Stochastic processes: generating functions and identification *

Jean-Marie Dufour † McGill University

First version: March 2002

Revised: September 2002, April 2004, September 2004, January 2005, July 2011, July 2016

This version: July 2016 Compiled: January 10, 2017, 16:15

^{*}This work was supported by the William Dow Chair in Political Economy (McGill University), the Bank of Canada (Research Fellowship), the Toulouse School of Economics (Pierre-de-Fermat Chair of excellence), the Universitad Carlos III de Madrid (Banco Santander de Madrid Chair of excellence), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-Humboldt Foundation, Germany), the Canadian Network of Centres of Excellence [program on *Mathematics of Information Technology and Complex Systems* (MITACS)], the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, and the Fonds de recherche sur la société et la culture (Québec).

[†] William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des organisations (CIRANO), and Centre interuniversitaire de recherche en économic quantitative (CIREQ). Mailing address: Department of Economics, McGill University, Leacock Building, Room 414, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 514 398 4400 ext. 09156; FAX: (1) 514 398 4800; e-mail: jean-marie.dufour@mcgill.ca. Web page: http://www.jeanmariedufour.com

Contents

Li	st of Definitions, Assumptions, Propositions and Theorems	ĺ	Ì
1.	Generating functions and spectral density	-	1
2.	Inverse autocorrelations	1	1
3.	Multiplicity of representations	1.	3
	3.1. Backward representation ARMA models	. 1.	3
	3.2. Multiple moving-average representations	. 1:	5
	3.3. Redundant parameters	. 18	3
4.	Proofs and references	19	9

List of Definitions, Assumptions, Propositions and Theorems

Definition 1.1 : Generating function	1
Proposition 1.1 : Convergence annulus of a generating function	2
Proposition 1.2 : Sums and products of generating functions	3
Proposition 1.3 : Convergence of autocovariance generating functions	4
Proposition 1.4 : Identifiability of autocovariances and autocorrelations by generating functions	4
Proposition 1.5 : Generating function of the autocovariances of a MA(∞) process	5
Corollary 1.6: Generating function of the autocovariances of an ARMA process	6
Corollary 1.7: Generating function of the autocovariances of a filtered process	7
Definition 1.2 : Spectral density	8
Corollary 1.8 : Convergence and properties of the spectral density	9
Corollary 1.9 : Spectral densities of special processes	10
Definition 2.1 : Inverse autocorrelations	11

1. Generating functions and spectral density

Generating functions constitute a convenient technique for representing and determining the autocovariance structure of a stationary process.

Definition 1.1 GENERATING FUNCTION. Let $(a_k: k=0, 1, 2, ...)$ and $(b_k: k=..., -1, 0, 1, ...)$ two sequences of complex numbers. Let $D(a) \subseteq \mathbb{C}$ the set of points $z \in \mathbb{C}$ at which the series $\sum_{k=0}^{\infty} a_k z^k$ converges, and $D(b) \subseteq \mathbb{C}$ the set of points z for which where the series $\sum_{k=-\infty}^{\infty} b_k z^k$ converges. Then the functions

$$a(z) = \sum_{k=0}^{\infty} a_k z^k, z \in D(a)$$

$$(1.1)$$

and

$$b(z) = \sum_{k=-\infty}^{\infty} b_k z^k, z \in D(b)$$
(1.2)

are called the generating functions of the sequences a_k and b_k respectively.

Proposition 1.1 Convergence annulus of a Generating function. Let $(a_k : k \in \mathbb{Z})$ be a sequence of complex numbers. Then the generating function

$$a(z) = \sum_{k = -\infty}^{\infty} a_k z^k \tag{1.3}$$

converges for $R_1 < |z| < R_2$ where

$$R_1 = \limsup_{k \to \infty} |a_{-k}|^{1/k}, (1.4)$$

$$R_2 = 1/\left[\limsup_{k \to \infty} |a_k|^{1/k}\right], \tag{1.5}$$

and diverges for $|z| < R_1$ or $|z| > R_2$. If $R_2 < R_1$, a(z) converges nowhere and, if $R_1 = R_2$, a(z) diverges everywhere except possibly, for $|z| = R_1 = R_2$. Further, when $R_1 < R_2$, the coefficients a_k are uniquely defined, and

$$a_k = \frac{1}{2\pi i} \int_C \frac{a(z) dz}{(z - z_0)^{k+1}}, \ k = 0, \pm 1, \pm 2, \dots$$
 (1.6)

where $C = \{z \in \mathbb{C} : |z - z_0| = R\}$ and $R_1 < R < R_2$.

