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1. Model-free linear regression and ordinary least squares

1.1. Notations

We wish to explain or predict a variable y through k other x1,x2, . . . , xk. We T observations on each

variable:

y =











y1

y2

...

yT











: dependent variable (to explain)

xi =











x1i

x2i

...

xTi











, i = 1, . . . , k : explanatory variables.

Usually, the explanatory variables are represented by the T × k matrix

X = [x1,x2, . . . , xk] =











x11 x12 · · · x1k

x21 x22 · · · x2k

...
...

...

xT 1 xT 2 · · · xT k











=











X ′
1

X ′
2
...

X ′
T











,

where Xt is a k×1 vector:

X ′
t = (xt1,xt2, . . . , xtk) , t = 1, . . . , T .

We wish to represent each observation yt as a function of xt1, . . . , xtk:

yt = xt1β 1 + xt2β 2 + · · ·+ xtkβ k + ε t , t = 1, . . . , T (1.1)

where ε t is a “residual” which is left unexplained by the explanatory variables. This model can also

be written in the following matrix form:

y = Xβ + ε (1.2)

where ε = (ε1, ε2, . . . , εT )′.
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1.2. The least squares problem

1.2.1 In general, we cannot obtain a “perfect fit” (ε t = 0 , t = 1, . . . , T ) . In view of this, a natural

approach (proposed by Gauss) consists in minimizing the sum of squared residuals:

T

∑
t=1

ε2
t =

T

∑
t=1

[yt − xt1β 1 −·· ·− xtkβ k]
2

= (y−Xβ )′ (y−Xβ ) ≡ S (β ) .

We consider the problem:

Min
β

(y−Xβ )′ (y−Xβ ) .

Since

S (β ) =
(

y′−β ′
X ′

)

(y−Xβ ) = y′y−2β ′
X ′y+β ′

X ′Xβ ,

we have:
∂S (β )

∂β
= −2X ′y+2X ′Xβ .

To compute the above, we use the following result on differentiation with respect to a vector x :

∂ (x′a)

∂x
= a , (1.3)

∂ (x′Ax)

∂x
=

(

A+A′
)

x . (1.4)

For any point β = β̂ such that S (β ) is a minimum, we must have:

∂S (β )

∂β
|β=β̂ = −2X ′y+2X ′X β̂ = 0

hence
(

X ′X
)

β̂ = X ′y : normal equations .

1.2.2 When rank(X) = k, we must have rank(X ′X) = k so that (X ′X)−1
exists. In this case, the

normal equations have a unique solution:

β̂ =
(

X ′X
)−1

X ′y . (1.5)

Once β̂ is known, we can compute the “fitted values” and the “residuals” of the model.

1.2.3 The model fitted values are

ŷ = X β̂ = X
(

X ′X
)−1

X ′y = Py ,
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where

P = X
(

X ′X
)−1

X ′ (projection matrix)

P′ = P , PP = P (symmetric idempotent matrix).

1.2.4 The model residuals are:

ε̂ = y−X β̂ = y− ŷ = y−Py = (I −P)y = My

where

PX = X , MX = 0 , (1.6)

PM = P(I −P) = 0 , MP = 0 . (1.7)

1.2.5 Each column of M is orthogonal with each column of X :

X ′M = 0 ,

x′iM = 0 , i = 1, . . . , k .

Residuals and regressors are orthogonal:

X ′ε̂ = X ′My = 0

⇒ x′iε̂ = 0 , i = 1, . . . , k

⇒ i′T ε̂ =
T

∑
t=1

ε̂ t = 0 , if the matrix X contains a constant.

where ε̂ = (ε̂1, ε̂2, . . . , ε̂T )′ et iT = (1,1, . . . , 1)′ .

1.2.6 Fitted values and residuals are orthogonal:

ŷ′ε̂ = y′PMy = 0. (1.8)

1.2.7 The vector y can be decomposed as the sum of two orthogonal vectors:

y = Py+(I −P)y = ŷ+ ε̂ . (1.9)

1.2.8 For any vector β ,

S(β ) ≡ (y−Xβ )′ (y−Xβ ) =
(

y−X β̂
)′(

y−X β̂
)

+
(

β̂ −β
)′

X ′X
(

β̂ −β
)

≥
(

y−X β̂
)′(

y−X β̂
)

= S
(

β̂
)

for

(y−Xβ )′ (y−Xβ ) =
[

y−X β̂ +X
(

β̂ −β
)]′ [

y−X β̂ +X
(

β̂ −β
)]
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=
[

ε̂ +X
(

β̂ −β
)]′ [

ε̂ +X
(

β̂ −β
)]

= ε̂ ′ε̂ +2
(

β̂ −β
)′

X ′ε̂ +
(

β̂ −β
)′

X ′X
(

β̂ −β
)

= ε̂ ′ε̂ +
(

β̂ −β
)′

X ′X
(

β̂ −β
)

.

This directly verifies that β = β̂ minimizes S (β ) .

2. Classical linear model

In order to establish the statistical properties of β̂ , we need assumptions on X and ε . The following

assumptions define the classical linear model (CLM).

2.1 Assumption y = Xβ + ε

where y is a T ×1 vector of observations on a dependent variable ,

X is a T × k matrix of observations on explanatory variables,

β is a k×1 vector of fixed parameters,

ε is a T ×1 vector of random disturbances.

2.2 Assumption E(ε) = 0 .

2.3 Assumption E[εε ′] = σ2IT .

2.4 Assumption X is fixed (non-stochastic).

2.5 Assumption rank(X) = k < T .

From the assumption 2.1 - 2.4, we see that:

E(y) = E(y | X) = Xβ =







X ′
1β
...

