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1. Model-free linear regression and ordinary least squares

1.1. Notations

We wish to explain or predict a variable y through & other x1,x7,..., x;. We T observations on each
variable:

Y1
Y2

y = . : dependent variable (to explain)
yr
X1

X2i .
x; = : , i=1,..., k:explanatory variables.

XTi

Usually, the explanatory variables are represented by the T x k matrix

/
X1 X1z o Xk X
!
X21 X2 vt Xk X5
X =[x1,x2,..., % = . . ) = : )
!
XT1 XT2 - XTk Xr

where X; is a k X 1 vector:
Xz/: (13 X2y ooy Xik) 5, t=1,...,T.
We wish to represent each observation y; as a function of x;q, ..., x;:
vi=xaP+xnBo+-+xuBi+e, t=1,...,T (1.1)

where &; is a “residual” which is left unexplained by the explanatory variables. This model can also
be written in the following matrix form:

y=XB+e (1.2)

where € = (g1, €2,..., 7).



1.2. The least squares problem

1.2.1 In general, we cannot obtain a “perfect fit” (¢, =0, ¢=1,...,T).Inview of this, a natural
approach (proposed by Gauss) consists in minimizing the sum of squared residuals:

]2

[\mﬂﬂ
I
™~

[)’t _xtlﬁl — _xzkﬁk
1

y—XB) (y—XB)=S(B) .

N
Il

—_—

We consider the problem:
Min(y —XB)' (y—XB) -

Since
S(B)= (Y~ B'X") y—XB) =y'y—2B'X'y+B'X'XB,
we have: 25 (B)
s =—2X'y+2X'XB .
B y+2X'XP
To compute the above, we use the following result on differentiation with respect to a vector x :
d (¥a)
= a, 1.3
Ox a (1.3)
d(X¥'A
(g ) _ (A+A")x. (1.4)
X

For any point 8 = f3 such that S (f) is a minimum, we must have:

aisB), A _

hence
(X 'X ) B = X'y : normal equations..

1.2.2 When rank (X) = k, we must have rank (X'X) = k so that (X'X) " exists. In this case, the
normal equations have a unique solution:

B=(xx)"'Xy. (1.5)
Once 3 is known, we can compute the “fitted values” and the “residuals” of the model.
1.2.3 The model fitted values are

A

F=XB=x(X'X)"'X'y=Pry,



where

1

P = X(XX) X (projection matrix)

P = P ,PP=P (symmetric idempotent matrix).

1.2.4 The model residuals are:

A

E=y—XB=y—9=y—Py=(I—-P)y=My
where

PX = X,MX=0, (1.6)
PM = P(I-P)=0,MP=0. (1.7)

1.2.5 Each column of M is orthogonal with each column of X :

X'M=0,
XM=0, i=1,... k.

Residuals and regressors are orthogonal:

X't = X'My=0
= x&=0, i=1,...,k
T
= i’Té:Zé‘,zo, if the matrix X contains a constant.

I
—_

'
where & = (81,8,..., &7) etir = (1,1,...,1)".
1.2.6 Fitted values and residuals are orthogonal:
V& =yPMy=0. (1.8)
1.2.7 The vector y can be decomposed as the sum of two orthogonal vectors:
y=Py+(I—P)y=9+¢&. (1.9)

1.2.8 For any vector f3,

S(B) = (-XBY (v-XB) = (y-X

v
TN
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This directly verifies that § = B minimizes S ().

2. Classical linear model

In order to establish the statistical properties of B, we need assumptions on X and €. The following
assumptions define the classical linear model (CLM).

2.1 Assumption y=Xf+¢

where y is aT x 1 vector of observations on a dependent variable ,
X is aT x k matrix of observations on explanatory variables,

B is ak x 1 vector of fixed parameters,

eisaT x 1 vector of random disturbances.

