Economics 275: Time Series Econometrics Spring 1999 Professor: Jean-Marie Dufour

Final Exam

to be handed in before Thursday, June 3. 1999 (10:00 AM)

(35 points) 1. Consider the following model:

$$X_t = 0.5 X_{t-1} + u_t - 0.25 u_{t-1}$$

where $\{u_t : t \in \mathbf{Z}\}$ is an i.i.d. N(0.1) sequence. For each one of these models, answer the following questions.

- (a) Is this model stationary? Why?
- (b) Is this model invertible? Why?
- (c) Compute:
 - 1. E(X,);
 - 2. $\gamma(k), k = 1, 2, ..., 8;$
 - 3. $\rho(k)$, k = 1, 2, ..., 8.
- (d) Graph $\rho(k)$, k = 1, 2, ..., 8.
- (e) Find the coefficients of u_t, u_{t-1}, u_{t-2}, u_{t-3} and u_{t-4} in the moving average representation of X_t.
- (f) Find the autocovariance generating function of X_t.
- (g) Find and graph the spectral density of X_t.
- (h) Compute the first four partial autocorrelation of X_t.
- (10 points) 2. Let (X_t: t ∈ Z) be a second-order stationary ARMA process, with equation φ(B)X_t = θ(B)a_t where a_t is a white noise, and φ(z) ≠ 0 for |z| ≠ 1. Let γ(k) be its autocovariance function.
 - (a) Show there are constants c > 0 and s, where 0 < s < 1, such that $|\gamma(k)| \le C |s|^{|k|}, \ k \in \mathbf{Z}.$
 - (b) Show that $\sum_{k=-\infty}^{\infty} |\gamma(k)| < \infty$.

(20 points) 3. Consider again a process which follows the model:

$$X_t = 0.5 X_{t-1} + u_t - 0.25 u_{t-1}$$

where $\{u_t : t \in \mathbb{Z}\}.$

Suppose that for a given realization of this process, the following values have been observed:

$$X_1 = 0.644$$
 , $X_2 = 0.442$, $X_3 = 0.919$
 $X_4 = -1.573$, $X_5 = 0.852$, $X_6 = -0.907$.

- (a) Compute the best linear forecasts of X₇ and X₈ based on X₁, X₂, ..., X₆.
- (b) Calculate 95% predictive confidence intervals for X₇ and X₈.
- (c) If it is further known that $X_t = 0$ for $t \le 0$, compute the best linear forecast of X_{t+h} , for h = 1, ... 10, based on all the observations $\{X_t : t \le 6\}$, and graph them.

(20 points) 4. Consider the following autocorrelations which are obtained from a time series X₁, ..., X_T of length 100 (T = 100):

k	1	2	3	4	5	6	
r _k	0.74	0.58	0.47	0.39	0.34	0.33	-

We wish to test the null hypothesis that the observations are independent and identically distributed (randomness).

- (a) Describe how this null hypothesis could be tested using each individual autocorrelation and a large-sample approximation for the distribution of the autocorrelations. Discuss the assumptions required for these large sample tests to be valid. Apply the procedure to r₁, ..., r₆ as given in the above table.
- (b) Propose a procedure that would combine the six autocorrelations given above. Apply the procedure to r₁, ..., r₆ as given in the above table.
- (c) Describe finite sample bounds tests based on autocorrelations that would allow one to test the hypothesis of randomness. Discuss the assumptions made and the problems associated with the use of a bound. Apply the procedure to r₁, ..., r₆ as given in the above table.

(d) Discuss how the method of Monte Carlo tests could be applied to obtain a finite sample test of randomness without using a bound.

(15 points) 5. Describe the Tiao-Box approach for

- (a) specifying (identifying),
- (b) estimating,
- (c) validating,

multivariate ARMA models. [Maximum: 3 pages].