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1. Random variables

1.1 In general, economic theory specifies exact relations between econanables. Even a
superficial examination of economic data indicates it is not (almost nevesjlge to find such
relationships in actual data. Instead, we have relations of the form:

CG=a+BY+¢&
whereg; can be interpreted as a “random variable”.

1.2 Definition A random variablér.v.) X is a variable whose behavior can be described by a “prob-
ability law”. If X takes its values in the real numbers, the probability law @an be described by
a “distribution function”:

Fx(x) = P[X <X

1.3 If X is continuous, there is a “density functiof (x) such that

X
:/ fx (X) dx
The mean and variance ¥fare given by:
+00

Hy = E(X) :/ x dFx (X) (general case)

+o0
:/ X fx (x) dx (continuous case)
V(X)=0% = [X Uy 2] / (X— py )2 dFx (X) (general case)
/ (X— Ly )2 Fx (X) dx (continuous case)

=E(X?) ~[E(X)]*
1.4 Itis easy to characterize relations between two non-random variabledy :
g(x,y)=0

or (in certain cases)

y="F(x).
How does one characterize the links or relations between random vaftabe behavior of a pair
(X,Y)" is described by a joint distribution function:

F(xy) = PX<x Y<Yy]



y X
= / / f(x,y)dxdy (continuous case.)

We call f(x,y) the joint density function of(X,Y). More generally, if we consider
krv/s Xz, Xo, ..., Xy, their behavior can be described througk-dimensional distribution func-
tion:

(X1,X2, ..., Xk) = P[X1 < xq, X2 < X2, ..., Xk < X¢]

F
Xk X2 X1 .
:/ / / f (X1, X2, - .., Xg) OXgdXp - - - dX (continuous case)

wheref (x1,Xo, ..., X) is the joint density function oKy, X, ..., X.

2. Covariances and correlations

We often wish to have a simple measure of association between two randablesX andY. The
notions of “covariance” and “correlation” provide such measuresssbeiation. LefX andY be
two r.v.'s with meansiy andu, and finite variances% ando?. Belowa.s. means “almost surely”
(with probability 1).

2.1 Definition The covariance betweetandy is defined by
CXY) =oxy =E[(X—pux) (Y —Hy)] -
2.2 Definition Suppose% > 0 anda? > 0. Then the correlation betweéhandy is defined by
P (X,Y) = pxy = Oxy/0x0y .
Wheno% = 0 or g = 0, we sefpyy = 0.
2.3 Theorem The covariance and correlation betweeandY satisfy the following properties:
(@) oxy =E(XY)—E(X)E(Y);
(b) axy = 0yx , Pxy = Pyx
(c) oxx = 0%, Ppxx =1;
(d) 0%y <0%0%; (Cauchy-Schwarz inequality
() —1<pyy<1;
(f) X andY are independent- oxy = 0= pyy =0;
(g) if 0% #0anda? #0,

pxy = 1< [3 two constants andb such that # 0 andY = aX +b a.s]



PROOF (a)

(X =y ) (Y — py)]

XY xY Xy + Hyx Hy]
(XY) = uxE(Y) —E(X) By + Hx Hy
(XY)— UXNY HxHy + HxHy
(XY) —E(X)E(Y) .

Oxy =

E[
E[
= E
E
E

(b) et (c) are immediate. To get (d), we observe that

E{IY — by = A (X = )P} = E{I0Y = py) = A (X = )}

= E{(Y = 1)? =20 (X = ) (Y = ) + 2% (X = ) |
= 0% - 2Aoxy +A%0% > 0.

for any arbitrary constam. In other words, the second-order polynongéh ) = % — 2A oxy +
)\205( cannot take negative values. This can happen only if the equation

A20% —2 0%y + 02 =0 (2.1)

does not have two distinct real roots, i.e. the roots are either complexmicale The roots of
equation (2.1). are given by

20xy £ /40%, —40%0%  Oxy +4/0% —0%0%

2 2
20% o%

Distinct real roots are excluded wher, — 0402 < 0, hence
0%y < 0%05 .
(e)

0% < 0%0% = —0x0y < Oxy < 0x0y
= —1<pyy<1.