Proposition 1.2 SUMS AND PRODUCTS OF GENERATING FUNCTIONS. Let $(a_k : k \in \mathbb{Z})$ and $(b_k \in \mathbb{Z})$ two sequences of complex numbers such that the generating functions a(z) and b(z) converge for $R_1 < |z| < R_2$, where $0 \le R_1 < R_2 \le \infty$. Then,

- 1. the generating function of the sum $c_k = a_k + b_k$ is c(z) = a(z) + b(z);
- 2. if the product sequence

$$d_k = \sum_{j = -\infty}^{\infty} a_j b_{k-j} \tag{1.7}$$

converges for any k, the generating function of the sequence d_k is

$$d(z) = a(z)b(z). (1.8)$$

Further, the series c(z) and d(z) converge for $R_1 < |z| < R_2$.

We will be especially interested by generating functions of autocovariances γ_k and autocorrelations ρ_k of a second-order stationary process X_t :

$$\gamma_x(z) = \sum_{k = -\infty}^{\infty} \gamma_k z^k,\tag{1.9}$$

$$\rho_{x}(z) = \sum_{k=-\infty}^{\infty} \rho_{k} z^{k} = \gamma_{x}(z)/\gamma_{0}. \tag{1.10}$$

We see immediately that the generating function with a white noise $\{u_t : t \in \mathbb{Z}\} \sim WN(0, \sigma^2)$ is constant::

$$\gamma_u(z) = \sigma^2, \, \rho_u(z) = 1.$$
 (1.11)

Proposition 1.3 Convergence of autocovariance generating functions. Let $\gamma_k, k \in \mathbb{Z}$, the autocovariances of a second-order stationary process X_t , and ρ_k , $k \in \mathbb{Z}$, the corresponding autocorrelations.

- 1. If $R \equiv \limsup_{k \to \infty} |\rho_k|^{1/k} < 1$, the generating functions $\gamma_x(z)$ and $\rho_x(z)$ converge for R < |z| < 1/R.
- 2. If R = 1, the functions $\gamma_x(z)$ and $\rho_x(z)$ diverge everywhere, except possibly on the circle |z| = 1.
- 3. If $\sum_{k=0}^{\infty} |\rho_k| < \infty$, the functions $\gamma_x(z)$ and $\rho_x(z)$ converge absolutely and uniformly on the circle |z| = 1.

Proposition 1.4 Identifiability of autocovariances and autocorrelations by Generating Functions. Let γ_k and ρ_k , $k \in \mathbb{Z}$, autocovariance and autocorrelation sequences such that

$$\gamma(z) = \sum_{k=-\infty}^{\infty} \gamma_k z^k = \sum_{k=-\infty}^{\infty} \gamma_k z^k, \qquad (1.12)$$

$$\rho(z) = \sum_{k=-\infty}^{\infty} \rho_k z^k = \sum_{k=-\infty}^{\infty} \rho'_k z^k$$
 (1.13)

where the series considered converge for R < |z| < 1/R, where $R \ge 0$. Then $\gamma_k = \gamma_k'$ and $\rho_k = \rho_k'$ for any $k \in \mathbb{Z}$.

Proposition 1.5 Generating function of the autocovariances of a MA(∞) process. Let $\{X_t : t \in \mathbb{Z}\}$ a second-order stationary process such that

$$X_t = \sum_{j = -\infty}^{\infty} \psi_j u_{t-j} \tag{1.14}$$

where $\{u_t: t \in \mathbb{Z}\} \sim WN(0, \sigma^2)$. If the series

$$\psi(z) = \sum_{j = -\infty}^{\infty} \psi_j z^j \tag{1.15}$$

and $\psi(z^{-1})$ converge absolutely, then

$$\gamma_{x}(z) = \sigma^{2} \psi(z) \psi(z^{-1}). \tag{1.16}$$

Corollary 1.6 GENERATING FUNCTION OF THE AUTOCOVARIANCES OF AN ARMA PROCESS. Let $\{X_t : t \in \mathbb{Z}\}$ a second-order stationary and causal ARMA(p,q) process, such that

