Properties of moments of random variables *

Jean-Marie Dufour
McGill University

First version: May 1995
Revised: April 1999, June 2007, June 2011, May 2016, January 2017
This version: January 2017
Compiled: February 15, 2021, 13:37

* This work was supported by the William Dow Chair in Political Economy (McGill University), the Bank of Canada
(Research Fellowship), the Toulouse School of Economics (Pierre-de-Fermat Chair of excellence), the Universitad Car-
los III de Madrid (Banco Santander de Madrid Chair of excellence), a Guggenheim Fellowship, a Konrad-Adenauer
Fellowship (Alexander-von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence [program
on Mathematics of Information Technology and Complex Systems (MITACS)], the Natural Sciences and Engineering Re-
search Council of Canada, the Social Sciences and Humanities Research Council of Canada, and the Fonds de recherche
sur la société et la culture (Québec).

T William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des
organisations (CIRANO), and Centre interuniversitaire de recherche en économie quantitative (CIREQ). Mailing address:
Department of Economics, McGill University, Leacock Building, Room 414, 855 Sherbrooke Street West, Montréal,
Québec H3A 2T7, Canada. TEL: (1) 514 398 6071; FAX: (1) 514 398 4800; e-mail: jean-marie.dufour@mcgill.ca.
Web page: http://www.jeanmariedufour.com



Contents

List of Definitions, Assumptions, Propositions and Theorems
1.  Existence of moments
2. Moment inequalities

3. Moment-based bounds on tail probabilities
3.1. Markov-type inequalities . . . . . . . .. ... Lo
3.2. Markov-type inequalities for bounded variables . . . . . . . ... ... ... ..
3.3.  Chebyshev-type inequalities . . . . . . . . . ... ..o
3.4. Generalized Markov-type inequalities . . . . . . . . . .. ... ... ...

4. Moments as integrals of distribution and quantile functions

5. Integration by parts
5.1. Standardresults . . . . . . . . . ...
5.2, EXtensions . . . . . . .. ..o e e e

6. Tail decay rates and the existence of moments
7. Moments of sums of random variables

8. Proofs and references

List of Definitions, Assumptions, Propositions and Theorems

1.1 Proposition : Existence of absolute and ordinary moments . . . . . . . . . .. .. ..
1.5 Proposition : Monotonicity of L, . . . . . . . .. ...
2.1 Propeosition : c,-inequality . . . . . . .. ..o L
2.2 Proposition : Mean form of ¢,-inequality . . . . . .. ... ... . 0oL
2.3 Proposition : Closureof L, . . . . . . . . . . . . ... ...
2.4 Proposition : Holder inequality . . . . . .. .. .. ... ..o
2.5 Proposition : Cauchy-Schwarz inequality . . . . . . . ... .. ... ... .....
2.6 Proposition : Minkowski inequality . . . . . .. ... ...
2.7 Proposition : Moment monotonicity . . . . . . . . . . .. ...
2.8 Theorem : Liapunov theorem . . . . . . .. .. .. ... ... ... ...,
2.9 Proposition : Lower bounds on the momentsof asum . . . . . . . . . .. ... ...
2.10 Proposition : Jensen inequality . . . . . . . . . . .. ..o oo
2.11 Proposition : Concave Jensen inequality . . . . . . . . .. .. .. ... ... ....
3.1 Proposition : Markov inequality . . . . . . . . .. .. . Lo
3.2 Proposition : Two-sided Markov-type inequalities for bounded variables . . . . . . .

ii

~N O W NN

12
12
12

15

17

20

[ ST NS 2NN NS N O NN O N NS I\ I NS I \S T



33
34
3.5
3.6
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.1
5.2
53
54
55
5.6
6.1
6.2
6.3
6.4
7.1
7.2
7.3

7.4

7.5

7.6

Proposition : Two-sided monotonic Markov-type inequalities . . . . . . . . . .. ..
Proposition : Chebyshev inequality . . . . . . . .. .. ... ... ... ... ...
Theorem : Generic Markov-type inequalities . . . . . . . ... ... .. ... ...
Proposition : Markov-type inequalities based on truncated moments . . . . . . . . .
Proposition : Distribution decomposition of the first moment . . . . . . . . ... ..
Corollary : Distribution decomposition of the first absolute moment . . . . . . . . . .
Proposition : Distribution decomposition of the expected value of g(X) . . . . . . . .
Corollary : Distribution decomposition of -moments . . . . . . . . . . ... . ...
Corollary : Moment-tail area inequalities . . . . . . . .. .. .. ... .......
Proposition : Mean-tail area inequalities . . . . . . . . . . .. ... ... ... ...
Proposition : Integral of the probability of aninterval . . . . . . . . . ... ... ..
Corollary : Integral of the probability of a general interval . . . . . . . . ... .. ..
Proposition : Quantile representation of themean . . . . . . . . .. . .. ... ...
Thoerem : Existence of Riemann-Stieltjes integral . . . . . . . . ... .. ... ...
Thoerem : Representation of Riemann-Stieltjes integral for continuous-BV functions .
Theorem : Integrationby parts . . . . . . . . . .. . ... o
Lemma : Riemann-Stieltjes integration by parts . . . . . . . . . ... .. ... ...
Lemma : Centered Riemann-Stieltjes integration by parts . . . . . . . . . .. .. ..
Lemma : Bounded monotonicity condition for tail convergence of an integrable function
Proposition : Tail decay rates based on truncated moments . . . . . . .. . ... ..
Corollary : Moment existence and tail areadecay . . . . . .. .. ... .. .....
Proposition : Necessary and sufficient condition for the existence of the mean
Proposition : Necessary and sufficient condition for the existence of -moments . . . .
Proposition : Bounds on the absolute moments of a sum of random variables . . . . .
Proposition : Minkowski inequality for n variables . . . . . . . . .. ... ... ..
Proposition : Bounds on the absolute moments of a sum of random variables under
conditional symmetry . . . . . ... ... L
Proposition : Bounds on the absolute moments of a sum of random variables under
martingale condition . . . . .. ... L Lo Lo
Proposition : Bounds on the absolute moments of a sum of random variables under
two-sided martingale condition . . . . . . . .. ...
Proposition : Bounds on the absolute moments of a sum of independent random variables
Proof of Theorem 3.6 . . . . . . . . . . . . .
Proof of Proposition 4.1 . . . . . . . ...
Proof of Theorem 4.3 . . . . . . . . . . . . .
Proof of Proposition 4.7 . . . . . . ... Lo
Proof of Lemma 5.4 . . . . . . . . .
Proof of Lemma 5.5 . . . . . . . . L
Proof of Lemma 5.6 . . . . . . . . . .. ..
Proof of Proposition 7.2 . . . . . . ... L