(f)

oxy = E{(X—px)(Y—py)} =EX—py)EY —py)
= [E(X) = ux][E(Y) —uy] =0,
Pxy = O'xy/O'xO'Y =0.



Note the reverse implication does not hold in general,
pxy = 0#> X andY are independent
(9) 1) Necessity of the condition. ¥ = aX + b, then

E(Y)=aE(X)+b=auy+b, 05 =a’0%,

and
oxy = E[(Y — ty) (X = py)] = E[a(X — py) (X — py)] = a0>2< .
Consequently,
2 a’oy
Px = Ra%af

2) Sufficiency of the condition. 6%, = 1, then
0%y —0%0% =0,
In this case, the equation
E{IY — 1) = A (X = )P} = 0% — 20y +A%0% = 0

has one and only one root
. 20xy

_ 2
— 20_)2( — GXY/UX 3
so that
Oxy 2
E [(YU\Z(—UY)—OQ(X—UX)] =0
X
and

P[(Y—uy)—UXZY(X—M:O] =P[Y:UX2YX+<HY—G>§YMX>] =1
Ox Ox

We can thus write:
Y = aX + b with probability 1

wherea= oxy/0% andb= 1y — UTX)Z:(IJX . O

3. Alternative interpretations of covariances and correlations

Highly correlated random variables tend to be “close”. This feature eagxplicated in different
ways:

1. by looking at the distribution of the differen¥e- X;



2. by looking at the difference of two variances (polarization identity);
3. by looking at the linear regressionfon X;

4. through a “decoupling” representation of covariances and ctimesa

3.1. Difference between two correlated random variables

First, we can look at the difference of two random varialdeandY. It is easy to see that

E[Y =) = E{(Y— 1) = (X— )] = (1 — >)}
= E{(I 1) = (X =) *} + (u
= 0¢+0%—20%xy + (ky — I«'x)2
= 0%+ 0% — 205y Ox0y + (Hy — Hy)?. (3.1)

E[(Y —X)?] has three components: (1yariance component a2 + g%; (2) acovariance component
—20xy; (3) amean component (uy — Uy )?. Equation (3.1) shows clearly thEf(Y — X)?] tends to
be large, when they have very different means or variances.

Since|pyy| <1, itis interesting to observe that

(v = 0x)%+ (Uy — Hx)? S E[(Y = X)?] < (0 +0x)? + (Hy — Hx)?, (3.2)
and
E[(Y —X)?] < 08 + 0% + (Hy — Ux)? < (Ov +0x)2+ (Hy — Hy)?, if py >0,  (3.3)
E[(Y —X)?] > 05 + 0% + (Hy — Ux)? = (Oy — 0x)2+ (Hy — Hx)?, if pyy <0,  (3.4)
E[(Y —X)?] = 0§ + 0% + (Hy — Hx)?, if pyy = 0. (3.5)

E[(Y — X)?] reaches its minimum value wher, = 1, and its maximal value whem,, = —1:
E[(Y =X)%] = (v = 0x)*+ (y —kx)*, 1f pyy =1, (3.6)

E[(Y = X)?] = (0v +0x)*+ (Hy — Hx)?,  if pyy = —1. 3.7)

If 02 > 0, we can also write:

<1_?Y(> +<IJY;Y“X>2§E[(YO__\2(X)2] §<1+?Y<>2+<“Y;Y“X>2. (3.8)

The inequalities (3.2) - (3.5) also entail similar propertiesXor Y:

(0x = 0v)?+ (Hx + Hy)? S E[(X+Y)?] < (0x + 0v)* + (Hx + Hy)?, (3.9)

E[(X+Y)?] < 0%+ 0% + (Ux + Hy)? < (0y + 0x)*+ (Hx + Hy)?, if pxy <0, (3.10)



E[(X+Y)? > 0%+ 0% + (Uy + Hy)® > (0x — 0v)* + (Hy + Hy)?, if pyy >0,
E[(Y+X)?] = 0%+ 0% + (Ux + ), if pxy =0.

