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1. Optimal mean square prediction

LetY, X1, ..., X be real random variables in L? and X = (X1, ...

find a function

such that
E([Y — g(X)])?) is minimal,

Given the mean square criterion, we also restrict g (X) to be in L? :

E[g(X)?’] < oo.

Then it is easy to see that the optimal solution to this problem is

where
MX)=EY |X) .

, X;.)'. We wish to

In general, M (X) is a nonlinear function of X. The optimality of M (X) can easily be

shown on observing that :

E{Y —g(X)"} = E{Y —E(Y | X)+ E(Y|X)~
= E{Y —E(V | X)P+[E(Y | X)-

g (X}
g (X))
)

+2Y - EY [X)[E(Y | X)—g(X)]}
= E{Y-EY | X))+ E{[E(V|X)-g(X)}
+2E{[EY [X) —g(X)]E[Y - E(Y [ X) | X]}
= E{Y-EY | X))} + E{[E(Y|X)-g(X)]*}

from which it follows that the optimal solution is
g(X)=E{Y [X).

The set of random variables

My ={Z:Z = g(X) is arandom variable and E (Z?) < oo}

is a closed subspace of L. M (X) = E(Y | X) can be interpreted as the projection of Y’

on M() :
E(Y | X) = Py, Y.



2. Properties of conditional expectations

Let
Y = (v,...,Y),
Z = (Z, ..., Z,),
X = (X1, ..., Xp)

be random vectors whose components are all in L2. By definition,

E(Y | X)
E(Y) | X)

E(Y]X)= :

E(Y, | X)

and similarly for E (7 | X).
Let L? (X) be the set of random variables W such that W = ¢ (X) and E (IW?) < co.

2.1 Proposition LINEARITY. Let A anm X ¢ fixed matrix and b an m x 1 fixed vector.
Then

E(AY +b | X) = AE(Y | X)+b,
EY+Z|X) = E(Y|X)+E(Z]|X).

2.2 Proposition PosITIvIiTY. IfY; >0, for ©1=1,..., q,then
EY;|X)>0, for i=1, ..., q.
2.3 Proposition MONOTONICITY. IfY; > Z;, for i=1, ..., q,then
EY;|X)>E(Z | X), for i=1,...,q.

2.4 Proposition INVARIANCE.

EY|X)=Y < Y isafunctionof X
& there is a function g (x) such thatY = g (X)
with probability 1.

2.5 Proposition ORTHOGONALITY. Ifg, (X) € L? and g, (Y') € L?, then

E{gl (X) [92 (Y)—E(g(Y) | X)]} =0.



2.6 Proposition ITERATED CONDITIONINGS LAW. If W is a random vector such that
L* (W) € L*(X) |
then

EEQY | X)|W] = E[E(Y [W)]|X]
- E(Y|W).

2.7 Proposition MEAN SQUARE OPTIMALITY.

E[(Yi-E(Y;| X)) = min E[Yi—a(X)’], i=1 ..., q.

gi(X)eL?(X)

2.8 Proposition CHARACTERIZATION OF OPTIMALITY BY ORTHOGONALITY. For
anyt1 =1, ..., q,

B (X) = E(Y; | X) & E[g(X) (Y — hi (X))] =0, ¥g(X) € L*(X) .

2.9 Definition CONDITIONAL COVARIANCE. The conditional covariance matrix of Y
given X is the matrix

V(Y | X)=E[(Y —E(Y | X) (Y —E(Y | X))'| X] .

If we define
e(X)=Y-E(|X),

we see easily that
Vie(X)|=EVY | X)] .

We can then write
Y=EY|X)+e(X)

where E (Y | X) and € (X)) are uncorrelated.

2.10 Proposition VARIANCE DECOMPOSITION.

V() = VIEY [X)]+V[e(X)]
= VE(Y | X)]+E[V(Y | X)] .



3. Linear regression

Consider again the setup of Section 1. We now study the problem of finding a function of
the form

k
=0

where

Xo = 1, b= (b, by, ..., by) (3.1)
r = (Xo, X1, ..., X3), (3.2)

such that the mean square prediction error
E{[Y — L(OP} =E[(Y - ¥a)?]
is minimal. In other words, we wish to minimize (with respect to b) the function

S(h) = E {[Y - b’x]Q}
= E(Y?) —20E(2Y) + VE (z2)b.
It is easy to see that the optimal value of b must satisfy the equation

Elz (Y —Vx)] =0

or
E(za')b=E(zY) .
If we write
71 X1
_( Bo _ B .
b - ’7 ) 7 - 9 X - . )
Vi Xk
we see that



hence

and

By +E(X)' v = E(Y)

E(Y)B, +E(XX')y = E(XY)

By = E(Y)_E(X)IW'

Further, by the basic properties of the expectation operator,

where

E(XX') = V(X)+E(X)E(X),
E(XY) = C(X,Y)+E(X)E(Y)

V(X) = E{E[X —E(X)][X ~E(X)
CX,Y) = E{X —EX)][Y —EMY)} .

