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1. Model-free linear regression and ordinary least squares

1. Notations

We wish to explain or predict a variable y through k other xi,x,,...,x,. We T
observations on each variable:

Y1
y = y:z : dependent variable (to explain)

yr

X1i
X2 . .

X; = :’ , 1=1,..., k:explanatory variables.
ATi

Usually, the explanatory variables are represented by the 7" X k matrix

[ v/
X111 X12 X1k X
/
X1 X2 v X2k X5
X:[XI,XQ,...,Xk]: . . . — . ’
/
XT1 XT12 *°° XTk XT

where X, is a k x 1 vector:
X = (X1,%2, 0y X) , t=1,...,T.
We wish to represent each observation y, as a function of x;q, ..., xx:
Vi =xa1B+x0By+ - +xuPBi+&, t=1,...,T (1.1)

where &, is a “residual” which is left unexplained by the explanatory variables.
This model can also be written in the following matrix form:

y=XB+e (1.2)
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where € = (&1, €3,..., €7)".



12. The least squares problem

1.2.1 In general, we cannot obtain a “perfect fit” (¢,=0, ¢t=1,...,T). In
view of this, a natural approach (proposed by Gauss) consists in minimizing the
sum of squared residuals:

T T
thz = Z [yt—xtlﬁl_"'_xtkﬁk]z
=1

=1

= (y=XB)' (y—XB)=S(B) -

~

We consider the problem:

Min(y—XB) (y—XB) .

B
Since
S(B)=(-BX")(y—XB)=yy—-2BX"y+B'X'XB,
we have: 5
# = —2X'y+2X'XB .

To compute the above, we use the following result on differentiation with respect
to a vector x :

agi“) — a, (1.3)
a(’gfx) = (A+A4)x. (1.4)
For any point = f3 such that S(f) is a minimum, we must have:
asa_%ﬁ) p_p= —2X'y+2X'’XB =0

hence
(X'X) B = X'y : normal equations .



1.2.2 When rank (X) = k, we must have rank (X'X) = k so that (X'X)~" exists.
In this case, the normal equations have a unique solution:

B=xx)"Xy. (1.5)

Once B i1s known, we can compute the “fitted values” and the “residuals™ of the
model.

1.2.3 The model fitted values are

§=XB=X(X'X)"'X'y=Py,
where
P = X(X'X)"'X'  (projection matrix)
P =P, ,PP=P (symmetric idempotent matrix).
1.2.4 The model residuals are:
e=y—XB=y—3=y—Py=(—P)y=My
where

PX = X, MX=0, (1.6)
PM = P(I-P)=0,MP=0. (1.7)

1.2.5 Each column of M is orthogonal with each column of X :
X'M=0,
XM=0, i=1,...,k.
Residuals and regressors are orthogonal:
Xe& = XMy=0
= x&=0, i=1,....k



T
= 7€ = Z g€ =0, if the matrix X contains a constant.
t=1

where & = (&,,8,,..., &7) etir = (1,1,...,1)".
1.2.6 Fitted values and residuals are orthogonal:
V& =y PMy = 0. (1.8)
1.2.7 The vector y can be decomposed as the sum of two orthogonal vectors:
y=Py+(I—P)y=3y+&. (1.9)

1.2.8 For any vector 3,

This directly verifies that § = 3 minimizes S (B).



2. Classical linear model

In order to establish the statistical properties of 3, we need assumptions on X and
€. The following assumptions define the classical linear model (CLM).

2.1 Assumption y=Xp+¢

where y is a T X 1 vector of observations on a dependent variable ,
X is a T X k matrix of observations on explanatory variables,

B is ak x 1 vector of fixed parameters,

gisaT x 1 vector of random disturbances.

