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1. Random variables

In general, economic theory specifies exact relations between economic variables. Even a superficial examination of economic data indicates it is not (almost never)
possible to find such relationships in actual data. Instead, we have relations of the form:

C=a+pY+g
where €; can be interpreted as a “random variable”.

Definition 1.1 A random variable (1.v.) X is a variable whose behavior can be described by a “probability law”. If X takes its values in the real numbers, the probability

law of X can be described by a “distribution function”:
Fx(x) =P[X <x]

If X is continuous, there is a “density function” fx (x) such that

Fx (x) = /_xwfx(x) dx .

The mean and variance of X are given by:

by = E(X) = 1 J:ox dFx (x) (general case)
_ [ jx i (x) dx (continuous case)
V) = 0% =E[(X )] = | (x— y)* dFx (x) (general case)
::(/;:n(x——ux)sz(x)dx (continuous case)
= E(X?) - [E(X)]

It is easy to characterize relations between two non-random variables x and y :
g(x,y)=0

or (in certain cases)

y=rf(x).



How does one characterize the links or relations between random variables? The behavior of a pair (X, Y)’ is described by a joint distribution function:

F(x,y) = X<)C Y<y]
= / / f(x,y)dxdy (continuous case.)
We call f(x,y) the joint density function of (X,Y)’. More generally, if we consider k r.v.'s Xi, X5, ..., X}, their behavior can be described through a k-dimensional
distribution function:
F(xr,x,.0x) =PX <xi,Xa <xg, .o, X < Xy
= / / / f(xr,x0,..., x) dxydxy - - dxg (continuous case)
where f (x1,x2, ..., Xg) is the joint density function of X;,Xa, ..., Xi.

2. Covariances and correlations

We often wish to have a simple measure of association between two random variables X and Y. The notions of “covariance” and “correlation” provide such measures of
association. Let X and Y be two r.v.’s with means

uy =EX), uy:=EY), 2.1)
and finite second moments
6% :=E(X?), 67:=E(?). (2.2)
Then, X and Y have finite variances:
0% = V(X) = E[(X — py)?] = E(X?) — ux = 6% — U, (2.3)
o7 :=V(Y):=E[(Y —uy)} ] =E(Y?) —uj =63 —uj . (2.4)
We also denote:
G(X):=6x =[EX))]?, &(Y):=6y=[E(Y?)]"?, (2.5)
6(X):=0x, o(Y):=oy, (2.6)
where 6(X) >0,6(Y) >0,0(X) >0and o(Y) > 0, so that
o(X)?=V(X), o¥)>=V(Y). (2.7)



Below a.s. means “almost surely” (with probability 1). In particular, we have:
E(X*)=0 < [X=0 as] < PX=0]=1, (2.8)
VX)=0 < [X=EX) as] & PX=EX)]=1. (2.9)
Definition 2.1 COVARIANCE. The covariance between X and Y is defined by
CX,Y)=0oxy =E[X—uy) ¥ —uy)] . (2.10)
When C(X,Y) =0, we say that X and Y are orthogonal.

Definition 2.2 CORRELATION. The correlation between X and Y is defined by

p(X,Y) ::pXY ::ﬁ (211)

where we set p (X,Y) :=0when o(X)o(Y)=0.

When X or Y is degenerate, we have C(X,Y) = o(X)o(Y) = 0. The convention p (X, Y) := 0 when ¢(X)o(Y) = 0 is motivated by the fact that C (X, Y) = 0 in this
case.

Theorem 2.1 BASIC PROPERTIES OF COVARIANCES AND CORRELATIONS. Let (X,Y) be a pair of random variables with finite second moments. The covariance and
correlation between X and Y satisfy the following properties:

(a) C(X,Y)=E(XY)—EX)E(Y) ;

(

(¢) plai+b1X,a,+bY)=p(X,Y) forany constants ay, ay, by, by such that bib, #0;

(d) C(X,Y)=C(Y,X)andp (X,Y)=p(Y,X) ;

(e) C(X,X)=V(X);

() p(X,X)=1if V(X) >0

() C(X,Y)> <V(X)V(Y); (Cauchy-Schwarz inequality)
(h) —1<p(X,Y)<1;



(i) X andY are independent = C(X,Y)=0=p(X,Y)=0;
(j) ifo(X)o(Y) #0, then

p(X,Y) =1 < [3 two constants a and b such that b # 0 and Y = a+ bX a.s.]
& [Y=a+bX as withb=B(X-Y)anda=E(Y)—-bE(X)],

[p(X,Y)=1] & [Y =a+bX as withb=B(X-Y)>0anda=E(Y)—-bE(X)],
[p(X,Y)=—1] & [Y =a+bX as. withb=B(X-Y)<O0anda=E(Y)—bE(X)].

PROOF (a)

C(X,Y)

(b), (¢), (d), (e) and (f) are immediate.
(g) To get (g), we observe that

[E{[Y_.LLY_A'(X_“X)]Z}

(X — ux) (Y —py)]
XY — pyY — Xy + Uy ly]

XY) = Uyly — Hyly + Pyl
XY)-EX)E(Y) .

E[
E[
= EXY)- MX[E() E(X) 1y +Hyty
E(
E(

2 Hy) — X—IJX)]Z}

{ (¥ —

= E{(r )’ 24 (X — ) (¥ — ) + 22 (X — )’}
2

Y

= 062 —2Aoxy +A%0% >0

for any arbitrary constant A. In other words, the second-order polynomial

cannot take negative values. This can happen only if the equation

g(A) =062 —2Aoxy +Ao%

A*6% —2A0xy +0% =0

(2.12)

2.13)
(2.14)

(2.15)

(2.16)

2.17)

(2.18)



does not have two distinct real roots, i.e. the roots are either complex or identical. The roots of equation (2.18) are:

/462 2 52 /62 2 52
20xy £4/40%y —40%x0y  Oxy =L /Oy%y — O0%O0y%

- 2 - 2
20% Ox

Distinct real roots are excluded when 6%, — 65307 < 0, hence

2 2 2
Oxy < 0yOy .

(b

2 )
Oyxy < 0x0y = —0xOy < Oxy < O0xOy

(1) If X and Y are independent, we have:

oxy = E{(X—puy) (Y —py)} =EX—puy) E(Y —py)
= [EX)—uy][EQY)—py] =0,
pxyzcxy/cxcyzo.

Note the reverse implication does not hold in general, i.e.,
Pxy =0#> X and Y are independent.

(j) (a) Necessity of the condition. If Y = aX + b, then
E(Y)=aE(X)+b=auy+b, 6y =a°c%,

and
oxy = E[(Y —pty) (X — py)] = Ela(X — py) (X — py)] = ack .
Consequently,
a’o%
Pxy = a’c% 0% =1

(b) Sufficiency of the condition. If pg(y =1, then
o%y —0%07 =0.