2.2 Assumption E(g) =0.
2.3 Assumption  E[ee’] = oIy .
2.4 Assumption X is fixed (non-stochastic).

2.5 Assumption rank(X) =k <T .

From the assumption 2.1 - 2.4, we see that:

XiB
E(y) = EGIX)=XB=|
XrB

By

= ()Cl,)Q,...,xk) [3:2

B

1By +x2fy+ -+ xpy,
V(y) = V(y|X)=0"Ir

sz 0 --- 0
0 o2 --- 0
0 0 o2



If, furthermore, we add the assumption that € follows a multinormal (or Gaussian) distribution, we
get the normal classical linear model (NCLM).

2.6 Assumption ¢ follows a multinormal distribution.

3. Linear unbiased estimation

From the assumptions 2.1 - 2.5, we can make the following observations.
3.1 B is linear with respect to y.

PROOF J3 has the form f§ = Ay, where A = (X’X) ' X' is a non-stochastic matrix. O

32 B=(X'X)"X'(XB+e)=B+(X'X) 'Xe.
33 B is an unbiased estimator of 3.

PROOF E(B) =B+ (X'X) 'X'E(e) = B. O

34 V(B)=c2(x'x)"".

PROOF
V(B) = E[(B-B)(B-B)]
= E[(x'X) "' X'ee'’x (x'x) "]
= (x'X)"'X'E (eg) x (x'x)”"
= o2 (x'x)""
where the last identity follows from Assumption 2.3. O

3.5 Theorem GAUSS-MARKOV THEOREM. ﬁ is the best estimator of B in the class of linear
linear unbiased estimators (BLUE) of B, i.e. V(B) — V() is a positive semidefinite matrix for any

linear unbiased estimator (LUE) B of B. In particular, if p = Cy and D = C — (X'X) ' X', then

V(B) =V(B)+0*DD' .



PROOF Since B is unbiased and
C=D+(X'X)"'X,

we have:
E(B) = E{[p+(xx) "X |(xB+e)]
= DXB+p
= B,
hence
DX =0 and CX=1I.
Consequently, }
B=Cy=CXB+Ce=pB+Ce
and 5
B—B=Ce,
hence
V(B) = E[(B-B)(B-B)] =E[cee'c’] = oCC
— &[D+(xX'X)"' XD +x (x'x)""]
— o*[pD' + (X'X) '] = o?DD' + 6 (x'x) "
= o’DD'+V(B)
and
V(B) -V (B) = o*DD’ 3.1)
is a positive semidefinite matrix. 0

3.6 Corollary Letw be a k x 1 vector of constants. Then,
V(wB) = V(w'B)
for any linear unbiased estimator 3 of B.
PROOF Since E(B) =E (ﬁ) = 3, we have:
(wB) = E(wB)=wp
) = wV (B) w=w [GZDD'+V (3)} w

= o*WDD'w+wV (3) w



N

= GZW/DD/W+V<W/3) ZV(W’ﬁ) )

for w'DD'w > 0. O

In particular, we must have:
V(ﬁl)ZV(ﬁl), izl,...k.
3.7 Theorem GENERALIZED GAUSS-MARKOV THEOREM. Let L be a r X k fixed matrix and
y=LpB. Then ¥ = Lf is the BLUE v, i.e. V(7)—V (¥) is a positive semidefinite matrix for any
linear unbiased estimator ¥ of . In particular, if y= Cy and D = C — L(X'X) "' X', then
V(%) =V (%) +oc°DD’

and

PROOF Since 7 is unbiased and
C=D+L(X'X)"'x’

we have
E(®) = E{(D+L(X'X)'X']|(XB+e)}
— DXB+LB=DXB+y
= Y%,
hence
DX=0 and CX=L.
Consequently,
¥y = Cy=CXB+Ce
= LB+Ce=y+Ce
and

V(1) = E[(7-n(F-7']=E[Cee'’C’| = o’CC
— [D+L(xX'X)"'X][D+x (x'x)"'L]
= o’[DD' +L(x'x)"'L]