From (3.1), it is also easy to see that

Let
) p()h(‘a?):p(x’Y):pXY’

where we seX = 0 if ax = 0, andY = 0 if gy = 0. We then have:

EX)=E(Y)=0, V(X)=V(Y)=1,

and o
E[(Y—X)% =2(1—pyy)-
Since y y
X=pyx+0oxX, Y=Uy+0oyY,
we get
E[(Y-X)?] = E{[(uy+oyY)— x+o X)]%}
E{[(ovY — oxX) + (py — py)]?}
E{[(ovY —oxX) + (uy — Hx)]?}
= E[(ovY —oxX)]+ ( — Hy)?
hence
~ Ox ~ 2
E[(Y-X)7] = o%E[(Y—UYx) (1 — )
o (o) .
= o} |1+ (UX> —2<X>va +(uy — px)?, if oy £0,
Y Oy
and

EI(Y —X)?) = 0% + (iy — px)2, i oy =O0.

If the variances oK andY are the same, i.e.

UY:0X7

(3.11)
(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)



we have:

E[(Y—X)?] = 20%(1—pxy)+ (Hy — Hx)?
= 20%(1—pxy) + (Ky — Hx)?.

If the means and variances ¥fandY are the same, i.e.

2 2
My = Hx andoy = 0%,

we have:
E[(Y —X)?] = 20% (1— pxy) = 20% (1— pyy)
and
0<E[(Y—X)?] < 40%
so that

E[(Y-X)]=0andP[Y =X] =1, if pyy =1,

and, using Chebyshev’s inequality,

E[(Y ~X)?] _ 20% (1 pyy)

PIlY —=X|>¢| < 2 2 for anyc > 0,
E[(Y —X)?] _ 2(1—pxy)
P[lY —X|>cox] < = for anyc > 0.
[IY =X]>cox] < 2P 2 yc >

If uy =y ando? = g% > 0, we also have:
E[(Y X)) =0& pxy =1,
E[(Y —X)?) =20% < pxy =0,
E[(Y — X)) = 40% < pxy = —1.

Since
Oy

~ ~ o (o)
(¥ =X) =Y —py = (X — i) =Y (uwolux) ——X

Ox
the linear function
Oy Oy

Lo(X) = — —X

o(X) (uy+ Gxux) t o
can be viewed as a “forecast” Wfbased orX such that

E[(Y — Lo(X))?] = 02E[(Y — X)?] = 202(1—
[( o(X))] = oy E[( )] =209(1— pxy)-

It is then of interest to note that

E[(Y — Lo(X))2] < E[(Y — pty)?] = 0% < pyy = 05,

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



with
E[(Y —Lo(X))?] < E[(Y — Hy)?] = 0% & pxy > 05 (3.36)

whena? > 0. ThusLo(X) provides a “better forecast” of than the mean of, whenpy, > 0.5. If
Pyy < 0.5 anda? > 0, the opposite hold€E[(Y — Lo(X))?] > o2.

3.2. Polarization identity

Since
V(X+Y)=V(X)+V(Y)+2C(X,Y), (3.37)
V(X=Y)=V(X)+V(Y)—2C(X,Y), (3.38)
it is easy to see that
C(X,Y) = %[\/(x +Y)-V(X-Y)]. (3.39)

(3.39) is sometimes called the “polarization identity”. Further,

p(X,Y) = iV(X”U)X_U\:(X V) _ % [;’fg - gfad . (3.40)
OnX+Y andX —Y, it also interesting to observe that
CX+Y,X=Y)=[V(X)=V(Y)]+[C(Y,X) —C(X,Y)] =V(X) =V(Y) (3.41)
SO
C((X+Y)/2,X=Y) =C(X+Y,X=Y)=0, if V(X)=V(Y). (3.42)

This holds irrespective of the covariance between betieandY. In particular, if the vecto(X, Y)
is multinormalX +Y andX —Y are independent whan(X) =V (Y).
4. Covariance matrices

Consider novkr.v.’s X, Xo, ..., Xk such that

E()<|) = ”ia i = 7"'7k7
CX%,X)) = ojj, i,j=1...,k

We often wish to compute the mean and variance of a linear combinatd of , X :
ZII(:]_aiX| = a1X1+ a2X2 4+ 4 akxk .

It is easily verified that
E [Zik:laixi} = jai;



and
v[zax] = E{[zaa -] [Zla 06 -]}
= Zik:]_Z}(:laiaj gij .