In this case, the equation
E{((Y — ty) — A (X — py)2} = 03 — 240y +A%0% = 0

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)



has one and only one root

= 22(:‘){ = oxy/0%, (2.30)
so that
E{[(Yo} —ny) — (oxy/0%) (X —py)*} =0 (2.31)
and
P[(Y —y) = (oxy/0%) (X —px) = 0] = P[Y = (uy — (0xy/0%)ux) + (Oxy/0%)X] = 1 (232)
We can thus write:
Y = a+ bX with probability 1 (2.33)

where b = 6xy/0% and a = p, — (Oxy /0% ) Uy - This establishes (2.12). (2.13) follows on observing that, for b = oxy /0% and a = 1, — (Oxy/0%) iy,

PX.V)=1 & {p(X,Y)zzlandp(X,Y):G?ZY>0}

& {Pr=a+bX]]=landp(X,¥)= —2 >0}

OxOy

bo
& {PlY=a+bX]=1landp(X,Y X >0
{PlY =a+ and p (X,Y) = p—— }
& {PY=a+bX]=1andb>0}. (2.34)

The proof for (2.14) is similar. O

A basic problem in this context consists in considering the case where
Y=a+bX a.s. (2.35)

and find whether a and b can be determined (or “identified”) from the first and second moments of X and Y. The following theorem shows that a and b are uniquely
determined if only if V(X) > 0.

Theorem 2.2 IDENTIFICATION OF LINEAR TRANSFORMATION OF A RANDOM VARIABLE. Suppose X and Y satisfy the linear equation (2.35). If V(X) > 0, then
{PlY =a1+b1X]=1} = [a1 =aand b; =b]. (2.36)

IfV(X) =0, then, for all by € R,
PlY =a" +bX] =1 (2.37)



where a* = E(Y) —b1E(X).

PROOF By (2.35), we have

E(Y) =a+bE(X) . (2.38)
Suppose P[Y = a; + b1 X] = 1 holds. Then
Y=a1+b01X=a+bX as. (2.39)
hence
(ag—a)+ (b1 —b)X =0 as. (2.40)
V[(a) —a) + (b1 — b)X] = V[(b) — b)X] = (by — b)*V(X) = 0. (2.41)
If V(X) > 0, this entails b; = b, which in turn implies
Y=a1+b)X=a1+bX =a+bX (2.42)
hence a; = a. If V(X) = 0, then
X-E(X)=0 as, (2.43)
hence, for any b; € R,
X -EX)]=b[X—-E(X)]=0as., (2.44)
and
Y = a+bX
= a+bEX)+bX-E(X)]
= EY)+h[X-EX)]
= [[E(Y) — by [E(Xﬂ + b1 X
= a"+bhX as. (2.45)
where a* := [E(Y) — b E(X)]. O

If V(X) > 0, there is only one pair (a, b) which satisfies (2.35). If V(X) = 0, ¥ has several representations of the form a + bX: the values a and b are not “identified”.
But they are not completely undetermined. Once b is specified, a is determined by the equation

a=E(Y)—bE(X). (2.46)



Indeed, if (2.39) holds, we must have
(b1 —b)[E(X) =a—ag. (2.47)

Corollary 2.3 Under the assumptions of Theorem 2.1,

p(X,Y)’=1] [3 two unique constants a and b such that b # 0 and Y = a+bX a.s.] .

3. Regression coefficients between two variables

Definition 3.1 LINEAR REGRESSION COEFFICIENT. The linear regression coefficient of Y on X is defined by

C(X,Y)

V(x) (3.1)

B(X-Y) =
where we set B(X-Y) := 0 when V(X) = 0. By convention,
B(Y=X) =B(X-Y). 3.2)

The “harpoon” symbols - and - represent a statistical “dependence” or “predictability” relation; for example, XY and Y~X represent dependence of ¥ on X. The
relation XY is typically asymmetric: Y~X represents a different relation. It does not necessarily correspond to a “causal” relation. From the above definitions, we can
write:

CX,Y)=p(X,Y)o(X)o(Y) (3.3)

which holds in all cases [including when 6(X) =0 or 6(Y) = 0]. When o(X) > 0, we also have:

P eX)e(r) o(¥)
When ¢ (X) > 0, we have [by (3.4) and Theorem 2.1(h)]:
o(¥) oY) _o(Y)
_ < N — < .
so that the regression coefficient can be bounded the variance ratio 6(Y) /o (X). More generally, if 6(X) > 0 and
pL<pX,Y)<py, (3.6)



we have
oY)

P < BT <Py

2
o

4. Uncentered covariances, correlations and regression coefficients

Definition 4.1 UNCENTERED COVARIANCE. The uncentered covariance between X and Y is defined by

C(X, Y) = 6xy = [E[XY] .
When C (X,Y) =0, we say that X and Y are orthogonal with respect to zero.

Definition 4.2 UNCENTERED CORRELATION. The uncentered correlation between X and Y is defined by

C(x,Y)

P(XaY)iszy:W

where we set p (X,Y) :=0when 6(X)6(Y) =0.

Definition 4.3 UNCENTERED LINEAR REGRESSION COEFFICIENT. The uncentered linear regression coefficient of Y on X is defined by

pix-n) = S

where we set B(X-Y) := 0 when &(X) = 0.

5. Difference and sum of two correlated random variables

Highly correlated random variables tend to be “close”. This feature can be explicated in different ways:
1. by looking at the distribution of the difference ¥ — X;
2. by looking at the difference of two variances (polarization identity);

3. through a “decoupling” representation of covariances and correlations;

3.7

4.1)

4.2)

4.3)



4. Hoeffding identity;

5. by looking at the linear regression of Y on X;

5.1. Uncentered second moments

Let us look the difference and the sum of two random variables X and Y:

E[(Y —X)%] = E(X*> 4+ Y% —2XY) = E(X?) + E(Y?) — 2E(XY). (5.1)
E[(Y +X)%] = E(X?> 4+ Y2 +2XY) = E(X?) + E(Y?) +2E(XY). (5.2)
From these, we see that: .
E(XY) = 5{[E(X2)+[E(Y2)] —E[(Y -X)]}, (5.3)
E(Y) = S{E[Y + X))~ [E(X) + E(r)]. (5.4)

The cross second moment E(XY) can be interpreted in two ways in terms of (uncentered) second moments:

1. E(XY) is equal to half the difference between the sum of the second moments X and Y and the second moment of ¥ — X ;

2. E(XY) is equal to half the difference between the second moment of ¥ + X and the sum of the second moments of X and Y.

5.2. Covariances

We now consider similar expressions for the covariance oxy = E[(Y — uy) — (X — ty)]. It is easy to see that

EI =X = E{(0 = my) = (X = )]+ 0y — 1))}

= [E{[(Y_I'LY)_(X_“X)]2}+(“Y_“X)2
= 612/“‘6?(—26)(1/4‘(”1/_#)()2
= 0624 0%—2pyxy0x0y + (Uy — Uy)?. (5.5)

E[(Y — X)?] has three components:

1. avariance component 03 + 0%;

2. acovariance component —20xy;

10



3. amean component (lLy — Ly )>.

Equation (5.5) shows clearly that E[(Y — X)?] tends to be large, when Y and X very different means or variances. Similarly,

FIr+X7 = (0 =) + (X = )]+ (y +110)°

= {0y — )+ (X = )P+ (1 + 1)
= o} +ox+20xy +(Uy+uy)?
Gy +0% +2pxyOx Oy + (Hy + Hx)*.

From (5.5), we see that

oxr = (0} +0%) — ELY ~XP)+ 1ty — 1))
= 103+ 0%) ~ EI0 —sty) ~ (X~ )Y
= 16} +0%) - v(r —x)
1

= - [V(Y)+V(X) -V -X)].

[\

oxy represents the difference between the sum of the variances of X and Y and the variance of ¥ — X. In particular, if i, = ty,

oxr = {0} +0h—Elr X))

_ %{\/(Y) +V(X) —E[(Y —X)*]}.