2.2 Assumption FE(g)=0.
2.3 Assumption E[e€| = oI .
2.4 Assumption X is fixed (non-stochastic).

2.5 Assumption rank(X)=k<T.



From the assumption 2.1 - 2.4, we see that:

Xip
E() = E@[X)=XB=|
XrB

B,

= (xl,xz,...,xk) [32

By

= XI,B1 +x2ﬁ2+"'+xkﬁka

o’ 0 0
2.--
| YT Y =i
0O O o2

If, furthermore, we add the assumption that € follows a multinormal (or Gaussian)
distribution, we get the normal classical linear model (NCLM).

2.6 Assumption ¢ follows a multinormal distribution.



3. Linear unbiased estimation

From the assumptions 2.1 - 2.5, we can make the following observations.

3.1 B is linear with respect to y.

PROOF J has the form 3 = Ay, where A = (X'X) ' X’ is a non-stochastic matrix.

[]
32 B=(X'X)"'X'(XB+e)=PB+(X'X) 'Xe.
3.3 B is an unbiased estimator of f3.
PROOF E(B) =B+ (X'X) 'X'E(e) = B. [
34 V(B)=c?(x'x)"".
PROOF
V(B) = E[(B-B)(B-B)]

= E[(X'X)"'X'ee'X (X'X)""]

= (X'X)"'X'E(ee)x (x'x)”"

= o2(x'x)”"
where the last identity follows from Assumption 2.3. []

3.5 Theorem GAUSS-MARKOV THEOREM. B is the best estimator of B in the
class of linear linear unbiased estimators (BLUE) of B, i.e. V(B) —V(B) is a



positive semidefinite matrix for any linear unbiased estimator (LUE) B of B. In
particular, if B =Cy and D = C — (X’X)_IX’, then

V(B) =V(B) +c°DD' .
PROOF Since B is unbiased and

C=D+(X'X)"'X,

we have:
E(B) = E{ [D+(X’X)—1x'} (XB +e)}
= DXB+p
= B,
hence
DX =0 and CX =1I.
Consequently, )
B=Cy=CXB+Ce=pB+Ce
and 3
p—p=Ce,
hence
V(B) = E[(B—B)(B—B)| =E[Cee'C') = 5°CC’
= o [D+(X'X)"'X'|[D'+X (X'X)"']
= o*[DD' + (X'X)"'] = o?DD' + 2 (X'X) "
= o°DD' +V(B)
and

V(B) —V(B) = o*DD' 3.1)

1s a positive semidefinite matrix. []



3.6 Corollary Letw be a k x 1 vector of constants. Then,
VWE) > V(wp)
for any linear unbiased estimatorB of B.
PROOF Since E ([B’) =F ([3) = 3, we have:
E (w’B) = E (W'B) =wp,
V (w’f)’) = wV (B) w=w [GZDD/—FV (3)] W
= o’w'DD'w+w'V (ﬁ) w
= o’wDD'w+V (w'B) >V (W',B) :

for wDD'w > 0. ]

In particular, we must have:

V(B.)>V(B), i=1,...k.

3.7 Theorem GENERALIZED GAUSS-MARKOV THEOREM. LetL be ar xk
fixed matrix and Y = LB. Then ¥ = L is the BLUE 7, i.e. V(7)—V(¥) is a
positive semidefinite matrix for any linear unbiased estimator ¥ of y. In particular,
ify=Cyand D =C—L(X'X) ' X, then

V(%) =V (%) +0o°DD

and

PROOF Since ¥ is unbiased and

C=D+L(X'X)"'X

10



we have

= E{(D+L(X'X)"'X'] (XB+¢e))}
— DXB+LB=DXB+Yy

I_I_I

~~

=
|

=7,
hence
DX =0 and CX=L.
Consequently,
Yy = Cy=CXB+Ce
= LB+Ce=7v+Ce
and

<

VS

=
|

= E[(7—7)(7—v'] =E[Cee'C| = o°CC
= 2[D+L(X'X)"'X'][D+X (X'X)"'L]
= o2[DD'+L(X'X)"'L

o’DD' + 6L (X'X) "' L' = DD’ +V (Lp)
= o’DD'+V(¥),

SO
o’DD’ (3.2)

