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1. Random variables

In general, economic theory specifies exact relations between economic variables. Even a superficial

examination of economic data indicates it is not (almost never) possible to find such relationships

in actual data. Instead, we have relations of the form:

Ct = α +βYt + ε t

where ε t can be interpreted as a “random variable”.

Definition 1.1 A random variable (r.v.) X is a variable whose behavior can be described by a

“probability law”. If X takes its values in the real numbers, the probability law of X can be de-

scribed by a “distribution function”:

FX(x) = P [X ≤ x]

If X is continuous, there is a “density function” fX (x) such that

FX (x) =
∫ x

−∞
fX(x) dx .

The mean and variance of X are given by:

µX = E(X) =
∫ +∞

−∞
x dFX (x) (general case)

=
∫ +∞

−∞
x fX (x) dx (continuous case)

V(X) = σ2
X = E

[

(X −µX)2
]

=
∫ +∞

−∞
(x−µX)2

dFX (x) (general case)

=
∫ +∞

−∞
(x−µX)2

FX (x)dx (continuous case)

= E
(

X2
)

− [E(X)]2

It is easy to characterize relations between two non-random variables x and y :

g(x, y) = 0

or (in certain cases)

y = f (x) .

How does one characterize the links or relations between random variables? The behavior of a pair

(X , Y )′ is described by a joint distribution function:

F(x,y) = P [X ≤ x, Y ≤ y]
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=
∫ y

−∞

∫ x

−∞
f (x, y)dxdy (continuous case.)

We call f (x, y) the joint density function of (X , Y )′. More generally, if we consider

k r.v.′s X1, X2, . . . , Xk, their behavior can be described through a k-dimensional distribution func-

tion:

F (x1,x2, . . . , xk) = P [X1 ≤ x1,X2 ≤ x2, . . . , Xk ≤ xk]

=
∫ xk

−∞
· · ·

∫ x2

−∞

∫ x1

−∞
f (x1,x2, . . . , xk) dx1dx2 · · ·dxk (continuous case)

where f (x1,x2, . . . , xk) is the joint density function of X1,X2, . . . , Xk.

2. Covariances and correlations

When a real random variable X has finite second moment, the variance of X is defined as

V(X) := E[(X −µX)2] (2.1)

where

µX := E(X) (2.2)

is the mean of X . Other notations are also used for the variance of X :

σ2
X := σ2(X) := σ(X)2 := V(X) := E[(X −µX)2] . (2.3)

Depending on the context, any one of these notations may be the most convenient, and we consider

below that they mean the same thing. The nonnegative square root of X is called the standard

deviation of X :

σX := σ(X) := [V(X)]1/2. (2.4)

We also denote the uncentered second moment of X by

σ̄X := σ̄2(X) := E(X2) . (2.5)

Consider two real random variables X and Y with finite second moments. We often wish to have

a simple measure of association between X and Y . The notions of “covariance” and “correlation”

provide such measures. Let X and Y be two r.v.’s with means and finite second moments:

σ̄2
X := E(X2) < ∞ , σ̄2

Y := E(Y 2) < ∞ . (2.6)

Then, X and Y have finite variances, and we can write:

V(X) := E[(X −µX)2] = E(X2)−µ2
X = σ̄2

X −µ2
X = σ2

X , (2.7)

V(Y ) := E[(Y −µY )2] = E(Y 2)−µ2
Y = σ̄2

Y −µ2
Y = σ2

Y , (2.8)
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σ̄(X) := σ̄X = [E(X2)]1/2 , σ̄(Y ) := σ̄Y = [E(Y 2)]1/2 , (2.9)

where σ̄(X) ≥ 0, σ̄(Y ) ≥ 0, σ(X) ≥ 0 and σ(Y ) ≥ 0.

Below a.s. means “almost surely” (with probability 1). In particular, we have:

E(X2) = 0 ⇔ [X = 0 a.s.] ⇔ P[X = 0] = 1 , (2.10)

V(X) = 0 ⇔ [X = E(X) a.s.] ⇔ P[X = E(X)] = 1 . (2.11)

Definition 2.1 COVARIANCE. The covariance between X and Y is defined by

C(X , Y ) := σXY := E [(X −µX)(Y −µY )] . (2.12)

When C(X , Y ) = 0, we say that X and Y are orthogonal.