In this case, oxy represents the difference between the sum of the variances of X and Y and the mean square difference E[(Y —X)2.

Similarly, by (5.6), we have:

oxr = Y+ X))~ (0} +0%) — (1y +11)%)
= S[EI0 = )+ K= )P} = (0F +03)]

[V(Y +X) — (07 +0%)]

N —

11
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_ %[V(Y—FX)—[V(Y)-FV(X)H'

oxy represents the difference between the variance of ¥ 4- X and the sum of the variances of X and Y. In particular, if 4, = i, =0,
1
oxr = S{E[Y +X)*] - (o} +0%)}
1
= S{E(Y+X)7 = V) + V()]

= SHEY X)) - [ +ER)]).

In this case, Gxy represents the difference between the sum of the variances of ¥ and X and the mean square difference E[(Y — X)?].

In general, we thus have:
oxr = V) +V0] -V - X))
= IV X) — [V VX)),

If py = py, |
oxy = S{IV() + V()] - E[(Y —X)]}

and, if 4y =ty =0,
oxr = HECHHE)] [y - X))}
= S{E X0~ [E)+EG)

5.3. Correlations

From (5.5), it is also easy to see that

Oy Oy Oy Ox
r 27 2
Yy X Hy | Hx
E|| —+— =2(1 =X
(o +a) | =20+pmn+ (5L B2

(5.9

(5.10)

5.11)

(5.12)

(5.13)

(5.14)

(5.15)



Consider the normalized values of X and Y :

D = S -~
TRy TR bR 7)) =p (X, Y) = pyys (5.16)
Oy Oy
where we set X = 0if ox =0, and ¥ = 0 if 6y = 0. We then have:
EX)=EY)=0, VX)=V({¥)=1, (5.17)
and
E[(Y —X)*) =2(1—pyy), (5.18)
|
pxy =1-SE[(Y = X)7]. (5.19)

U

<t

The correlation p (X, Y) is inversely related to the mean-square distance E[(¥ — X)?] between X and ¥. (5.19) is a general form of the standard formula for Spearman’s
rank correlation coefficient.

Similarly,

D

E[(Y +X)°] =2(1+pyy), (5.20)

Pyy = =E[(T+X)*] 1. (5.21)

U —

The correlation p (X, Y) measures the mean square E[(¥ + X)?] of the sum of X +¥. The above formulae can also be rewritten in terms of the arithmetic mean of X and
Y:

E([5(7+8)]} = 5(1+pxr). (522)
Pyy = ZE{[%(? +X)] -1 (5.23)
5.4. Inequalities
Since |pyy| < 1, it is interesting to observe that
(0y = 0x)* + (Hy — p1y)* SE[(Y = X)’] < (v +0x)* + (1ty — 1x)?, (5.24)
and
E[(Y —X)*] < 07 + 0% + (by —ly)” < (Oy +0x)° + (Hy — ky)?, if pyy >0, (5.25)
E[(Y —X)*] > 0} + 0% + (Hy — iy)* > (Oy — 0x)* + (by — px)?, if pyy <O, (5:26)
EI(Y —X)2] = 03+ 0%+ (ty — y)? if pyy = 0. (5.27)

13



E[(Y — X)?] reaches its minimum value when py, = 1, and its maximal value when pyy, = —1:

E[(y —X)’] = (oy —0x)* + (uy —py)*, ifpyy =1,
E[(Y —X)?] = (0y +0x)* + (by —ky)?s  if pyy = —1.

. 2 . 2 2 . 2
(1_6x> +(uy ux) < HY ZXHS(H@) +<ﬂy#x>
Oy Oy GY Oy Oy

The inequalities (5.24) - (5.27) also entail similar properties for X + Y

If 67 > 0, we can also write:

(ox —0y)*+ (ux +Hy)? SE[(X+Y)’] < (0x +0v) + (1y +Hy),

E[(X +Y)’] < 0%+ 05 + (Ux +1y)* < (Oy +0x)* + (Ux +1y)?, if pyy <O,
E[(X+Y)*] > 0% + 03 + (ux + 1y)* > (0x — 0¥ + (Ux + 1y)?, if pyy >0,
E[(Y +X)%] = 0% + 07 + (Ux + 1y)*, if pyxy =0

By (5.18), we have:
4,

0<E[(Y-X)<
E[(7 - %)%}/ <2.

0<E[Y-X|] <{

The root mean square error of approximating ¥ by X cannot be larger than 2. Upon using the Chebyshev inequality, this entails:

E(T-X) _ 4

Since
X=uy+oxX, Y=u,+oy?,
we get
EIY =X = E{[(ty+0v¥)— (s +0x %)

i
= [E{ [(oyY —oxX)+ (.UY_.UX)]Z}
= [E{[(GYY—GXX) + (uy _IJX)]Z}

14
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hence
v \2
Fl(y—x)] = G%E[(Y—G"x) "
Y
- o2 Ox ) _, (%X TERY:
= Oy 1+<Gy> 2<Gy>pXY + 1y —Hy)”,
and

If the variances of X and Y are the same, i.e.

we have:

E[(Y —X)’] = 207(1—pyy)+(ky —Hy)?
= 205 (1= pyy) + (y —1y)*.

If the means and variances of X and Y are the same, i.e.

2 2
Ky = Uy and Oy = Oy,

we have:
E[(Y —X)2] = 203 (1 pyy) = 20% (1 pyy)
and
0 <E[(Y —X)?] < 40%
so that

E[(Y —X)?))=0and P[Y =X] =1, if py, =1,

and, using Chebyshev’s inequality,
E[(Y —X)*] _ 20% (1—pyy)
2 - 2

PllY —X| > ] <

Cc C

E[(Y —X)* _ 2(1—pyxy)
0% 2 c?

P[|Y —X| > coy] <

15

forany ¢ >0,

for any ¢ > 0.

(5.39)

(5.40)

5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

5.47)

(5.48)

(5.49)



If uy = uy and 03 = 6% > 0, we also have:
E[(Y =X)*)=0% pyy =1,

E[(Y —X)?] = 20% © pxy =0,
E[(Y —X)*) =40% © pyy = —1.

Since

the linear function

can be viewed as a “forecast” of Y based on X such that

It is then of interest to note that

E[(Y — Lo(X))*] < E[(¥ — ty)?) = 63 & pyy > 0.5,
with

E[(Y — Lo(X))?] < E[(Y — pty)*] = 0} < pyy > 0.5

(5.50)
(5.51)
(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

when 62 > 0. Thus Lo(X) provides a “better forecast” of ¥ than the mean of Y, when pyy > 0.5. If pyy < 0.5 and 63 > 0, the opposite holds: E[(Y — Lo(X))?] > o3

s5. Polarization identities

Since
E[(Y —X)}] = E(X?>4+Y?—2XY) = E(X?) + E(Y?) — 2E(XY),

E[(Y +X)%] = E(X*> 4+ Y2 +2XY) = E(X?) + E(Y?) +2E(XY),
we get on summing the above two equations:
1
E(XY) = {EIY +X)% — E[(Y - X )]}

Similarly, since
V(X+Y)=V(X)+V(Y)+2C(X,Y),
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VX -Y)=V(X)+V(Y)-2C(X,Y), (5.62)
we have: |
C(x, Y):Z[\/(X+Y)—\/(X—Y)]. (5.63)