ii

O O 0 3 N D

9
10
11
11
11
11
11
12
12
12
12
13
13
15
16
16
16
17
17

17

18

18

18
20



1.  EXISTENCE OF MOMENTS 1

Let X and Y be real random variables, and let r and s be real positive constants (r > 0, s > 0).
The distribution functions of X and Y are denoted Fx (x) = P[X < x| and Fy(x) = P[Y <x].

1. Existence of moments

1.1 EXISTENCE OF ABSOLUTE AND ORDINARY MOMENTS. [E(|X|) always exists in the extended
real numbers R = RU {oo} U {—oo} and E(|X|) € [0,9]; i.e., either E(]X|) is a non-negative real
number or E(|X|) = oo.

1.2 [E(X) exists and is finite < E(|X|) < eo.

1.3 E(|X]) <eo= |[E(X)| < E(]X]) < oo.

14 If 0 <r <s,then
E(|X]*) < oo = E(]X]") < oo. (1.1)

1.5 MONOTONICITY OF L,. Ly CL,forO<r<s.

1.6 [E(|X|") < o = E(X*) exists and is finite for all integers k such that 0 < k < r.

2. Moment inequalities

2.1 ¢,-INEQUALITY.

E(IX+Y[") < [E(IX]") +E(Y[)] 2.1
where
¢ =1, if0<r<1,
=21 ifr>1. (2.2)

2.2 MEAN FORM OF ¢,-INEQUALITY.

E(3X+Y)[) < (3) [E(X[N+E(Y])], ifo<r<l1,

(2.3)
< HE(X|)+E(Y])], ifr>1.
2.3 CLOSURE OF L,. Let a and b be real numbers. Then
XeLl andY eL,=aX+bY €L,. 2.4)

1 1
2.4 HOLDER INEQUALITY. If r > 1and — 4+ — =1, then
r h)

E(xY|) < [E(X[)]VEQY )Y (2.5)
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2.5 CAUCHY-SCHWARZ INEQUALITY.
E(XY) < [E(X)]2[E(r2)]2. 2.6)
2.6 MINKOWSKI INEQUALITY. If r> 1, then
E(IX +Y)"" < [E(X )]V + [E(Y )] 2.7
2.7 MOMENT MONOTONICITY. [E(|X|")]"/" is a non-decreasing function of r, i.e.
0<r<s= [EQXIN]" < [E(X)]. 28)
2.8 Theorem LIAPUNOV THEOREM. log[E(|X|")] is a convex function of r, i.e. for any A € [0, 1],
log[E(|X[*"+1-2)] < A log[E(X]")] + (1 — A) log[E(1X]*)]. (2.9)

2.9 LOWER BOUNDS ON THE MOMENTS OF A SUM. If E(|X|") < oo, E(|Y|") <ccand E(Y |X) =
0, then
E(X+Y|")>E(X]"), forr>1. (2.10)

2.10 JENSEN INEQUALITY. If g(x) is a convex function on R and E(|X|) < oo, then, for any
constant ¢ € R,
8(c) <E[g(X —EX +c)] (2.11)

and, in particular,
g(EX) < E[g(X)]. (2.12)

2.11 CONCAVE JENSEN INEQUALITY. If g(x) is a concave function on R and E(|X|) < oo, then,
for any constant ¢ € R,
8(c) = E[g(X —EX +¢)] (2.13)

and, in particular,
g(EX) > E[g(X)]. (2.14)
3. Moment-based bounds on tail probabilities
3.1. Markov-type inequalities
3.1 Theorem MARKOV INEQUALITY. LetX be a real random variable such that
P[X >0]=1. 3.1
If X has a finite expected value E[X] and a > 0, then

E(X)

PX >a] < (3.2)
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Note inequality (3.2) remains formally valid for a = 0 or E(X) = 0, if we adopt the conventions
that 0/0 = 1 and x/0 = oo for x > 0. It is easy to see that (3.2) entails:

PIX >a] < [E(j) , fora >0, (3.3)
|P[X<a]§[P[X§a]Zl—[E(:():a_iEl(X),foraZ[E(X), (3.4)
PIX =a] < [E(f). (3.5)

Further, if E(X) > 0, we can replace a by ak [X], hence

1
PIX >ab(X)] <P[X >aE(X)] < =, foranya >0, (3.6)
a
1 a-1
PIX <abE(X)] <PX <aE(X)]|>1—-= , fora>1, 3.7)
a a
1
P[X =abE(X)] < =, foranya > 0. (3.8)
a
In general, if we define
Fy(x) = P[X <], (39)
Fl'(q) :==inf{x: Fx(x) >¢q},0<g<1, (3.10)

the Markov inequality entails: for 0 < g < 1,

_ E(X)
1—g<PX>F/(¢q)] < — (3.11)
X2 Rl s
hence
E(X) > (1-9)Fy ' (9) (3.12)
or, equivalently,
E(X)>qF '(1—q) (3.13)

For example, the mean of a positive random variable is at least as large as half its median:
1
E(X) > 5F,;l(l/z). (3.14)

3.2. Markov-type inequalities for bounded variables

When the random variable X has bounded support, both lower and upper bounds can be given for
P[X > d] as follows.