X ′
T β







= (x1,x2, . . . , xk)











β 1

β 2
...

β k











= x1β 1 + x2β 2 + · · ·+ xkβ k ,

V (y) = V (y | X) = σ2IT

=











σ2 0 · · · 0

0 σ2 · · · 0
...

...
...

0 0 · · · σ2











= V (ε) .
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If, furthermore, we add the assumption that ε follows a multinormal (or Gaussian) distribution, we

get the normal classical linear model (NCLM).

2.6 Assumption ε follows a multinormal distribution.

3. Linear unbiased estimation

From the assumptions 2.1 - 2.5, we can make the following observations.

3.1 β̂ is linear with respect to y.

PROOF β̂ has the form β̂ = Ay, where A = (X ′X)−1
X ′ is a non-stochastic matrix.

3.2 β̂ = (X ′X)−1
X ′(Xβ + ε) = β +(X ′X)−1

X ′ε .

3.3 β̂ is an unbiased estimator of β .

PROOF E
(

β̂
)

= β +(X ′X)−1
X ′E(ε) = β .

3.4 V
(

β̂
)

= σ2 (X ′X)−1 .

PROOF

V
(

β̂
)

= E
[(

β̂ −β
)(

β̂ −β
)′]

= E
[(

X ′X
)−1

X ′εε ′X
(

X ′X
)−1 ]

=
(

X ′X
)−1

X ′
E

(

εε ′
)

X
(

X ′X
)−1

= σ2
(

X ′X
)−1

where the last identity follows from Assumption 2.3.

3.5 Theorem GAUSS-MARKOV THEOREM. β̂ is the best estimator of β in the class of linear

linear unbiased estimators (BLUE) of β , i.e. V
(

β̃
)

−V
(

β̂
)

is a positive semidefinite matrix for any

linear unbiased estimator (LUE) β̃ of β . In particular, if β̃ = Cy and D = C− (X ′X)−1
X ′, then

V
(

β̃
)

= V
(

β̂
)

+σ2DD′ .
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PROOF Since β̃ is unbiased and

C = D+
(

X ′X
)−1

X ′ ,

we have:

E
(

β̃
)

= E

{[

D+
(

X ′X
)−1

X ′
]

(Xβ + ε)
}

= DXβ +β

= β ,

hence

DX = 0 and CX = Ik .

Consequently,

β̃ = Cy = CXβ +Cε = β +Cε

and

β̃ −β = Cε ,

hence

V
(

β̃
)

= E
[(

β̃ −β
)(

β̃ −β
)′]

= E
[

Cεε ′C′
]

= σ2CC′

= σ2
[

D+
(

X ′X
)−1

X ′
][

D′ +X
(

X ′X
)−1 ]

= σ2
[

DD′ +
(

X ′X
)−1 ]

= σ2DD′ +σ2
(

X ′X
)−1

= σ2DD′ +V
(

β̂
)

and

V
(

β̃
)

−V
(

β̂
)

= σ2DD′ (3.1)

is a positive semidefinite matrix.

3.6 Corollary Let w be a k×1 vector of constants. Then,

V
(

w′β̃
)

≥ V
(

w′β̂
)

for any linear unbiased estimator β̃ of β .

PROOF Since E
(

β̃
)

=E
(

β̂
)

= β , we have:

E

(

w′β̃
)

= E

(

w′β̂
)

= w′β ,

V

(

w′β̃
)

= w′
V

(

β̃
)

w = w′
[

σ2DD′ +V

(

β̂
)]

w

= σ2w′DD′w+w′
V

(

β̂
)

w
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= σ2w′DD′w+V

(

w′β̂
)

≥ V

(

w′β̂
)

,

for w′DD′w ≥ 0.

In particular, we must have:

V
(

β̃ i

)

≥ V
(

β̂ i

)

, i = 1, . . .k .

3.7 Theorem GENERALIZED GAUSS-MARKOV THEOREM. Let L be a r × k fixed matrix and

γ = Lβ . Then γ̂ = Lβ̂ is the BLUE γ, i.e. V (γ̃)−V (γ̂) is a positive semidefinite matrix for any

linear unbiased estimator γ̃ of γ . In particular, if γ̃ = Cy and D = C−L(X ′X)−1
X ′, then

V (γ̃) = V (γ̂)+σ2DD′

and

C(γ̃ − γ̂, γ̂) = 0 .

PROOF Since γ̃ is unbiased and

C = D+L
(

X ′X
)−1

X ′

we have

E(γ̃) = E
{(

D+L
(

X ′X
)−1

X ′
]

(Xβ + ε)
}

= DXβ +Lβ = DXβ + γ

= γ ,

hence

DX = 0 and CX = L .