(5.63) is sometimes called the “polarization identity”. Further,

_ _ 2 2
p(X,y) = LYXHY) VX =Y) 1 ["X” _ Ok-y } (5.64)
4 Ox Oy 4 Ox Oy Ox Oy
and, if V(X) =V(Y) =1,
_ _ 22
On X 4+Y and X —Y, it also interesting to observe that
CX+Y,X-Y)=[VX)-V(Y)]+[C(Y,X)—-C(X,Y)] =V(X)—V(Y) (5.66)
so that
C(X+Y)/2,X-Y)=C(X+Y,X—-Y)=0, ifV(X)=V(Y). (5.67)

This holds irrespective of the covariance between between X and Y. In particular, if the vector (X, Y') is multinormal X +Y and X —Y are independent when V(X) = V(Y).
On applying (5.64) to the normalized variables ¥ and X, we get a polarization formula in terms of normalized variables:
V¥V +X)-v(Y —-X) E[Y+X)4—E[(Y-X)?

p(X,Y)= 2 = n . (5.68)

This also follows on applying (5.64) to ¥ and X.

6. Hoeffding representation
The symbol [ without lowerscript and upperscript represents integration over the whole real number set (R) .

Lemma 6.1 INDICATOR REPRESENTATION OF CONTINUOUS VARIABLE. Foranyx € R,

x = /{I[Ogugx]—l[x§u<0]}du

17



Hu>0{u<xldu  forx>0

_ / (I > O0)1[u < x] — I[u < O} [u > x|}du
_ { [ 10

[ Hu< O[f[u > xldu forx<0 ° ©.D
Foranyx,,x €R,
Y-y = / (T2 < u] — It < ] Vdu
- / (ID0 > u] — Ix2 > u] Y. 6.2)

PROOF OF LEMMA 6.1  To show (6.1), we use the fact that the functions /[0 < u < x] and I[x < u < 0] are indicator functions equal to zero everywhere except on finite
intervals: for x > 0, we have I[x <u < 0] =0 and

/{I[O§u§x]—l[x§u<0]}du:/l[0§ugx]du:/du:x; (6.3)
similarly, for x < 0, 7[0 < u < x| = 0 and
/{10<u<x] Ix<u<0]}du=— /Ix<u<0 /du—x (6.4)
On noting that
I0<u<x]=Iu>0/lu<x], Ix<u<O0]=Iu<O0{u>x, (6.5)
(6.1) follows. Setting
O(x,u) :=1Iu>O0{u<x]—Iu<0|u>x, (6.6)
we can write:
X]—XZZ./{6(X],M) (XZ, )}du (67)
where
O(xr,u) —8(xa,u) = {Iu>0[[u<xi]—Iu<O{u>x]}—{Iu>0[Iu<x]—1Iu<0[u>x]}
= Iu>O0{Iu<xi)—Iu<xz]} —Iu<O0{Iu>x]—Iu> x|}
Hu>0){Iu<xi]—Iu<xp)} —Iu < O{(1 =Iu<x1]) — (1 —1Iu<x)])}

18



= Tu>0{Iu<xi]|—Iu<x]}+1Iu<O0{Iu<x)]—1Iu<x]}

= {u<x]—Tu<xa)} —1Tu < 0){Iu=x] - Iu=x]}. 6.8)
By the properties of the Riemann integral, we have
/ T < O{TJu = x1] — I = x2] Y = 0 6.9)
hence
Xi—xp = /{5 x1,u) — 8 (x2,u) Yu (6.10)
_ /{1 o <] — 11 < u }du—/[[u < O[{I[u=x1] — I[u = xa] }du 6.11)
_ /{1 o <] —1[r1 < u}du 6.12)
_ /{ (1= 1P > ) — (1 —Ifx < u])}du 6.13)
- /{m1 > 4] —I[x2 > u]}du 6.14)
and (6.2) is established. 0

Theorem 6.2 HOEFFDING COVARIANCE IDENTITY. Let (X,Y)' be a pair of real random variables such that P[X < x,Y <y]:=F(x,y), P[X <x] := Fx(x) and
PY <y|:=Fy(y). If (X,Y) has finite second moments, then
CX,Y) = F(x,y) = Fx (x)Fy (y)|dxdy

PIX <x,Y <y| = P[X <Py <y|]dxdy

C(I[X <A, IlY <yl)]dxdy

C(I[X > x],1]Y > y])]|dxdy. (6.15)

/]
/]l
_ //[[P[x>x,y>y]—n>[x>x]n>[y>yﬂdxdy
/]l
/]I
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PROOF OF THEOREM 6.2 Let (X,Y;)" and (X3,Y>)’ two i.i.d. vectors with joint distribution F (x, y). Then

2C(X, Y) = E[(X1 —Xo) (Y1 — Y2)]. (6.16)
By Lemma 6.1, we can write:
X=X — / (11X < u] —I[X, < u]}du, 6.17)
Yi— Y, — /{I[Yg <V =1 <]}, 6.18)
where
E(I[X1 < u]) = EU[Xa < u]) = F(w), (6.19)
E(I[v; <v]) = E(I[Y, <v]) = Fy(v), (6.20)
EU[X) <ully <v]) = E(I[X; < ulllYy <v]) = F(u,v), (6.21)
hence
(X1 —X2)(Vi - V3) = / / (11X < u] — I[X, < u}{I[Y> <] — [V < v]}dudv. (6.22)
Taking the expected value, we then get:
E[(X)—Xo) (Y —¥2)] = [E//{I[Xz <]~ 11X, < W}{I[Ys < v] — I[Vi < v]}dudv

_ 2 / / [F (1, v) — Fi () Fy (v)|dudv (6.23)

where the expected value can be taken under the integral sign [by the fact that (X, Y) has finite second moments], and

cx.v) = [ [y - AR ()]dxdy

_ //[[P[X <x,¥ <3| —PX <xJP[Y <y]]dxdy. (6.24)
The other identities in (6.15) follow from observing that

CUX <A, 1Y <y]) = EU[X <x|I[Y <y]) —E([X <x])E(I[Y <y])

20



= P[X <x,¥ <3|~ P[X <aP[Y <)] = F(x,y) - Fx(@)F (), 625)
and
CUX < x| IY <y)=CA—IX>x|,1-1Y >y])=CU[X >x],I[Y >Y])

E(I[X > xJI[Y > y]) — E(I[X > x])E(I]Y > y])
= PX>x,Y >y —P[X>xP[Y >y]. (6.26)

Corollary 6.3 HOEFFDING-TYPE VARIANCE REPRESENTATION. Let X be a real random variable with distribution function Fx (x) such that E(X?) < c.Then
Vo) = [ [ [min{Fe(o), Feb)} - Fe(oF ()] dxdy
= [ [ [min{Fe(olt = Be)], [1 — Fe (o)) () ey (6.27)
Corollary 6.4 HOEFFDING-TYPE CONDITIONAL DISTRIBUTION REPRESENTATION. Let (X,Y) be a pair of real random variables with finite second moments. Then

cx.y) = [ [P <yIX <2 =PIy <)}PIX <]dxdy

= / /D(Y <y|X <x)P[X < x]dydx (6.28)
where
DY <y|X <x)1=P[Y < y|X <4 —PY <], (629)
Further; if the integral [ D(Y <y|X < x)dy is finite for all x,
C(X,Y) = / [/D(Y < y|X < x)dy|P[X < x]dx (6.30)