— o’DD' +6’L(X'X)"'I' = a*DD' +V(Lp)
= o’DD'+V(j),



SO

V(%) -V (%) = o’DD’

is a positive semidefinite matrix, and

(7.9 =

E[Cee'X (X'X) L]

= X (X'x) ' =c L (X'X) 'L =V(}),

C(;)w/* ;}\/a ;}\/)

=C(7,7)

—C(7) =V V) =0

(3.2)

(3.3)

3.8 Corollary QUADRATIC GAUSS-MARKOV OPTIMALITY. Let Q be ar X r positive semidefi-
nite fixed matrix and L a r X k fixed matrix, y= L and ¥ = L. Then

E[(¥-7)0(¥—7)] =

for any linear unbiased estimator ¥ of .

PROOF Let7=CyandD=C—L(X'X)"'

E[(7-v)e(¥-7)]

E[(7-7)e(r-7)]

X'. Then

E[cQ(7—7) (7—7)']
wQE[(7—7) (7—7)']

= trQ[ DD’ +V ()]

>

o’tr (QDD') +tr [QV (¥ )]

(D'QD) +trQ [( -]
(D'OD) +Eltr ( (? 7)]
(DQD) [ ? ¥=7)]

]

o*tr
o’tr
o’tr
E[(7-1'0(

since Q is p.s.d. = D'QD is p.s.d. = tr D'QD > 0.

3.9 Corollary For any LUE of ¥ of y = L3,

PROOF

trV(y) =

trV(y) >tV (¥) .

wE[(7-1(T-7)] =

Efr 7—v) (7—7)']



by Corollary 3.8 with O = 1. 0

3.10 Lemma PROPERTIES OF MATRIX DOMINANCE. IfA = B+ C where B is a p.d. matrix and
C is a p.s.d. matrix, then

(a) Aisp.d.,
(b) |B] <A,
(c) B-'—A lisp.s.d.
3.11 Corollary Let L be an r x k fixed matrix, Yy = L and ¥ = LB. Then
VDI = IV(H)I

for any LUE ¥ of .
PROOF Since ¥ is the BLUE of ¥ (by the generalized Gauss-Markov theorem), we have:

VH =V +C (3.4)

where Cis p.s.d. If [V (§)| =0, then |V (§)| < |V (¥) |, forcar [V (¥)| >0.If [V (§)| > O, then V (§)
is p.d. This entails that V (¥) is also p.d. and |V (¥) | < [V (¥)|. O

312 y=XB+Pe,&=My=Me

PROOF
5 = Py=P[XB+e|=XB+Pe, carPX=X,
&€ = My=M[XB+e]=Me, carMX=0.
O
313 E(y)=XB,E(&)=0.
PROOF
E() = EXB+Pe]=XB+PE(e)=Xp,
E(€) = EG-9)=XB-XB=0.
O



3.14 V(§)=02P, V(&) =0c’M.

PROOF
V(E) = V(XB)=xV(B)x'=c*Xx (x'x) 'x' =P,
V(&) = V(My)=MV(Hy)M =oc’M.

3.15 § is the best linear unbiased estimator of X 3.

PROOF This follows directly on taking L = X in the generalized Gauss-Markov theorem.

3.16 £ is the best linear unbiased estimator (BLUE) of €, in the sense that E(& — &) = 0 and
V(é€—¢g)—V(&—e¢) is ap.s.d. matrix
for for LUE € of €.
PROOF Since € is a LUE of €, we must have:
€§=Ay and E(E—¢€)=0.
Consequently,

E(€) = E(Ay)
— E[A(XB+€)]=AXB=0,YB,

which entails that

AX =0,
E=A(XB+e)=Ac.