3.2 Theorem TWO-SIDED MARKOV-TYPE INEQUALITIES FOR BOUNDED VARIABLES. LetX
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be a real random variable such that
Pm<X<M]=1 (3.15)

where —oo < m < M < +oo. If X has finite expected value E(X ), a € R andm < a < M, then

[%?ﬂQSHX>d§PWZdSE€?mm'

(3.16)

In Theorem 3.2, the positivity assumption is replaced by the more general support assumption
(3.15), so X can take negative values. If E(X)=0and m <0 < M, we have:

—a —m

<P[X <PX>dqd]< . 1
2> X >a] <P[ _a]_a_m (3.17)
For example, for m = —1 and M = 1, we get:
P[X >0.5] <P[X >0.5] < 1 (3.18)
e T 0541 3] ‘
PIX > —05] > P[X > —05] > 2> 1 (3.19)
- T 71405 37 '

The Markov inequality [Theorem 3.1] corresponds to the special case where m = 0 and M = oo,
If —oo < m =M < +oo, the random variable X is degenerate at M, and P[X = M| = 1.
Form >0and m < E(X) < a <M, we also have
[E(X)—a> EX)—a EX)—m _E(X)

< 3.20
M—a — M a—m ~ a (3.20)

so that

[E()iw)_agP[X>a}§ﬂ>[X2a}§[E(5)~

The latter result follows from the Basic inequality of Loeve (1977, Volume I, Section 9, p. 159) on
taking g(x) = x. The bounds in (3.21) are however less tight than those in (3.16).
As in (3.3)-(3.7), we can see that (3.16) implies: form < a < M,

(3.21)

a;iﬁgPW<4§Pm§4§M;?fx (322)
PX = q] gmin{[(j(_);m,MA;%(j)}. (3.23)

For example, for a = 0, we get:
@gm[xw] <PX <0< M—EX) (3.24)
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On taking a = Fy; ' (gq), we get for 0 < ¢ < 1:

—1/.y _
AT <P < <P <K< L 029
hence
q<PX <K @) < __Ff_(fa) , (3.26)
Fil < ()qfff) <PX <F'(g)<q, (3.27)
and
Fy '(9) —qlFx ' (9) —m] <E(X) <M —g[M—Fy ' (q)], (3.28)
mg+(1—q)Fy ' (q) <E(X) <qFy (@) +(1—g)M. (3.29)
Correspondingly, ) —( ) x)
EX)—(1—gM _ E(X)—mgq
q SFXI(q)S (l—q) (330)
If m =0, we have:
(1-q)Fy '(q) <E(X) < qFy '(g) + (1 —q)M, (3.31)
EX)-(1—-gM _ E(X)
y <K@ g g (332)
If M = 0, we have:
mg+(1—q)Fy ' (q) <E(X) < qFy '(q), (3.33)
E;QSF;%)_E%%;?Q (3.34)

Another advantage of (3.16) is the possibility of working in terms of deviation from the mean,
for X — E(X) typically can take negative and positive values:

—a
M—a

a

a—m

<PX—E(X)<d <PX-EX)<d <

<P[X—E(X)>a <PX—EX)>d] < : (3.35)

(3.36)

—m M }. (3.37)
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3.3. Chebyshev-type inequalities

3.3 Theorem TWO-SIDED MONOTONIC MARKOV-TYPE INEQUALITIES. Letg:R — R be a
function such that g(X) is a real random variable, E(|g(X)|) < e and

PO<g(X)<M]=1 (3.38)
where M € [0, o0|. If g(x) is a non-decreasing function on R, then, for all a € R such that g(a) > 0,

Elg(X)]—g(a)
M

<PX >d] < (3.39)

If g(x) is a non-decreasing function on [0, ) and g(x) = g(—x) for any x, then, for all a > 0 such
that g(a) > 0,
Elg(X)]

g(a)

Elg(X)]—g(a)
M

<P[X|>a] < (3.40)

where 0/0 = 1.

3.4 Corollary CHEBYSHEV INEQUALITY. If E(|X|") < oo, forr >0, and P[m < |X| < M] =1,
where 0 <m <M €, m < oo and M < oo, then, for alla € (m, M)

plIx| > q < EXD (3.41)

a}"

Note the above result does not require that X be positive. It is easy to see that (3.39) entails

PIX <d]>PX <d] >1— Z8X)] (3.42)
g(a)
while (3.40) entails
PX| < a) > P[X| <a] > 1 - [E([j(g” | (3.43)

On taking g(x) = x%, a > 0, we see that the distribution function of X is dominated by the Pareto
distribution

E[x“
F,(x) =1-— L ] forx > E[X% (3.44)
=0 forx <E[X%].
Take M = oo, and suppose the function g(x) is homogeneous of degree &, i.e.
g(Ax) = A*g(x) for all x. (3.45)
Then, (3.39) implies:
Elg(X Elg(X)]'™*
Px > a(E[g(x))] < —C8EN_EI] 7 (3.46)
Elg(X)]" ¢ (a) g(a)
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g 1k E| _
P[X >a(E[g(X)]) ]S[E[g(X)]g(a) - (3.47)

hence for g(x) = xf and a > 0,

P[X >a(E[X"])] < L (3.48)
P[X > a(E[X*])"/¥] < % (3.49)
In particular,
[P[X>a[E[XH§%, (3.50)
P[X >a(E[x?])"?] < iz 3.51)

3.4. Generalized Markov-type inequalities

3.5 Theorem GENERIC MARKOV-TYPE INEQUALITIES. LetY be a real random variable and an
event A such that

PIAN {m(A) <Y < M(A)}] = P(A), (3.52)
PA“N{m(A) <Y < M(A°)}] = P(AY), (3.53)
where —eo <m(A) < M(A) < +oo and —oo < m(A“) < M(A®) < 4oo. If Y has finite expected value
E(Y), then

[m(A) = m(A°)]P(A) < E(Y) —m(A°), (3.54)
[M(A€) — M(A)]P(A) < M(A€) —E(Y), (3.55)

In particular,
P(A) < 51((?) _Zgﬁci . ifm(A) > m(A), (3.56)
P(A) > 5(?) :Z&; . ifm(A) < m(A), (3.57)
P(A) < Aﬁj((j:)):gé)), if M(A) < M(AS), (3.58)
(A) > j“j ((2)) :5& . ifM(A) > M(A°). (3.59)

Two-sided inequalities easily follow from Theorem 3.5. If m(A) > m(A¢) and M(A) > M(A°),

we have
M(A°) —E(Y)