Definition 2.2 CORRELATION. The correlation between X and Y is defined by

ρ (X , Y ) := ρXY :=
C(X , Y )

σ(X)σ(Y )
(2.13)

where we set ρ (X , Y ) := 0 when σ(X)σ(Y ) = 0.

When X or Y is degenerate, we have C(X , Y ) = σ(X)σ(Y ) = 0. The convention ρ (X , Y ) :=
0 when σ(X)σ(Y ) = 0 is motivated by the fact that C(X , Y ) = 0 in this case.

Theorem 2.1 BASIC PROPERTIES OF COVARIANCES AND CORRELATIONS. Let (X ,Y ) be a pair

of real random variables with finite second moments. The covariance and correlation between X

and Y satisfy the following properties:

(a) C(X , Y ) =E(XY )−E(X)E(Y ) ;

(b) C(a1 +b1X , a2 +b2Y ) = b1b2C(X , Y ) for any constants a1, a2, b1, b2 ;

(c) ρ (a1 +b1X , a2 +b2Y ) = ρ (X , Y ) for any constants a1, a2, b1, b2 such that b1b2 6= 0;

(d) C(X , Y ) = C(Y, X) and ρ (X , Y ) = ρ (Y, X) ;

(e) C(X ,X) = V(X) ;

(f) ρ (X ,X) = 1 if V(X) > 0;

(g) C(X , Y )2 ≤ V(X)V(Y ) ; (Cauchy-Schwarz inequality)

(h) −1 ≤ ρ (X , Y ) ≤ 1 ;

(i) X and Y are independent ⇒ C(X , Y ) = 0 ⇒ ρ (X , Y ) = 0 ;
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(j) if σ(X)σ(Y ) 6= 0 and b∗ := C(X , Y )/V(X), then

[ρ (X , Y )2 = 1] ⇔
[

∃ two constants a and b such that b 6= 0 and Y = a+bX a.s.
]

⇔
[

Y = a+bX a.s. with b = b∗ and a = E(Y )−bE(X)
]

, (2.14)

[ρ (X , Y ) = 1] ⇔
[

Y = a+bX a.s. with b = b∗ > 0 and a = E(Y )−bE(X)
]

, (2.15)

[ρ (X , Y ) = −1] ⇔
[

Y = a+bX a.s. with b = b∗ < 0 and a = E(Y )−bE(X)
]

. (2.16)

PROOF Set σXY := C(X , Y ). (a)

C(X , Y ) = E [(X −µX)(Y −µY )]

= E [XY −µXY −XµY + µX µY ]

= E(XY )−µXE(Y )−E(X)µY + µX µY

= E(XY )−µX µY −µX µY + µX µy

= E(XY )−E(X)E(Y ) . (2.17)

(b), (c), (d), (e) and (f) are immediate.

(g) To get (g), we observe that

E

{

[Y −µY −λ (X −µX)]2
}

= E

{

[(Y −µY )−λ (X −µX)]2
}

= E

{

(Y −µY )2 −2λ (X −µX)(Y −µY )+λ 2 (X −µX)2
}

= σ2
Y −2λσXY +λ 2σ2

X ≥ 0 (2.18)

for any arbitrary constant λ . In other words, the second-order polynomial

g(λ ) = σ2
Y −2λσXY +λ 2σ2

X (2.19)

cannot take negative values. This can happen only if the equation

λ 2σ2
X −2λσXY +σ2

Y = 0 (2.20)

does not have two distinct real roots, i.e. the roots are either complex or identical. The roots of

equation (2.20) are:

λ =
2σXY ±

√

4σ2
XY −4σ2

X σ2
Y

2σ2
X

=
σXY ±

√

σ2
XY −σ2

X σ2
Y

σ2
X

. (2.21)

Distinct real roots are excluded when σ2
XY −σ2

X σ2
Y ≤ 0, hence

σ2
XY ≤ σ2

X σ2
Y . (2.22)
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(h)

σ2
XY ≤ σ2

X σ2
Y ⇒ −σX σY ≤ σXY ≤ σX σY

⇒ −1 ≤ ρXY ≤ 1 . (2.23)

(i) If X and Y are independent, we have:

σXY = E{(X −µX)(Y −µY )} = E(X −µX)E(Y −µY ) (2.24)

= [E(X)−µX ] [E(Y )−µY ] = 0 ,

ρXY = σXY

/

σX σY = 0 . (2.25)