Let

B=A—M where M=I-X(X'X)"'X".
Then

AX =[B+M]X=BX =0, since MX=0,
hence

10



= V[(B+M) ] V[B+M—I)g]
= E[B+M—I)ee' (B'+M—1I)]
= [B- < > X[ X (%)X
= o*[BB +X (x'X)"'X],
and
V(e—-¢e) = E[M—-1)ee (M-1)]
- P(I-M) =X (X'X)"'X,
so that
V(E—¢e)=0’BB +V(&—¢) .
Thus
V(E—¢)—V(é8—¢)=0’BB
a p.s.d. matrix. O

PROOF
C(B.&) = E[(B—B)&] =E[(X'X) 'X'ee'M]
= o2 (x'x) 'x'M=0.
]
3.18 C(5,8)=0.
PROOF
C(5.8) = E[(XB-XP)e]
= XE[(B-B)&]=XC(B,&)=0
]
3.19 Estimation of 6°. Since 6> =E(€}),t = 1,..., T, it is natural to consider the residuals of

the regression which can be viewed as estimations of the error terms &;:

—y—XB=My=M(XB+¢)=Me,

11



T
Y & =8t =M Me =¢Me,

hence
E[¢'8] = E[e'Me] =E]|r (¢'Me)]
= E[tr (Me€')] =tr [ME (e€’)]
= O'ZtrM,
where
oM = [l —X(X'X) X =l —t[X (X'X) ' X]
— wl—u[X'X (X'X)"'] = vl —ul
= T—k,
Thus,
E(#'8) = o*(T—k)
g'e o
E [T —~| = °

3.20 The statistic
2 = 88/ (T k) = yMy/ (T — )

is an unbiased estimator of 62, and s (X’X) " is an unbiased estimator of V (fi) =c2(x'x)"":
E (sz) = o2,

E[2 (%) = o (xx) "

4. Prediction

In the previous section, we studied how one can estimate 3 in the linear regression model. Suppose
now we know the matrix Xy of explanatory variables for m additional periods (or observations). We
wish to predict the corresponding values of y:

yo =XoB +¢€o

where
E(g0) =0,V (go) = 6’1, ,E (886) =0.

The natural “predictor” in this case is:

So=XoB =X (X'X) ' X'y . 4.1

12



We can then show the following properties.
4.1 3 is an unbiased estimator of Xyf3 :
E(¥o) =XoB=E(y0), E(Jo—y0)=0.
42 V() =V (XOB) — XV ([3) X! = 62Xy (X'X) "' X,
4.3 C(y0,9) =0.

PROOF
C(».%) = E [(yo —XoPB) (XOB —Xoﬁ)l]
_ [go (B —ﬁ)/x(g] —E [soe’x (X’X)_]X(’,} —0.

4.4 3 is best linear unbiased estimator of Xof3, in the sense that V () — V (§o) is a p.s.d. matrix
for any linear unbiased estimator J, of Xof3. In particular, if o = Cy and D = C — X (X'X )71 X/,
then

V (50) =V (o) + o°DD’ .

PROOF This follows directly from the generalized Gauss-Markov theorem. O

The “prediction errors” are given by:

A

e = yo—Jo=yo—Xop
= Xol3+8o—Xo[3=80+X0<B—B)-

4.5 73y is a linear unbiased predictor (LUP) of yy:

PROOF 3y = XOB and
E[é()] — E[y() —yA()] :XOB —X()B — O .

13



4.6 V() =02 I, +Xo (X'X) "' X}| .
PROOF

Vo—5) = Vo)+V (o) —Co,5)—C(Fo,0)
= L, +02X (X'X) ' x;
o2 |1+ Xo (X'X) ' x5 -

4.7 Theorem 3 is the best linear unbiased predictor (BLUP) of yy, in the sense that V (yo — yo) —
V(yo—73o) is a p.s.d. matrix for any LUP §, of yo. In particular, if yy = Cy and D = C —
Xo (X'X)"' X', then

V (yo —5o) =V (yo — o) + 6°DD’ .

