Jean-Marie Dufour January 2025 Compiled: January 23, 2025

ECONOMETRICS 1 EXERCISES 1

Hypothesis testing I

- 1. Respond by TRUE, FALSE or UNCERTAIN to each one of the following statements and explain your answer (Maximum: 1 page per statement)
 - (a) The level of a test is the probability of rejecting the null hypothesis when it is false.
 - (b) The power of a test is the probability of rejecting the null hypothesis when it is true.
 - (c) If a test has level 0.05, it also has level 0.10.
 - (d) The probability of Type I error of a test is equal to 1-power.
 - (e) The probability of Type II error of a test is equal to its power.
- 2. A supplier sends chips whose power usage X follows a normal distribution with mean μ and variance σ^2 , i.e. $X \sim N[\mu, \sigma^2]$. We have *n* i.i.d. observations X_1, \ldots, X_n on X. The norm for the chips is that we should have $\mu = 90$. The sample size is n = 25.
 - (a) Propose an unbiased estimator for μ .
 - (b) Propose an unbiased estimator for σ^2 .
 - (c) Suppose that $\bar{X} = \sum_{i=1}^{n} X_i/n$ is equal to 105 and we know that the true variance of X is $\sigma^2 = 3600$. Test the following hypotheses at level $\alpha = 0.05$:
 - - i. $H_0: \mu = 90$ against $H_1: \mu = 100$;
 - ii. $H_0: \mu = 90$ against $H_1: \mu > 90$;
 - iii. $H_0: \mu = 90$ against $H_1: \mu = 80$;
 - iv. $H_0: \mu = 90$ against $H_1: \mu < 90$.
 - v. $H_0: \mu = 90$ against $H_1: \mu \neq 90$.
 - (d) Suppose that $\bar{X} = \sum_{i=1}^{n} X_i/n$ is equal to 105 and we know that the true variance of X is $\sigma^2 = 1$. Test the following hypotheses at level $\alpha = 0.05$:
 - i. $H_0: \mu = 90$ against $H_1: \mu = 100$;
 - ii. $H_0: \mu = 90$ against $H_1: \mu > 90$;
 - iii. $H_0: \mu = 90$ against $H_1: \mu = 80$;
 - iv. $H_0: \mu = 90$ against $H_1: \mu < 90$;

v. $H_0: \mu = 90$ against $H_1: \mu \neq 90$.

- (e) Suppose that $\bar{X} = \sum_{i=1}^{n} X_i/n$ is equal to 105 but the true variance of X is unknown. However, we know that $s^2 = 4$. Test the following hypotheses at level $\alpha = 0.05$:
 - i. $H_0: \mu = 90$ against $H_1: \mu = 100$;
 - ii. $H_0: \mu = 90$ against $H_1: \mu > 90$;
 - iii. $H_0: \mu = 90$ against $H_1: \mu = 80$;
 - iv. $H_0: \mu = 90$ against $H_1: \mu < 90$;
 - v. $H_0: \mu = 90$ against $H_1: \mu \neq 90$.