Note the reverse implication does not hold in general, i.e.,

ρXY = 0 6=> X and Y are independent . (2.26)

(j) (a) Necessity of the condition. If Y = aX +b, then

E(Y ) = aE(X)+b = aµX +b , σ2
Y = a2σ2

X , (2.27)

and

σXY = E [(Y −µY )(X −µX)] = E [a(X −µX)(X −µX)] = aσ2
X . (2.28)

Consequently,

ρ2
XY =

a2σ4
X

a2σ2
X σ2

X

= 1 . (2.29)

(b) Sufficiency of the condition. If ρ2
XY = 1, then

σ2
XY −σ2

X σ2
Y = 0. (2.30)

In this case, the equation

E
{

[(Y −µY )−λ (X −µX)]2
}

= σ2
Y −2λσXY +λ 2σ2

X = 0 (2.31)

has one and only one root

λ =
2σXY

2σ2
X

= σXY /σ2
X , (2.32)

so that

E{[
(

Y σ2
Y −µY

)

− (σXY /σ2
X)(X −µX)]2} = 0 (2.33)

and

P
[

(Y −µY )− (σXY /σ2
X)(X −µX) = 0

]

= P
[

Y =
(

µY − (σXY /σ2
X)µX

)

+(σXY /σ2
X)X

]

= 1

(2.34)

5



We can thus write:

Y = a+bX with probability 1 (2.35)

where b = σXY /σ2
X and a = µY − (σXY /σ2

X)µX . This establishes (2.14). (2.15) follows on observ-

ing that, for b = σXY /σ2
X and a = µY − (σXY /σ2

X)µX ,

[ρ (X , Y ) = 1] ⇔
{

ρ (X , Y )2 = 1 and ρ (X , Y ) =
σXY

σX σY

> 0
}

⇔
{

P[Y = a+bX ]
]

= 1 and ρ (X , Y ) =
σXY

σX σY

> 0
}

⇔
{

P[Y = a+bX ] = 1 and ρ (X , Y ) =
bσ2

X

σX σY

> 0
}

⇔
{

P[Y = a+bX ] = 1 and b > 0
}

. (2.36)

The proof for (2.16) is similar.

A basic problem in this context consists in considering the case where

Y = a+bX a.s. (2.37)

and find whether a and b can be determined (or “identified”) from the first and second moments of

X and Y . The following theorem shows that a and b are uniquely determined if only if V(X) > 0.

Theorem 2.2 IDENTIFICATION OF LINEAR TRANSFORMATION OF A RANDOM VARIABLE. Sup-

pose X and Y satisfy the linear equation (2.37). If V(X) > 0, then

{P[Y = a1 +b1X ] = 1} ⇒ [a1 = a and b1 = b] . (2.38)

If V(X) = 0, then, for all b1 ∈ R,

P[Y = a∗ +b1X ] = 1 (2.39)

where a∗ = E(Y )−b1E(X) .

PROOF By (2.37), we have

E(Y ) = a+bE(X) . (2.40)

Suppose P[Y = a1 +b1X ] = 1 holds. Then

Y = a1 +b1X = a+bX a.s. (2.41)

hence

(a1 −a)+(b1 −b)X = 0 a.s. (2.42)

V[(a1 −a)+(b1 −b)X ] = V[(b1 −b)X ] = (b1 −b)2
V(X) = 0 . (2.43)
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If V(X) > 0, this entails b1 = b, which in turn implies

Y = a1 +b1X = a1 +bX = a+bX (2.44)

hence a1 = a. If V(X) = 0, then

X −E(X) = 0 a.s., (2.45)

hence, for any b1 ∈ R,

b[X −E(X)] = b1[X −E(X)] = 0 a.s., (2.46)

and

Y = a+bX

= a+bE(X)+b[X −E(X)]

= E(Y )+b1[X −E(X)]

= [E(Y )−b1E(X)]+b1X

= a∗ +b1X a.s. (2.47)

where a∗ := [E(Y )−b1E(X)] .

If V(X) > 0, there is only one pair (a, b) which satisfies (2.37). If V(X) = 0, Y has several rep-

resentations of the form a+bX : the values a and b are not “identified”. But they are not completely

undetermined. Once b is specified, a is determined by the equation

a = E(Y )−bE(X) . (2.48)

Indeed, if (2.41) holds, we must have

(b1 −b)E(X) = a−a1 . (2.49)

Corollary 2.3 Under the assumptions of Theorem 2.1,

[ρ (X , Y )2 = 1] ⇔
[

∃ two unique constants a and b such that b 6= 0 and Y = a+bX a.s.
]

.

