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1. Random variables

1.1 In general, economic theory specifies exact relations betwemmeuc variables. Even a superficial
examination of economic data indicates it is not (almost ngwassible to find such relationships in actual
data. Instead, we have relations of the form:

G = a+ LY+ &
whereg; can be interpreted as a “random variable”.

1.2 Definition A random variablér.v.) X is a variable whose behavior can be described by a “probability
law”. If X takes its values in the real numbers, the probability laX @an be described by a “distribution
function”:

Fx(x) = P[X <X

1.3 If X is continuous, there is a “density functiofy (x) such that
X
Fx (X) :/ i (X) dX.

The mean and variance &fare given by:

Uy =E(X) = /+ooxd|=>< (X) (general case)

—00

~+ 00
— / X fx (X) dx (continuous case)
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V(X) = 0% =E [(X 7] = / ™ (X ) dR (%) (general case)

~+o0
:/ (X— Hy ) Fx (X) dx (continuous case)
=E(X*) - [EX)°
1.4 Itis easy to characterize relations between two non-random vasiabhdy :

axy) =

or (in certain cases)

y="1(x).
How does one characterize the links or relations between randoables? The behavior of a paX,Y)’
is described by a joint distribution function:

F(X,y) PIX<xY<y]
/ / f(x,y)dxdy (continuous case.)

We call f(x, y) the joint density function ofX, Y)’. More generally, if we consideer.v./s Xy, Xo, ..., X,
their behavior can be described througk-@mensional distribution function:

F(X]_,Xz,...,Xk):P[Xlgxlang)(z)"'7Xk§Xk]



Xk X2 X1
:/ // f(Xe, X2, ..y Xe) OXgdXo- - - dXi (continuous case)

wheref (X, %o, ..., X) IS the joint density function oKy, X, ... , X



2. Covariances and correlations

We often wish to have a simple measure of association betweeratwvdom variableX andY. The notions
of “covariance” and “correlation” provide such measures of aason. LetX andY be twor.v.'s with
meansuy andy, and finite variances ando?. Belowa.s. means “almost surely” (with probability 1).

2.1 Definition The covariance betweéetiandY is defined by
C(X,Y) = oxy = E[(X— py) (Y — 1y)] -
2.2 Definition Supposer? > 0 anda? > 0. Then the correlation betweéhandY is defined by
p(X,Y) = pyy = Oxy/0Ox0y .
Whena% = 0 or g3 = 0, we selp, = 0.

2.3 Theorem The covariance and correlation betwééandY satisfy the following properties:
(@) oxy =E(XY)—E(X)E(Y) ;

(b) oxy = Oyx , Pxy = Pyx ;

(€) Oxx = 0%, Pxx =1;

(d) 0%y < 0507 ; (Cauchy-Schwarz inequality
(6) —1<pyy <1;

(f) X andY are independent- oxy =0= pyy =0;
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(g) if 0% #0anda? #0,
pxy = 1< [3 two constanta andb such that # 0 andY = aX +b a.s]

PROOF (a)

(X = px) (Y = piy )]

(XY — UXY Xty + My Hy]
(XY) = UxE(Y) —E(X) Hy + HxHy
(XY) — IJxIJY HxHy + HxHy

= E(XXY)—E(X)E(Y) .

Oxy =

E
E
= E
E

(b) et (c) are immediate. To get (d), we observe that
E{IY = by = A (X = o)l b = EL10Y = 1) = A (X = )P}
= E{(Y = py)? = 22 (X ) (Y = py) + A% (X = )}
—2Aoxy +A%0%>0.

for any arbitrary constant. In other words, the second-order polynont@h ) = 02 — 2A oxy + A°0%
cannot take negative values. This can happen only if thetiequa

A?0%2 —2A0xy +02 =0 (2.1)



does not have two distinct real roots, i.e. the roots are eithmplEx or identical. The roots of equation
(2.1). are given by

| 20xy£+\/40% —40%05  OxyE\/0%y —0%0%

A
2 2
20% 0%

Distinct real roots are excluded whe, — 0402 < 0, hence
2 2 ~2
(e)

2 2 2
O-XYSO-XO-Y = —O0x0y < Oxy < OxO0Ovy

(f)

Oxy = E{(X—py) (Y —Hy)} = EX—=px) E(Y — pty)
[E(X) = kx| [E(Y) = py] =0,
Pxy = O'xy/O')(O'Y:O.