V(7)-V(¥)
is a positive semidefinite matrix, and
C(7,%) = E[cee’x (X'X)'L]
= XX (X'X)'L'=0’L(X'X)"'L'=V(Y),
Cy—1%)=Cr7)-C%¥7 =V -V =0. (3.3)

11



3.8 Corollary QUADRATIC GAUSS-MARKOV OPTIMALITY. LetQ bear Xr

positive semidefinite fixed matrix and L a r x k fixed matrix, Y = L and ¥ = Lﬁ.
Then

E[(7-1)2(7-1)] ZE[(7-7)2(7-7)]

for any linear unbiased estimator ¥ of 7.
PROOF Let = Cyand D =C—L(X'X)"'X'. Then

X)
E[(7-7)2(7-v)] = E[w@F-n(7-7)]
= wQE[(7y—7) (7—7)']
= trQ[ DD’ +V (§)]
c’tr (ODD') +tr [QV ()]
atr(D’QD)+trQE[( —7)(
(D'OD)
(D

¥—7)
o’tr (D +E[tr(y )Q(if Y]
o’tr (D QD)+E[( 7]
E[(Y—Y)Q(Y—Y)]

since Q is p.s.d. = D'QD is p.s.d. = trD'QD > 0. ]

1V

3.9 Corollary For any LUE of ¥ of y = L3,
trV (7) > trV(

>

) -

PROOF

trV(y) =

trE[ (¥—7)
— E[(y—7)

(¥=7'] =
(7=7'G-D]ZE[F-1'GT-1] =tV (D)
by Corollary 3.8 with O = 1I. []

12



3.10 Lemma PROPERTIES OF MATRIX DOMINANCE. IfA = B+ C where B is
a p.d. matrix and C is a p.s.d. matrix, then

(a) Aisp.d.,

(b) Bl < |A],

(c) B-'—A"lisp.s.d.

3.11 Corollary Let L be an r X k fixed matrix, y = L3 and ¥ = LB. Then
V= IV(H)

for any LUE ¥ of .

PROOF Since ¥ is the BLUE of y (by the generalized Gauss-Markov theorem),
we have:

V(7 =V()+C (3.4)

where C is p.s.d. If [V(¥)| =0, then |V(¥)| < |V (¥)], for car [V (¥)| > 0. If
IV (%)| > 0, then V(%) is p.d. This entails that V (¥) is also p.d. and |V (})| <
V(7). ]

312 y=XB+Pe, &€=My=Me.
PROOF

— Py=P[XB+¢e]=XB+Pe, carPX=X,
= My=M[XB+¢€e|=Me, carMX=0.

o> <
|

3.13 E§)=XB ,E(8)=0.

13



PROOF

E(}) = EXB+Pe]=XB+PE(e)=Xp,
E(€) = EG—9)=XB—-XB=0.
[
3.14 V(9) =0c*P, V(&) = o’M.
PROOF
V() = V(XB)=xV(B)X' =X (X'X)"'X' = o°P,
V(&) = V(My) =MV (y)M' =c’M .
[

3.15 7§ is the best linear unbiased estimator of X 3.

PROOF This follows directly on taking L = X in the generalized Gauss-Markov
theorem. L]

3.16 £ is the best linear unbiased estimator (BLUE) of €, in the sense that
E(¢—¢)=0and

V(E—¢€)—V(€—¢g) isap.s.d. matrix
for for LUE € of €.
PROOF Since € is a LUE of €, we must have:

g§=Ay and E(€—¢)=0.

14



Consequently,

E(&) = E(Ay)
— E[A(XB+e)]=AXB =0,YB,

which entails that

Let

Then

hence

and

so that

Thus

AX =0,
¢ =A(Xp+e)=As.

1

B=A-M where M=I-X(X'X)"'X".