Consequently,

γ̃ = Cy = CXβ +Cε

= Lβ +Cε = γ +Cε

and

V (γ̃) = E
[

(γ̃ − γ)(γ̃ − γ)′
]

= E
[

Cεε ′C′
]

= σ2CC′

= σ2
[

D+L
(

X ′X
)−1

X ′
][

D′ +X
(

X ′X
)−1

L′
]

= σ2
[

DD′ +L
(

X ′X
)−1

L′
]

= σ2DD′ +σ2L
(

X ′X
)−1

L′ = σ2DD′ +V
(

Lβ̂
)

= σ2DD′ +V
(

γ̂
)

,
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so

V
(

γ̃
)

−V
(

γ̂
)

= σ2DD′ (3.2)

is a positive semidefinite matrix, and

C
(

γ̃, γ̂
)

= E
[

Cεε ′X
(

X ′X
)−1

L′
]

= σ2CX
(

X ′X
)−1

L′ = σ2L
(

X ′X
)−1

L′ = V
(

γ̂
)

,

C
(

γ̃ − γ̂, γ̂
)

= C
(

γ̃, γ̂
)

−C
(

γ̂, γ̂
)

= V
(

γ̂
)

−V
(

γ̂
)

= 0 . (3.3)

3.8 Corollary QUADRATIC GAUSS-MARKOV OPTIMALITY. Let Q be a r× r positive semidefi-

nite fixed matrix and L a r× k fixed matrix, γ = Lβ and γ̂ = Lβ̂ . Then

E
[(

γ̃ − γ
)′

Q
(

γ̃ − γ
)]

≥ E
[(

γ̂ − γ
)′

Q
(

γ̂ − γ
)]

for any linear unbiased estimator γ̃ of γ.

PROOF Let γ̃ = Cγ and D = C−L(X ′X)−1
X ′. Then

E
[(

γ̃ − γ
)′

Q
(

γ̃ − γ
)]

= E
[

trQ(γ̃ − γ)(γ̃ − γ)′
]

= trQE
[

(γ̃ − γ)(γ̃ − γ)′
]

= trQ
[

σ2DD′ +V (γ̂)
]

= σ2tr
(

QDD′
)

+ tr [QV (γ̂)]

= σ2tr
(

D′QD
)

+ trQE
[

(γ̂ − γ)(γ̂ − γ)′
]

= σ2tr
(

D′QD
)

+E
[

tr (γ̂ − γ)′ Q(γ̂ − γ)
]

= σ2tr
(

D′QD
)

+E
[

(γ̂ − γ)′ Q(γ̂ − γ)
]

≥ E
[

(γ̂ − γ)′ Q(γ̂ − γ)
]

since Q is p.s.d. ⇒ D′QD is p.s.d. ⇒ tr D′QD ≥ 0.

3.9 Corollary For any LUE of γ̃ of γ = Lβ ,

trV (γ̃) ≥ trV (γ̂) .

PROOF

trV (γ̃) = trE
[

(γ̃ − γ)(γ̃ − γ)′
]

= E
[

tr (γ̃ − γ)(γ̃ − γ)′
]
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= E
[

(γ̃ − γ)′ (γ̃ − γ)
]

≥ E
[

(γ̂ − γ)′ (γ̂ − γ)
]

= trV (γ̂)

by Corollary 3.8 with Q = I.

3.10 Lemma PROPERTIES OF MATRIX DOMINANCE. If A = B+C where B is a p.d. matrix and

C is a p.s.d. matrix, then

(a) A is p.d.,

(b) |B| ≤ |A| ,

(c) B−1 −A−1 is p.s.d.

3.11 Corollary Let L be an r× k fixed matrix, γ = Lβ and γ̂ = Lβ̂ . Then

|V (γ̃)| ≥ |V (γ̂)|

for any LUE γ̃ of γ.

PROOF Since γ̂ is the BLUE of γ (by the generalized Gauss-Markov theorem), we have:

V (γ̃) = V (γ̂)+C (3.4)

where C is p.s.d. If |V (γ̂) | = 0, then |V (γ̂) | ≤ |V (γ̃) |, for car |V (γ̃) | ≥ 0 . If |V (γ̂) |> 0, then V (γ̂)
is p.d. This entails that V (γ̃) is also p.d. and |V (γ̂) | ≤ |V (γ̃) |.

3.12 ŷ = Xβ +Pε , ε̂ = My = Mε.

PROOF

ŷ = Py = P [Xβ + ε] = Xβ +Pε , car PX = X ,

ε̂ = My = M [Xβ + ε] = Mε , car MX = 0 .

3.13 E(ŷ) = Xβ , E(ε̂) = 0.

PROOF

E(γ̂) = E [Xβ +Pε] = Xβ +PE(ε) = Xβ ,

E(ε̂) = E(y− ŷ) = Xβ −Xβ = 0 .

9



3.14 V (ŷ) = σ2P , V (ε̂) = σ2M.

PROOF

V (ŷ) = V
(

X β̂
)

= XV
(

β̂
)

X ′ = σ2X
(

X ′X
)−1

X ′ = σ2P ,

V (ε̂) = V (My) = MV (y)M′ = σ2M .

3.15 ŷ is the best linear unbiased estimator of Xβ .

PROOF This follows directly on taking L = X in the generalized Gauss-Markov theorem.

3.16 ε̂ is the best linear unbiased estimator (BLUE) of ε , in the sense that E(ε̂ − ε) = 0 and

V (ε̃ − ε)−V (ε̂ − ε) is a p.s.d. matrix

for for LUE ε̃ of ε.

PROOF Since ε̃ is a LUE of ε , we must have:

ε̃ = Ay and E(ε̃ − ε) = 0 .

Consequently,

E(ε̃) = E(Ay)

= E [A(Xβ + ε)] = AXβ = 0 ,∀β ,

which entails that

AX = 0 ,

ε̃ = A(Xβ + ε) = Aε .

Let

B = A−M where M = I −X
(

X ′X
)−1

X ′ .