Corollary 6.5 HOEFFDING COVARIANCE IDENTIT:Y LOCATION INVARIANCE. Let (X,Y) be a pair of real random variables such that P[X < x,Y <y|:=F(x,y),
P[X <x]:=Fx(x) and P[Y <y|:=F(y). If (X,Y)' has finite second moments, then, for any a, b € R,

CX,Y) = //[F(x+a,y+b)—FX(x+a)Fy(y—|—b)]dxdy
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//[[P[X§x+a,Y§y+b]—[P[X§x+a][P[Y§y+b]]dxdy
//[[P[X>x+a,Y>y+b]—[P[X>x+a][P[Y>y+b]]dxdy

= //[C(I[X§x+a],1[Y§y+b])]dxdy
//[C(I[x > x+a) 1Y > y-+b))]dxdy. 6.31)

Proposition 6.6 COPULA REPRESENTATION OF COVARIANCE. Let Z := (X,Y)' be a pair of real random variables such that P[X <x,Y <y]:=F(x,y), P[X <x]:=
Fx(x) and P[Y <y]:= Fy(y). If F(x,y) has the copula representation

F(x,y) = Cz[Fx(x), Fy ()], (6.32)

then
CY) = [ [ACoB(), Fr(3)] — F (0 () vy (633

The Hoeffding representation provides a way of decomposing the covariance in terms of quantiles. This can be done by considering:

CX,1;;Y,b) = If}f[F(x, y) — Fx (x)Fy (y)]dxdy
— J J{PIY <y|X <~ Pl¥ <I}PIX <a]dyd (6.34)
L b

where I, and I, are two subsets of R. In particular, if /; = R and I, = (—oo, z], we have:

CX MY, E) i= [ ] [Flx,y) — Fx()F(v)] dyd
- (6.35)
= [_f {PlY <y|X <x]—P[Y <y]}dy|P[X <x]]dx
Using (6.29), we can also define:
P P2
CXYiprp)i= [ [ [ DY <3IX < 0]PIX < xdx. (6.36)
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7. Linear regression and correlations

In this section, we study the links between correlations and linear regressions as approximations between two variables. We first observe that the mean of a random

variable X minimizes the distance between X and an arbitrary constant.

7.1. Linear approximation

Proposition 7.1 MEAN OPTIMALITY. Let X be a random variable with finite second moment. Then, for any real constant a,

E[(X — pux)’] <E[(X —a)?]

and

E[(X —py)?) <E[(X —a)’] ifa# py.

Proposition 7.2 UNCENTERED REGRESSION OPTIMALITY. Let (X,Y) be a pair of random variables with finite second moments, and set

B =EXY)/E(X?) if E(X?) >0

=0 otherwise .

Then,

and, for any real constant b,

E[(Y - BX)’] < E[(Y —bX)*].

IFE(X?) > 0, then
E[X(Y —BX)] =0,

E[(Y - BX)?) < E(Y —bX)%] ifb#B.

Let (X,Y) a pair of random variables with finite second moments, and set

U(YX) = U(¥=X) = (Y — fy) — BX-Y)(X — piy)

=Y - B(X-Y)X —[uy — B(X-Y)uy]

23
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where iy = E(X) and uy = E(Y), Y ¥
c
BX-Y)= Vi) :p(XaY)ﬁ' (7.10)

~—

with B(X-Y) := 0 when V(X) = 0.

Proposition 7.3 CENTERED REGRESSION OPTIMALITY. Let (X,Y) be a pair of random variables with finite second moments, and let U(Y~-X) be defined by (7.9).
Then,

E[U(Y=X)] =0, (7.11)
EXU(Y-X)=C[X,U(Y-X)] =0, (7.12)
and, for any real constants a and b,
E[U(Y-X)?*] <E[(Y —a—bX)?. (7.13)
IfV(X) >0, then
E[U(Y=X)?] <E[(Y —a—bX)?] whenb+#B(X=Y)ora# uy, —B(X-Y)uy. (7.14)
PROOF We have:
EUu(Y=X)] = E[Y —py)—BX-Y)(X —puy)]
— E(Y —y) — BX=-Y)E(X — piy) = 0, (7.15)
EXU(Y-X)] = CX,U(Y-X)]

X
CIX, B(X=Y)X — (1y — B(X-Y)uy)]
ClX,Y - B(X-Y)X]
(X
(X

— (X, Y]—C[X, B(X=Y)X]
= CX,Y]-B(X-Y)C[X, X]
_ (x, ]—C\(/)(()’(?C[X,X]_o. (7.16)

For any constant b, we have:

S(b1) == E{[(Y —py) = b1 (X — py)*}
=EH{[BX-Y)(X — py) +U(Y=X) —bi(X — py)’}
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= E{[(BX-Y) = b1)(X — py) +U(Y-X)]*}
2
= (B(X~Y) = b)"E[(X — px)*| + E[U(Y=X)’]
2
— (B(X=Y) = b)V(X) + E[U(Y-X)?]
>E[UY=X)?]>0 (7.17)
with
E[(Y —bX)*] > E[U(Y=X)?] if V(X)>0and b # B(X-Y). (7.18)
In other words, the value b; = B(X-Y) minimizes S(b;); if V(X) > 0, this minimum is unique. O
7.2. Regression coefficients as solutions of moment equations
The problem considered in Theorem 7.3 can also be interpreted as the solution of moment equations:
E{1(Y —a—bX)} =0, (7.19)
E{X(Y—a—bX)}=0, (7.20)
or, in matrix form,
[E{[;}(Y—a—bX)}:O. (7.21)
When V(X) > 0, the solution to this problem is:
C(X,Y)
b= =Uuy,—b 7.22
V(X) 9 a ILLY I’LX 9 ( )
and it is unique. When V(X) = 0, every value of b can be a solution with a = ty, — by .
7.3. Decompositions
Y — uy is decomposed as the sum of orthogonal components:
Y~y = B(X-Y)(X — pty) + U (Y-X) (7.23)
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where

CIBX-Y)(X —ux), UY=X)] = C[BX-Y)X,U(Y-X)]
= B(X-Y)CIX,U(Y-X)] =0 (7.24)

so that B(X-Y)X is called the component part of ¥ “predicted” (or “explained”) by X, while U (Y~X) is called the component part of Y “not predicted” (or “unexplained”)
by X. The interpretation may depend on the context. We also have:

Clx,Y] = CX,BX-Y)(X —puy)+U¥Y-X)]
= BEX-Y)V(X), (7.25)

Clu(y=X),Y] = C[U(Y=X),U(Y=X)] = V[U(Y=X)], (7.26)

B(X=Y)C[X, Y]+ ClU(Y-X), Y]
= BX-Y)’V(X)+V[U(r-X)]

V(X)+V[U(Y-X)]

2
_ oy g{()xnv(yuw(m)]

= p(X,Y)V(Y)+V[U(Y=X)], (7.27)

YY) oo
W_B(X Y) 4+

If V(Y) > 0, we define the fraction of V(Y) predicted (or explained) by Y:

VIU(r=X)]

VD) > B(X-Y)>. (7.28)

VIB(X-Y)X]

R(Y-X) := V)

(7.29)
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R*(Y=X) is called the coefficient of determination of Y on X (or from X to Y). We have:

7.4. Population ¢t and F coefficients

If VIU(Y=X)] > 0, then V(Y) > 0 and the above identities can also be formulated in terms of F-type and ¢-type variables:

where

VIB(X-Y)X]

R (Y-X) = VT

:p(X’Y)zv

pox, vy 1,

p(X, Y)Z —1— V[Uv((YYI_)X)] ,

VU (Y-X)]
V(Y)

p(X,Y)?>=1<V[U((Y=X)] =0.

