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1. Problem

Xy~ ARIMA (p,d, q)
@(B) vdXt =, +06 (B) Qg .

After estimation of the parameters. we expect that ressdydbe approximately a white
noise.

The criterion of success for ARIMA model is: to reduce a tirages to the white noise
structure.

Let us examine how we can test whether a setjes. , ay is a white noise.

2. Correlogram of a white noise

Let
ai,....,ay ~ BB (O,UZ) . (2.1)
Then Nk N
r (a) = Z g | Za? (2.2)
t=1 t=1
is an estimator of? (a;a;11,) /E(a?) .
For N large,
( N[0+ (2.3)
ri(a) N .
ri (a)
~ NI[0,1] . 2.4
Dy~ Vo 2.4

Furthermore, we can show that (a) ,k = 1,..., K, where K < N, are independent.
Hence :

N [ @] St 2
Q=3 || =¥ @ )

We can test whether, ..., ay constitute a white noise.



3. Correlogram of residuals
Instead ofu, ..., an, we havei, ..., ax . We wish to test
H, : an ARIMA (p, d, q) is adequate.

Let us examine the autocorrelations:

For N large,
VN7 (@)~ N[0,1], k=1,..., K.

but they are not independent.
However, one can show [Box and Pierce (1970)] that

r~(I—-D)r

where

r1(a) r1(a)

r= , =

i (a) ri (@)

and
Ix — D is an idempotent matrix of rank’ — ¢, { = p + q.

Thus

\/NT’E' NK (0, ]K)
VN#~ (Ix = D)WNr & Ng (0, Ix — D)

Q) =N (@) ~x*(K—1)

p + ¢q does not include the constant.

4. Ljung-Box statistic

(3.1)

(3.2)

(3.3)

(3.4)
(3.5)

For relatively short series, approximating the distribotdf Q by ax? (K — ¢) distribution
can yield very unreliable results [see Davies, Triggs andiddd (1977)]. In particular,

EQ) <E[*(K-0] .

(4.1)



Ljung and Box (1978) have proposed a modification which impsathe approximation.
Consider first the case of white noise:
N —k
VCL'T‘ [T’k ((l)] = m s

~ N (0, 1) (4.2)

where
(4.3)

With estimated residuals, we use:

Q) =NN+2)) (N—k) (@) ~x* (K~ 10).

k=1

This statistic is called the Ljung-Box statistic
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