M(4) =M () e
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Similarly, if m(A) < m(A) and M(A) < M(A€), we get:

E(Y) — m(A°)

M(AS) —E(Y)
ma)—miar) ==

< m (3.61)

3.6 Theorem MARKOV-TYPE INEQUALITIES BASED ON TRUNCATED MOMENTS. Letg:R— R
be a function such that g(X) is a real random variable, E(|g(X)|) < o and

g(x) <My forx > Ay, (3.62)

0 <
0 < gx)<Mpforx<Ap, (3.63)

where 0 < My < o0, 0 <M < 00, 0 <Ay < o0and ) <Ay < oo Let also

Culg a) = / e(x)dFx(x), Ci(g,a)— / 2(x) dFx (x). (3.64)
) (o

[a,e0 —co,a

(a) If g(x) is nondecreasing on [Ay, ), then, fora > Ay,

CU(g7 a) CU(g> Cl)
——— <P[X>dl < (3.65)
My : | g(a)
(b) If g(x) is nonincreasing on (—eo, Ar], then, fora < Ay,
C C
L(g7 a) < [P[X < Cl} < L(g7 [1) (366)
My g(a)

(c) If g(x) is nondecreasing on [Ay,e) and nonincreasing on (—eo,Ar], then, for a >
max{|Au|, |AL|},
C C
[PHX|26!] < U(gaa)_l_ L(g7a)
gla)  g(-a)
CU(ga Cl)+CL(g, Cl)

: ’ 3.67
~ min{g(a), g(~a)} (3.67)
PX|>a] > Cu(g,a) n Cr(g, a)
>d > 50 (e
i T (3.68)

max{My, M.}
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4. Moments as integrals of distribution and quantile functions

4.1 Proposition DISTRIBUTION DECOMPOSITION OF THE FIRST MOMENT. Let X be a random
variable with distribution function Fx (x). If E|X| < oo, then

/wade(x):/owP[x Zx]dx:/ooo[l—FX(x)]dx, 4.1

/0 xdFx(x) = —/0 P[X < x]dx = —/_in(x)dx, 4.2)

—oo —oo

E(X) — /Omm Zx]dx—/i[P[ng]dx,
_ /Ooo[l—FX(x)]dx—/iFX(x)dx 4.3)
= /0 {1 — Fx(x) — Fx(—x)}dx. (4.4)

4.2 Corollary DISTRIBUTION DECOMPOSITION OF THE FIRST ABSOLUTE MOMENT. LetX be
a random variable with distribution function Fx (x). If E|X| < oo, then

F(X|) = [[1 —FX(x)]dx—i—/O Fy(x)dx
= /OO[P[X>xdx—|—/ P[X < x]dx
= / P[|X| > x]dx 4.5)
4.3 Theorem DISTRIBUTION DECOMPOSITION OF THE EXPECTED VALUE OF g(X). LetX be

a real random variable, and g : R — R a function such that g(X) is a real random variable which
satisfies E(|g(X)|) < oo. If g(x) is differentiable a.e. on R, then, for any a € R,

| swaro = s@li-Fa +/ )1 = F ()] dx

= P[X > 4] +/ P[X > x]dx
= P[X > d] +/ P[X > x]dx
— PX>dl{gla +/ PIX > x|X > a]dx} (4.6)
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a

~ g@PX<d- [ Jx)PIX<xdr

—o0

= PIX <dl{gla)~ [ ¢(PIX <x|X <aldx}, @)
Ele() = gla)+ [ ¢@-F@ldx— [ ¢
= -|-/ P[X > x]dx — /_a g (x)P[X < x]dx

= ()+|PX>a/ g () {P[X >x|X > a]dx
_PX <a /_m &' (x)P[X < x|X < d]dx. 4.8)

It is of interest to spell out a number of special cases of (4.8):

Flg(X)] = g(0)+ / 2)[1 = Fy (x)]dx — /_ Ooog'(x)FX(x)dx 4.9)
= g(0 —i—/o g (x)[1 - Fx(x dx—l—/omg’(—x)FX(—x)dx (4.10)
= 5(0)+ [ (g1 F(0)] + 8/ (=) F(—) s @11

In particular, if g(—x) = g(x), we have g'(—x) = —g’(x), hence
E(0)] = #(0)+ [ ¢l —Feldr— [ ¢/(0F(-xdx “.12)
— 40)+ / )1 — Fr(x) — Fe(—x)]dx (4.13)

and, if X has a distribution symmetric about zero [Fy(—x) = 1 — Fx(x), for all x],

Elg(X)] = 5(0). (4.14)
o E[X]
Elg))—g(EX) = [ ¢l Al [ g @R @19)
When g(x) is convex, we see that
oo E[X]
Elg(x)) — g (X)) = | Ol = P~ [ dwR@dxz0. @6

This yields a closed-form expression for the difference E[g(X)] — g(E[X]).

4.4 Corollary DISTRIBUTION DECOMPOSITION OF r-MOMENTS. LetX a random variable with
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distribution function Fx (x) and r > 0. If E(|X|") < o, then

/mx’dFX(x) = r/oox’_l[l — Fx(x)]dx, (4.17)
0 0

E(x|") — r/mx’*u:(yx\zx)dx
0
_ r/wx”1[1—Fx(x)—i-Fx(—x)]dx. (4.18)
0

4.5 Proposition MOMENT-TAIL AREA INEQUALITIES. Let g(x) be a nonnegative strictly increas-
ing function on [0, o) and let g~ ' (x) be the inverse function of g. Then,

(=)

P(IX]>¢g ' (n)] <EgX)] < Y P[IX|>g ' (n)]. (4.19)

1 n=0

agk

n

In particular, for any r > 0,

Z P(X|=n'") < E(XI)< ) P(X|>n'")

n=1 n=0

1+ i P(X >n'/"). (4.20)

n=1

IN

4.6 Corollary MEAN-TAIL AREA INEQUALITIES. If X is a positive random variable,
Z (X>n)<EX)<1+ ) P(X>n). 4.21)
n=1 n=1

4.7 Proposition INTEGRAL OF THE PROBABILITY OF AN INTERVAL. Let X a random variable
with distribution function Fx (x) and 0 < a < b. If E|X| < oo, then