Note the reverse implication does not hold in general,

pPxy = 0#> X andY are independent



(9) 1) Necessity of the condition. ¥ = aX + b, then
E(Y)=aE(X)+b=auy+b, of =2’

and
Oxy = E[(Y — ly) (X—py)] = Ela(X — ty) (X — ty)] = a0>2< -
Consequently,
2 4
2 a~ Oy
Pxy = a202 0% =1

2) Sufficiency of the condition. Ip2, = 1, then
0%y — 0505 =0.
In this case, the equation
E{[Y — 1y) = A (X = )} = 0F — 24 0y +A%0% = 0

has one and only one root

so that



and
o o o
P (Y = y) = =5 (X — py) =0] =P [Y=§X+ (uy——xgux)] =1
X Ox%
We can thus write:
Y = aX + b with probability 1

wherea = oxy/0% andb = piy — X 1y .
y



3. Alternative interpretations of covariances and correlations
Highly correlated random variables tend to be “close”. This featan be explicated in different ways:

1. by looking at the distribution of the differen¥e- X;
2. by looking at the difference of two variances (polarizatiomidg);
3. by looking at the linear regressionfon X;

4. through a “decoupling” representation of covariances and letioes.
3.1. Difference between two correlated random variables

First, we can look at the difference of two random varial{eandY. It is easy to see that
2
ELY - X)3 = E{(I(Y ~ ) — (X— )] = (ky — 1))}

= E { (Y —py) = (X = Ux)])z} + (Hy — ty)?

= 09+ 0% —20xy + (HUy — Hy)*

= 0%+ 0% — 205y Ox Oy + (Hy — Hy)?. (3.1)
E[(Y —X)?] has three components: (1yariance component a2 + g%; (2) acovariance component —20xy;

(3) amean component (L, — Uy )?. Equation (3.1) shows clearly thE{(Y — X)?] tends to be large, when
they have very different means or variances.



Since|pyy| < 1, itis interesting to observe that

(oy — 0x)* + (Hy — Hy)* < E[(Y = X)?] < (0y + 0x)*+ (Hy — Hx)*,

and
E[(Y —X)?]

E[(Y—X)Z] = UY"‘UX‘*' (IJY—NX) , If pyy =0.

E[(Y — X)?] reaches its minimum value whexr, = 1, and its maximal value whem,, = —1:

EI(Y = X)? = (0 — 0x)2+ (Hy — )% if Py = 1,

E[(Y —X)?] = (ov +0x)°+ (Hy — Hx)?,  if pyy = —1.
If g > 0, we can also write:

2 B 2 Y2 2 B 2
(1_ﬂ> n (IJY IJx> < E[(Y ZX) ] < <1_|_ﬂ) 1 (IJY IJX) _
Oy Oy Oy Oy Oy

The inequalities (3.2) - (3.5) also entail similar propertiesXor Y

(0x — 0v)° + (Ux + Hy)* < E[(X+Y)?] < (0x + 0v)*+ (Hy + Hy)*,

E[(X+Y)%] < 0%+ 05+ (Uy+ ty)* < (Oy 4+ 0x)*+ (U + Hy)?, if pyy <0,
E[(X+Y)%] > 0%+ 05+ (Uy + Uy)* > (0x — Ov)*+ (U + Hy)?, if pxy >0,

10

< 0%+ 0%+ (Hy — Hy)* < (Oy + 0x)?+ (Hy — Py)?, if pxy >0,
E[(Y X)z] > 0\2(+0>2<+(H Ux) (oy — GX) +(IJY—HX)Za Iif pyy <0,

(3.2)

(3.3)
(3.4)
(3.5)

(3.6)
(3.7)

(3.8)

(3.9)

(3.10)
(3.11)



E[(Y +X)?] = 0% + 0%+ (Uy + Hy)?, if pxy =0.