Then

AX = [B+M]X = BX = 0 , since MX = 0 ,

hence

V (ε̃ − ε) = V [Aε − ε]

10



= V [(B+M)ε − ε] = V [(B+M− I)ε]

= E
[

(B+M− I)εε ′
(

B′ +M− I
)]

= σ2
[

B−X
(

X ′X
)−1

X ′
][

B′−X
(

X ′X
)−1

X ′
]

= σ2
[

BB′ +X
(

X ′X
)−1

X ′
]

,

and

V (ε̂ − ε) = E
[

(M− I)εε ′ (M− I)
]

= σ2 (I −M) = σ 2X
(

X ′X
)−1

X ′ ,

so that

V (ε̃ − ε) = σ2BB′ +V (ε̂ − ε) .

Thus

V (ε̃ − ε)−V (ε̂ − ε) = σ2BB′

a p.s.d. matrix.

3.17 C
(

β̂ , ε̂
)

= C
(

β̂ , y−X β̂
)

= 0 .

PROOF

C
(

β̂ , ε̂
)

= E
[(

β̂ −β
)

ε̂ ′
]

= E[
(

X ′X
)−1

X ′εε ′M]

= σ2
(

X ′X
)−1

X ′M = 0 .

3.18 C(ŷ, ε̂) = 0.

PROOF

C(ŷ, ε̂) = E
[(

X β̂ −Xβ
)

ε̂ ′
]

= X E
[(

β̂ −β
)

ε̂ ′
]

= X C
(

β̂ , ε̂
)

= 0 .

3.19 Estimation of σ2. Since σ2 = E
(

ε2
t

)

, t = 1, . . . , T , it is natural to consider the residuals of

the regression which can be viewed as estimations of the error terms ε t :

ε̂ = y−X β̂ = My = M (Xβ + ε) = Mε ,

11



T

∑
t=1

ε̂2
t = ε̂ ′ε̂ = ε ′M′Mε = ε ′Mε ,

hence

E
[

ε̂ ′ε̂
]

= E
[

ε ′Mε
]

= E
[

tr
(

ε ′Mε
)]

= E
[

tr
(

Mεε ′
)]

= tr
[

ME
(

εε ′
)]

= σ2trM ,

where

trM = tr
[

IT −X
(

X ′X
)−1

X ′
]

= tr IT − tr
[

X
(

X ′X
)−1

X ′
]

= tr IT − tr
[

X ′X
(

X ′X
)−1 ]

= tr IT − tr Ik

= T − k .

Thus,

E
(

ε̂ ′ε̂
)

= σ2 (T − k)

E

[

ε̂ ′ε̂

T − k

]

= σ2 .

3.20 The statistic

s2 = ε̂ ′ε̂/(T − k) = y′My/(T − k)

is an unbiased estimator of σ2, and s2 (X ′X)−1
is an unbiased estimator of V

(

β̂
)

= σ2 (X ′X)−1
:

E
(

s2
)

= σ2 ,

E

[

s2
(

X ′X
)−1

]

= σ2
(

X ′X
)−1

.

4. Prediction

In the previous section, we studied how one can estimate β in the linear regression model. Suppose

now we know the matrix X0 of explanatory variables for m additional periods (or observations). We

wish to predict the corresponding values of y:

y0 = X0β + ε0

where

E(ε0) = 0 ,V (ε0) = σ2Im ,E
(

εε ′
0

)

= 0 .

The natural “predictor” in this case is:

ŷ0 = X0β̂ = X0

(

X ′X
)−1

X ′y . (4.1)

12



We can then show the following properties.

4.1 ŷ0 is an unbiased estimator of X0β :

E(ŷ0) = X0β = E(y0) , E(ŷ0 − y0) = 0.

4.2 V (ŷ0) = V

(

X0β̂
)

= X0V

(

β̂
)

X ′
0 = σ2X0 (X ′X)−1

X ′
0.

4.3 C(y0, ŷ0) = 0.

PROOF

C(y0, ŷ0) = E

[

(y0 −X0β )
(

X0β̂ −X0β
)′

]

= E

[

ε0

(

β̂ −β
)′

X ′
0

]

= E

[

ε0ε ′X
(

X ′X
)−1

X ′
0

]

= 0 .

4.4 ŷ0 is best linear unbiased estimator of X0β , in the sense that V (ỹ0)−V (ŷ0) is a p.s.d. matrix

for any linear unbiased estimator ỹ0 of X0β . In particular, if ỹ0 = Cy and D = C−X0 (X ′X)−1
X ′,

then

V (ỹ0) = V (ŷ0)+σ2DD′ .

PROOF This follows directly from the generalized Gauss-Markov theorem.

The “prediction errors” are given by:

ê0 = y0 − ŷ0 = y0 −X0β̂

= X0β + ε0 −X0β̂ = ε0 +X0

(

β − β̂
)

.

4.5 ŷ0 is a linear unbiased predictor (LUP) of y0:

E [ê0] = 0 .

PROOF ŷ0 = X0β̂ and

E [ê0] = E [y0 − ŷ0] = X0β −X0β = 0 .
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4.6 V (ê0) = σ2
[

Im +X0 (X ′X)−1
X ′

0

]

.

PROOF

V (y0 − ŷ0) = V (y0)+V (ŷ0)−C(y0, ŷ0)−C(ŷ0,y0)

= σ2Im +σ2X0

(

X ′X
)−1

X ′
0

= σ2
[

Im +X0

(

X ′X
)−1

X ′
0

]

.

4.7 Theorem ŷ0 is the best linear unbiased predictor (BLUP) of y0, in the sense that V (y0 − ỹ0)−
V (y0 − ŷ0) is a p.s.d. matrix for any LUP ỹ0 of y0. In particular, if ỹ0 = Cy and D = C −
X0 (X ′X)−1

X ′, then

V (y0 − ỹ0) = V (y0 − ŷ0)+σ2DD′ .