/[P[a <X <x+bldx= /[Fx(x—l—b)—FX(x)]dx:b, (4.22)

/[P[x—a <X < x+bldx = /[FX(x+b) —Fe(x—a)ldx=a+b. (4.23)

4.8 Corollary INTEGRAL OF THE PROBABILITY OF A GENERAL INTERVAL. Let X a random
variable with distribution function Fx(x) and a < b. If E|X| < oo, then

/[P[x+a <X <x+bldx = /[Fx(x—l—b)—Fx(x—i—a)]dx:b—a. (4.24)

4.9 Proposition QUANTILE REPRESENTATION OF THE MEAN. Let X a random variable with
distribution function Fx (x) and quantile function

Fy'(g) =inf{x: Fx(x) > ¢}, 0<g<I. (4.25)
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IfE|X| < oo, then
1
E(X) = /O Fy'(q)dq. (4.26)

5. Integration by parts

In order to study conditions for the existence of moments, it will be useful to recall some results on
integration by parts.

5.1. Standard results

5.1 Theorem EXISTENCE OF RIEMANN-STIELTJES INTEGRAL. Each one of the following con-
ditions is sufficient for the existence of the Riemann-Stieltjes integral | f g(x)df(x).

(a) g(x) is continuous on [a,b] and f(x) is of bounded variation on [a, ).

5.2 Theorem REPRESENTATION OF RIEMANN-STIELTJES INTEGRAL FOR CONTINUOUS-BV
FUNCTIONS. If g(x) is continuous on |a, b] and f(x) is of bounded variation on |a, b|, then

b b
[ sdr@) = Eeirter) — e+ [ gt 6.
a xeJ a
where J is the set of discontinuities of g on |a, b],
fc(x) :f(x)_fs(x)) (5.2)
and
) =f)—f=)+ ¥ [fO+)—fO-)] forxe (a,b]
vesla,x) . (5.3)
=0 forx=a

gs(x) is called the saltus function of g on [a, b].

5.3 Theorem INTEGRATION BY PARTS. The Riemann-Stieltjes integral f: g(x)df(x) exists if
and only the Riemann-Stieltjes integral [ Cf’ f(x)dg(x) exists. Further, when |, abg(x) d f(x) exists, we
have:

b b
| rdsto+ [ s ar) = £)s) - fl@)sta). 54

5.2. Extensions

54 Lemma RIEMANN-STIELTIES INTEGRATION BY PARTS. Let f:R — R and g: R — R
two real-valued functions and —eo < a < b < +oo. If the (Riemann-Stieltjes) integral fab g(x)df(x)
exists, then the integrals fab f(x)dg(x) and [ f [A — f(x)]dg(x) also exist and

b b
| swdrt) = sw)rb)—stafa)~ [ fx)dst)
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= @@ g+ [ - sWldg), 59)

for any real constant A, with

/f )dg(x /f (5.6)

b b
|- rwlds = ["a-r00] ¢ ) 57

if g is continuous on |a, b] as well as differentiable on (a, b) and the Riemann integral |, ab f(x)g'(x)dx
exists (where g’ can take arbitrary real values at a and b).

and

5.5 Lemma CENTERED RIEMANN-STIELTJES INTEGRATION BY PARTS. Let f: R — R and
g : R — R two real-valued functions and —eo < a < ¢ < b < +oo. If the integrals ffg(x) df(x),

[€g(x)df(x) and [”g(x)df(x) exist, then the integrals [ f(x)dg(x) and [ f(x) dg(x) also exist,
and

/abg(X)df(X) = Ag(c) —{8()[A—f(b)] +8(a)f(a)}

+/Af'dg /f dg(x (5.8)

for any real constant A, with

[ 1ds) = [ 10 ax 59

if g is continuous on [a, c|] as well as differentiable on (a, ¢) and the Riemann integral [ f(x) g'(x)dx
exists (where g’ can take arbitrary real values at a and c), and

b b
| - rwldsto = [ f00)] ¢ () dx (5.10)

if g is continuous on [c, b] as well as differentiable on (c,b) and the Riemann integral [’[A —
f(x)] &' (x)dx exists (where g’ can take arbitrary real values at ¢ and b).

5.6 Lemma BOUNDED MONOTONICITY CONDITION FOR TAIL CONVERGENCE OF AN INTE-
GRABLE FUNCTION. Letf:R — R and g: R — R two real-valued functions, and let m, M be two
real constants.

(a) If f(x) is monotonic nondecreasing on the interval (—eoo, m) with finite limit as x — —oo, and
if g satisfies the inequality
lg(a)| <Bp(x), for x<a<m (5.11)
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where By (x) is a real-valued function such that [™_ By (x)df(x) exists, then

0< lg(@)| [f(a) = F(-)] < [ Bu(v)df(x), fora<m, G.12)
where f(—o0) = Er{lmf(x) > —oo, and

lim g(a)[f(a) — f(~e0)] = 0. (5.13)

a—o0

(b) If f(x) is monotonic nondecreasing on the interval [M, o) with finite limit as x — oo, and if g
satisfies the inequality

¢(0) < lg(x)[+Bu(x), for x>b>M (5.14)

where By (x) is a real-valued function such that [,; By (x)df(x) exists, then

0 lg(b)| (=)~ FB)] < [ Bu)dsf(x), forb>M (5.15)

where f(o0) = lim f(x) < oo, and

X—00

lim g(b) [f () — £(b)] = 0. (5.16)

b—o0

It is easy to see that (5.11) holds whenever [™_|g(x)| df(x) exists and one of the following
conditions holds: for some real constant B,

lg(a)| < |g(x)|+B, for x<a<m; (5.17)
|g(x)| is nondecreasing on the interval (M, o) ; (5.18)
g(x) is bounded on the interval (M, oo). (5.19)

Further, in case (5.17), we have:

0 Ig(@)| /@)~ f(—==)) < [ 1g)|df(0)+BIf(@) — f(—)]. (520)

Similarly, (5.14) holds whenever one of the following conditions holds: for some real constant B,
lg(a)] <|g(x)|+B, for x>b>M; (5.21)
|g(x)| is nonincreasing on the interval (—eo, m); (5.22)

g(x) is bounded on the interval (—co, m). (5.23)
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Further, in case (5.21), we have:

0 lg(b)| /() — FB)] < [ [(x)| df(x)+ BLF (=) — £(b) (524

6. Tail decay rates and the existence of moments

It follows from Markov-type inequalities in Theorem ?? that tail probabilities decay to zero at least
as fast as g(x) or x* increases. More precisely, on taking m = 0, we see from Theorem ??, that

g(a)P[|X| >da] <E[g(X)] foralla >0 (6.1)
hence PlX| >
limsup (g (a) P{X| = ]} = lilglsogp{ P } < Elg (X)) 62)

the rate of convergence of P[|X| > a] to zero must be at least as fast as the one of 1/g(a). In
particular, if E(|X|") < o0 and m =0,

a"P[|X| > a] <E(]X|") foralla >0 (6.3)
hence PIX| >
limsup{a"P[|X| > a]} = limsup{W} <E(X|); (6.4)
a—o0 a—oo0 a

the rate of convergence of P[|X| > a] to zero must be at least as fast as the one of 1/a".
However, it is possible to make stronger statements on these rates of convergence by considering
further generalizations of the Markov inequality.

6.1 Proposition TAIL DECAY RATES BASED ON TRUNCATED MOMENTS. Under the assumptions
of Theorem 3.6, the following limits hold:

(a) if g(x) is nondecreasing on [Ay,e°),and if g(a) > 0 fora > Ay, then

ligl_?oljp{g (a) PIX >d]} = ligl_)s::p {m} =0; (6.5)

(b) if g(x) is nonincreasing on (—eo, Ar], and if g(a) > 0 fora < Ay, then,

: ) P[X <d] }

limsu a)P|X <a|} = limsups ————— » =0; (6.6)

imsupfe(a) PIX < al} = timsup{ 17 =

(c) if g(x) is nondecreasing on [Ay, o) and nonincreasing on (—eo, Ar], and if g(a) > 0 for |a| >
max{|Ay|, |AL|}, then

a—oo a—»oo

limsup{g (a) P[|X| > a]} = limsup {W} =0. (6.7)
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Note that the limits (6.5) - (6.7), can be rewritten using the “little oh” notation o(-) [see Serfling
(1980, Section 1.1.2)]:

lP[XZa]zo(g(a)_l),aHOO, (6.8)
[P[Xga]zo(g(a)*l), a— —oo, (6.9)
[P[|X]2a]:0(g(a)_l),a—>00. (6.10)

In particular, if g(x) = |x|", we have:

PIX >a]=o0(la]™), a— oo, (6.11)
PIX <a]=o(la]™), a— —oo, (6.12)
P[IX| >a] =o(la]™"), a— eo. (6.13)

6.2 Corollary MOMENT EXISTENCE AND TAIL AREA DECAY. Letr > 0. If E(|X|") < oo, then

lim {xX'P[X >x]} = xglzloo{|x|r[P[X§x]}

X—o0

= lim {x'P[|X| > x]} = 0. (6.14)

In particular, if E(]X|) < oo, then
lim {xP[X >x]} = lim {|x|P[X <x]}
X——o0

= lim {xP[|X| > ]} =0. (6.15)
X—00

The following proposition provides a general sufficient condition for the existence of a finite
mean in terms of tail areas. It is a direct consequence of Proposition 4.1.

6.3 Proposition NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE OF THE MEAN.
Let X be a random variable with distribution function Fx(x). Then

E(]X]) < oo < P(|X| > x) is integrable on (0, +oo)
& [1 — Fx(x) — Fx(—x)] is integrable on (0, 4-oo)
(o] 0
<:>/ [1— Fx(x)]dx < e and / Fx(x)dx < oo. (6.16)
0 —o0
6.4 Proposition NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE OF r-

MOMENTS. Let X a random variable with distribution function Fx(x) and r > 0. If E(|X|") < o,
then

E(|X|") < oo <> x"'P(|X| > x) is integrable on (0, o)
& |x|" ' [1 = Fx (x) + Fx (—x)] is integrable on (0, +oo)
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@/ 1= Fx( )]dx<ooand/ "1 Fy (x)dx < oo. (6.17)

7. Moments of sums of random variables

In this section, we consider a sequence X, ..., X,, of random variables, and study the moments of
the corresponding sum and average:

Sp=YXi, X,=Su/n. (7.1)

E(S,") < Z E(1X:|"), if0<r<I1,
=y, (7.2)
<n" _Z E(Xx:|"), ifr>1,

i=1

and .
E(%)) < (1) L E(X|), ifo<r<l,
n (7.3)
g%g[E X", ifr>1.
7.2 Proposition MINKOWSKI INEQUALITY FOR n VARIABLES. If r > 1, then
n
[E(ISaI)"" < < LIE(XI] N (7.4)
and
[E(X: )" < Z (1)1
nl:1
1 n
< {5 EC } (15)

7.3 Proposition BOUNDS ON THE ABSOLUTE MOMENTS OF A SUM OF RANDOM VARIABLES
UNDER CONDITIONAL SYMMETRY. If the distribution of X, given S; is symmetric about zero
fork=1,...,n—1,and E(|X;|") <oo,i=1,...,n, then

n

E(]S,|") Z (%) for1<r<2, (7.6)

and

1\"&
E(1X,|") ()Z (1X;|") for1<r<2, (1.7
=1

n
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with equality holding when r = 2.

