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1. Random variables

1.1 In general, economic theory specifies exact relations between econanables. Even a
superficial examination of economic data indicates it is not (almost nevesjlge to find such
relationships in actual data. Instead, we have relations of the form:

CG=a+BY+¢&
whereg; can be interpreted as a “random variable”.

1.2 Definition A random variablér.v.) X is a variable whose behavior can be described by a “prob-
ability law”. If X takes its values in the real numbers, the probability law @an be described by
a “distribution function”:

Fx(x) = P[X <X

1.3 If X is continuous, there is a “density functiof (x) such that

X
:/ fx (X) dx
The mean and variance ¥fare given by:
+00

Hy = E(X) :/ x dFx (X) (general case)

+o0
:/ X fx (x) dx (continuous case)
V(X)=0% = [X Uy 2] / (X— py )2 dFx (X) (general case)
/ (X— Ly )2 Fx (X) dx (continuous case)

=E(X?) ~[E(X)]*
1.4 Itis easy to characterize relations between two non-random variabledy :
g(x,y)=0

or (in certain cases)

y="F(x).
How does one characterize the links or relations between random vaftabe behavior of a pair
(X,Y)" is described by a joint distribution function:

F(xy) = PX<x Y<Yy]



y X
/ / f(x, y)dxdy (continuous case.)

We call f(x,y) the joint density function of(X,Y). More generally, if we consider

kv.als Xy, Xo, ..., Xk, their behavior can be described througk-dimensional distribution func-
tion:
F(X1,X%2,. .., %) = P [Xg < X3, X0 < Xo, ..., X < X
= / / / (X1,X2, ..., Xk) AxdX2 - - - dxy (continuous case)

wheref (x1,Xo, ..., X) is the joint density function oKy, X, ... , X.

2. Covariances and correlations

2.1. Covariance and correlation between two random varialds

We often wish to have a simple measure of association between two randablesX andY. The
notions of “covariance” and “correlation” provide such measuresssbaiation. LetX andY be
two r.v.’'s with meangiy andu, and finite variances% ando?. Belowa.s. means “almost surely”
(with probability 1).

2.1 Definition The covariance betweetiandY is defined by
CXY)=oxy =E[(X—pux) (Y —Hy)] -
2.2 Definition Supposerg > 0 anda? > 0. Then the correlation betweéhandy is defined by
P (X,Y) = pyy = Oxy/0x0y .
Whena% = 0 or g% = 0, we sefpyy = 0.

2.3 Theorem The covariance and correlation betweeandY satisfy the following properties:
a oxy =E(XY)—E(X)E(Y);

(
(b) oxy =0vx, Pxy = Pyx
(0) oxx=0%, pxx =1;

(d) 0%y <0%0%; (Cauchy-Schwarz inequality
(€ —1<pyxy <1;

(f) X andY are independent- oxy = 0= pyy =0;

(g) if 0% #0anda #0,

pxy =1« [3 two constants andb such thaa # 0 andY = aX +b a.s]



PROOF (a)

(X =y ) (Y — py)]

XY xY Xy + Hyx Hy]
(XY) = uxE(Y) —E(X) By + Hx Hy
(XY)— UXNY HxHy + HxHy
(XY) —E(X)E(Y) .

Oxy =

E[
E[
= E
E
E

(b) et (c) are immediate. To get (d), we observe that

E{IY — by = A (X = )P} = E{I0Y = py) = A (X = )}

= E{(Y = 1)? =20 (X = ) (Y = ) + 2% (X = ) |
= 0% - 2Aoxy +A%0% > 0.

for any arbitrary constam. In other words, the second-order polynongéh ) = % — 2A oxy +
)\205( cannot take negative values. This can happen only if the equation

A20% —2 0%y + 02 =0 (2.1)

does not have two distinct real roots, i.e. the roots are either complexmicale The roots of
equation (2.1). are given by

20xy £ /40%, —40%0%  Oxy +4/0% —0%0%

2 2
20% o%

Distinct real roots are excluded wher, — 0402 < 0, hence
0%y < 0%05 .
(e)

0% < 0%0% = —0x0y < Oxy < 0x0y
= —1<pyy<1.

(f)

oxy = E{(X—px)(Y—py)} =EX—py)EY —py)
= [E(X) = ux][E(Y) —uy] =0,
Pxy = O'xy/O'xO'Y =0.