$$\varphi(B)X_t = \bar{\mu} + \theta(B)u_t \tag{1.17}$$

where $\{u_t : t \in \mathbb{Z}\} \sim WN(0, \sigma^2)$, $\varphi(z) = 1 - \varphi_1 z - \dots - \varphi_p z^p$ and $\theta(z) = 1 - \theta_1 z - \dots - \theta_q z^q$. Then the generating function of the autocovariances of X_t is

$$\gamma_{x}(z) = \sigma^{2} \frac{\theta(z) \theta(z^{-1})}{\varphi(z) \varphi(z^{-1})}$$
(1.18)

for R < |z| < 1/R, *where*

$$0 < R = \max\{|G_1|, |G_2|, ..., |G_p|\} < 1$$
(1.19)

and $G_1^{-1}, G_2^{-1}, ..., G_p^{-1}$ are the roots of the polynomial $\varphi(z)$.

Proposition 1.7 GENERATING FUNCTION OF THE AUTOCOVARIANCES OF A FILTERED PROCESS. Let $\{X_t : t \in \mathbb{Z}\}$ a second-order stationary process and

$$Y_t = \sum_{j=-\infty}^{\infty} c_j X_{t-j}, t \in \mathbb{Z}, \tag{1.20}$$

where $(c_j: j \in \mathbb{Z})$ is a sequence of real constants such that $\sum_{j=-\infty}^{\infty} |c_j| < \infty$. If the series $\gamma_x(z)$ and $c(z) = \sum_{j=-\infty}^{\infty} c_j z^j$ converge absolutely, then

$$\gamma_{\nu}(z) = c(z)c(z^{-1})\gamma_{\nu}(z). \tag{1.21}$$

Definition 1.2 Spectral density. Let X_t a second-order stationary process such that the generating function of the autocovariances $\gamma_x(z)$ converge for |z| = 1. The spectral density of the process X_t is the function

$$f_{x}(\omega) = \frac{1}{2\pi} \left[\gamma_{0} + 2\sum_{k=1}^{\infty} \gamma_{k} \cos(\omega k) \right]$$

$$= \frac{\gamma_{0}}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{\infty} \gamma_{k} \cos(\omega k)$$
(1.22)

where the coefficients γ_k are the autocovariances of the process X_t . The function $f_x(\omega)$ is defined for all the values of ω such that the series $\sum_{k=1}^{\infty} \gamma_k \cos(\omega k)$ converges.

Remark 1.1 If the series $\sum_{k=1}^{\infty} \gamma_k \cos(\omega k)$ converges, it is immediate that $\gamma_x(e^{-i\omega})$ converge and

$$f_{x}(\omega) = \frac{1}{2\pi} \gamma_{x}(e^{-i\omega}) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma_{k} e^{-i\omega k}$$
(1.23)

where $i = \sqrt{-1}$.

Proposition 1.8 Convergence and properties of the spectral density. Let γ_k , $k \in \mathbb{Z}$, be an autocovariance function such that $\sum\limits_{k=0}^{\infty}|\gamma_k|<\infty$. Then

1. the series

$$f_x(\omega) = \frac{\gamma_0}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{\infty} \gamma_k \cos(\omega k)$$
 (1.24)

converges absolutely and uniformly in ω ;

- 2. the function $f_x(\omega)$ is continuous;
- 3. $f_x(\omega + 2\pi) = f_x(\omega)$ and $f_x(-\omega) = f_x(\omega)$, $\forall \omega$;
- 4. $\gamma_k = \int_{-\pi}^{\pi} f_x(\omega) \cos(\omega k) d\omega, \forall k;$
- 5. $f_x(\omega) \geq 0$;
- 6. (6) $\gamma_0 = \int_{-\pi}^{\pi} f_x(\omega) d\omega$.

Proposition 1.9 Spectral densities of special processes. Let $\{X_t : t \in \mathbb{Z}\}$ be a second-order stationary process with autocovariances γ_k , $k \in \mathbb{Z}$.