3. Regression coefficients between two variables

Definition 3.1 LINEAR REGRESSION COEFFICIENT. The linear regression coefficient of Y on X

is defined by

β (X⇀Y ) :=
C(X , Y )

V(X)
(3.1)

where we set β (X⇀Y ) := 0 when V(X) = 0. By convention,

β (Y ↼X) = β (X⇀Y ) . (3.2)
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The “harpoon” symbols ⇀ and ↼ represent a statistical “dependence” or “predictability” relation;

for example, X⇀Y and Y ↼X represent dependence of Y on X . The relation X⇀Y is typically asym-

metric: Y ↼X represents a different relation. It does not necessarily correspond to a “causal” relation.

From the above definitions, we can write:

C(X , Y ) = ρ (X , Y ) σ(X)σ(Y ) (3.3)

which holds in all cases [including when σ(X) = 0 or σ(Y ) = 0]. When σ(X) > 0, we also have:

β (X⇀Y ) =
ρ (X , Y ) σ(X)σ(Y )

σ(X)2
= ρ (X , Y )

σ(Y )

σ(X)
. (3.4)

When σ(X) > 0, we have [by (3.4) and Theorem 2.1(h)]:

−
σ(Y )

σ(X)
≤ β (X⇀Y ) = ρ (X , Y )

σ(Y )

σ(X)
≤

σ(Y )

σ(X)
(3.5)

or, equivalently

|β (X⇀Y )| ≤
σ(Y )

σ(X)
(3.6)

so that the regression coefficient can be bounded by the variance ratio σ(Y )/σ(X). More generally,

if σ(X) > 0 and

ρL ≤ ρ (X , Y ) ≤ ρU , (3.7)

we have

ρL

σ(Y )

σ(X)
≤ β (X⇀Y ) ≤ ρU

σ(Y )

σ(X)
. (3.8)

It is also interesting to note that the Cauchy-Schwarz inequality can be rewritten as:

V(X)V(Y ) ≥ C(X , Y )2
(3.9)

or

σ(X)σ(Y ) ≥ |C(X , Y ) | . (3.10)

If C(X , Y ) 6= 0 and σ(X) is “small”, σ(Y ) must be “large”:

σ(Y ) ≥
|C(X , Y ) |

σ(X)
. (3.11)

Given a non-zero covariance C(X , Y ), a low “uncertainty” on X [i.e., a small value of σ(X)] entails

high uncertainty on Y [i.e., a large value of σ(Y )]. Similarly,

σ(Y )

σ(X)
≥ |β (X⇀Y )| (3.12)

so that a high absolute value of the regression coefficient β (X⇀Y ) entails a high ratio σ(Y )/σ(X).
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Setting

ε(X⇀Y ) := Y −β (X⇀Y )X , (3.13)

the above inequality can be further improved by noting that

V(Y ) = β (X⇀Y )2
V(X)+V[ε(X⇀Y )] (3.14)

hence
V(Y )

V(X)
= β (X⇀Y )2 +

V[ε(X⇀Y )]

V(X)
≥ β (X⇀Y )2 (3.15)

and
V(Y )

V(X)
≥

V[ε(X⇀Y )]

V(X)
. (3.16)

Given V[ε(X⇀Y )] > 0, σ(Y )/σ(X) increases when σ(X) decreases. The larger V[ε(X⇀Y )], the

larger the increase of σ(Y )/σ(X) as σ(X) decreases.

Suppose that

Y = β 0 +β 1X + ε , E(ε) = 0 , E(Xε) = 0 , (3.17)

where β 0 and β 1 are fixed real constants, and Y , X and ε have finite second moments. Then

C(X , Y ) = β 1V(X) (3.18)

and

V(Y ) = β 2
1V(X)+V(ε) (3.19)

hence
V(Y )

V(X)
= β 2

1 +
V(ε)

V(X)
, (3.20)

and

β 2
1 =

V(Y )

V(X)
−

V(ε)

V(X)
=

V(Y )−V(ε)

V(X)
(3.21)

Given β 1 and V(ε), the ratio σ(Y )/σ(X) increases when σ(X) decreases. Further, if

L ≤ V(ε) ≤U , (3.22)

we have
V(Y )−U

V(X)
≤ β 2

1 ≤
V(Y )−L

V(X)
. (3.23)

When lower and upper bounds are available on V(ε), we can bound
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4. Uncentered covariances, correlations and regression coefficients

Definition 4.1 UNCENTERED COVARIANCE. The uncentered covariance between X and Y is

defined by

C̄(X , Y ) := σ̄XY := E [XY ] . (4.1)

When C̄(X , Y ) = 0, we say that X and Y are orthogonal with respect to zero.