PROOF

V (y0 − ỹ0) = V (y0)+V (ỹ0)−C(y0, ỹ0)−C(ỹ0,y0)

where

C(y0, ỹ0) = E
[

ε0ε ′C′
]

= 0

for, by the generalized Gauss-Markov theorem,

E [ỹ0] = X0β ⇒CX = X0 ⇒ ỹ0 = C (Xβ + ε) = X0β +Cε .

Further, V (ỹ0) = V (ŷ0)+σ2DD′ and V (y0) = σ2Im. Consequently,

V (y0 − ỹ0) = σ2Im +V (ŷ0)+σ2DD′

=
[

σ2Im +σ2X0

(

X ′X
)−1

X ′
0

]

+σ2DD′

= V (y0 − ŷ0)+σ2DD′ .

5. Estimation with Gaussian errors

If we wish to build confidence intervals and perform hypothesis tests, we need a more complete

specification of the error distribution. The standard hypothesis for this is to assume that the errors

follow a Gaussian distribution.
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5.1 Assumption ε ∼ NT

[

0,σ2IT

]

.

This means that the errors ε t are i.i.d. N
[

0,σ2
]

. We can now completely establish the distribu-

tion of the least squares estimator.

5.2 y ∼ N
[

Xβ ,σ2IT

]

, since y = Xβ + ε.

5.3 β̂ ∼ N
[

β ,σ2 (X ′X)−1
]

, since β̂ = (X ′X)−1
X ′y.

The probability density function of y is given by:

L
(

y; Xβ , σ2IT

)

=
1

(2πσ2)T/2
exp

{

−
1

2

(y−Xβ )′ (y−Xβ )

σ2

}

.

5.4 β̂ = (X ′X)−1
X ′y and σ̂2 = ε̂ ′ε̂/T are the maximum likelihood estimators of β and σ2 respec-

tively.

PROOF To maximize L is equivalent to maximizing ln(L). Since

ln(L) = −
T

2
ln(2π)−

T

2
ln(σ2)−

1

2σ2
(y−Xβ )′ (y−Xβ )

= −
T

2
ln(2π)−

T

2
ln(σ2)−

1

2σ2

[

y′y−2y′Xβ +β ′
X ′Xβ

]

,

the first-order conditions (which are necessary) for a maximum is:

∂ (ln(L))

∂β
= −

1

2σ2

[

−2X ′y+2
(

X ′X
)

β
]

= 0 ,

∂ (ln(L))

∂σ2
= −

T

2

1

σ2
+

1

2σ4
(y−Xβ )′ (y−Xβ ) = 0 ,

hence

(

X ′X
)

β̂ = X ′y , β̂ =
(

X ′X
)−1

X ′y ,

σ̂2 =
(

y−X β̂
)′(

y−X β̂
)

/T .

Further the second-order derivative of ln(L) is:

∂ (ln(L))

∂β
′
∂β

= −
1

σ2

(

X ′X
)

(5.1)

which is negative semidefinite as required for a maximum.

5.5 ŷ = X β̂ ∼ NT

[

Xβ ,σ2P
]

.
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5.6 ε̂ = Mε ∼ NT

[

0,σ2M
]

.

5.7 ε̂ and β̂ are independent, because ε̂ et β̂ are multinormal and C(β̂ , ε̂) = 0 .

5.8 ε̂ and ŷ are independent, because ε̂ and ŷ are multinormal and C(ŷ, ε̂) = 0 .

5.9 Lemma DISTRIBUTION OF AN IDEMPOTENT QUADRATIC FORM IN I.I.D. GAUSSIAN VARI-

ABLES. Let Q be a T × T symmetric idempotent matrix of rank q ≤ T . If ε ∼ NT

[

0,σ2IT

]

,
then

ε ′Qε/σ2 ∼ χ2 (q) .

PROOF Since Q is a symmetric idempotent matrix, there is a T × T orthogonal matrix C, i.e.

CC′ = C′C = IT , such that

CQC′ =

(

Iq 0

0 0

)

,

hence

ε ′Qε = ε ′C′CQC′Cε = (Cε)′
(

CQC′
)

(Cε) .

Further,

ε ∼ N
[

0,σ2IT

]

⇒Cε ∼ N
[

0,σ2CITC′
]

⇒ Cε ∼ N
[

0,σ2IT

]

.

Let v = Cε = (v1,v2, . . . , vT )′ . Then

v1,v2, . . . , vT are i.i.d. N
[

0,σ2
]

and

ε ′Qε = v′
(

CQC′
)

v

= (v1,v2, . . . , vT )

(

Iq 0

0 0

)











v1

v2

...

vT











= v2
1 + v2

2 + · · ·+ v2
q +0 .v2

q+1 · · ·+0 .v2
T

=
q

∑
t=1

v2
t .

This entails

ε ′Qε

σ2
=

q

∑
t=1

(vt

σ

)2

,
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where
vt

σ

ind
∼ N [0,1] , t = 1, . . . , T ,

and

ε ′Qε/σ2 ∼ χ2 (q) .

5.10

S
(

β̂
)

σ2
=

ε̂ ′ε̂

σ2
∼ χ2 (T − k) .

PROOF This follows directly on applying Lemma 5.9 with Q = M and the fact that tr (M) = T −
k.

5.11 Let R be a q× k fixed matrix. Then,

Rβ̂ ∼ Nq

[

Rβ ,σ2R
(

X ′X
)−1

R′
]

. (5.2)

Further Rβ̂ and s2 are independent.