AX=[B+M|]X=BX =0, since MX=0,

V(E—g) = V[Ae —¢]
V[B+M)e—el =V[B+M—1I)e]

= E[(B+M—1)ee' (B +M—1)]
o’[B—X (X'X)"'X'][B—X (X'X)"'X']
o)

2[BB' +X (X'X)"'X'],

V(é—g) = E[(M—TI)ee' (M—1)]
= ¢2(I-M)=0c’X(X'X)"'X’,

V(E—¢)=0’BB' +V(¢—¢).

15



a p.s.d. matrix. []

3.17 C(B,8) =C(B,y—XB) =0.

PROOF
C(B,&) = E[(B—B)&] =E[(X'X)"' X'ee'M]
= o2(X'X)"'X'M=0.
[
318 C(§,8)=0.
PROOF
C(5,8) = E[(XB-xPB)¢
= XE[(B—B)&| =XxC(B,&) =0
[]
3.19 Estimation of 2. Since 6 =E(g}),t =1,..., T, it is natural to consider

the residuals of the regression which can be viewed as estimations of the error
terms &;:

hence

16



— Eltr (Mee')] = tr [ME (e€')]

= o*trM ,
where
wM = tr[lp—X (X'X)"'X'] =trly —tr [X (X'X) "' X]
— trly—tr [XX(XX) =t -tk
= T—k.
Thus,
E(#8) = o (T—k

&'e
E - o?.

=&'¢/(T—k)=yMy/(T —k)
is an unbiased estlmator of 62, and s2(X'X)”" is an unbiased estimator of

v(B) — o2 (X'X)""

3.20 The statistic

17



4. Prediction

In the previous section, we studied how one can estimate 3 in the linear regres-
sion model. Suppose now we know the matrix X, of explanatory variables for m
additional periods (or observations). We wish to predict the corresponding values
of y:
Yo =XoP + &
where
E(eo) =0,V (&) = 0%, ,E(eey) =0.

The natural “predictor” in this case is:

. A ~1

Yo =XoB =Xo (X'X) X'y. (4.1)
We can then show the following properties.

4.1 7 is an unbiased estimator of Xyf3 :

E($o) =XoB =E(v), E(o—y0)=0.
42 V(5o) =V (XOB) = XV (ﬁ) X, = 62X, (X'X) "' X,
4.3 C(yo,909) =0.

PROOF

C(vo,%0) = E (yo—Xoﬁ)(Xoﬁ—Xoﬁ)/]

- :eo ([5 - /3)/)(5] —E [eoe’X (X’X)‘lx(;] ~0.

4.4 ¥ is best linear unbiased estimator of Xyf3, in the sense that V (7) — V (¥)
is a p.s.d. matrix for any linear unbiased estimator ¥, of Xof. In particular, if

18



Jo=Cyand D =C—X,(X'X)"' X, then
V (§o) = V (o) +0°DD’ .

PROOF This follows directly from the generalized Gauss-Markov theorem.

The “prediction errors” are given by:

éo = yo— o =0 —Xo
— XoB +&0—XoP = €0+ Xo (ﬁ —B) :
4.5 7V, 1s a linear unbiased predictor (LUP) of yj:
Eléo) =0.
PROOF yy = Xoﬁ and

E[é0] = E[yo — $o] = Xof — X0 =0 .

4.6 V(&) = o [lm s (X’X)‘lx(’,] .
PROOF

V(yo—50) = V(yo)+V (o) —C(vo,J0) — C(Fo,¥0)
= 6%l 4+ 02X, (X'X) " X}
— & [Im+XO(X’X)_1X(’)] .

19



4.7 Theorem 7y, is the best linear unbiased predictor (BLUP) of yy, in the sense
that V (yo — Jo) — V (yo — $o) is a p.s.d. matrix for any LUP J, of yy. In particular,
ifjo=Cyand D =C—Xo(X'X)"' X', then

V (yo —Jo) =V (yo — $o) + 6°DD’ .
PROOF
V (yo—30) =V (yo) +V Fo) — C(yo,¥) — C(Fo,¥0)

where
C (y(),)N)o) =k [eoe’C’] =0

for, by the generalized Gauss-Markov theorem,
Efo] =XoB=CX=Xo=FJo=C(XB+¢)=XoB+Ce.
Further, V () = V (§y) + 62DD’ and V (y) = 0°1,,. Consequently,
V(yo—F0) = 6°Ly+V(Jo)+0°DD’
= |6, + 06X, (X'X) "' X}| + o*DD/
= V(yo—3o) +0°DD’ .