Definition 4.2 UNCENTERED CORRELATION. The uncentered correlation between X and Y is

defined by

ρ̄ (X , Y ) := ρ̄XY :=
C̄(X , Y )

σ̄(X)σ̄(Y )
(4.2)

where we set ρ (X , Y ) := 0 when σ̄(X)σ̄(Y ) = 0.

Definition 4.3 UNCENTERED LINEAR REGRESSION COEFFICIENT. The uncentered linear re-

gression coefficient of Y on X is defined by

β̄ (X⇀Y ) :=
C̄(X , Y )

σ̄(X)
(4.3)

where we set β̄ (X⇀Y ) := 0 when σ̄(X) = 0.

5. Difference and sum of two correlated random variables

Highly correlated real random variables tend to be “close”. This feature can be explicated in differ-

ent ways:

1. by looking at the distribution of the difference Y −X ;

2. by looking at the difference of two variances (polarization identity);

3. through a “decoupling” representation of covariances and correlations;

4. Hoeffding identity;

5. by looking at the linear regression of Y on X ;

5.1. Uncentered second moments

Let us look the difference and the sum of two real random variables X and Y :

E[(Y −X)2] = E(X2 +Y 2 −2XY ) = E(X2)+E(Y 2)−2E(XY ) . (5.1)

E[(Y +X)2] = E(X2 +Y 2 +2XY ) = E(X2)+E(Y 2)+2E(XY ) . (5.2)
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From these, we see that:

E(XY ) =
1

2
{[E(X2)+E(Y 2)]−E[(Y −X)2]} , (5.3)

E(XY ) =
1

2
{E[(Y +X)2]− [E(X2)+E(Y 2)] . (5.4)

The cross second moment E(XY ) can be interpreted in two ways in terms of (uncentered) second

moments:

1. E(XY ) is equal to half the difference between the sum of the second moments X and Y and

the second moment of Y −X ;

2. E(XY ) is equal to half the difference between the second moment of Y + X and the sum of

the second moments of X and Y .

5.2. Covariances

We now consider similar expressions for the covariance C(X , Y ) = E[(Y −µY )−(X −µX)] := σXY .

It is easy to see that

E[(Y −X)2] = E
{(

[(Y −µY )− (X −µX)]+(µY −µX)
)2}

= E{[(Y −µY )− (X −µX)]2}+(µY −µX)2

= [V(X)+V(Y )]−2C(X , Y )+(µY −µX)2

= [V(X)+V(Y )]−2ρ (X , Y )σ(X)σ(Y )+(µY −µX)2 . (5.5)

E[(Y −X)2] has three components:

1. a variance component V(X)+V(Y );

2. a covariance component −2C(X , Y );

3. a mean component (µY −µX)2.

Equation (5.5) shows clearly that E[(Y −X)2] tends to be large, when Y and X very different means

or variances. Similarly,

E[(Y +X)2] = E
{(

[(Y −µY )+(X −µX)]+(µY + µX)
)2}

= E
{

[(Y −µY )+(X −µX)]2
}

+(µY + µX)2

= [V(X)+V(Y )]+2C(X , Y )+(µY + µX)2

= [V(X)+V(Y )]+2ρXY σX σY +(µY + µX)2 . (5.6)

From (5.5), we see that

C(X , Y ) =
1

2
{[V(X)+V(Y )]−E[(Y −X)2]+ (µY −µX)2}
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=
1

2

[

V(Y )+V(X)−V(Y −X)
]

. (5.7)

C(X , Y ) represents the difference between the sum of the variances of X and Y and the variance of

Y −X . In particular, if µY = µX ,

C(X , Y ) =
1

2
{V(X)+V(Y )−E[(Y −X)2]} . (5.8)

