Jean-Marie Dufour February 2025 Compiled: February 12, 2025

ECON 257 EXERCISES 3

Classical linear model Review questions

1. Suppose that

$$y = X\beta + \varepsilon \tag{1}$$

where *y* is a $T \times 1$ vector of observations on a dependent variable X is a $T \times k$ matrix of observations on explanatory variables, $\beta = (\beta_1, \dots, \beta_k)'$ is a $k \times 1$ vector of fixed parameters, and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_T)'$ is a $T \times 1$ vector of random disturbances.

- (a) Describe which extra assumptions are needed for y to satisfy the classical linear model.
- (b) Suppose now we know the matrix X_0 of explanatory variables for *m* additional periods (or observations). We wish to predict the corresponding values of *y*:

$$y_0 = X_0 \beta + \varepsilon_0$$

where

$$\mathsf{E}(\varepsilon_0) = 0, \mathsf{V}(\varepsilon_0) = \sigma^2 I_m, \mathsf{E}(\varepsilon \varepsilon'_0) = 0.$$

Propose a linear unbiased predictor \hat{y}_0 of y_0 , and show that it is indeed unbiased.

- (c) Derive the covariance matrix of \hat{y}_0 .
- (d) Show that \hat{y}_0 is best linear unbiased.
- 2. Describe conditions under which the least squares estimator of β can be interpreted as a maximum likelihood estimator.
- 3. Under the assumptions of the classical linear model on (1), suppose that the elements of $\varepsilon = (\varepsilon_1, \dots, \varepsilon_T)'$ are *i.i.d* according to a N[0, σ^2]. Propose:
 - (a) a confidence interval with level 0.95 for the first component of β_1 (the first element of β);
 - (b) a confidence interval with level 0.95 for the error variance σ^2 ;
 - (c) a test for the hypothesis that $H_0: \beta_1 = 0$;
 - (d) a test for the hypothesis that $H_0: \beta_1 = 1$;
 - (e) a test for the hypothesis that $H_0: \beta_1 = \beta_2 = 0$.