20



5. Estimation with Gaussian errors

If we wish to build confidence intervals and perform hypothesis tests, we need a
more complete specification of the error distribution. The standard hypothesis for
this is to assume that the errors follow a Gaussian distribution.

5.1 Assumption € ~ Ny [0,0%I7].

This means that the errors &, are i.i.d. N [0, 62] . We can now completely es-
tablish the distribution of the least squares estimator.

52 y~N|XB,0%lr|,sincey=Xp +e.
53 B~N [[5,62 (X’X)_l} ,since B = (X'X) "' X'y.
The probability density function of y is given by:

1 1y—XB) (y—X
L(:XB, o%tr) = (27r<72)T/2 exp{_i(y ﬁ)crgy ﬁ)} |

54 B = (X'X)"'X'y and 6> = &' /T are the maximum likelihood estimators of
B and o respectively.

PROOF To maximize L is equivalent to maximizing In(L). Since

T T 2 1 /
In(L) = —In(27) ~ SIn(6%) — 5 (v~ XB) (v~ XB)
T T 5 1 )
the first-order conditions (which are necessary) for a maximum is:
d (In(L)) ! / /
= ——[-2Xy+2(X'X)B]|=0
5 S [-2Xy+2(X'X) B] =0,
d (In(L)) T 1 1

ST = T5oi T 0 XB) (y=XB)=0,

21



hence
X'X)B = X'y ,B= gX’X>‘1X’y,
6" = (v-xB) (y—xB)/T.

Further the second-order derivative of In(L) is:

d (In(L 1
dp Ip ©
which is negative semidefinite as required for a maximum. []

55 $=XB ~ Nr [XB,0P].

5.6 ¢ =Me ~Nr|0,0°M].

5.7 £ and f3 are independent, because £ et 3 are multinormal and C( B, £)=0.
5.8 & and y are independent, because € and y are multinormal and C(§, &) =0 .

5.9 Lemma DISTRIBUTION OF AN IDEMPOTENT QUADRATIC FORM IN L.I.D.
GAUSSIAN VARIABLES. LetQ be aT x T symmetric idempotent matrix of rank
q<T.Ife ~Nr|0,0%|, then

e'Qe/c” ~ x*(q) .

PROOF Since Q is a symmetric idempotent matrix, there is a 7' X T orthogonal
matrix C, i.e. CC' = C'C = Ir , such that

, (1,0
CQC_(OO ’

£ Qe =€ C'CQC'Ce = (Ce) (CQC) (Ce) .

hence

22



Further,

g ~ N|0,6°Ir] = Ce ~N|[0,0°CIrC]
= Ce~N|[0,0°I7] .

Letv=Ce = (v,va,..., vT)’. Then
Vi,V2,..., vr are iid. N [0,07]
and

g'Qe =V (CQC")v

I, 0 v
= (Vl,Vz,...,VT)((;I O) 32

= v%+v§+---—|—v§+0.v§+1---—|—0.v%

_ 2
=Y.

=1

~

This entails

wheregiﬂN[O,l] , t=1,...,T,

and
£'0e/o” ~ x*(q) .

23



5.10

(8) _eo
_ 2
2 X (T —k) .
PROOF This follows directly on applying Lemma 5.9 with Q = M and the fact
thattr (M) =T —k. ]

5.11 Let R be a g x k fixed matrix. Then,

RB ~N, [R[i,GZR (X’X)_lR’} | (5.2)
Further Rf3 and s* are independent.