In this case, C(X , Y ) represents the difference between the sum of the variances of X and Y and the

mean square difference E[(Y −X)2]. If X and Y have the same mean and variance [µY = µX and

V(X) = V(Y )], we can write:

C(X , Y ) = V(X)−
1

2
E[(Y −X)2] (5.9)

Similarly, by (5.6), we have:

C(X , Y ) =
1

2
{E[(Y +X)2]− [V(X)+V(Y )]− (µY + µX)2}

=
1

2

[

E{[(Y −µY )+(X −µX)]2}− [V(X)+V(Y )]
]

=
1

2

[

V(Y +X)− [V(Y )+V(X)]
]

. (5.10)

C(X , Y ) represents the difference between the variance of Y +X and the sum of the variances of X

and Y . In particular, if µY = µX ,

C(X , Y ) =
1

2
{E[(Y +X)2]− [V(X)+V(Y )]} . (5.11)

In this case, C(X , Y ) represents the difference between the mean square difference E[(Y −X)2] and

the sum of the variances of X and Y . If X and Y have the same mean and variance, we can write:

C(X , Y ) =
1

2
E[(Y +X)2]−V(X) . (5.12)

In general, we thus have:

C(X , Y ) =
1

2
{[V(Y )+V(X)]−V(Y −X)}

=
1

2
{V(Y +X)− [V(Y )+V(X)]} . (5.13)

If µY = µX ,

C(X , Y ) =
1

2
{[V(Y )+V(X)]−E[(Y −X)2]}
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=
1

2
{E[(Y +X)2]− [V(X)+V(Y )]} . (5.14)

If X and Y have the same mean and variance,

C(X , Y ) = V(X)−
1

2
E[(Y −X)2]

=
1

2
E[(Y +X)2]−V(X) . (5.15)

5.3. Correlations

From (5.5), it is also easy to see that

E

[

(

Y

σY

−
X

σX

)2
]

= 2(1−ρXY )+

(

µY

σY

−
µX

σX

)2

, (5.16)

E

[

(

Y

σY

+
X

σX

)2
]

= 2(1+ρXY )+

(

µY

σY

+
µX

σX

)2

. (5.17)

Consider the normalized values of X and Y :

X̃ =
X −µX

σX

, Ỹ =
Y −µY

σY

, ρ(X̃ , Ỹ ) = ρ (X , Y ) := ρXY , (5.18)

where we set X̃ = 0 if σX = 0, and Ỹ = 0 if σY = 0. We then have:

E(X̃) = E(Ỹ ) = 0 , V(X̃) = V(Ỹ ) = 1 , (5.19)

and

E[(Ỹ − X̃)2] = 2(1−ρXY ) , (5.20)

ρXY = 1−
1

2
E[(Ỹ − X̃)2] . (5.21)

The correlation ρ (X , Y ) is inversely related to the mean-square distance E[(Ỹ − X̃)2] between X̃ and

Ỹ . (5.21) is a general form of the standard formula for Spearman’s rank correlation coefficient.

Similarly,

E[(Ỹ + X̃)2] = 2(1+ρXY ) , (5.22)

ρXY =
1

2
E[(Ỹ + X̃)2]−1 . (5.23)

The correlation ρ (X , Y ) measures the mean square E[(Ỹ + X̃)2] of the sum of X̃ + Ỹ . The above

formulae can also be rewritten in terms of the arithmetic mean of X̃ and Ỹ :

E{
[1

2
(Ỹ + X̃)

]2
} =

1

2
(1+ρXY ) , (5.24)
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ρXY = 2E{
[1

2
(Ỹ + X̃)

]2
}−1 (5.25)

5.4. Inequalities

Since |ρXY | ≤ 1, it is interesting to observe that

(σY −σX)2 +(µY −µX)2 ≤ E[(Y −X)2] ≤ (σY +σX)2 +(µY −µX)2 , (5.26)

and

E[(Y −X)2] ≤ V(X)+V(Y )+(µY −µX)2 ≤ (σY +σX)2 +(µY −µX)2 , if ρXY ≥ 0 , (5.27)

E[(Y −X)2] ≥ V(X)+V(Y )+(µY −µX)2 ≥ (σY −σX)2 +(µY −µX)2 , if ρXY ≤ 0 , (5.28)

E[(Y −X)2] = V(X)+V(Y )+(µY −µX)2 , if ρXY = 0 . (5.29)