7.4 Proposition BOUNDS ON THE ABSOLUTE MOMENTS OF A SUM OF RANDOM VARIABLES
UNDER MARTINGALE CONDITION. If

E(Xer1|S) =0 as, k=1,....,n—1, (7.8)

and E(|X;|") <eo,i=1,...,n, then

n
E([S.]") <2Y E(1Xi|"), for1<r<2, (7.9)
i=1
and .
E(|1X.]") < ) E(|X;|"), for1<r<2. (7.10)
i=1
Fuarthermore, forr = 2,
n
= Y E(xP). (7.11)

i=1

7.5 Proposition BOUNDS ON THE ABSOLUTE MOMENTS OF A SUM OF RANDOM VARIABLES
UNDER TWO-SIDED MARTINGALE CONDITION. Let

m+1

Sm =Y, X, 1<k<m+1<n. (7.12)
i=1, i#k
If
[E(Xk|Sm(k)):O a.s., forl <k<m+1<n, (7.13)
and E(|X;|") <eo,i=1,...,n, then
1 n
(50 < (2- 1) REGKI), for1 <r<2, 7.1
nj iz
and
X 1rzln[EX for1<r<2 7.15
E(X.|) < [ - - — . .
(N < (5) (2-5) LEdn). forr<rs .15
7.6 Proposition BOUNDS ON THE ABSOLUTE MOMENTS OF A SUM OF INDEPENDENT RANDOM
VARIABLES. Let the random variables Xy, ..., X, be independent with E(X;) =0 and E(|X;|") <
i=1,...,n, and let
D(r)=[13.52/(2.6m)"|I"(r)sin(rm/2). (7.16)

If D(r) <land1 <r<2, then

™=

E(S:") < [1=D(n)]"" Y E(X"), (7.17)

1
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and
n

E(|X,]") < <1)r[1 —D( 'Y E(Xi]7), forl<r<2. (7.18)

i=1
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8. Proofs and references

1.1to ?2. See Loeve (1977, Volume I, Sections 9.1 and 9.3, pp. 151-162). For Jensen inequality,
see also Chow and Teicher (1988, Section 4.3, pp. 103-106). Hannan (1985), Lehmann and Shaffer
(1988), Piegorsch and Casella (1988) and Khuri and Casella (2002) discussed conditions for the
existence of the moments of 1/X.

2.9. See von Bahr and Esseen (1965, Lemma 3).

3.6

PROOF OF THEOREM 3.6  (a) Forx > a > Ay, we have g (x) > g(a) and g (x) < My, hence

Cu(g.0)= [ () dFx ()= g(a) [ dF(x) =g(@)P X > a

[a7oo) [a7°°)

and
/ g (x) dFx (x) < MyP[X > d] |

[a,e0)
from which we get the inequality

Cy (87 a)

<P[X>d <
My

(b) Forx <a < Aj, we have g(x) > g(a) and g (x) < My, hence

Clga)= [ eWdi@W>g(@ [ dFx)=g@PX<d
[—ooa)

[—o0,a) —oo.q

and
/ 2(x) dFy (x) < MiP[X < d]

from which we get the inequality

CL (g7 (1)
My,

(c) For a > max (JAy|,|AL|), we have a > Ay and —a < Ay, hence

PPIX|>d = P[X>d+P[X<—d
< Cu (g7 a) CL (g7 a)
gl 8(a)

CU (g, a) +CL (g, a)
min{g(a),g(—a)}

IN
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and

Cu (ga Cl) + CL(ga LZ)

v

P[[X] > g
My My

Cy(g,a)+Cr(g, a) .

max (My, M)

PROOF OF PROPOSITION 4.1 We have:

E(X) :/wadFX(x)—F/_ixdFX(x).

For any statement p, let us set
I(p) =1 ifpistrue
=0 if pisfalse

Using this notation, we can write:

x =[I0<y<x)dy forx>0

=—[I(x<y<0)dy forx<O0

Then,

/0 CxFe(x) = / I(x > 0)xdFx (x)

= /I(x>0) [/I(O<y<x)dy] dFx(x)

= //I(x> 0)1(0 <y <x)dFx(x)dy

_ / / I(y < x)I(y > 0)dFy (x)dy

_ /[/1(y<x)dFX(x)]1(y>0)dy

_ / [ x>ydpx(x)]1(y>0)dy

= /[1—FX(y)}I(y>0)dy=/0m[1_FX()’)]dy
= /w[l—FX(x)]dx:/m[P[XZx]dx.
0 0

Similarly,

/0 xFx(x)dx = /I(x < 0)xdFx(x)

—o0

21

8.1

8.2)

(8.3)

(8.4)
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- —/I(xSO) [/I(XSySO)dy] dFx (x)

_ —//1(x§y§0)1(x§0)dFX(x)dy

_ _//z(xgy)z(yg())dFX(x)dy

=~ [[[1c=yar@]i6 <0y

= [E0io<0a=— [ Kwa
0

- —/MFX(x)dx:—/o P[X < x]dx. (8.5)

—o0

Therefore,

E(X) = /000[1 —FX(x)}dx—/iFX(x)dx

(oo} O
_ /[P[sz]dx—/ PX < x]dx. (8.6)
0

—o0

Finally, (4.5) follows on observing that

/0oc |x| Fx (x)dx = —/0 xFx (x)dx = /0 Fx(x)dx/O P[X < x]dx. (8.7)

—oo —o0 —o0

4.2t06.2. See Feller (1966, Section V.6, Lemma 1), Chung (1974, Section 3.2, Exercises 17-18),
Serfling (1980, Section 1.14, pp. 46-47) and Chow and Teicher (1988, Section 4.3, pp. 103-106).
For other inequalities involving absolute moments, the reader may consult Beesack (1984). Further
discussion of Proposition 4.1 is available in Hong (2012, 2015) and Lo (2019).