:l_p(XaY)za

V(Y) ~ VU (Y-X)]

TN =g rex)

_ VIBX-Y)X] _ B(X-Y)*V(X)
VIU(Y=x)]  VU(r-Xx)]

_[BEx-no0 )
- o) e

. BXY)oX)  o(X) .

tH(X-Y) = U (YX) —G[U(Y_X)]B(X Y)
BCx-v)

T VUEX)VX) T

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)

(7.35)

(7.36)

While B(X-Y) is a population linear regression coefficient, V[U (Y=X)]V(X)~! can be interpreted as the population analogue of the corresponding “standard error”.
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If p(X,Y)? # 1, we can also write:

V(Y)

1

F(X-Y) =

pX,Y)?
1—p(X,7)?
R*(Y=X)

pX.,Y)=

B(X-Y)=p (X.Y)

1—R2(Y:X)’

o(Y)

VUY=X)]  1-pX,Y)?

1

oX) |1

—_

+1t

Since p(Y, X) = p(X, Y), this entails that % (X-Y) and t(X-Y) enjoy a symmetry property:

However, symmetry does not hold for (Y-X):

F(Y-X)=F

(X-Y), t(Y=X)=1(X-Y).

B(Y-X) = p(r.x)
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except when 6(Y) =0c(X)orp(X,Y)=0.If p (Y, X) # 0, B(Y-X) and B(X-Y) have the same sign, with

Y-X) o(X)?
BUY) _o(X)* )
B(X-Y) o(Y)
B(Y-X)
>l o0X)>0(Y), (7.45)
ST () > o(y)
and the difference becomes larger as the ratio 6(X)/o(Y) increases. Instead, B (X-Y) satisfies the following weighted symmetry properties:
X-Y Y-X
BU-Y) _ B(r-X) 2.46)
o(Y)>  o(X)?
X Y Y X
= = = . 7.47
P sm) ~PGw o) 747
If each variable is divided by its standard error, the regression coefficient is the same irrespective of the variable selected as “dependent variable”. Further,
CX,Y)C(X,Y)
0<B(X-Y)B(Y-X) = X,Y)" <1. 7.48
<BETIBYX) = i = p (x 1) < (7.48)
7.5. Inequalities on linear regression coefficients
From (7.10), we get the following inequality: since |p (X, Y)| <1,
oY) oY)
—— L <BXY) < —= 7.49
oo B < 2 (1.49)
if 6(X) >0, and
o(X) o(X)
——— < BY-X)< —= 7.50
o) <P < 70 (1.50)
if 6(Y) > 0. Using (7.41), we also have: for 6(Y) > 0 and 6(X) > 0,
B(X-Y) < (to/[1 +t0]1/2) Gg% <0 ift(X-Y) <1t <0
(zo/[1+t0]1/2) </3( ~Y) <0 iftg <t(X-Y) <0 751

0<B(X-Y) < (zo/[1+z]1/2)$§ if0<t(X-Y) <ty
BX-Y) > (1o/[1+23]'2) 25} >0 if t(X=Y) > 19> 0.



8. Covariance and variance decompositions

We study here covariance and variance decompositions for sums of random variables. We assume that all the variables considered have finite second moments.
We consider in turn the following cases:

M:=)Y,=Yi+Vr+ +Y,, ®.1)
i=1
Y=M+U=)YY,+U, CM,U)=0, (8.2)
i=1
ML) =Y AiXi =21 X1+ AoXo+ -+ X, (8.3)
i=1
Y=MA)+U=Y AXi+U, CM(A),U)=0, (8.4)
i=1
8.1. Sum of random variables
8.1.1. Covariance decomposition
Consider the following sum of random variables:
M=) Y=Y+ + -+Y,. (8.5)
i=1
For any random variable Z, we have:
CzM) =C(2, 1) = Y .CZ. 1)), (8.6)
i=1 i=1
CZM) WCZY¥) ¢
Z-M) = = = Z-Y;), .
B(z-M) VZ) ; VZ) ,-;ﬁ( ) (8.7)
B(z-M)z=Y B(Zz-Y)Z, (8.8)

i=1
where we set f(Z-M) := 0 and B(Z-Y;) := 0 when V(Z) =0. C(Z,Y;) can be interpreted as the contribution of ¥; to the covariance C(Z, M), while B(Z-Y;) is the

corresponding contribution as a proportion of the variance V(Z). These contributions can be positive or negative. Each component only depends on one pair (Z, ¥;), not
onY; for j # .
J
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When Z and M are interchanged, we get:

where

Set

Then

and we can write:

Yi:

Biv-z) = S = i pzem)
v 2 YO g
= Lo v EPEY
. V@) sirang — Y2 .
B(M-2)z W(M)B(z M)Z ( );B(z Y,)Z
vy C(Z.Y) _
B(Z-Y;) VZ) i=1,...,n

U(M-Z) := M — B(Z-M)Z,
U(Y-Z):=Y,—B(Z-¥)Z, i=1,...,n.

Clz,uM-z)] = Clz,M]—C|z, B(Z-M)Z]
= Clz,M]-B(z-M)C[Z,Z]
_ Czm- C(\/Z(Z))C[ZZ] 0,
CZU2) = Cz.¥]-Clz.pz-1)7]
= czv)- ez 0, o,

V(Z)

M=B(Z-M)Z+UM-Z), C|Z,UM-Z)]=C|B(Z-M)Z,UM-Z)] =0,
B(z-Y)Z+U(Y-Z), ClZ,U(Yi-2)]=C[B(Z-Y,))Z,U(Y;-Z)] =0,

V(M) = V[B(Z-M)Z]+V[U(M=-Z)]
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= B(Z-M)*V(Z) +V[U(M=-Z)]

2 2
= W%—V[U(MLZ)} _ P& Mi/(vz()z V) +V[U(M-Z))
= p(Z, M)’V (M) +V[UM=Z)],
p(Z,M)2 —1— V[lil((]]‘él_)z)] ’ p(M, Z)2 —1_ V[U\/((ZZ‘;M)] ’
v[li/((%z)] A p(Z MV =1 p(M.2) = V[U\E(ZZL)M)] |
V(Y;) = V[B(Z-Y)Z]+V[U(Y-Z)]
= B(Z-Y,)*V(Z2)+V[U(¥;-Z)]
\2
= wcéf];ﬁ)zﬂ +V[U(Yi-2)]
= p(Z.Y)’V(X) +V[U(Y-Z)],
v[liv((lgz)] 1 p(Z Y = 1= p(¥, 2) = V[li/((ZZL)Yi)]

C(Z, M) =C[Z, B(Z-M)Z+U(2-M)] = C[Z, B(Z-M)Z],
C(z,Y) = ClZ, B(Z-Y)Z+U(2-Y)] = C[Z, B(Z-Y))Z].
B(Z-M)Z is the part of Z which contributes to C(Z, M), while 8(Z-Y;)Z is the part of Z which contributes to C(Z, Y;).
The above identities can also be formulated in terms of F-type and 7-type variables. Suppose that V[U(Z-M)] > 0 and V(¥;) > 0,i=1
_ V(M) - V[UM-Z)]
- VU(M-2Z)]
V[B(z-M)Z] _ B(z-M)*V(Z)

F(Z-M)

ViuM=2)]  V[UM-Z)]

pz-mo(2)]’
- Stz |~
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, ... ,n. We can write:

(8.18)

(8.19)

(8.20)

8.21)

(8.22)

(8.23)

(8.24)
(8.25)

(8.26)



where

F(Z-M)

t(Z-M)

B(z-M)o(Z) o(2)

B - B(z-M)

olUM=Z)]  o[UM-Z)]
p(z-M)
{(VuM-2)]v(2)~ "}/
p(Z M)
(1= p(z, M)I2

(8.27)

(8.28)

F (Z-M) can be interpreted as the theoretical F-ratio associated with the regression of M on Z, while #(Z-M) can be interpreted the corresponding theoretical 7-ratio.