Note the reverse implication does not hold in general,
pxy = 0#> X andY are independent
(9) 1) Necessity of the condition. ¥ = aX + b, then

E(Y)=aE(X)+b=auy+b, 05 =a’0%,

and
oxy = E[(Y — ty) (X = py)] = E[a(X — py) (X — py)] = a0>2< .
Consequently,
2 a’oy
Px = Ra%af

2) Sufficiency of the condition. 6%, = 1, then
0%y —0%0% =0,
In this case, the equation
E{IY — 1) = A (X = )P} = 0% — 20y +A%0% = 0

has one and only one root

. ZO'XY . 2
— 20_)2( — GXY/UX 3
so that ,
Oxy
E{[(Y—un—az(x—ux)} }=o
X
and

axy Oxy Oxy
Pl(Y—pu )—(X—Ll)——O] ——P[Y——X—i-([.l ——HU >] =1
Y 0.2 X 0_2 Y O-g( X

We can thus write:
Y = aX + b with probability 1

wherea = axy /0% andb = iy — UTng“X :

2.2. Covariances and correlations betweek random variables

Consider novkr.v.'s Xp, Xo, ..., X such that

EOS) = py, i=1,...k,
C(XHXJ) = Gij, IvJ::L)ak



We often wish to compute the mean and variance of a linear combinatin .of , Xy :
SFaX = aXy +apXe + -+ aK .
It is easily verified that
E [Zik:laixi} =5 a,
and
\% [Zikzlaixi} = E{ [Zik:lai (Xi— “i)} [Z}(:laj (X — Hj)} }
= Zik:]_Z}(:laiaj gij .

Since such formulae may often become cumbersome, it will be convenierd t@aor and matrix
notation
We define a random vectot and its mean valug (X) by:

X1 E(X1) Hi
x={ | cEO=| : |=| i |=k
X E (%) Hy
Similarly, we define a random matri and its mean valug (M) by:
X]_]_ X12 e Xln E (X]_]_) E (Xlz) ... E (Xln)
X X e X E (X E (X ... ECX
vo | @ % n B M) = (.21) (.22) (.2n)
X Xm .. X E(Xm) E(Xme) ... E(Xm)

where theX;; arer.v.’s. To a random vectoX, we can associate a covariance ma¥i) :

V(X) =E{[X—EX)][X-EX)]"} = E{[X — ux] X — px]'}

(Xa—pg) K —H) Xe—Hg) (R —Ha) - (Xe—Hg) (K= Hy)
=E : : :
(Xe— i) (K= Hy) - (= p) e —H) oo (e Hi) (K= 1)
011 012 ... O
=1 : : =2
Oxn Okz2 ... Okk
If a=(ay...,a)’, we see that:
SK X =aX.

Basic properties of (X) andV (X) are summarized by the following proposition.



2.4 Proposition LetX = (X, ..., Xk)’ ak x 1 random vectory a scalara andb fixedk x 1 vectors,
andA a fixedg x k matrix. Then, provided the moments considered are finite, we have the following
properties:

—~

X+a) =E(X)+a

aX)=aE(X) ;

—~~

aX)=aE(X), E(AX)=AE(X) ;

ax)=aV(X)a, V(AX)=AV(X)A;
aX,b’X)=aV(X)b=b'V(X)a

2.5 Theorem Let X = (Xq,...,X¢)" be a random vector with covariance matixX) = . Then
we have the following properties:

a 2

(

(b) X is a positive semidefinite matrix;

(¢) 0<|Z| < g303...02 wherea? =V (%), i=1,...,k;
(

d) |2| = 0« there is at least one linear relation betweenthés X,..., X, i.e., we can find
constantsy, ..., ax, b not all equal to zero such thatX; + - - - + axXx = b with probability 1;

(e) rankX) =r < k< X can be expressed in the form
X=BY+c

whereY is a random vector of dimensiorwhose covariance matrix g, B is ak x r matrix of
rankr, andc is ak x 1 constant vector.

2.6 Remark We call the determinang| the generalized variance of X.

2.7 Definition If we consider two random vectobs; and X, with dimensionsk; x 1 andk, x 1
respectively, the covariance matrix betweenandX, is defined by:

C(X1,Xz) = E{[X1—E(X1)] X2~ E(X2)'} .
The following proposition summarizes some basic propertigs(f;, X2).