PROOF β̂ ∼ N
[

β , σ2 (X ′X)−1
]

entails Rβ̂ ∼ N
[

Rβ , σ2R(X ′X)−1
R′

]

. Since β̂ and ε̂ are indepen-

dent, Rβ̂ and ε̂ ′ε̂ are also independent, so that Rβ̂ and s2 = ε̂ ′ε̂/(T − k) are independent.

5.12 Let R be a q× k fixed matrix of rank q, r = Rβ and

S(R, β̂ ) = [Rβ̂ − r]′
[

R
(

X ′X
)−1

R′
]−1

[Rβ̂ − r] .

Then

S(R, β̂ )/σ2 ∼ χ2 (q) . (5.3)

Further, S(R, β̂ ) and s2 are independent.

PROOF

Rβ̂ − r = R
(

β̂ −β
)

and

R
(

β̂ −β
)

∼ Nq

[

0,σ2R
(

X ′X
)−1

R′
]

.
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Thus,

S(R, β̂ )/σ2 =
[

R
(

β̂ −β
)]′ [

σ2R
(

X ′X
)−1

R′
]−1 [

R
(

β̂ −β
)]

∼ χ2 (q) .

6. Confidence and prediction intervals

6.1. Confidence interval for the error variance

In the normal classical linear model, we have:

ε̂ ′ε̂/σ2 = (T − k)s2/σ2 ∼ χ2 (T − k) .

Thus, we can find a and b such that

P
[

χ2 (T − k) > b
]

=
α

2
,

P
[

χ2 (T − k) < a
]

=
α

2
,

P
[

a ≤ χ2 (T − k) ≤ b
]

= 1−
(α

2
+

α

2

)

= 1−α ,

which entails that

P

[

a ≤
(T − k)s2

σ2
≤ b

]

= 1−α

P

[

1

b
≤

σ2

(T − k)s2
≤

1

a

]

= 1−α

P

[

(T − k)s2

b
≤ σ2 ≤

(T − k)s2

a

]

= 1−α .

It is important to note this is not the smallest confidence interval for σ2.

6.2. Confidence interval for a linear combination of regression coefficients

Consider now the linear combination w′β . Then

w′β̂ −w′β ∼ N
[

0,σ2w′
(

X ′X
)−1

w
]

,
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hence
w′β̂ −w′β

σ∆
∼ N [0,1]

where ∆ =

√

w′ (X ′X)−1
w. Since σ is unknown, consider:

t =
w′β̂ −w′β

s∆

=
w′β̂ −w′β

∆σ
√

s2

σ2

=
w′β̂ −w′β

σ∆
/

√

(T − k)s2

σ2 (T − k)

= Y/

√

X

T − k

where X and Y are independent, Y ∼ N [0,1] and X ∼ χ2 (T − k) . Thus, t follows a Student t distri-

bution with T − k degrees of freedom:

t ∼ t (T − k)

hence

P
[

−tα/2 ≤ t (T − k) ≤ tα/2

]

= 1−α

where P
[

t (T − k) > tα/2

]

= α/2 and

P

[

w′β̂ − tα/2s∆ ≤ w′β ≤ w′β̂ + tα/2s∆
]

= 1−α .

6.3. Confidence region for a regression coefficient vector

We now wish to build a confidence region for a vector Rβ of linear combinations of the elements of

β , where R : q× k and has rank q. Then

S(R, β̂ )/σ2 = (Rβ̂ −Rβ )′
(

R
(

X ′X
)−1

R′
]−1

(Rβ̂ −Rβ )/σ2 ∼ χ2 (q) .

Since σ is unknown, let us consider:

F = S(R, β̂ )/qs2 =
S(R, β̂ )/qσ2

(T − k)s2/σ2 (T − k)
=

X1/q

X2/(T − k)

where X1 and X2 are independent,

X1 = S(R, β̂ )/σ2 ∼ χ2 (q) ,

X2 = (T − k)s2/σ2 ∼ χ2 (T − k) .

Thus F follows a Fisher distribution with (q, T − k) degrees of freedom:

F ∼ F (q,T − k) .
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If we define Fα by

P [F (q,T − k) > Fα ] = α ,

the set of all vectors Rβ such that F ≤ Fα :

(Rβ̂ −Rβ )′
[

R
(

X ′X
)−1

R′
]−1

(Rβ̂ −Rβ )/qs2 ≤ Fα .

is a confidence region with level 1−α for Rβ . This set is a an ellipsoid (confidence ellipsoid).

6.4. Prediction intervals

y0 = x′0β + ε0

where
(

ε

ε0

)

∼ N
[

0,σ2IT+1

]

.

Further

ŷ0 = x′0β̂ , β̂ =
(

X ′X
)−1

X ′y ,

ŷ0 − y0 = x′0(β̂ −β )− ε0 ∼ N{0,σ2[1+ x′0
(

X ′X
)−1

x0]} .

hence
ŷ0 − y0

σ∆1

∼ N [0,1] ,

where ∆1 =
[

1+ x′0 (X ′X)−1
x0

]1/2

, and

ŷ0 − y0

s∆1

∼ t (T − k)

where tα/2 satisfies

P
[

ŷ0 − tα/2s∆1 ≤ y0 ≤ ŷ0 + tα/2s∆1

]

= 1−α .

