Economics 275: Time Series Econometrics Spring 1999 Professor: Jean-Marie Dufour ## Final Exam to be handed in before Thursday, June 3. 1999 (10:00 AM) (35 points) 1. Consider the following model: $$X_t = 0.5 X_{t-1} + u_t - 0.25 u_{t-1}$$ where $\{u_t : t \in \mathbf{Z}\}$ is an i.i.d. N(0.1) sequence. For each one of these models, answer the following questions. - (a) Is this model stationary? Why? - (b) Is this model invertible? Why? - (c) Compute: - 1. E(X,); - 2. $\gamma(k), k = 1, 2, ..., 8;$ - 3. $\rho(k)$, k = 1, 2, ..., 8. - (d) Graph $\rho(k)$, k = 1, 2, ..., 8. - (e) Find the coefficients of u_t, u_{t-1}, u_{t-2}, u_{t-3} and u_{t-4} in the moving average representation of X_t. - (f) Find the autocovariance generating function of X_t. - (g) Find and graph the spectral density of X_t. - (h) Compute the first four partial autocorrelation of X_t. - (10 points) 2. Let (X_t: t ∈ Z) be a second-order stationary ARMA process, with equation φ(B)X_t = θ(B)a_t where a_t is a white noise, and φ(z) ≠ 0 for |z| ≠ 1. Let γ(k) be its autocovariance function. - (a) Show there are constants c > 0 and s, where 0 < s < 1, such that $|\gamma(k)| \le C |s|^{|k|}, \ k \in \mathbf{Z}.$ - (b) Show that $\sum_{k=-\infty}^{\infty} |\gamma(k)| < \infty$. (20 points) 3. Consider again a process which follows the model: $$X_t = 0.5 X_{t-1} + u_t - 0.25 u_{t-1}$$ where $\{u_t : t \in \mathbb{Z}\}.$ Suppose that for a given realization of this process, the following values have been observed: $$X_1 = 0.644$$, $X_2 = 0.442$, $X_3 = 0.919$ $X_4 = -1.573$, $X_5 = 0.852$, $X_6 = -0.907$. - (a) Compute the best linear forecasts of X₇ and X₈ based on X₁, X₂, ..., X₆. - (b) Calculate 95% predictive confidence intervals for X₇ and X₈. - (c) If it is further known that $X_t = 0$ for $t \le 0$, compute the best linear forecast of X_{t+h} , for h = 1, ... 10, based on all the observations $\{X_t : t \le 6\}$, and graph them. (20 points) 4. Consider the following autocorrelations which are obtained from a time series X₁, ..., X_T of length 100 (T = 100): | k | 1 | 2 | 3 | 4 | 5 | 6 | | |----------------|------|------|------|------|------|------|---| | r _k | 0.74 | 0.58 | 0.47 | 0.39 | 0.34 | 0.33 | - | We wish to test the null hypothesis that the observations are independent and identically distributed (randomness). - (a) Describe how this null hypothesis could be tested using each individual autocorrelation and a large-sample approximation for the distribution of the autocorrelations. Discuss the assumptions required for these large sample tests to be valid. Apply the procedure to r₁, ..., r₆ as given in the above table. - (b) Propose a procedure that would combine the six autocorrelations given above. Apply the procedure to r₁, ..., r₆ as given in the above table. - (c) Describe finite sample bounds tests based on autocorrelations that would allow one to test the hypothesis of randomness. Discuss the assumptions made and the problems associated with the use of a bound. Apply the procedure to r₁, ..., r₆ as given in the above table. (d) Discuss how the method of Monte Carlo tests could be applied to obtain a finite sample test of randomness without using a bound. ## (15 points) 5. Describe the Tiao-Box approach for - (a) specifying (identifying), - (b) estimating, - (c) validating, multivariate ARMA models. [Maximum: 3 pages].