2.8 Proposition Let X; andX, two random vectors of dimensioks x 1 andky x 1 respectively.
Then, provided the moments considered are finite we have the following ieg



a) C(X1,X2) =E[X1X5] —E(X1)E(X2) ;

0) C(X1,X1) =V (X1), C(X2,X2) =V (X2);

(a C

(b) C(X1,X2)=C(X2,X1)";

(c) C

(d) if aandb are fixed vectors of dimensioks x 1 andky x 1 respectively,

C(X1+aXz+b)=C(Xy,X2) ;
(e) if a andp are two scalar constants,
C(aXy,BX2) =aBC(X1,X2) ;
(f) if aandb are fixedk; x 1 andky x 1 vectors,
C(a'X1,b'Xz) =a'C(X1,X2)b;
(g) if A andB are fixed matrices matrices with dimensia@ns< k; andg, x ky respectively,
C(AX1,BX2) = AC(X1,X2)B';
(hy if ky = ko @andX3 is ak x 1 random vector,
C(X14+X2,X3) = C(X1,X3)+C(X2,X3) ;
(i) if ke =Ko,
V(X14+Xz2) = V(X1)+V(X2)+C(X1,X2) +C(X2,X1) ,
V(X1—X2) = V(X1)+V(X2)—C(X1,X2) = C(X2,X1) .
3. Multinormal distribution

Consider two random vectoks; andX», with dimensionsk; x 1 andk, x 1 respectively. 1¥X1 and
X, are independent, then

C (X1, X2) = E [ (X1 = ) (Xa— ;)] =0

The reverse implication is not true in general, except in special cases.st@h case is the one
! !’ ! . . . .
where the random vectof = (Xl,X2> follows a multinormal distribution.

3.1 Definition We say that th& x 1 random vectoK follows a multinormal distribution with mean



U and covariance matrix, denoted ~ N [U, 2], if the characteristic function of has the form:
B[] = enti R, tegt = Vol

3.2 When|X]| # 0, the vectoiX has a density function of the form:

1 1
f - = —Tx=u)>Y(x—
(x) (2n)k/2|215exp[ 5 (X—H) 277 (x u)]

If k=1, thenZ = o2 and

(0=~ exp| 5 (x—h) 35 (=10 = ﬁaexp[ “X;é”z] -
Some important properties of the multinormal distribution are summarized in the fiofalreorem.
3.3 Theorem If X ~ Ng[u, 2], then
a X+c~N¢[u+c,Z2], for any fixedk x 1 vectorc;

(

(b) X ~Ny[du,aZa) , for any fixedk x 1 vectora,

(c) AX ~Ny[Au,AZA] |, for any fixedg x k matrixA ;
(

d) if
X1 H1> ( 211 212 )]
X= ~N , ,
<X2> “ Kuz 2 222
whereX 1 andX are vectors of dimensioks x 1 andky x 1,

H1 = E(X1),u;=E(X2), 211 =C(X1,X1), Z22=C(X2,X2),
210 = C(Xg,X2) =25,

then

(i) Xy~ Nkl [“17211] , Xo Nkz [[.12,222] ;
(if) X1 andX; are independent- 212 =0 ;

(iii) the conditional distribution ok, givenXy is normal with mean and et variance

EX2lX1] = Mo+ 222y (Xa—Hy) ,
VIX2|X1] = Z22— 311512,

X2|X1 ~ N [Ho+ Z2151 (X1 — 1), Zoo— Z01 511 510]



3.4 Theorem If X ~ N [u, Z] with |Z| # 0, then
(X =) = (X =) ~ X (K) .

PROOF SinceZ is a positive definite matrix|X| # 0), there exists a nonsingular matixsuch
that

PSP = Iy
hence
s = PP = (PP,
st = PP.
Consequently,
X—p) = (X=p) = (X=p)'PPX-p)
= PX—-p]'PX-p)=vv=5g,V

where

V=P[X—pu] = (v1,V2,...,%)" .
SinceX ~ N[u, 2], we haveX — i ~ N[0, 2], hence

PX—u]~N [O,PZP’] ,

and
V=P[X—pu]~NI[O,l .

Thusvy,...,vare i.i.d.N[0,1] and(X — p) S~ 3 (X — p) = 5K V2 ~ x2(K) . O