PROOF B ~ N [[3, 5?2 (X’X)_l} entails R ~ N [RB, 2R (X’X)_IR’] . Since B

and & are independent, R} and &'& are also independent, so that R and s* =
g'¢/ (T — k) are independent. O

5.12 Let R be a g x k fixed matrix of rank ¢, r = R} and

A A

S(R.B) = [RB — ] [R(x'x) "' R] TRB-A.

Then
S(R.B)/o* ~x*(q) - (5.3)
Further, S(R, B) and s? are independent.
PROOF
RB—r=R(B-B)
and

R ([3 - ﬁ) ~N, [0, R (X’X)_IR’] .

24



Thus,

25



6. Confidence and prediction intervals

¢.1. Confidence interval for the error variance

In the normal classical linear model, we have:
&'8/o? = (T —k)s*/o* ~ x* (T —k) .

Thus, we can find a and b such that
Px*(T—k)>b] =
Plx*(T—k)<a] =
Pla<x®(T—K<b]=1-(3

which entails that

2
Pk<” ?Sg4=1—a
o
1 o’ 1
P |- <-|l=1-
[b_(T—k)sz_a] ¢

It is important to note this is not the smallest confidence interval for o2,

26



2. Confidence interval for a linear combination of regression
coefficients

Consider now the linear combination w'f3. Then

wWB—wp ~N|0,6>w (X'X) 'w| ,

hence .
w B —w'p
CA

~N[0,1]

where A = \/ w' (X'X)~"w. Since & is unknown, consider:

L w B —wp
B sA
W’B—W’B w B — W’B/\/ (T —k)s?
s 2(T —
A /0_22 c k)

where X and Y are independent, ¥ ~ N[0,1] and X ~ (T — k). Thus, ¢ follows
a Student ¢ distribution with 7" — k degrees of freedom:

t~t(T —k)

hence
P[—ta/zéf(T—k) Sta/Z} =1l-a

where P [t (T —k) > t4/2] = /2 and

P [w’ﬁ —to/2sA <WB < w'f +ta/2sA} =1-a

27



3. Confidence region for a regression coefficient vector

We now wish to build a confidence region for a vector Rf3 of linear combinations
of the elements of 3, where R : ¢ x k and has rank ¢g. Then

S(R,B)/0> = (RB—RBY (R(X'X)"'R] (RB—RB)/0> ~ 1" (q) -

Since o 1s unknown, let us consider:

S(R.B)/ac®  Xifq
(T —k)s*/o>(T—k) X,/ (T —k)
where X, and X, are independent,

X; =S(R,B)/6>~ x*(q) ,
X, = (T —k)s*/0* ~ x> (T —k) .

F :S(Rvﬁ)/qsz =

Thus F follows a Fisher distribution with (¢, T — k) degrees of freedom:
F~F(q,T—F) .

If we define F,, by
P[F(q,T—k)>Fy]=a,

the set of all vectors Rf3 such that F' < Fy, :
(RB—RBY [R(X'X)""R] " (RB ~RB) /45" < Fur .

is a confidence region with level 1 — & for Rf3. This set is a an ellipsoid (confidence
ellipsoid).

28



64. Prediction intervals

Yo =xoB + €
where
£
(—) NN[O,GZIT_H} .
€o
Further
)/;O — xé)B ) B: (X/X)_IX,ya
" A 1
So—yo = xo(B—B)—eo~N{0,0°[1+x45(X'X) " xo]}.
hence A
Yo—Yo
~N|0, 1},
oA, 0,1]
12
where A; = [l—i—x{)(X’X) xo} , and
Yo — Yo
~t(T —k
vy ( )

where 7, /> satisfies

P [)A]O _ta/ZSAl <y < }70+ta/2SA1} =1—-.
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5. Confidence regions for several predictions

We now consider the problem of predicting a vector of observations y, generated
according to the same model independently of y :

yo=XoB + €0,

< © ) ~N [07 Gle—l—m] )

€0
where X 1s known but y, is not observed. For predicting yy, let us define:
5)\0 — X()ﬁ )
& = yo—Jo==¢€—Xo(B—B),

where
E(é) = 0,
V(&) = o> [Im+X0(X’X)_1X(’)} — 62Dy,
&y ~ N[O, 62[1m+Xo(X’X)_1X6]} .
Consequently,

éov(éO)_léO ~ %2(’””),
eyDy'e0/0> ~ x*(m) .