Since such formulae may often become cumbersome, it will be convenierd t@aor and matrix
notation
We define a random vectot and its mean valug (X) by:

X E(X1) My
x={ | JEO=| : |=| : |=kx
X« E (%) My
Similarly, we define a random matri and its mean valug (M) by:
X]_]_ X12 . Xln E (Xll) E (Xlz) ... E (Xln)
X X e X E(X E (X .. E(X
wo | 2 X 2 CEM) = (.21) (.22) (lzn)
X Xm .. X E(Xm) E(Xm2) ... E(Xm)

where theX;; arer.v.”s. To a random vectoX, we can associate a covariance ma¥i) :

V(X) = E{X-=EX)][X=EX)]'} = E{[X — ] [X — py]'}

(X —py) X —py)  (Ka=Hy) (Xe—Hp) .. (Xa—Hy) (Ke— Hy)
=E : : :
(=) (Xa— 1) (K= Hi) O = Ha) - (k= i) (Xe— Hi)
011 012 ... O
= : : : =2.
Oxn Ok2 ... Okk
If a=(ay...,a)’, we see that:
SK aX =aX.

Basic properties of (X) andV (X) are summarized by the following proposition.

4.1 Proposition LetX = (Xy,..., X)" ak x 1 random vectomy a scalara andb fixedk x 1 vectors,
andA a fixedg x k matrix. Then, provided the moments considered are finite, we have the following
properties:

(8) E(X+a)=E(X)+a;
(b) E(aX)=aE(X) ;



(c) E(@X)=4dE(X), E(AX)=AE(X) ;
(d) V(X+a)=V(X);

(e) V(aX)=a?V(X)

(f) V(@X)=daV(X)a, V(AX) =AV(X)A';
(g C(@X,b’X)=aV(X)b=b'V(X)a

4.2 Theorem Let X = (Xy,..., X)' be a random vector with covariance matixX) = =. Then
we have the following properties:

(@ =

(b) X is a positive semidefinite matrix;

() 0<|Z| < 0%03...02 wherea? =V (X), i=1,...,k;
(

d) |2| =0« there is at least one linear relation betweenthésXy,..., X, i.e., we can find
constantsy, . .., ax, b not all equal to zero such thatXi + - - - + axXx = b with probability 1;

(e) rankK>) =r < k< X can be expressed in the form
X=BY+c

whereY is a random vector of dimensiorwhose covariance matrix s, B is ak x r matrix of
rankr, andc is ak x 1 constant vector.

4.3 Remark We call the determinan£ | the generalized variance of X.

4.4 Definition If we consider two random vectobé; and X, with dimensionk; x 1 andk, x 1
respectively, the covariance matrix betweenandX is defined by:

C(X1,X2) = E{[X1—E(X1)][X2—E(X2)]'} .
The following proposition summarizes some basic propertié€s(&f;, X2).

4.5 Proposition Let X1 andX, two random vectors of dimensioks x 1 andk;, x 1 respectively.
Then, provided the moments considered are finite we have the following pies

(8) C(X1,X2) =E[X1X5] —E(X1)E(X2)";
(b) C(X1,X2) =C(X2,X1)";
(C) C(Xl,Xl) :V(Xl) , C(Xz,Xz) :V(Xz) ;

10



(d) if aandb are fixed vectors of dimensioks x 1 andky x 1 respectively,

C(X1+a,Xz2+b)=C(X1,X2) ;
(e) if a andp are two scalar constants,
C(aXy,BX2) =aBC(X1,X2) ;
(f) if aandb are fixedk; x 1 andk; x 1 vectors,
C (aX1,b'X2) =a'C(X1,X2)b;
(g) if A andB are fixed matrices matrices with dimensi@as< k; andgy x ky respectively,
C(AX1,BXz) =AC(X1,X2)B';
(h) if kg = ko andX3 is ak x 1 random vector,
C(X1+X2,X3) = C(X1,X3)+C(X2,X3) ;
(i) if kg = ko,

V(X1+X2) = V(Xl)—l-V(Xz)—i-C(Xl,Xz)—i—C(Xz,Xl),
V(Xl—Xz) = V(X1)+V(X2)—C(X1,X2)—C(Xz,Xl).
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