From (3.1), itis also easy to see that

Let

~

X =

Y X\ By px)
—— ) | =201- Y X))
E (UY Ux) ( pXY)+(O.Y Ux)
X — ~ Y- ~ -~
B =B p(R V) =p(XY) = oy
X Oy

where we seX = 0 if gx = 0, andY = 0 if oy = 0. We then have:

and

Since

we get

~

EX)=EY)=0, V(X)=V(Y)=1,
E[(? - )2)2] =2(1—pyy)-

X:ux‘f‘O-X)Za YZHY""O-Y?a

E[(Y = X)T = E{[(by+0vY) = (Hx+0oxX)]*}

I

m
_

9

<

|

Q

X
X1 X
+ +
=

<

|

=
X
N
——
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(3.13)

(3.14)

(3.15)

(3.16)

(3.17)



= E[(0vY — oxX)?] + (ty — Hx)? (3.18)

hence
~ O-X ~ 2
Y- = O3 | (Y= 25K |+ oy~
Ox 2 Ox
— 0% |1+ (—> —2(—) Py | + (Hy —Hy)?, if oy #0, (3.19)
Oy Ovy
and
E[(Y —X)q = g%+ (uy — y)?, if oy =0. (3.20)
If the variances oK andY are the same, i.e.
0% = 0%, (3.21)
we have:

E[(Y = X)?] = 209(1— pyy) + (Hy — Hx)*
= 20%(1— pyy) + (Hy — Hx)?. (3.22)

If the means and variances ¥fandY are the same, i.e.

Hy = Hy andoy = 0%, (3.23)

12



we have:
E[(Y —X)?] = 20% (1— pyy) = 20% (1 — Pxy)
and
0<E[(Y —X)% < 40%

so that
E[(Y -X)]]=0andPlY =X] =1, if pyy, =1,

and, using Chebyshev’s inequality,
E[(Y — X)?] _ 205 (1— pyy)

PIlY = X| > ] < 2 2 foranyc >0,
E[(Y—X)]] 2(1-
P[[Y —X| > cox] < [(02 c2) l_2 Zva) for anyc > 0.
X

If uy, = Uy ando? = g > 0, we also have:
E[(Y —X)?] = 0 pyy = 1,
E[(Y — X)?] = 20%  pyy = O,
E[(Y —X)%] = 40% < pyy = —1.
Since

~ o~ o)
av(Y=X) =Y =ty = —(X— 1) =Y — (HY+—YNX) ——X,

Ox
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(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
(3.31)

(3.32)



the linear function

o o
Lo(X) = (IJY + —Yllx> +—X (3.33)
Ox Ox
can be viewed as a “forecast” ¥fbased orK such that
E[(Y —Lo(X))?] = 0ZE[(Y = X) = 203 (1— pyy). (3.34)
It is then of interest to note that
E[(Y - LO(X))Z] < E[(Y - NY)Z] = 0\2( & Pyy = 0.5, (3.35)
with
E[(Y —Lo(X))?] < E[(Y — ty)?] = 0% & pyy > 0.5 (3.36)

whena? > 0. ThusLq(X) provides a “better forecast” dfthan the mean of, whenpy, > 0.5. If p,y < 0.5
ando? > 0, the opposite hold€E[(Y — Lo(X))?] > o2.
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s3.2. Polarization identity

Since

it is easy to see that

C(X,Y) = %[V(X +Y)—V(X-Y)].

(3.39) is sometimes called the “polarization identity”. Ferth

IV(X+Y)=V(X-Y) 1 [a>2<+Y aiY]

B OxOy OxOy

X.Y) =
p(X,)Y) 2 Y 2

and, ifV(X) =V (Y) =1,

VIX+Y)=-V(X-Y) 02, —0o2
p(X,Y) — ( + ) 4 ( ) — X+Y 4 X-Y .

OnX+Y andX —Y, it also interesting to observe that

CX+Y, X =Y) = M (X)=V(Y)]+[C(Y, X) —C(X,Y)] = V(X) = V(Y)

SO
C((X+Y)/2,X=Y) =C(X+Y,X=Y) =0, if V(X)=V(Y).