Since 6 is unknown, we replace it by s°:

(T —k)s*/o?* ~ x* (T —k) .

2

Further, since s“ is independent of y, and o = X [AS, s? is independent of &y,

énDy e é\D, ' éy/0°m
F — 0~0 — 0~0 ~F : T —k :
st (T—k)2jor(T—k) L )

J— _1 A
F = (yo—50) |In+Xo (X'X)"'Xg|  (yo—Jo) /ms’ ~F (m,T —k) .
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Then the set of vectors yg such that
F<Fy(m,T—k)

is a confidence region for yy with level 1 — «.
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7. Hypothesis tests
7.0.1 Let us now consider the problem of testing an hypothesis of the form
H() . W/ﬁ = Wy (71)

where w be a k x 1 vector of constants.To test Hy, it is natural to consider the
difference:

W B —wo=w (3 —,B) ~ N [O,GZW/(XlX)_IW} :

Under the assumptions of the Gaussian classical linear model, we then have:

A

B — B 1/2
WPV N A= [ ]
w' B —wy
I = ~t(T—k
sA ( )

This suggests the following tests of H :

reject Hy at level o against w8 —wy # 0 when [t| > 15/,  (two-sided test)
(7.2)
reject Hy at level o against w8 —wg > 0 whent >, (one-sided test) (7.3)

reject Hy at level o against w8 —wg < 0 whent < —t, (one-sided test). (7.4)

An important special case of the above problem consists in testing the value of
any given component of 3 :

Ho(Bi,) : Bi= B,
where f3; is an element of 3.

Let us now consider the more general hypothesis which consists in testing the
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value of a general vector linear transformation of 3 :

W, [ wiB |
/ /
Hy:RB=r=|"2|B= W?ﬁ (7.5)
I w; | I w;B |

where R is a g X k fixed matrix with full row rank [rank (R) = q|.

7.0.2 Wald-type test. A natural approach then consists in estimating Rf3 by
Rp ,and then to examine the difference R — r. Under H,

RB ~NI[r,X:], where Zz=0’R(X'X) 'R .
We need a concept of distance between RB and r. By (5.3),
W=(RB—r)E"(RB—r)~x*(g) underH,.

We tend to reject Hy when W is too large (W > ¢. However, o2 and Xj are
unknown. It is then natural tom replace 6> by the estimate 52, and Xz by

Sh=s"R(X'X)"'R .

This yields a Wald-type criterion:

A

W= RB-r)S kB
— (RB—1) [SZR (X’X)_IR’} (RB —r)

L

— (RB—r) [R (X’X)_lR’} (RB—1)/s?
— S(R,B)/s* .

Since
F=W/q=S(R,B)/qs" ~F (q.T —k) ,
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we reject Hj at level o when
F>Fy(q, T —k). (7.6)

7.0.3 Likelihood ratio test. Another approach to testing H, consists in looking
for a likelihood ratio test. This test is based on focusing on the likelihood function:

I 1y—XB) (y—XB)
L (y;Xﬁ, 62[T> — (277:62)T/2 exp{—i = } : (7.7)
Let
L(Q)=maxL= max L (7.8)

B, o2 (B,0%)eQ

i.e. we find values of § and o> which maximize “the probability of the observed
sample”, and

L(®)=maxL = max L (7.9)
B, o2 (B,0%)cw
RB=r

i.e. we find values of § and o> which maximize “the probability of the observed
sample” and satisfy Hj,, where

Q={(B,0?):—o<B;<Hoo,i=1,....k 0< 0> < +oo}
w={(B,0°)eQ:RB=r}.