1. If $X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j u_{t-j}$ where $\{u_t : t \in \mathbb{Z}\} \sim WN(0, \sigma^2)$ and $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$, then

$$f_{x}(\omega) = \frac{\sigma^{2}}{2\pi} \psi(e^{i\omega}) \psi(e^{-i\omega}) = \frac{\sigma^{2}}{2\pi} |\psi(e^{i\omega})|^{2}. \tag{1.25}$$

2. If $\varphi(B)X_t = \bar{\mu} + \theta(B)u_t$, where $\varphi(B) = 1 - \varphi_1B - \dots - \varphi_pB^p$, $\theta(B) = 1 - \theta_1B - \dots - \theta_qB^q$ and $\{u_t : t \in \mathbb{Z}\} \sim WN(0, \sigma^2)$, then

$$f_x(\omega) = \frac{\sigma^2}{2\pi} \left| \frac{\theta \left(e^{i\omega} \right)}{\varphi \left(e^{i\omega} \right)} \right|^2 \tag{1.26}$$

3. If $Y_t = \sum_{j=-\infty}^{\infty} c_j X_{t-j}$ where $(c_j : j \in \mathbb{Z})$ is a sequence of real constants such that $\sum_{j=-\infty}^{\infty} |c_j| < \infty$, and if

$$\sum\limits_{k=0}^{\infty} |\gamma_k| < \infty$$
 , then

$$f_{y}(\boldsymbol{\omega}) = |c(e^{i\boldsymbol{\omega}})|^{2} f_{x}(\boldsymbol{\omega}). \tag{1.27}$$

2. Inverse autocorrelations

Definition 2.1 Inverse autocorrelations. Let $f_x(\omega)$ the spectral density of a second-order stationary process $\{X_t : t \in \mathbb{Z}\}$. If the function $1/f_x(\omega)$ is also a spectral density, the autocovariances $\gamma_x^{(I)}(k)$, $k \in \mathbb{Z}$, associated with the inverse spectrum inverse $1/f_x(\omega)$ are called the inverse autocovariances of the process X_t , i.e.

$$\gamma_x^{(I)}(k) = \int_{-\pi}^{\pi} \frac{1}{f_x(\omega)} \cos(\omega k) d\omega, k \in \mathbb{Z}. \tag{2.1}$$

The inverse autocovariances satisfy the equation

$$\frac{1}{f_x(\omega)} = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} \gamma_x^{(I)}(k) \cos(\omega k) = \frac{1}{2\pi} \gamma_x^{(I)}(0) + \frac{1}{\pi} \sum_{k=1}^{\infty} \gamma_x^{(I)} \cos(\omega k).$$
 (2.2)

The inverse autocorrelations are

$$\rho_x^{(I)}(k) = \gamma_x^{(I)}(k) / \gamma_x^{(I)}(0), k \in \mathbb{Z}.$$
(2.3)

A sufficient condition for the function $1/f_x(\omega)$ to be a spectral density is that the function $1/f_x(\omega)$ be continuous on the interval $-\pi \le \omega \le \pi$, which entails that $f_x(\omega) > 0$, $\forall \omega$.

If the process X_t is a second-order stationary ARMA(p,q) process such that

$$\varphi_p(B)X_t = \bar{\mu} + \theta_q(B)u_t \tag{2.4}$$

where $\varphi_p(B) = 1 - \varphi_1 B - \dots - \varphi_p B^p$ and $\theta_q(B) = 1 - \theta_1 B - \dots - \theta_q B^q$ are polynomials whose roots are all outside the unit circle and $\{u_t : t \in \mathbb{Z}\} \sim WN(0, \sigma^2)$, then

$$f_{x}(\omega) = \frac{\sigma^{2}}{2\pi} \left| \frac{\theta_{q} \left(e^{i\omega} \right)}{\varphi_{p} \left(e^{i\omega} \right)} \right|^{2}, \qquad (2.5)$$

$$\frac{1}{f_x(\omega)} = \frac{2\pi}{\sigma^2} \left| \frac{\varphi_p(e^{i\omega})}{\theta_q(e^{i\omega})} \right|^2. \tag{2.6}$$

The inverse autocovariances $\gamma_x^{(I)}(k)$ are the autocovariances associated with the model

$$\theta_q(B)X_t = \bar{\mu} + \varphi_p(B)v_t \tag{2.7}$$

where $\{v_t : t \in \mathbb{Z}\} \sim WN(0, 1/\sigma^2)$ and $\overline{\mu}$ is some constant. Consequently, the inverse autocorrelations of an ARMA(p,q) process behave like the autocorrelations of an ARMA(q,p). For an process AR(p) process,

$$\rho_x^{(I)}(k) = 0$$
, for $k > p$. (2.8)

For a MA(q) process, the inverse partial autocorrelations (i.e. the partial autocorrelations associated with the inverse autocorrelations) are equal to zero for k > q. These properties can be used for identifying the order of a process.

