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1. Problem

Xt ∼ ARIMA (p, d, q)

ϕ (B)∇dXt = ϕ0 + Θ (B) at .

After estimation of the parameters. we expect that residuals ât be approximately a white
noise.

The criterion of success for ARIMA model is: to reduce a time series to the white noise
structure.

Let us examine how we can test whether a seriesa, . . . , aN is a white noise.

2. Correlogram of a white noise

Let
a1, ..., aN ∼ BB

(

0, σ2
a

)

. (2.1)

Then

rk (a) =

N−k
∑

t=1

atat+k /

N
∑

t=1

a2
t

(2.2)

is an estimator ofE (atat+k) /E(a2
t
) .

ForN large,

rk(a) ∼ N

[

0,
1

N

]

(2.3)

rk (a)

1/
√

N
∼ N [0, 1] . (2.4)

Furthermore, we can show thatrk (a) , k = 1, ..., K, whereK < N, are independent.
Hence :

Q (r) =
K

∑

k=1

[

rk(a)

1/
√

N

]2

= N
K

∑

k=1

rk (a)2 ∼ χ2 (K) .

We can test whethera1, ..., aN constitute a white noise.
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3. Correlogram of residuals

Instead ofa1, ..., aN , we havêa1, ..., âN . We wish to test

H0 : an ARIMA (p, d, q) is adequate. (3.1)

Let us examine the autocorrelations:

rk (â) , k = 1, . . . , K.

ForN large, √
N rk (â)

a∼ N [0, 1] , k = 1, . . . , K.

but they are not independent.
However, one can show [Box and Pierce (1970)] that

r̂ ≃ (I − D) r

where

r =







r1 (a)
...

rK (a)






, r̂ =







r1 (â)
...

rK (â)






(3.2)

and
IK − D is an idempotent matrix of rankK − ℓ, ℓ = p + q. (3.3)

Thus √
N r

a∼ NK (0, IK) (3.4)
√

N r̂ ≃ (IK − D)
√

N r
a∼ NK (0, IK − D) (3.5)

Q (r̂) = N

K
∑

k=1

rk (â)2 ∼ χ2 (K − ℓ)

p + q does not include the constant.

4. Ljung-Box statistic

For relatively short series, approximating the distribution ofQ by aχ2 (K − ℓ) distribution
can yield very unreliable results [see Davies, Triggs and Newbold (1977)]. In particular,

E (Q) < E
[

χ2 (K − ℓ)
]

. (4.1)
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Ljung and Box (1978) have proposed a modification which improves the approximation.
Consider first the case of white noise:

V ar [rk (a)] =
N − k

N (N + 2)
, k = 1, 2, . . . , K ,

rk (a)
√

N−k

N(N+2)

∼ N (0, 1) (4.2)

where
N − k

N (N + 2)
<

1

N
. (4.3)

Q̃ (r) =
K

∑

k=1





rk (a)
√

N−k

N(N+2)





2

= N (N + 2)
K

∑

k=1

rk (a)2

N − k
.

With estimated residuals, we use:

Q̃ (r̂) = N (N + 2)
K

∑

k=1

(N − k)−1 rk (â)2 ∼ χ2 (K − ℓ) .

This statistic is called the Ljung-Box statistic
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