PROOF
V (yo—30) =V (y0) +V (Fo) — C(y0,50) — C(Fo,¥0)

where
C(yo,50) =E [SQS/C/] =0

for, by the generalized Gauss-Markov theorem,
Eo] =XoB=CX=Xo=3Jo=C(XB+¢)=XoB+Ce.
Further, V (o) = V (§0) + 62DD’ and V (yo) = 6°1,,. Consequently,

V(yo—F0) = 6 u+V($o)+0c’DD
= [0+ 02X (X'X) ' x| +0*DD/
= V(yo—Jo)+0o>DD .

5. Estimation with Gaussian errors

If we wish to build confidence intervals and perform hypothesis tests, we need a more complete
specification of the error distribution. The standard hypothesis for this is to assume that the errors
follow a Gaussian distribution.

14



5.1 Assumption &~ N7 [0,0°I7].

This means that the errors &; are i.i.d. N [0, 62] . We can now completely establish the distribu-
tion of the least squares estimator.

52 y~N [Xﬁ,O'ZIT] ,sincey=Xf +e¢.
53 B~N [[3, o2 (X’X)*l} , since B = (X'X)"' X'.

The probability density function of y is given by:

L(v;XB, c%lr) = 1(y—XB)'(y—XB)} ‘

1
(2nc2)? exp{ 2 o?

54 B =(X'X)"'X'yand 6 = &'2/T are the maximum likelihood estimators of 8 and ¢ respec-
tively.

PROOF To maximize L is equivalent to maximizing In(L). Since

(L) = ~2In(2)~ 2In(0%) o (v~ XB) (v~ XB)
T T

1
2 /
= —Eln(Zﬂ,')—Eln(G )—F Yy—2y'XB+B'X'XB] ,

the first-order conditions (which are necessary) for a maximum is:

d(In(L)) _ ,L[,zx’yjtz(x’x)ﬁ]:(),

T8 202
(9%1;(2@) = %ém%@—m)’@—xﬁ) =9,

hence

Further the second-order derivative of In(L) is:

I(n(L) 1

TET I o

which is negative semidefinite as required for a maximum. O

55 §=XpB~Nr[XB,0%P].

15



5.6 &=Me~Nr[0,6°M].

5.7 &and [3 are independent, because € et 3 are multinormal and C(ﬁ, €)=0.

5.8 & and y are independent, because € and § are multinormal and C(§,&) =0.

5.9 Lemma DISTRIBUTION OF AN IDEMPOTENT QUADRATIC FORM IN I.I.D. GAUSSIAN VARI-

ABLES. Let Q be a T x T symmetric idempotent matrix of rank ¢ < T. If € ~ Nr [O, Gle] ,
then

€'0e/o” ~ 1% (q) -

PROOF Since Q is a symmetric idempotent matrix, there is a 7 x T orthogonal matrix C, i.e.

CC' = C'C = It , such that
(1, 0
cocC —< 0 0 )°

€'Qe = €'C'COC'Ce = (Ce)' (COC') (Ce) .

hence

Further,

e ~ NJ[0,6°Ir] = Ce~N[0,6°CIyC']
= Ce~N|[0,6°I7] .

Letv=Ce = (vi,v,...,vr) . Then
Vi,v2,..., vy areiid. N [0, 62]
and

g'0e = V' (CoC)v

Vi

B I, 0| "
= (vl,vz,...,vT)<0 0> :

vr

= v%+v%+--~+v§+0.v§+1~-+0.v%

This entails

16



wheregiﬂN[O,l] , t=1,...,T,

and
€'0e/o’ ~ x*(q) .
O
5.10
@ — élj ~ 2 (T —k)
o? o?

PROOF This follows directly on applying Lemma 5.9 with Q = M and the fact that tr (M) =T —
k. O

5.11 Let R be a g x k fixed matrix. Then,
RB ~N, [Rﬁ,ozk (X’x)“R’] . (5.2)
Further Rﬁ and s? are independent.

PROOF B ~N [B, o’ (X’X)fl} entails R ~ N [RB, o’R (X’X)flR’} . Since B and £ are indepen-
dent, R} and &' are also independent, so that R} and s> = &'/ (T — k) are independent. O

5.12 Let R be a g X k fixed matrix of rank ¢, » = Rf3 and

A -1

S(R,B) = [RB — 1]’ [R (x'x) ™" R’] [RB —1].

