Jean-Marie Dufour February 23, 2021

McGill University ECN 706 Special topics in econometrics Mid-term exam

Time allowed: 1.5 hour

25 points 1. Consider the following equilibrium model:

$$Q_t = a + bp_t + u_{1t},$$

$$p_t = c + dp_{t-1} + u_{2t} , \quad t = 1, \dots, T$$

$$p_0 \text{ is fixed}$$

where the disturbances $(u_{1t}, u_{2t})', t = 1, ..., T$ are independent $N[0, I_2], Q_t$ represents the quantity sold, and p_t the price. For which parameters is the vector $p = (p_1, ..., p_T)'$

- (a) sequentially exogenous?
- (b) exogenous?
- (c) strongly exogenous?
- (d) Further, does Q_t cause p_t in the sense of Granger?

Justify your answers.

- 25 points 2. Define the following notions:
 - (a) unbiased test;
 - (b) α -similar test;
 - (c) test with Neyman α -structure.

25 points 3. Consider the linear regression model

$$y = X\beta + u \tag{0.1}$$

where y is a $T \times 1$ vector of observations on a dependent variable, X is a $T \times k$ fixed matrix of explanatory variables (observed), $\beta = (\beta_1, \ldots, \beta_k)'$, and $u = (u_1, \ldots, u_T)'$ is a $T \times 1$ vector of unobserved error terms. Suppose the elements of u are independent and identically distributed according to a $\sigma t(1)$ distribution, where t(1) represents a Student t distribution with 1 degree of freedom and σ is an unknown constant.

- (a) Propose a method for testing the hypothesis H_0 : $\beta_1 = 1$ at level $\alpha = 0.05$ in the context of this model such that the size of the test is exactly equal to $\alpha = 0.05$.
- (b) Propose a test for detecting serial dependence between the errors u_1, \ldots, u_T such the size of the test is exactly equal to $\alpha = 0.05$.
- 25 points 4. Consider the linear regression model

$$y = X\beta + u \tag{0.2}$$

where y is a $T \times 1$ vector of observations on a dependent variable, X is a $T \times k$ fixed matrix of explanatory variables (observed), $\beta = (\beta_1, \ldots, \beta_k)'$, and $u = (u_1, \ldots, u_T)'$ is a $T \times 1$ vector of unobserved error terms, and $k \ge 3$. We wish to test the hypothesis

$$H_0: \beta_2 \beta_3 = 1. \tag{0.3}$$

- (a) If $u \sim N[0, \sigma^2 I_T]$, describe the likelihood ratio (LR) criterion test for testing H_0 against the unrestricted model.
- (b) Propose a bound for the null distribution the above LR statistic.
- (c) Can you suggest a simulation-based procedure which could eventually improve the above bound?