McGill University ECON 763 Financial econometrics Mid-term exam

No documentation allowed Time allowed: 1.5 hour

20 points 1. Consider a process that follows the following model:

$$X_t = \sum_{j=1}^m [A_j \cos(\nu_j t) + B_j \sin(\nu_j t)], t \in \mathbb{Z},$$

where $v_1, ..., v_m$ are distinct constants on the interval $[0, 2\pi)$ and $A_j, B_j, j = 1, ..., m$, are random variables in L_2 , such that

$$\begin{split} E(A_j) &= E(B_j) = 0 \;, \, E(A_j^2) = E(B_j^2) = \sigma_j^2 \;, \; j = 1, \; \dots \;, \; n \;, \\ E(A_j A_k) &= E(B_j B_k) = 0 \;, \; \text{for} \; j \neq k \;, \\ E(A_j B_k) &= 0 \;, \; \forall j \;, \; k \;. \end{split}$$

- (a) Show that this process is second-order stationary.
- (b) For the case where m = 1, show that this process is deterministic [Hint: consider the regression of X_t on $\cos(v_1 t)$ and $\sin(v_1 t)$ based two observations.]

50 points 2. Consider the following models:

$$X_t = 0.5 X_{t-1} + u_t - 0.25 u_{t-1}$$
 (1)

where $\{u_t : t \in \mathbb{Z}\}$ is an i.i.d. N(0,1) sequence. For each one of these models, answer the following questions.

(a) Is this model stationary? Why?

- (b) Is this model invertible? Why?
- (c) Compute:
 - i. $E(X_t)$;

ii.
$$\gamma(k)$$
, $k = 1, ..., 8$;

iii.
$$\rho(k)$$
, $k = 1, 2, ..., 8$.

- (d) Graph $\rho(k)$, k = 1, 2, ..., 8.
- (e) Find the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} and u_{t-4} in the moving average representation of X_t .
- (f) Find the autocovariance generating function of X_t .
- (g) Find and graph the spectral density of X_t .
- (h) Compute the first two partial autocorrelations of X_t .

30 points 3. Let X_1, X_2, \dots, X_T be a time series.

- (a) Define:
 - i. the sample autocorrelations for this series;
 - ii. the partial autocorrelations for this series.
- (b) Discuss the asymptotic distributions of these two sets of autocorrelations in the following cases:
 - i. under the hypothesis that X_1, X_2, \dots, X_T are independent and identically distributed (i.i.d.);
 - ii. under the hypothesis that the process follows a moving average of finite order.
- (c) Describe how you would identify the process described in equation (1) in question 2.
- (d) Propose a method for testing the hypothesis that X_1, X_2, \ldots, X_T are independent and identically distributed (i.i.d.) wothout any assumption on the existence of moments for X_1, X_2, \ldots, X_T .