Then
S(R.B)/o* ~ 2*(q) - (5.3)
Further, S(R, ) and s? are independent.

PROOF
RB—r=R (B . ﬁ)
and
R(B~B) ~N,[0,0%R(x'x) 'R .

17



Thus,

6. Confidence and prediction intervals

6.1. Confidence interval for the error variance

In the normal classical linear model, we have:
é’é/oz =(T —k)s2/62 ~ )(2 (T —k) .

Thus, we can find a and b such that

P[x*(T —k) > b] :%,
Px*(T—k) <d :%,
Pla<?(T-K)<b]=1-(5+5)=1-0a,

which entails that

1 o’ 1
Pl “l=1-
[b_(T—k)sz_a] “
— 2 _ 2
PFT k)s SGZS(T k)s]: Y
b a

It is important to note this is not the smallest confidence interval for 6.

6.2. Confidence interval for a linear combination of regression coefficients

Consider now the linear combination w’f3. Then

wWpB—wp~N [0,62w’ (X'X)flw] ,

18



hence

wB—w'B
- T <N
cA

where A = /w/ (X'X)"" w. Since & is unknown, consider:

W B —wp

sA

W’B—W’B:w’f)’—w’ﬁ/ (T —k)s?
Ao /2 cA o2 (T —k)

[0,1]

t =

where X and Y are independent, Y ~ N[0, 1] and X ~ x> (T — k). Thus, ¢ follows a Student ¢ distri-
bution with T — k degrees of freedom:
t ~t (T —k)

hence
Pl—tap <t(T—k)<tqp|=1-a

where P [t (T —k) > 14/5] = 0t/2 and
P [W’B—ta/zsA <wpB gwlﬁ—l—ta/zsA} =1l—-«.

6.3. Confidence region for a regression coefficient vector

We now wish to build a confidence region for a vector Rf3 of linear combinations of the elements of
B, where R : g X k and has rank ¢. Then

S(R.B)/o* = (RB—RBY (R(X'X)"'R| ' (RB—RB)/c*~ x*(q) -

Since o is unknown, let us consider:

S(R.B)/qc>  Xi/q

F=S(R,B)/qs* = (T—k)2/2(T—k) X/ (T —k)

where X and X, are independent,

X =S(R,B)/0* ~ 2*(q) ,
Xo = (T —k)s*/c> ~ x> (T —k) .

Thus F follows a Fisher distribution with (g, T — k) degrees of freedom:

F~F(q,T—k) .

19



If we define Fy, by

the set of all vectors Rf3 such that F < Fy, :

(RB—RB)'[R(X'X)"'R] "(RB—RB)/qs* < Fy .

is a confidence region with level 1 — o for R3. This set is a an ellipsoid (confidence ellipsoid).

6.4. Prediction intervals

y0:x6ﬁ+80
where
€
Z ) ~NJ0,0%1 .
<80> [ ’ T+1:|
Further
. A A —1
Jo = xB, B=(X'X) Xy,
R A —1
Jo—yo = xo(B—B)—eo~N{0,6%[1+x5(X'X)" xo}.
hence .
Yo —Yo
~N|0,1],
od, [0, 1]

12
where A; = |1 +x) (X’X)_lxo} , and

$o—Yo
SA]

~t(T —k)

where 74, satisfies
P [$o—ta2581 < yo < So+1qpsh]| =1—a.

6.5. Confidence regions for several predictions

We now consider the problem of predicting a vector of observations yy generated according to the
same model independently of y :

yo=XoB+¢€o,

<8 > NN[0762]T+m] )

€o
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where Xy is known but yq is not observed. For predicting yy, let us define:

Jo = XoB,
& = yo—Jo=¢€—Xo(B—B),

where
E(e) = 0,
V(e) = o [lntXo (X'X) "' X5| = Do,
e ~ N[0, 0%l +X (XX) " x5]]
Consequently,

&V (é0) ey ~ 27 (m),
&yDy'eo/0? ~ x*(m) .