6.5. Confidence regions for several predictions

We now consider the problem of predicting a vector of observations y0 generated according to the

same model independently of y :

y0 = X0β + ε0 ,
(

ε

ε0

)

∼ N
[

0,σ2IT+m

]

,
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where X0 is known but y0 is not observed. For predicting y0, let us define:

ŷ0 = X0β̂ ,

ê0 = y0 − ŷ0 = ε0 −X0(β̂ −β ) ,

where

E(ê0) = 0 ,

V (ê0) = σ2
[

Im +X0

(

X ′X
)−1

X ′
0

]

= σ2D0 ,

ê0 ∼ N
[

0, σ2[Im +X0

(

X ′X
)−1

X ′
0]

]

.

Consequently,

ê′0V (ê0)
−1

ê0 ∼ χ2 (m) ,

ê′0D−1
0 ê0/σ2 ∼ χ2 (m) .

Since σ2 is unknown, we replace it by s2:

(T − k)s2/σ2 ∼ χ2 (T − k) .

Further, since s2 is independent of y0 and ŷ0 = X β̂ , s2 is independent of ê0,

F =
ê′0D−1

0 ê0

ms2
=

ê′0D−1
0 ê0/σ2m

(T − k)s2/σ2 (T − k)
∼ F (m, T − k) ,

F = (y0 − ŷ0)
′
[

Im +X0

(

X ′X
)−1

X ′
0

]−1

(y0 − ŷ0)/ms2 ∼ F (m, T − k) .

Then the set of vectors y0 such that

F ≤ Fα (m, T − k)

is a confidence region for y0 with level 1−α.

7. Hypothesis tests

7.0.1 Let us now consider the problem of testing an hypothesis of the form

H0 : w′β = w0 (7.1)

where w be a k×1 vector of constants.To test H0, it is natural to consider the difference:

w′β̂ −w0 = w′
(

β̂ −β
)

∼ N
[

0,σ2w′
(

X ′X
)−1

w
]

.
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Under the assumptions of the Gaussian classical linear model, we then have:

w′β̂ −w0

σ∆
∼ N [0,1] ,∆ =

[

w′
(

X ′X
)−1

w
]1/2

,

t =
w′β̂ −w0

s∆
∼ t (T − k) .

This suggests the following tests of H0 :

reject H0 at level α against w′β −w0 6= 0 when |t| ≥ tα/2 (two-sided test) (7.2)

reject H0 at level α against w′β −w0 > 0 when t ≥ tα (one-sided test) (7.3)

reject H0 at level α against w′β −w0 < 0 when t ≤−tα (one-sided test). (7.4)

An important special case of the above problem consists in testing the value of any given component

of β :

H0(β io) : β i = β io

where β i is an element of β .

Let us now consider the more general hypothesis which consists in testing the value of a general

vector linear transformation of β :

H0 : Rβ = r =











w′
1

w′
2

...

w′
q











β =











w′
1β

w′
2β
...

w′
qβ











(7.5)

where R is a q× k fixed matrix with full row rank [rank(R) = q].

7.0.2 Wald-type test. A natural approach then consists in estimating Rβ by Rβ̂ ,and then to ex-

amine the difference Rβ̂ − r. Under H0,

Rβ̂ ∼ N [r,ΣR] , where ΣR = σ2R
(

X ′X
)−1

R′ .

We need a concept of distance between Rβ̂ and r. By (5.3),

W = (Rβ̂ − r)′Σ−1
R (Rβ̂ − r) ∼ χ2 (q) under H0 .

We tend to reject H0 when W is too large (W ≥ c. However, σ2 and ΣR are unknown. It is then

natural tom replace σ2 by the estimate s2, and ΣR by

Σ̂R = s2R
(

X ′X
)−1

R′ .
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This yields a Wald-type criterion:

Ŵ = (Rβ̂ − r)′Σ̂−1
R (Rβ̂ − r)

= (Rβ̂ − r)′
[

s2R
(

X ′X
)−1

R′
]−1

(Rβ̂ − r)

= (Rβ̂ − r)′
[

R
(

X ′X
)−1

R′
]−1

(Rβ̂ − r)/s2

= S(R, β̂ )/s2 .

Since

F = Ŵ/q = S(R, β̂ )/qs2 ∼ F (q,T − k) ,

we reject H0 at level α when

F > Fα (q,T − k) . (7.6)

7.0.3 Likelihood ratio test. Another approach to testing H0 consists in looking for a likelihood

ratio test. This test is based on focusing on the likelihood function:

L
(

y;Xβ ,σ2IT

)

=
1

(2πσ2)T/2
exp

{

−
1

2

(y−Xβ )′ (y−Xβ )

σ2

}

. (7.7)

Let

L(Ω̂) = max
β , σ2

L = max
(β ,σ2)∈Ω

L (7.8)

i.e. we find values of β and σ2 which maximize “the probability of the observed sample”, and

L(ω̂) = max
β ,σ2

Rβ=r

L = max
(β ,σ2)∈ω

L (7.9)

i.e. we find values of β and σ2 which maximize “the probability of the observed sample” and satisfy

H0, where

Ω =
{(

β ,σ2
)

: −∞ < β i < +∞, i = 1, . . . , k, 0 < σ2 < +∞
}

,

ω =
{(

β ,σ2
)

∈ Ω : Rβ = r
}

.

We see easily that

0 ≤ L(ω̂) ≤ L(Ω̂) ,

hence

0 ≤
L(ω̂)

L(Ω̂)
≤ 1 ,

L(Ω̂)

L(ω̂)
≥ 1 .

23



We reject H0 when

LR(y) ≡
L(Ω̂)

L(ω̂)
≥ λ α ,

where λ α depends on the level of the test:

P [LR(y) ≥ λ α ] = α .