Further,

Similarly,

t(Z-M)

F(M,Z)

F(Z-M) =

o(z) CM,2Z)
olU(Zz-M)] V(Z)
o(z) pM,Z)o(M)o(Z)

V(Z) - V[U(Z-M))]
VU (Z-M)]
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(8.29)

(8.30)



(8.31)

=1(M,2)*,

)r

B(M-Z)o(M
o[U(z-M)]

|

(M
olU(Z-M

)]ﬁ(MJZ)

t(M,Z)

)
(q\]
o
%

o
=
|

QIS

1| 2>
=5

Q|

N
D,
=

——

N
Liﬂ
Sk
>

=
(=
S
=>

I

F(Z,Y)

B(Z-Y,)*V(2)

V[B(Z-Y)Z]

V[U(Y-Z)]

VU (Yi-2)]

(8.33)

(8.34)

{(VUY=2)|V(Z)-1}1/2°

=
3=
S5
Sl

=
mv
=

I

F (Y, Z)

(8.35)

Z(Yi7 2)27

)} >
o|U(Z-Y;)]

B, Z)o(Yi

|

] B(Y:,Z)

o(Yi)
o[U(Z-Y;
B(Y;, Z)
{V[U(Z=Y)|V(Y;)~1}1/2°

1Y, Z)

(8.36)
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We thus have the following decompositions:

hence

pM-z) =

2
=
N

r
=

Q
S

[
<<
SN
-
=
N
L
5

I
<<
SN

-

Q

<

=

<

N

Il
—_

I
a
N

D=
Q.
S
=

s

N
N

=
=
T

i=1

(8.37)

(8.38)

(8.39)



Note also that:

8.1.2. Covariance-variance decomposition

Consider now the case where

and set

‘We then have:

C(M- "

=) B(

i=1

( Y) V(¥)
V(Yi) V(M)

B(M-Y;) :=

(M-Y;)

=B, M)

V(Y;)
V(M)

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

C(M,Y;) can be interpreted as the contribution of ¥; to the variance V(M), while (M-Y;) is the corresponding contribution as a proportion of V(M). These contributions

can be positive or negative. Then

B(Z-M) = B(M-M) =1,

U(Z-M) = U(M+-M) = M — B(M=M)M =

0,

(8.47)
(8.48)



UYM)=Y,—B(M-Y)M, i=1,...,n,
C[M, U(M-M)] =0,
CM,U(Y=M)] =0, i=1,...,n,

and we can write:
M = B(Z-M)M = B(M-M)M ,

C(z, M) = C(M, M) = V(M),

Y, =B(M-Y))Z+U(Y;-M), C[M,U(Y;-M)]=0, i=1,...
C(M,Y;) =C[M, BM-Y,)Z+U(Y-M)| = C[M, B(M-Y;)Z].

B(M-Y;)M is the part of M which contributes to C(M, Y;). This yields the decomposition:

V() = V[B(M-Y,)Z]+V[U(¥-M)]
= B(M-Y)’V(2)+V[U(Yi-M)]
C(M,Y;)?
= on TVwm)

= p(M,Y;)*V(Y;) +V[U(Y~M)]

where
_ CM,Y))
p(M.Y;) = Mo
B(M-) = p(at. 1) 210
hence Y
pin. 1 ML)

It is interesting to see what happens to (M-Y;) when V(Y;) is large or small (1 <i <n). By the Cauchy-Schwarz inequality,

C(M,Y;)* <V(M)V(Y,),
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(8.49)
(8.50)
(8.51)

(8.52)
(8.53)
(8.54)
(8.55)

(8.56)

(8.57)

(8.58)

(8.59)

(8.60)

8.61)



and

0<B(M-Y) <24 ifC(M,Y)>0

(e

Note we can have o (¥;) > (M), so B(M-Y;) can be arbitrarily small (or large). Since |p(M, ¥;)| < 1, we have the inequality:

VM) = Y.C1¥)= Y p(, Yo (M)o(¥)

IN
Q
=
2
Q
=

hence

For any i, we have:

= C[YivM_Yi]"i_C[M_YiaM_Yi]:C[YivM_Yi]"i_v(M_Yi%
hence
C(M =Y, %) =0 < C(M,¥) = V(¥)) & C(M, M—Y)) = V(M —¥,).
If

for some i, we have:
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(8.62)

(8.63)

(8.64)

(8.65)

(8.66)

(8.67)

(8.68)

(8.69)

(8.70)
(8.71)
(8.72)

(8.73)



If Yy, ..., Y, are uncorrelated, i.e.

then, for i, ..., n,

Further, if V(Z) > 0 and V[U (Y;~-M)] > 0, fori =1,

8.1.3. Covariance-variance subdecompositions

In (8.5), suppose that

Then

B(M-Y,)+B(M-M—Y)=1.

C(Y;,Y;) =0fori# j,

Y BMr) =1,
i=1
.,n, we have:
ﬁ(MAK)—G[U({E)M)] (M.,Y), fori=1,

(8.74)

(8.75)

(8.76)
(8.77)

(8.78)

(8.79)

(8.80)

(8.81)

(8.82)

(8.83)

(8.84)

(8.85)

(8.86)



where

F = iF,-, V.= zn:V,-, (8.87)

and the covariance and linear regression coefficients are correspondingly decomposed:

C(z,v,)=C(Z,F+V)=vC(Z,F)+C(Z, Vi), i=1,...,n, (8.88)
B(z-Y) = B(Z-F)+(Z,Vi), i=1,....n, (8.89)
Cz.M) = Y.C(Z.F) + Y.CZ. V). (5.90
i=1 i=1
C(z,M) " C(Z,Y) "
Z-M) = = = Z-Yy), 8.91
B(Z-M) V(Z) l; V(Z) i;ﬁ( ) (8.91)
B(Z-M)Z = iB(ZAF Z+ Z B(Z-V;)Z. (8.92)
i=1 i=1
If Z= M and V(M) > 0, we get variance subdecompositions:
V(M) = C(M,F+V)
= C(M,F)+C(M,V), (8.93)
CM. F) = ¥ C(M. Fy), (394
i=1
CM,V) = Y. C(M, Vi), (8.95)
i=1
B(M-F)+B(M-V)=1, (8.96)
CM,F) &
M-F) = B(M-F) 8.97
BM-F) = =00 ; (8.97)
CM, V) &
M-=V) = = 8.98
B(M-F)+B(M-V)=1. (8.99)
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C(M, F;) is the contribution of F; to the variance V(M), and C(M, V;) is the contribution of V; to V(M)