Since ¢ is unknown, we replace it by s2:
(T —k)s*/o* ~ x> (T —k) .

Further, since s is independent of yq and o = X B, s is independent of &,

s 113 5 =15
_ e’ODO2eo: éyDy 'e0/0%m F(m.T k).
ms (T —k)s?/c*(T —k)
. 1]t .
Fo= (o—50) [In+ X (X%) ' X5 (0—F0) ms® ~ F (m, T k) .

Then the set of vectors yg such that
F <Fy(m, T—k)

is a confidence region for yy with level 1 — .

7. Hypothesis tests
7.0.1 Let us now consider the problem of testing an hypothesis of the form
H() . W/B =Wy (7.1)

where w be a k x 1 vector of constants.To test Hy, it is natural to consider the difference:

W —wo=w (ﬁ —[3) ~N [O,sz' (X’X)_1 w} :
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Under the assumptions of the Gaussian classical linear model, we then have:

W/[j;; "o N[0,1] ,A = [w’ (x'x)”" w] v
A
r = WBSXWO ~t(T—k) .
This suggests the following tests of Hy :
reject Hy at level o against w'8 —wo # 0 when [t| > 1, /2 (two-sided test) (7.2)
reject Hy at level o against w'ﬁ —wp>0whent >1t, (one-sided test) (7.3)
reject Hy at level « against w8 —wo < 0 whent < —#, (one-sided test). (7.4)

An important special case of the above problem consists in testing the value of any given component
of B:
Ho(B:) - Bi=Bio

where 3, is an element of f3.

Let us now consider the more general hypothesis which consists in testing the value of a general
vector linear transformation of f3 :

wh wiB
w) wh B

Ho:RB=r=| . |B=| ~ (1.5)
Wwg woP

where R is a g X k fixed matrix with full row rank [rank (R) = q.
7.0.2 Wald-type test. A natural approach then consists in estimating Rf3 by RB ,and then to ex-
amine the difference Rf3 — r. Under Hy,

1

RB ~N[r,Zg], where Xg=0’R(X'X) R .

We need a concept of distance between R[§ and r. By (5.3),
W=(RB—r)Zg"(RB—r)~ x*(g) underHp .

We tend to reject Hy when W is too large (W > c¢. However, 6% and Xy are unknown. It is then
natural tom replace 6 by the estimate 52, and Xy by

Sr=sR(X'X)"'R .
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This yields a Wald-type criterion:

= (RB—r [R(XX)'R] (RB-7)
= (RB— [R(XX) 'R CRE )/
= SRpB)/s’

Since .
F:W/q:S(RaB)/qSZNF(CLT_k)7

we reject Hy at level @ when
F >Fy(q,T—k). (7.6)

7.0.3 Likelihood ratio test. Another approach to testing Hy consists in looking for a likelihood
ratio test. This test is based on focusing on the likelihood function:

I 1(y—XB) (y—Xp)
. 2 — i
L(y;XB,0%Ir) = o7 exp{ 5 = . (1.7)
Let
L(Q)=maxL= max L (7.8)
B, o? (B,02)eQ

i.e. we find values of 8 and 6> which maximize “the probability of the observed sample”, and

L(®)=maxL = max L (7.9)
B.o? (B,0%)cw
RB=r

i.e. we find values of 8 and 6> which maximize “the probability of the observed sample” and satisfy
Hpy, where

Q={(B,0?): o< B;<+Hoo,i=1,....k 0< > < foo} ,
60:{([3,62) €EQ:RB=r}.