PROOF OF THEOREM 4.3  For any a € R, we have:

Elg(0)) = | s a(x)+ [ g(x)dF(). (8.8)

For any statement p, let us set
I(p) =1 ifpistrue

=0 if pisfalse. (8.9)
By the fundamental theorem of calculus, we can write: for any a € R,
= 4 if x >

=gla)— [;¢(y)dy ifx<a’
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Then,
/f X)dFx(x J/I'a <x)g(x)dFx(x
- /Ia<x / '(y)dy] dFx (x)
/Ia<x a)dFy(x +/Ia<x[/ax g'(v)dy] dFx(x)

— ela )[P[X>a+/1a<x /Ia<y<x) '(v)dy] dFx (x)
_ ()[P[X>a+//la<xl(a<y<x) '(y) dydFx (x)
— <>n>[x>a+//1y<x1<a<y> '(y)dydFy (x)
= PX > q] +//Ia<y I(y < x)dFx (x)dy
= ()[P[X>a+/1a<y /1y<xdFX()]d
= g(a)P[X >4 +/1a<y )& () PIX >y]dy
- ()[P[X>a+/la<y ') PX > y]dy
— X>a+/ PIX >yd
= X>a+/ )1 —Fx(y

Similarly,

/j;g(x)dFX(x) — /Ix<a ) dFx (x

— /Ix<ade /I(xga /g )dy] dFx (x)

— g(a)P[X <a]— //1 <a)l(x <y < a)g'(y)dydFx(x)

23

8.11)



8. PROOFS AND REFERENCES

— g(a)P[X <d]— /Iy<a ')PIX < y]dy

— g(@PX <al- [ 1< a)g WPIX <)]dy

~ g@Px <d- [

Therefore,
Els(0)] = [ st

— s+ [ ¢0

= sla)+ [ g0)P
~ s+ [ §OF

X)dFx(x -l-/

g (y)PIX <yldy

—oo

X)dFx(x

a

g (V) Fx(y)dy

)1 = Fi( )]dy—[m
X >y] dy—/_:g’(y)P[X <yldy

x=yldy- [ 0P <) dy

24

(8.12)

(8.13)

4.7 The identity (4.22) is stated by Chung (1974, Section 3.2, Exercise 16). We give below a simple

proof along with a slight extension.
PROOF OF PROPOSITION 4.7
function /(p) defined in (8.2):

/ [Fie (x+b) — Fx (x)]dx

_ /IP[a<X§x—|—b]dx
= [/ 1x <y <xrp)arc)]ax
_ /[/1(x<y§x+b)dx]de(y)

— [bar» -

(4.23) then follows by repeated application of the above identity:

/[Fx(x+b) —Fx(x—a)ldx =

/fP[x—a<X < x+bldx

/[P[x—a<X§x]dx+/[P[x<X§x+b]dx

/{P[x<X§x+a]dx+/[P[x<X§x+b]dx

a+b.

We can establish (4.22) as follows, through the use of the indicator

(8.14)

(8.15)
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4.5. See Chow and Teicher (1988, Section 4.1, Corollary 3, p. 90).

4.6. The inequality (4.21) is given by Chung (1974, Theorem 3.2.1) and Serfling (1980, Section
1.3, p. 12).

Theorem 5.1 (a) See Riesz and Sz.-Nagy (1955/1990, Section 54) and Devinatz (1968, Theorem
5.5.2, page 219).

Theorem 5.2. See Devinatz (1968, Theorem 5.5.7, page 225).

Theorem 5.3 See Riesz and Sz.-Nagy (1955/1990, Section 54) and Haaser and Sullivan (1991,
Theorem 2.8, page 254).

Theorem 5.4 See Riesz and Sz.-Nagy (1955/1990, Section 54) for A = 0.

PROOF OF LEMMA 5.4 The first identity in (5.5) part is given by Devinatz (1968, Theorem 5.4.8,
page 213) and Protter and Morrey (1991, Theorem 12.12, page 320), while the second follows from
the latter on observing that

b b
[ s = [ sw-Alast) = [ A r9)ast) A [ gy
b
= [ A= rW]dg(x) — Alg(b) - g(a)] (8.16)
and rearranging the terms of the sum. Equation (8.16) also entails the existence of the integral
/ : [1— f(x)]dg(x). The identities (5.6)-(5.7) follow on observing that we can write dg(x) = g’(x)dx

when g is differentiable [see Devinatz (1968, Theorem 5.4.7, page 213)]. O

5.5
PROOF OF LEMMA 5.5  Using Lemma 5.5, we get:

[ ewar) = /g W‘+/g )df )

+[A—s(c)lg(c) —g(b)[A—f(D)] +/C [A—f(x)] dg(x)

= (c)—{gD)A—f(b)]+g(a)f(a)}
b c
+ / (A — £(x)] dg(x) - / F)dg(x). 8.17)
OJ

5.6
PROOF OF LEMMA 5.6 (a) The existence of the limit lim f(x) entails that the integral
X——00

Je.df(x) = f(a) — f(—oo) also exists. Since f(x) is monotonic nondecreasing on the interval
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(—eo,m) and [™ By (x)df(x) exists, we get from (5.11): for a < m,

0< [ Je@ldre) < [ Buwadris (8.18)
hence ;
0< lg(a)| /(@) = f(—)| < [ Bul)df(x). (8.19)
Letting a — —oo, this yields
0< lim_lg(a)|[f(a)— f(—==)) < tim_[* B(x)df(x)=0 (8.20)
and
lim g(a)[f(a) — f(~==)] =0 (821)

(b) The existence of the limit lim f(x) entails that the integral [,"df(x) = f(eo) — f(b) also exists.
X—00

Since f(x) is monotonic nondecreasing on the interval (M, o) and [;; By (x)d f(x) exists, we get
from (5.14): for b > M,

0< [Tle®)ldft) < [ Bux)dfe) (8.22)
hence -
0< Ig®)| /(=) =SB < | Bu(x)df(v). (823)
Letting b — oo, this yields
0= Jim [¢(5)|[f(e=) — )] < Jim [ Bu(x)ds(x) =0 (8.24)
and
lim g(b) () — £(5)] 0. (8.25)
O

7.1.  See von Bahr and Esseen (1965), Chung (1974, p. 48) and Chow and Teicher (1988, p. 108).
7.2.  See Chung (1974, p. 48).

PROOF OF PROPOSITION 7.2  The first inequality follows by recursion on applying the
Minkowski inequality for two variables. The first part of the second inequality is obtained by mul-
tiplying both sides of the first one by (1/n). The second part follows on observing that the function
x!'/" is concave in x for x > 0 when r > 1. 0

7.3. See von Bahr and Esseen (1965, Theorem 1).
7.4. See von Bahr and Esseen (1965, Theorem 2).
7.5. See von Bahr and Esseen (1965, Theorem 3).
7.6. See von Bahr and Esseen (1965, Theorem 4).
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