. Let $\rho(k)$ the autocovariance function of second-order stationary process on the integers. Prove that:
 - (a) $\rho(0) = 1$ and $\rho(k) = \rho(-k)$, $\forall k \in \mathbb{Z}$;
 - (b) $|\rho(k)| \leq 1$, $\forall k \in \mathbb{Z}$;
 - (c) the function $\rho(k)$ is positive semi-definite.