E[(Y −X)2] reaches its minimum value when ρXY = 1, and its maximal value when ρXY = −1:

E[(Y −X)2] = (σY −σX)2 +(µY −µX)2 , if ρXY = 1 , (5.30)

-

E[(Y −X)2] = (σY +σX)2 +(µY −µX)2 , if ρXY = −1 . (5.31)

If σ 2
Y > 0, we can also write:

(

1−
σX

σY

)2

+

(

µY −µX

σY

)2

≤
E[(Y −X)2]

σ2
Y

≤

(

1+
σX

σY

)2

+

(

µY −µX

σY

)2

. (5.32)

The inequalities (5.26) - (5.29) also entail similar properties for X +Y :

(σX −σY )2 +(µX + µY )2 ≤ E[(X +Y )2] ≤ (σX +σY )2 +(µX + µY )2 , (5.33)

E[(X +Y )2] ≤ σ2
X +σ2

Y +(µX + µY )2 ≤ (σY +σX)2 +(µX + µY )2 , if ρXY ≤ 0 , (5.34)

E[(X +Y )2] ≥ σ2
X +σ2

Y +(µX + µY )2 ≥ (σX −σY )2 +(µX + µY )2 , if ρXY ≥ 0 , (5.35)

E[(Y +X)2] = σ2
X +σ2

Y +(µX + µY )2 , if ρXY = 0 . (5.36)

By (5.20), we have:

0 ≤ E[(Ỹ − X̃)2] ≤ 4 , (5.37)

0 ≤ E[
∣

∣Ỹ − X̃
∣

∣] ≤ {E[(Ỹ − X̃)2]}1/2 ≤ 2 . (5.38)

The root mean square error of approximating Ỹ by X̃ cannot be larger than 2. Upon using the

Chebyshev inequality, this entails:

P
[∣

∣Ỹ − X̃
∣

∣ ≥ λ
]

≤
E[(Ỹ − X̃)2]

λ 2
≤

4

λ 2
. (5.39)
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Since

X = µX +σX X̃ , Y = µY +σY Ỹ , (5.40)

we get

E[(Y −X)2] = E
{

[(µY +σY Ỹ )− (µX +σX X̃)]2
}

= E
{

[(σY Ỹ −σX X̃)+(µY −µX)]2
}

= E
{

[(σY Ỹ −σX X̃)+(µY −µX)]2
}

= E[(σY Ỹ −σX X̃)2]+ (µY −µX)2 (5.41)

hence

E[(Y −X)2] = σ2
Y E

[

(

Ỹ −
σX

σY

X̃

)2
]

+(µY −µX)2

= σ2
Y

[

1+

(

σX

σY

)2

−2

(

σX

σY

)

ρXY

]

+(µY −µX)2 , if σY 6= 0 , (5.42)

and

E[(Y −X)2] = σ2
X +(µY −µX)2 , if σY = 0 . (5.43)

If the variances of X and Y are the same, i.e.

σ2
Y = σ2

X , (5.44)

we have:

E[(Y −X)2] = 2σ2
Y (1−ρXY )+(µY −µX)2

= 2σ2
X(1−ρXY )+(µY −µX)2 . (5.45)

If the means and variances of X and Y are the same, i.e.

µY = µX and σ2
Y = σ2

X , (5.46)

we have:

E[(Y −X)2] = 2σ2
Y (1−ρXY ) = 2σ2

X (1−ρXY ) (5.47)

and

0 ≤ E[(Y −X)2] ≤ 4σ2
X (5.48)

so that

E[(Y −X)2] = 0 and P[Y = X ] = 1, if ρXY = 1 , (5.49)
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and, using Chebyshev’s inequality,

P[|Y −X | > c] ≤
E[(Y −X)2]

c2
=

2σ2
X (1−ρXY )

c2
for any c > 0 , (5.50)

P [|Y −X | > cσX ] ≤
E[(Y −X)2]

σ2
X c2

=
2(1−ρXY )

c2
for any c > 0 . (5.51)

If µY = µX and σ2
Y = σ2

X > 0, we also have:

E[(Y −X)2] = 0 ⇔ ρXY = 1 , (5.52)

E[(Y −X)2] = 2σ2
X ⇔ ρXY = 0 , (5.53)