By the equations (3.3)-(3.6), we then see easily that

hence

Thus,

The function

is called the

or the

We write

V(X)y=C(X,Y) .

Bo = E(Y)—E(X)'7,
V(X)y = C(X,Y).

L(X) =B+ Xy
linear regression of X on'Y

affine projection of Y on X.

L(X) =P (Y [X)=0+X"y

I

I

E(X)B, +E(X)E(X)'y = E(X)E(Y),
E(X)By+V(X)7y+E(X)E(X)y = C(X,Y)+E(X)E(Y)

(3.3)
(3.4)

(3.5)
(3.6)

(3.7)
(3.8)

(3.9)



where (3, and y are any solution of the normal equations:
V(X)y = CX,Y),
By = E(Y)—EX)y.

If we denote by
e=Y —P, (Y| X)

the prediction error, we see easily that:

E(e) = 0,
C(X,e) = 0.

In the language of Hilbert space theory, we can also write
L(X)=PyY =P, (Y| X)

where
M:@{l, X}:S_p{17 X17 SRR Xk} :
If
det [V (X)] # 0,

the optimal coefficients 3, and ~y are uniquely defined :

Y=VX)TCX,Y), By=E(Y)-E(X)7y.

4. Properties of the projection operator

Let
Y = (va"'?Y:])/a
Z = (Zy, ..., Z,)
X = (Xq, ..., Xp)

be random vectors whose components are all in L?. By definition,

PL(Y1|X)

(v x) = |

PL(Y;IX)



We call £(X) the set of all linear transformations of X.
4.1 Proposition Ifdet[V(X)] #0,

PL(Y[X) = EY)+C(Y, X)V(X)" (X - E(X))
= [E(Y) = C(Y, X\)V(X)E(X)] + C(Y, X)V(X) X, @D

and

er(X) : =Y —PL(Y|X)
= [V —E(Y)] - C(Y, X)V(X)'[X — E(X)]. 4.2)

4.2 Proposition LINEARITY. Let A and B be two fixed matrices of dimensions n X ¢
and 1 x n respectively. Then

PL(AY | X) = AP,(Y | X), (4.3)
P.(YB|X) = P,(Y|X)B, (4.4)
P.(Y+Z|X) = P,(Y|X)+P,(Z]X). “.5)

4.3 Proposition INVARIANCE.

P.(Y|X)=Y < Y isalinear function of X
& Y = AX + b with probability 1

where A and b are fixed matrices.

Note that
4.4 Proposition ORTHOGONALITY. Ife (X)) =Y — P, (Y | X),
C(en(X), X) =0. (4.6)

4.5 Proposition LAW OF ITERATED PROJECTIONS. IfW is a random vector such that

L(W)C LX),
then
PLPL(Y | X)[W] = PL[PL(Y[W)]X]
= PLY[W).



In particular, it X = W,
PLPL(Y|X)| X]=P, (Y| X) 4.7)
4.6 Proposition FRISCH-WAUGH THEOREM.

PLY|X W) = PL(Y|X)+P,(Y =P, (Y|X)|W—-P,(W]|X))
= PL(Y|X)+P(Y|W—=P,(W|X)). (4.8)

5. Prediction based on an infinite number of variables

It is possible to generalized the concept of projection to the case where X contains an
infinite number of variables

X=X,1=(X;_1, Xi9,..) =Xy : k>1). 5.1)

Let Y a scalar random variable. If we consider a potentially infinite set / of random vari-
ables such that the variables in I have finite second order moments, we can define the set
L2(I) of linear transformations of a finite set of variables from /. Then we can define H(I)
the smallest set of random variables in L? such that H(I) is closed, i.e. H(I) satisfies the
following condition: if

{Y,:nezZ} CHI) (5.2)
then
E[(Y — Y,)?] — 0 whenm, n — oo (5.3)
entails
there exists Y € H(I) such that E[ (Y, — Y)?] — 0. (5.4)

We call H(I) the “Hilbert space” generated by I.
5.1 Theorem There exists a unique random variable }Af‘t_l = P, (Y | I) such that

E[(Y -Y,)] = inf E[(Y -2)7]. (5.5)

ZeH(I)

The operator P (Y | I) enjoys properties sated in Propositions 4.2 to 4.6.



6. Bibliographic notes

On the properties of conditional expectations, see Gouriéroux and Monfort (1995, Ap-
pendix B) and Williams (1991).
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