7.0.4 L(Ω̂) is achieved when β = β̂ and σ2 = σ̂2 :

L(Ω̂) =
1

(

2πσ̂2
)T/2

exp











−
1

2

(

y−X β̂
)′(

y−X β̂
)

σ̂2











=
1

(

2πσ̂2
)T/2

exp

{

−
T

2

}

=
e−T/2

[

2πσ̂2
]T/2

=
T T/2e−T/2

(2π)T/2

[

(

y−X β̂
)′(

y−X β̂
)

]T/2

=
T T/2e−T/2

(2π)T/2
S

T/2

Ω

,

where SΩ =
(

y−X β̂
)′(

y−X β̂
)

.

7.0.5 To find L(ω̂), it is equivalent to maximize

ln(L) = −
T

2
ln(2π)−

T

2
ln

(

σ2
)

−
1

2σ2
(y−Xβ )′ (y−Xβ )

under the constraint Rβ = r.Consider σ2 as given. It is then sufficient to solve the problem:

Min
β

(y−Xβ )′ (y−Xβ )

with restriction r−Rβ = 0. Ton do this, we consider the Lagrangian function:

L = (y−Xβ )′ (y−Xβ )−λ ′ [r−Rβ ] .

The optimum β = β̃ must satisfy the first-order conditions:

∂L

∂β
= −2X ′y+2

(

X ′X
)

β̃ +R′λ = 0 (7.10)

∂L

∂λ
= r−Rβ̃ = 0 . (7.11)
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On multiplying by (7.10) by R(X ′X)−1
, we get:

−2R
(

X ′X
)−1

X ′y+2Rβ̃ +R
(

X ′X
)−1

R′λ = 0

R
(

X ′X
)−1

R′λ = 2R
(

X ′X
)−1

X ′y−2r = 2
[

Rβ̂ − r
]

λ = 2
[

R
(

X ′X
)−1

R′
]−1 [

Rβ̂ − r
]

.

By (7.10),

2
(

X ′X
)

β̃ = 2X ′y−R′λ (7.12)

= 2X ′y−2R′
[

R
(

X ′X
)−1

R′
]−1 [

Rβ̂ − r
]

(7.13)

hence

β̃ =
(

X ′X
)−1

X ′y−
(

X ′X
)−1

R′
[

R
(

X ′X
)−1

R′
]−1 [

Rβ̂ − r
]

= β̂ +
(

X ′X
)−1

R′
[

R
(

X ′X
)−1

R′
]−1 [

r−Rβ̂
]

.

We see that β̃ does not depend on σ2. Substituting β̃ in ln(L), we see that

ln(L) = −
T

2
ln(2π)−

T

2
lnσ2 −

1

2σ2
Sω

where Sω =
(

y−X β̃
)′(

y−X β̃
)

, from which we get

∂ ln(L)

∂σ2
= −

T

2σ2
+

Sω

2σ4
= 0

at the optimum, hence

σ̃2 = Sω/T =
(

y−X β̃
)′(

y−X β̃
)

/T ,

L(ω̂) =
T T/2e−T/2

(2π)T/2
S

T/2
ω

,

The likelihood ratio test is given by the critical region:

L(Ω̂)

L(ω̂)
=

(

Sω

SΩ

)T/2

≥ λ α

or, equivalently,
Sω

SΩ
≥ λ 2/T

α . (7.14)
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Since

Sω = (y−X β̃ )′(y−X β̃ )

= (y−X β̂ )′(y−X β̂ )+(β̂ − β̃ )′
(

X ′X
)

(β̂ − β̃ )

= SΩ +(β̂ − β̃ )′
(

X ′X
)

(β̂ − β̃ ) ,

we also see that

Sω −SΩ =
(

r−Rβ̂
)′ [

R
(

X ′X
)−1

R′
]−1

R
(

X ′X
)−1 (

X ′X
)(

X ′X
)−1

R′
[

R
(

X ′X
)−1

R′
]−1 [

r−Rβ̂
]

=
(

r−Rβ̂
)′ [

R
(

X ′X
)−1

R′
]−1 [

r−Rβ̂
]

= (Rβ̂ − r)′
[

R
(

X ′X
)−1

R′
]−1

(Rβ̂ − r) = S(R, β̂ )

=
(

qs2
)

F ,

hence

F =
Sω −SΩ

qs2
=

(Sω −SΩ )/q

SΩ/(T − k)

and

Sω

SΩ
=

SΩ +
(

qs2
)

F

SΩ
= 1+

(

qs2
)

F

(T − k)s2
= 1+

q

T − k
F ≥ λ 2/T

α

⇐⇒ F ≥
T − k

q

(

λ 2/T
α −1

)

= Fα .

The likelihood ratio test of H0 : Rβ = r has the critical region

F ≡
(Sω −SΩ )/q

SΩ/(T − k)
≥ Fα (q,T − k)

where

F ∼ F (q,T − k) .

This is an easy method for testing H0 : Rβ = r. Note also that:

LR =

(

Sω

SΩ

)T/2

=

(

1+
q

T − k
F

)T/2

,

F =
T − k

q

(

LR2/T −1
)

.
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8. Estimator optimal properties with Gaussian errors

When errors are Gaussian, the OLS estimators β̂ i, i = 1, . . . , k and s2 =
(

y−X β̂
)′(

y−X β̂
)

/(T − k) have minimum variance in the class of all unbiased estimators

of β i, i = 1, . . . , k, and σ2 respectively [see Rao (1973, section 5a)].
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