We see easily that
0<L(d) <L(Q),

hence

e

IN
=
>

=
o =

=
2
vV



We reject Hy when

~

(2
(@)

~—

LR(y)

ZAO(7

[N

where A, depends on the level of the test:
PILR(y) > Aol = .

7.0.4 L(Q) is achieved when = f3 and 62 = &7 :

AN/ A
. y—=XB) (y—Xp
- e A e
[”G} (2) {(y—XB) (y—XB)}
T/2,~T/2

A\ .
where S = <y—X[3> (y—Xﬁ) .
7.0.5 To find L(®), it is equivalent to maximize

In(L) = 2 (27) ~ 210 (6%) 5 (v~ XB) (v~ XB)

under the constraint Rf3 = r.Consider 62 as given. It is then sufficient to solve the problem:
Min(y—XB)' (v~ X B)
with restriction r — Rf3 = 0. Ton do this, we consider the Lagrangian function:

Z=(~-XB) (y—XB)—A'[r—RB] .

The optimum 8 = [3 must satisfy the first-order conditions:

%’? = —2X'y+2(X'X)B+RA=0
.7 ~
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On multiplying by (7.10) by R (X'X) ", we get:
2R (X'X) "' X'y 4+ 2RB+R(X'X) 'R =0
R(X'X)'RA =2R(X'X) "' X'y—2r =2 [RB /]
A =2[R(x'x)"' K| o RB—1] .
By (7.10),
2(X'X)B = 2X'y-RA
= 2y-2R [R(X'X) 'R B [RB 1]
hence
B = (%) "Xy (xx)"R[R(x'X) "R - RB |
= B+ (xx) 'R [R(XX) 'R - r—RB].

We see that 3 does not depend on ¢2. Substituting B in In(L), we see that

T T 1
In(L) = =2 In(27) - 5 In o’ — 75750
N/ -
where S, = (y—XB) (y—Xﬁ) , from which we get
dIn(L) T So
= —— _— = 0
do? 207 T 267

at the optimum, hence
<\ ~
6% =So/T = (y=XB) (y—XB) /T
TT/2o-T/2

(2m)" 255"

A

L(®) =

The likelihood ratio test is given by the critical region:

or, equivalently,
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Since

So = (G=XBY-XB) o
= (y—XB)'(y—XB)+(B-B) (X'X)(B—B)
= So+(B-B) (X'X)(B—-B),

we also see that

So—Sa = (r—Rﬁ)/ R(x'X)"'R| TR (xx) (%)
R [R (X’X)”R/}_1 [r—Rﬁ}
_ (r—RB)/ [R (X’X)’IR’}_1 [r—RB}
— RB—») [R (X’X)_IR’} “RB—r) = S(R, B)
= (¢5°)F,
hence
o So=Sa _ (Su—Sa)/d
qs* Sa/ (T —k)
and
;Z: SQ+S(§S2)F - éqf}){);;z _ 1+TL_]€F27L¢21/T
@»qu@?f—l) —Fy.
q

The likelihood ratio test of Hy : R = r has the critical region

_ (Se—Sa)/q > Fy (q,T — k)

F= a1 =

where
F~F(q,T—k) .

This is an easy method for testing Hy : Rf3 = r. Note also that:

(S T/2_ q /2
LR = (SQ> = (1+5F ,

F = H(LRZ/T—I).
q
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8. Estimator optimal properties with Gaussian errors

When errors are Gaussian, the OLS estimators 3i,i = 1,...,k and s§* =

AN/ N
<y—X B) (y—X B) /(T —k) have minimum variance in the class of all unbiased estimators
of B;,i=1,...,k, and o’ respectively [see Rao (1973, section 5a)].

27



References

Maddala, G. S. (1977), Econometrics, McGraw-Hill, New York.

Rao, C. R. (1973), Linear Statistical Inference and its Applications, second edn, John Wiley & Sons,
New York.

Schmidt, P. (1976), Econometrics, Marcel Dekker, New York.

Theil, H. (1971), Principles of Econometrics, John Wiley & Sons, New York.

28