We see easily that
0<L(®d) <L(Q),

hence

-
=N
> =

>

A

=
o



We reject Hy when

h
>

(
(

where A, depends on the level of the test:

)

LR(y) )

Zlaa

B~
>

PILR(y) > Ag] = o .
7.0.4 L(Q) is achieved when = 3 and 62 = &7

AN\ A
L@ - — (= 3F) [r=xP) —en{ 7 |
= eXpq —= - = expi ——
(276%)"" 2 6° (276%)"" 2
o T/2 TT/2,-T/2
- T2 N L
2767] (ZE)T/Zl(y—XB) (y—Xﬁ)]
TT/2€_T/2
- msg?

AN/ A
where Sg = (y—XB) (y—Xﬁ) :
7.0.5 To find L(®), it is equivalent to maximize

T T 1

In(L) = == In(27) = S 1n (0%) = 5— (y = XB)' (y — XB)

under the constraint R = r.Consider o as given. It is then sufficient to solve the
problem:

l\gn(y—Xﬁ)’(y—Xm

with restriction r — Rf3 = 0. Ton do this, we consider the Lagrangian function:

Z=(y—XB) (y—XB)—A'[r—RB] .
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The optimum 8 = B must satisfy the first-order conditions:

aa;[g; = X'y +2(X'X)B+RA=0 (7.10)
0¥ ~
o = r—RB =0. (7.11)

On multiplying by (7.10) by R(X'X) ™", we get:
—2R(X'X) ' X'y+2RB+R(X'X) 'RA =0
RX'X) 'R =2R(X'X) "' X'y —2r=2 [R,B _ r]
A=2 [R (X’X)_lR’] - [RB _ r} .
By (7.10),
2(X'X)B = 2X'y—R'A (7.12)
— 2X'y— 2R [R (x'x)"! R’] - [RB - r} (7.13)

hence

A

B = (xXX)'X'y— (x'X)"'R [R(X’X)_lR’}_l [R,B_r]
= B+(x'X)"'R [R(X’X)_IR’]_1 [r—RB} .

We see that ﬁ does not depend on 6. Substituting B in In(L), we see that

T T 1
In(L) = —>In (27) — 5 In — 75350

where Sy, = (y—XB)l (y—XB)

dIn(L) T Se

, from which we get
do2 202 i 264

0
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at the optimum, hence

~\/ ~
52 = So/T = (y=XB) (y=XB) /T,
TT/Ze—T/Z
(zn)T/Z 2/2’

L(®) =

The likelihood ratio test is given by the critical region:

L(Q) _ (S_w) " > Ay

L(@®)  \Sao

or, equivalently,

/T
gzﬁx . (7.14)
Since
Sa) - (y_Xé)/(y_Xé) A ~ A ~
= (= XB)(y—xB)+(B—B) (XX)(B-B)
= So+(B-B)(X'X)(B—-B),

we also see that
Sp—So = (r _ RB)/ [R (X’X)_lR’} T ROOX) T XX (X'X) !
R [R (X’X)_IR’} - [r—Rﬁ]

_ (r —RB), [R x'x)"! R’} - [r —RB]

= (RB—1 [RX'X)"'R|  (RB—r) = S(R, B)
= (¢5°)F

hence

Sw_SQ_(Sw_SQ)/q

F=— T Sa/T—0
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and
Sa) . SQ + (qs2) F

2
SO Co L 4 T

S_Q B S_Q B (T—k) S2 T —k
T—k
—re TR G )2k,
q
The likelihood ratio test of Hy : R3 = r has the critical region
(S0 —S0) /g

F = > F, T—k

where
F~F (q,T—k) .

This is an easy method for testing Hy : R = r. Note also that:

5. \T/2 J T2
IR = (22 1+-1 F

(52) =(+s5r)
o Iz k(LRz/T—l)

q

8. Estimator optimal properties with Gaussian errors

When errors are Gaussian, the OLS estimators B i=1,....k and s* =
AN/

(y - X ﬁ) ( Xp ) /(T — k) have minimum variance in the class of all unbi-

ased estimators of 3., i=1,..., k, and o respectively [see Rao (1973, section

5a)].
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