8.2. Linear combination of random variables
Consider the weighted average

M:=) AiXi=MXi+A:X0+ + A X,

n
i=1
where A1, ..., A, are real constants. This is equivalent to considering (8.5) with

Yi=AX;, i=1,...,n,
so that the results of Sections 8.1.1 and 8.1.2 apply. In particular, fori =1, ... ,n,

C(Z, ) =1 C(Z,X;), CM,Y)=21CM,X), V)=A7V(X,),

B(z-Y) = kﬁ;(é)x) — (2K,
o MCM X)) ACMX) V) o V(X))

For any random variable Z, we have:

When Z and M are interchanged, we see that:

W XD V@)W,
POE2I= LAy = van KM
where
[s(zAx,.)zcg/Z(’Z’)(’) (X, M)o(X)o(M), i=1,....n

Note also that .
B(z-M)Z =Y B(z-Y,)Z=Y A, C(M,X))Z,,

i=1 i=1
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(8.100)

(8.101)

(8.102)

(8.103)

(8.104)

(8.105)

(8.106)

(8.107)

(8.108)

(8.109)



with

with

If

we see that:

n

M =B(Z-M)Z+UM+-Z) =Y A,C(M,X;)Z+UM-Z),

i=1

C[z,U(M=Z)] = C[B(Z-M)Z,U(M-Z)] =0,

Clz,U(Xi-2)] = C[B(2-Xi)Z, U(Xi-Z)] = 0,

Xi=B(Z-X)Z+U(Xi-Z),

C(z, X)) =ClZ,B(Z-Y,)Z+U(z-X,)] = C[zZ, B(Z-X))Z],

V(M)

V[B(Z-M)Z] + V]U (M~-Z)]
Z{ iB(Xi, Z)V(Z) +V[U(M-Z)]

-

Il
_

AiC(Xi, Z) + VU (M-Z))]

(agE
>

iC(Xi, Z)+CM,U(M-Z)]

<~

,Z)+CM,U(M-Z)].

I
gl
&
=
<
L
23
=<
=
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i=1,...,n,

(8.110)

(8.111)
(8.112)

(8.113)
(8.114)

(8.115)

(8.116)

(8.117)

(8.118)



where A;f(X;~M) may be negative.
Further,

and, using the Cauchy-Schwarz inequality,

IA IA
5 I
M= =
o &
TR
Q e
N
1=
M =
(W]
>Ii) [E

IfA;=1,fori=1,...,n, we have:

and, if V(M) > 0,
B(M-M) Zﬁ Xi~M) =1.

(8.124) can be interpreted as a decomposition of the variance of M in terms of its components M, and (8.125) as a regression decomposition.
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(8.119)

(8.120)

(8.121)

(8.122)

(8.123)

(8.124)

(8.125)



IfA;,=1/n,i=1,...,n, we have:

iéB(XﬁM) —1 ifV(M) >0, (8.126)
d
) o) <[y o] (8.127)
i=1

Further, ) ) )

oo < [£ ][ o
hence

[ixfc(x,-)z} "< [Zlﬂ v [iG(Xi)ﬂ - (8.129)

n n
If ¥ A; =1, the maximum value of ¥ A is achieved by taking A; = 1/n,i=1, ..., n. Thus
=1 =1

1= 1=

Zz;‘g%, i=1,...,n, (8.130)
i=1 n
i 1/2 1 n 1/4
2 \2 < \4 .
[;1%6 X;) ] < [i_Zlc(Xz) } : (8.131)
o(M) < W{;G(X") } = [n;G(Xi> } ; (8.132)
1 1/2
V(M) < [720( ; 4] (8.133)
i3
8.3. Linear combination of random variables with disturbance
Suppose
Y=X|+Xo+ - +X,+U=M+U (8.134)
where )
M=) X (8.135)



andY, X1, ..., X,, U are random variables with finite second moments. Then, if Z is a also a random variable with finite second moment, we have:

-

C(z,y)= Y C(z,X)+C(Z,U), (8.136)

—_

Nt

B(Z-Y) =) B(Z-Xi)+B(Z-U). (8.137)

1

The above equation provides a decomposition of the covariance C(Y, Z) and B(Y-Z). For Z =Y, we get:

n

=Y C(v, X))+ C(Y,U) (8.138)
i=1

which provides a decomposition of the variance V(Y), and

Zn:B(YAXiHﬁ(YJU):l- (8.139)
i=1

B(Y-X;) is then the proportional contribution of X; to the variance of Y. If C(U, M) = 0, we have:

V(Y)=Y C(X,Y)+V(U), (8.140)
i=1
- v(v)
LX) =1 — , 141
LAW=X)=1-5q3 (8.141)
If furthermore U = 0, we have:
V()= C(X;Y), (8.142)
i=1
Y B(y-x;)=1. (8.143)
i=1
8.4. Factor decompositions
In (8.5), suppose that
Yi =y Fi+Vi, (8.144)
C(F, Vi) =0, (8.145)
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forsome i€ {1, ..., n}., where

For any random variable Z, we have:
C(z, ) =CZ viFi+Vi) = vC(Z, F)+C(Z, V),

B(Z-Y)) = viB(Z-F))+ B(Z-Vi).

In particular, for Z = M,

B(M-Y;) = v, (M-F;) + B(M-V;).
If furthermore
C(M_YHE) :C(M_YHVI) =0,
we have:
CM,Y)) = Cli+M-Y,),yF]+ClY;+(M-Y;), V]
= YCly,F+Vi, B+ Cly,F+Vi, Vi
= PV(F)+V(V) >0,

BM-Y;) = B(M-F)+B(M-V))

_ 2 VE) | YY)
= Yvon Fvon =2

<
=
Il
-
o)
=
~

—_

9)
[VFV(F) +V(V;)]

I
D=

[
_

Y*V(F,) represents the contribution of F; to V(M), that goes through ¥;.

Suppose
Yz:Y,F‘i‘Vn izl,...,l’l,
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(8.146)
(8.147)

(8.148)
(8.149)

(8.150)

(8.151)

(8.152)

(8.153)

(8.154)



where 7y, ..., 7, are real constants and

Then

where

For any random variable Z, we have:

Equation (8.159) shows that C(Z, ¥;) has two components: one associated with the common factor F, and another one associated with the idiosyncratic factor V;.

9. Sources and additional references

C(F,V,)=0, i=1,...,n,
C(Vi,Vj) =0, fori#j.

n n
Y Y=7F+VYV
i=1 i=1

Vi.

=

yi’ V =
1 i

=
1

1

C(Z, %) =CZ vk +Vi) =vC(Z F)+CZ, V), i=1,...

Cz,M) = c(z, y Y,-) C(Z,Y)

n
=1 i—1

pizwy — Sl = 3 ST - Y )

7n7

(8.155)
(8.156)

(8.157)

(8.158)

(8.159)

(8.160)

(8.161)

Good overviews of various notions associated with covariances, correlations and regression may be found in Hannan (1970, Chapter 1), Theil (1971, Chapter 4), Kendall

and Stuart (1979, Chapters 26-28), Rao (1973, Section 4g), Drouet Mari and Kotz (2001), and Anderson (2003, Chapter 1). See also Lehmann (1966).
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