3. Multiplicity of representations

3.1. Backward representation ARMA models

By the backward Wold theorem, we know that any strictly indeterministic second-order stationary process $X_t : t \in \mathbb{Z}$ can be written in the form

$$X_{t} = \mu + \sum_{j=0}^{\infty} \bar{\psi}_{j} \bar{u}_{t+j}$$
 (3.1)

where \bar{u}_t is a white noise such that $E(X_{t-j}\bar{u}_t)=0$, $\forall j\geq 1$. In particular, if

$$\varphi_p(B)(X_t - \mu) = \theta_q(B)u_t \tag{3.2}$$

where the polynomials $\varphi_p(B) = 1 - \varphi_1 B - \dots - \varphi_p B^p$ and $\theta_q(B) = 1 - \theta_1 B - \dots - \theta_q B^q$ have all their roots outside the unit circle and $\{u_t : t \in \mathbb{Z}\} \sim WN(0, \sigma^2)$, the spectral density of X_t is

$$f_{x}(\omega) = \frac{\sigma^{2}}{2\pi} \left| \frac{\theta_{q} \left(e^{i\omega} \right)}{\varphi_{p} \left(e^{i\omega} \right)} \right|^{2} . \tag{3.3}$$

Consider the process

$$Y_{t} = \frac{\varphi_{p}(B^{-1})}{\theta_{q}(B^{-1})} (X_{t} - \mu) = \sum_{j=0}^{\infty} c_{j}(X_{t+j} - \mu).$$
(3.4)

By Proposition 1.9, the spectral density of Y_t is

$$f_{y}(\omega) = \left| \frac{\varphi_{p}(e^{i\omega})}{\theta_{q}(e^{i\omega})} \right|^{2} f_{x}(\omega) = \frac{\sigma^{2}}{2\pi}$$
(3.5)

and thus $\{Y_t : t \in \mathbb{Z}\}\ \sim WN(0, \sigma^2)$. If we define $\bar{u}_t = Y_t$, we see that

$$\frac{\varphi_p(B^{-1})}{\theta_q(B^{-1})}(X_t - \mu) = \bar{u}_t \tag{3.6}$$

or

$$\varphi_p(B^{-1})X_t = \bar{\mu} + \theta_q(B^{-1})\bar{u}_t,$$
(3.7)

and

$$X_{t} - \varphi_{1} X_{t+1} - \dots - \varphi_{p} X_{t+p} = \bar{\mu} + \bar{u}_{t} - \theta_{1} \bar{u}_{t+1} - \dots - \theta_{q} \bar{u}_{t+q}$$
(3.8)

where $(1 - \varphi_1 - \cdots - \varphi_p)\mu = \bar{\mu}$. We call (3.6) or (3.8) the backward representation of the X_t process.

3.2. Multiple moving-average representations

Let $\{X_t\} \sim \text{ARIMA}(p, d, q)$. Then

$$W_t = (1 - B)^d X_t \sim ARMA(p, q). \tag{3.9}$$

If we suppose that $E(W_t) = 0$, W_t satisfies an equation of the form

$$\varphi_p(B)W_t = \theta_q(B)u_t \tag{3.10}$$

or

$$W_t = \frac{\theta_q(B)}{\varphi_p(B)} u_t = \psi(B) u_t. \tag{3.11}$$

To determine an appropriate ARMA model, one typically estimates the autocorrelations ρ_k . The latter are uniquely determined by the generating function of the autocovariances:

$$\gamma_{x}(z) = \sigma^{2} \psi(z) \psi(z^{-1}) = \sigma^{2} \frac{\theta_{q}(z)}{\varphi_{p}(z)} \frac{\theta_{q}(z^{-1})}{\varphi_{p}(z^{-1})}.$$
(3.12)

If

$$\theta_q(z) = 1 - \theta_1 z - \dots - \theta_q z^q = (1 - H_1 z) \dots (1 - H_q z) = \prod_{j=1}^q (1 - H_j z), \tag{3.13}$$

then

$$\gamma_{x}(z) = \frac{\sigma^{2}}{\varphi_{p}(z)\varphi_{p}(z^{-1})} \prod_{j=1}^{q} (1 - H_{j}z)(1 - H_{j}z^{-1}). \tag{3.14}$$