15
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This holds irrespective of the covariance between betweamdY. In particular, if the vecto(X,Y) is
multinormalX +Y andX —Y are independent whan(X) =V (Y).
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4. Covariance matrices

Consider novkr.v.’s X;, X, ..., Xk such that
E(OX) = ), i=1,...,k,
C(Xi,Xj) = 0ij, i,j =1..., K.
We often wish to compute the mean and variance of a linear canbmofXy, ..., X :
SaaX = anXy +aXo+ -+ aX
It is easily verified that
E [Zikzlaixi] = Zik:1a+' H;
and
v [Zikzlaixi] = E{ [ @ (X — )] [ ica (X —y)] )

Since such formulae may often become cumbersome, it will be oteweto use vector and matrix notation
We define a random vectdr and its mean valug (X) by:

X1 E(X1) Hq
X=1 : , E(X) = : =| & | =ux.
X E (%) Hy

17



Similarly, we define a random matrM and its mean valug (M) by:

[ Xy Xeo ... Xan E(Xu1) E(Xw2) ... E(Xwn)
M — X21 X22 X2n 7 E(M) _ E(Xg]_) E(Xzz) E(XZn)
Xml sz an | E(Xm) E(Xm2) .- E(Xm)

where theX;; arer.v.’s. To a random vectoX, we can associate a covariance ma¥ix) :
V(X) =E{[X—EX)] X —E))'} = E{[X — ] [X — 1)’}
{ { (X = py) o= pg) (K= pg) (Ka =) - (K= Hy) (%= Hi) ] }
—E : : :

(K= M) (Ko — Hg) (K= Hi) (Ra— Hg) - (Ka— i) (K — Hy)
O11 O12 ... Ok
— : : : =2 .
Ok1 Ok2 ... Okk
If a=(ay,...,a)’, we see that:

SKaX=aX.
Basic properties of (X) andV (X) are summarized by the following proposition.

4.1 Proposition Let X = (Xg,..., X)" ak x 1 random vectorga a scalara andb fixedk x 1 vectors, and\
a fixedg x k matrix. Then, provided the moments considered are finite, we thaviellowing properties:
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(@ EX+a)=E(X)+a;

(b) E(aX) = aE(X) ;

(c) E(aX)=4aE(X), E(AX)=AE(X) ;
(d)V(X+a)=V(X);

(e) V(aX)=a?V(X),

(Hh V@x)=av(X)a, V(AX) =AV (X)A’;

(g) C(a@X,b’X)=aV(X)b=b'V(X)a.

4.2 TheoremLet X = (Xy,..., Xx)' be a random vector with covariance matixX) = =. Then we have
the following properties:

(@ 2'=2;

(b) 2 is a positive semidefinite matrix;

(c) 0<|Z| < 0%05...0; wherea? =V (X)), i=1,...,k;

(d) |Z| = 0« there is at least one linear relation betweentthés Xy, ..., X, i.e., we can find constants

ai,..., ax, b notall equal to zero such thatX; + - - - + aXx = b with probability 1;
(e) ranK>) =r < k< X can be expressed in the form

X=BY +cC
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whereY is a random vector of dimensianwhose covariance matrix g, B is ak x r matrix of rankr,
andc is ak x 1 constant vector.

4.3 Remark We call the determinang | the generalized variance of X.

4.4 Definition If we consider two random vectoXs andX, with dimension¥, x 1 andk, x 1 respectively,
the covariance matrix betweén andX, is defined by:

C(X1,X2) =E{[X1—E(X1)][X2—E(X2)]'} .
The following proposition summarizes some basic properti€s(&f;, X»).

4.5 Proposition Let X1 andX, two random vectors of dimensioks x 1 andk, x 1 respectively. Then,
provided the moments considered are finite we have the followiogeoties:

(@) C(X1,X2) = E[X1X5] —E(X1)E(X2)" ;

(b) C(X1,X2) = C(X2,X1)";

(€) C(X1,X1) =V (X1), C(X2,X2) =V (Xa);

(d) if a andb are fixed vectors of dimensioksx 1 andk, x 1 respectively,
C(X14+a,Xo+b)=C(X1,X2) ;

(e) if a andf are two scalar constants,

CaXy, BXz) = aBC(X1,X2) ;
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(f) if aandb are fixedk; x 1 andk, x 1 vectors,
C(aXy,b'Xy) =aC(Xq,X2)b;
(g) if A andB are fixed matrices matrices with dimensi@as< k; andg, x k, respectively,
C(AX1,BX;) = AC(X1,X,)B';
(h) if ky = ko andX3 is ak x 1 random vector,
C(X14+X2,X3) = C(Xq1,X3) + C(X2,X3) ;
(1) if ky = ko,

V(X1+X2) = V(X1)+V(X2) +C(Xg,X2) +C(X2,X1) ,
V(Xl—X2> = V(Xl)—i—V(Xz)—C(Xl,XZ)—C(Xz,Xl) .
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