E[(Y −X)2] = 4σ2
X ⇔ ρXY = −1 . (5.54)

Since

σY (Ỹ − X̃) = Y −µY −
σY

σX

(X −µX) = Y −

(

µY +
σY

σX

µX

)

−
σY

σX

X , (5.55)

the linear function

L0(X) =

(

µY +
σY

σX

µX

)

+
σY

σX

X (5.56)

can be viewed as a “forecast” of Y based on X such that

E[(Y −L0(X))2] = σ2
Y E[(Ỹ − X̃)2] = 2σ2

Y (1−ρXY ) . (5.57)

It is then of interest to note that

E[(Y −L0(X))2] ≤ E[(Y −µY )2] = σ2
Y ⇔ ρXY ≥ 0.5 , (5.58)

with

E[(Y −L0(X))2] < E[(Y −µY )2] = σ2
Y ⇔ ρXY > 0.5 (5.59)

when σ2
Y > 0. Thus L0(X) provides a “better forecast” of Y than the mean of Y , when ρXY > 0.5. If

ρXY < 0.5 and σ 2
Y > 0, the opposite holds: E[(Y −L0(X))2] > σ2

Y .

5.5. Polarization identities

Since

E[(Y −X)2] = E(X2 +Y 2 −2XY ) = E(X2)+E(Y 2)−2E(XY ) , (5.60)

E[(Y +X)2] = E(X2 +Y 2 +2XY ) = E(X2)+E(Y 2)+2E(XY ) , (5.61)

we get on summing the above two equations:

E(XY ) =
1

4
{E[(Y +X)2]−E[(Y −X)2]} . (5.62)
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Similarly, since

V(X −Y ) = V(X)+V(Y )−2C(X , Y ) , (5.63)

V(X +Y ) = V(X)+V(Y )+2C(X , Y ) , (5.64)

we have:

C(X , Y ) =
1

4
[V(X +Y )−V(X −Y )] . (5.65)

(5.65) is sometimes called the “polarization identity”. This yields three alternative representations

for the covariance as a linear transformation of variances:

C(X , Y ) =
1

2
{[V(X)+V(Y )]−V(X −Y )}

=
1

2
{V(X +Y )− [V(X)+V(Y )]}

=
1

4
[V(X +Y )−V(X −Y )] . (5.66)

Further,

ρ (X , Y ) =
1

4

V(X +Y )−V(X −Y )

σX σY

=
1

4

[

σ2
X+Y

σX σY

−
σ2

X−Y

σX σY

]

(5.67)

and, if V(X) = V(Y ) = 1,

ρ (X , Y ) =
V(X +Y )−V(X −Y )

4
=

σ2
X+Y −σ2

X−Y

4
. (5.68)

On X +Y and X −Y , it also interesting to observe that

C(X +Y, X −Y ) = [V(X)−V(Y )]+ [C(Y, X)−C(X , Y )] = V(X)−V(Y ) (5.69)

so that

C
(

(X +Y )/2, X −Y
)

= C(X +Y, X −Y ) = 0 , if V(X) = V(Y ) . (5.70)

This holds irrespective of the covariance between between X and Y. In particular, if the vector (X ,Y )
is multinormal X +Y and X −Y are independent when V(X) = V(Y ).

On applying (5.67) to the normalized variables

X̃ =
X −µX

σX

, Ỹ =
Y −µY

σY

, (5.71)

we get a polarization formula in terms of normalized variables:

ρ (X , Y ) =
V(Ỹ + X̃)−V(Ỹ − X̃)

4
=

E[(Ỹ + X̃)2]−E[(Ỹ − X̃)2]

4
. (5.72)

This also follows on applying (5.67) to Ỹ and X̃ . As for the covariances, this yields three alternative
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representations of the correlation:

ρ (X , Y ) = 1−
1

2
E[(Ỹ − X̃)2]

=
1

2
E[(Ỹ + X̃)2]−1

=
E[(Ỹ + X̃)2]−E[(Ỹ − X̃)2]

4
. (5.73)

6. Sources and additional references

Good overviews of various notions associated with covariances, correlations and regression may be

found in Hannan (1970, Chapter 1), Theil (1971, Chapter 4), Kendall and Stuart (1979, Chapters

26-28), Rao (1973, Section 4g), Drouet Mari and Kotz (2001), and Anderson (2003, Chapter 1).

See also Lehmann (1966).
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