However

$$(1 - H_{j}z)(1 - H_{j}z^{-1}) = 1 - H_{j}z - H_{j}z^{-1} + H_{j}^{2} = H_{j}^{2}(1 - H_{j}^{-1}z - H_{j}^{-1}z^{-1} + H_{j}^{-2})$$

= $H_{j}^{2}(1 - H_{j}^{-1}z)(1 - H_{j}^{-1}z^{-1})$ (3.15)

hence

$$\gamma_{x}(z) = \frac{\left[\sigma^{2} \prod_{j=1}^{q} H_{j}^{2}\right]}{\varphi_{p}(z) \varphi_{p}(z^{-1})} \prod_{j=1}^{q} \left(1 - H_{j}^{-1} z\right) \left(1 - H_{j}^{-1} z^{-1}\right) = \bar{\sigma}^{2} \frac{\theta_{q}'(z) \theta_{q}'(z^{-1})}{\varphi_{p}(z) \varphi_{p}(z^{-1})}$$
(3.16)

where

$$\bar{\sigma}^2 = \sigma^2 \prod_{j=1}^q H_j^2, \quad \theta_q'(z) = \prod_{j=1}^q (1 - H_j^{-1} z). \tag{3.17}$$

 $\gamma_x(z)$ in (3.16) can be viewed as the generating function of a process of the form

$$\varphi_p(B)W_t = \theta_q'(B)\bar{u}_t = \left[\prod_{j=1}^q (1 - H_j^{-1}B)\right]\bar{u}_t$$
 (3.18)

while $\gamma_x(z)$ in (3.14) is the generating function of

$$\varphi_p(B)W_t = \theta_q(B)u_t = \left[\prod_{j=1}^q (1 - H_j B)\right] u_t. \tag{3.19}$$

The processes (3.18) and (3.19) have the same autocovariance function and thus cannot be distinguished by looking at their seconds moments.

Example 3.1 Identification of an ARMA(1, 1) model

$$(1 - 0.5B)W_t = (1 - 0.2B)(1 + 0.1B)u_t$$
(3.20)

$$(1 - 0.5B)W_t = (1 - 5B)(1 + 10B)\bar{u}_t \tag{3.21}$$

have the same autocorrelation function.

In general, the models

$$\varphi_p(B)W_t = \left[\prod_{j=1}^q (1 - H_j^{\pm 1}B) \right] \bar{u}_t$$
 (3.22)

all have the same autocovariance function (and are thus indistinguishable). Since it is easier with an invertible model, we select

$$H_j^* = \begin{cases} H_j & \text{if } H_j < 1\\ H_j^{-1} & \text{if } H_j > 1 \end{cases}$$
 (3.23)

where $|H_j| \le 1$, in order to have an invertible model.

3.3. Redundant parameters

Suppose $\varphi_p(B)$ and $\theta_q(B)$ have a common factor, say G(B):

$$\varphi_p(B) = G(B)\varphi_{p_1}(B), \quad \theta_q(B) = G(B)\theta_{q_1}(B).$$
 (3.24)

Consider the models

$$\varphi_p(B)W_t = \theta_q(B)u_t \tag{3.25}$$

$$\varphi_{p_1}(B)W_t = \theta_{q_1}(B)u_t. {(3.26)}$$

The $MA(\infty)$ representations of these two models are

$$W_t = \psi(B)u_t, \tag{3.27}$$

where

$$\psi(B) = \frac{\theta_q(B)}{\varphi_p(B)} = \frac{\theta_{q_1}(B)G(B)}{\varphi_{p_1}(B)G(B)} = \frac{\theta_{q_1}(B)}{\varphi_{p_1}(B)} \equiv \psi_1(B), \qquad (3.28)$$

$$W_t = \psi_1(B)u_t. \tag{3.29}$$

(3.25) and (3.26) have the same $MA(\infty)$ representation, hence the same autocovariance generating functions:

$$\gamma_{x}(z) = \sigma^{2} \psi(z) \psi(z^{-1}) = \sigma^{2} \psi_{1}(z) \psi_{1}(z^{-1}). \tag{3.30}$$

It is not possible to distinguish a series generated by (3.25) form one produced with (3.26). Among these two models, we will select the simpler one, *i.e.* (3.26). Further, if we tried to estimate (3.25) rather than (3.26), we would meet singularity problems (in the covariance matrix of the estimators).

4. Proofs and references

A general overview of the technique of generating functions is available in Wilf (1994).

References

WILF, H. S. (1994): Generating function ology. Academic Press, New York, second edn.