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1. Model

Let
Xy~ ARIMA (p, d, q) . (1.1)
X, follows the model :
0 (B) VX, = i+ 0 (B) u (1.2)
where
vV=1-8B, (1.3)
p(B)=1-=pB— - —¢,B" ¢, #0, (1.4)
¢B)=1-60B—---—0,B?,0,+#0, (1.5)
¢ (B) andf (B) have no common root, (1.6)
us ~ BB (0, 02) . (1.7)
Series of N = n + d values : X 441, ..., Xo, X1, ..., X;, p + q + 2 parameters to
estimate.
Set :
Y1 0
p=| : , 0= (1.8)
(70p eq
W,=viX,, t=1,...,n, (1.9)

where X, has possibly been transformed through a power or logarithransformation.
We can write:

W, ~ ARMA (p, q)
e(B)W; = p+06(B)u
Wi = oW+ -+ o,Wiy
+up — Ohupmg — - = Ogu_g + 10
u = Wi—pWiea— - —p,Wiyp
+01u—g + - Ogu—g — [0

If we setlV, = W, — u, where

po= g/ (l—er— - —9,),
Uy = Wt—901VVt—1—"'—<PpM/t—p
+91ut_1+--~+6qut_q.



Suppose that, ‘~' N (0, 02).

Difficulty: att =1, Wiy, ..., Wi, ws—1, ... , us—q are unknown.
We can use here two main approaches:

1. maximize the conditional likelihood function:;

2. maximize the unconditional .

2. Conditional likelihood function

Let
W, . p observations ofV; before series beginning,

Uy © ¢ NOISESUy,

We=Wo, Wer, oo, W), (2.1)
/

Uy = (Uo, U_1, ..., U—q+1) )

W = (Wl, ey Wn)/
For p, 0 andj: given, we can compute:

w=u (@, 0, o | W, ue, W) t=1, ..., n.
The joint density ofu,, ... , u,, can be written
1 1 &,
plUL, o, Up) = ——F—€XP§ —=— U .
The joint density of1;, ... , W, givenW, andu, is:
L, (gp, 0, n, 02) =p(Wh, ..., Wy | W, uy)

1 1 & _ 2
:mexp{—rﬂzut(% 0, n| W, u., W) } .

t=1

The maximum likelihood method suggests that we maximizewithrespect to
v, ¢, fiand o2, which is equivalent to maximizing

(. =log(L.)

where _
_ Silp, 0, )

b (o, 0, 1, 0°) = —gﬁn (2m) — glog (o) 52



and .
S* (907 97 ﬂ) - Zut (90, ‘9, 7 | W*, U, W)2
t=1

Irrespective of the value of?,
maximizing/, is equivalent to minimizind. (p, 0, i) .

A A
Once®, 0, i have been estimated (these do not dependnthe value ofs? can be
obtained by maximizing* with respect tar2. The first-order condition then yields:

= =0
257 T T 26t
hence 1
9 oy A
=—5.(p,0, ).
6° = ~S.(¢, 0, p)
The problem is then reduced to minimizisg (y, 6, i) .
Difficulty : W, u, unknown.
The usual solution consists in:
1. takingWy, ..., W, as initial values (this reduces the number of observatioos f
nton —p), )
W,=W= Wy, ..., W,); (2.2)

2. replacingu, by E (u,) = 0.

We minimize
_ n - 2
S, = Z ut(gp,H,ﬁ|W*:W,u*:O> :
t=p+1

This is a nonlinear minimization problem.

3. Unconditional likelihood function

One can show that the logarithm of the unconditional likeditt function ofiVy, ... | W,
has the form:

S (e, 0, 1)

202

0, 0, i, 0%) = f (i, 0) — glog (0?) - (3.1)



where

n

5(907 0, /_L) - Z [ut‘@a 0, 14, W]27
t=—o0
ug | @, 0,0, W = E(w|p 0,0 W)
= [Ut] .

Forn large (or moderately largey, (¢, €) is negligible.
The problem is then reduced to computing and minimizing
To do this, we use the techniquelmdckforecasting.
One can show that every stationatyz M A (p, ¢) process

¢(B)W;=0(B)u+ i, u ~ BB (0> 02)
can also be written

o(FYWy=¢(F)e,+p, e~ BB (0, 0?)

whereF' = B~! ande, is uncorrelated withV, ., W, ... . We then have
Wy=o W1+ -+ QOPWQ+p +e —bien — o —0geg T 10
where
e = Wi—o Wi — - — ¢, Wiy
+616t+1 R 6q€t+q — IB
led] = Wil — o1 [Wiga] — -+ — 0, W]

+01 [err] + -+ 04 [ersq] — I

We can see easily that
[Wt]:Wt, tzl, NN IR

If we use the approximation
[675] 207 th_p+17

we can Compute
led] , t=n—p,n—p—1,...,2 1.

In particular,

lel] = Wi — o Wa — - — o, W1 + 01 [ea] + -+ + 0y [ega] — i



Furthermore
le:] =0, t<0 (e uncorrelated witiV").

From there, we can compute
[VVt] = ¥ [Wt-l-l] Tt [VVHp]

+ [et] — 0, [et-i—l] - Qq [et-f—q] +p, t=0,-1, -2, ... (32)

We then get the sequengé;], t=..., -2, —1,0, 1, ..., n.
Given the series
[Wt] ) t S n?

we go back to the standard model:

Wi = oWia+-+p,Wiy

+up — Oy — - — equtfq + (3.3)
u = Wi—oWey— - — QDthfp
+61Ut_1 + -+ Hqut_q - /_L, (34)
[ue] = Wil =y [Wica] = — ¢, W)
+01 [wg—1] + -+ 0 [ur—g] — 1. (3.5)

For a stationary process, we can suppose that
[w] =0,t<@Q <0
which allows one to compute
], t=Q,Q +1,...,-1,0,1,2, ..., n

and

S(p, 0, 1) =y fu]”
t=Q’
@’ is chosen so thatV;] — u ~ 0.
These calculations may appear complex, but they are relatasy to program.
One could also compute the exadtl estimator. But this is more difficult to program;
see Newbold (1974), Ansley (1979), Brockwell and Davis (. 3%hapter 8).



The maximum likelihood estimator of is

6* = 5(p. 0. i) /n.

But it is more natural to use

1 A /\
~2 _ _
o = n— £S<S0 ,u T n—/ Z
t=Q’
¢ = number of parameters (except for) estimated.

4. Tests and confidence intervals

The maximum likelihood estimators are asymptotically nakrwhich allows one to build
asymptotic confidence intervals based on estimated cazffistandard errors.
We can test hypotheses of the type

Hy:¢¥(p, 0) =0, 4.1)

wherez) is a vector function of dimension relatively easily by using the likelihood ratio
criterion. If

0,0, 11, 6%) =~ log (6) —
2[lne — le] — x*(r) underH,

{c = log L restricted { restrictions forH,)
{nc = log L unrestricted

the likelihood ratio is given by
LR = 2[lnc — {c]
= 2 [g log (620) — glog ((}?\,C)]
= nlog (&?‘;/&?VC) )

We rejectH, whenLR > x?* («; r) whereP[x* (r) > x* (a; r)] = .



5. Bibliographic notes

Several textbooks discuss the estimation of ARMA models; $a&r example Box and
Jenkins (1976, Chapter 7) et Brockwell and Davis (1991, @Gheg).
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