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1. Definitions and notation

1.1 Notation We shall use the following notation:

(1) iff : if and only if;

(2) ⇔ : if and only if;

(3) ∞ : infinity ;

(4) Ac : complement of the set A;

(5) ⇒ : implies ;

(6) ∼ : is distributed like;

(7) ≡ : equal by definition;

(8) C : set of complex numbers;

(9) R : real numbers;

(10) Z : integers;

(11) N0 = {0, 1, 2, ...} : nonnegative integers;

(12) N = {1, 2, 3, ...} : positive integers;

(13) R : extended real numbers :

R = R∪{+∞}∪{−∞} .

1.2 Notation 1.3 Definition BOUNDED SET IN R. Let E ⊆ R. If there is an element y ∈ R such
that x ≤ y, ∀x ∈ R, we say that E has an upper bound (or is bounded from above). If there is an
element z ∈ R such that x ≥ z, ∀x ∈ E, we say that E has a lower bound (or is bounded from below).
If E has both upper and lower bounds, we say that E is bounded.

1.4 Definition SUPREMUM AND INFIMUM. Let E ⊆ R. sup(E) is the smallest element of R such
that x ≤ sup(E), ∀x ∈ E; inf(E) is the largest element of R such that inf(E) ≤ x, ∀x ∈ E.

1.5 Definition BOUNDED SET IN C. Let E ⊆C. If there is a real number M and a complex number
z0 such that |z− z0| < M for all z ∈ E, we say the set E is bounded.

1.6 Definition SEQUENCE. Let E be a set. A sequence in E is function f (n) = an which associates
to each element n ∈ N an element an ∈ E. The sequence is usually denoted by the ordered set of the
values of f (n):

{a1,a2, . . .} ≡ {an}∞
n=1 ≡ {an}
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or
(a1,a2, . . .) ≡ (an)

∞
n=1 ≡ (an) .

If E = C, the sequence is complex. If E = R, the sequence is real. To indicate that all the elements
of the sequence {an} are in E, we write {an} ⊆ E.

1.7 Remark Let m∈Z and Im = {n ∈ Z : n ≥ m}. A function f (n) = bn which maps every element
n ∈ Im to an element an ∈ E can be viewed as a sequence in E on defining an = bm+n−1, n = 1,2, . . .
Such a sequence is usually denoted

{bm,bm+1, . . .} ≡ {bn}∞
n=m .

Similarly, if Im = {n ∈ Z : n ≤ m}, we can define an = bm−n+1, n = 1,2, . . . . In this case, the
sequence can be denoted as

{...,bm−1,bm} ≡ {bn}m
n=−∞ .

1.8 Definition SUBSEQUENCE. Let E be a set, {an}∞
n=1 ⊆ E, and {nk}∞

k=1 a sequence of positive
integers such that n1 < n2 < · · · . The sequence {ank

}∞
k=1 is a subsequence of {an}∞

n=1 .

1.9 Definition LIMIT OF A COMPLEX SEQUENCE. Let a ∈ C and {an} ⊆ C. The sequence
{an} converges to a iff for any real number ε > 0, there is an integer N such that n ≥ N implies
|an −a| < ε . In this case, we write an → a, or

lim
n→∞

an = a ,

and a is called the limit of {an}. If there is a number a ∈ C such that an → a, we say that the
sequence {an} converges (or converges in C). If the sequence does not converge, we say it diverges.

1.10 Remark When there is no ambiguity, we can also write lim an instead of limn→∞ an.

1.11 Definition CONVERGENCE IN A SET. Let E ⊆ C and {an} ⊆ E. If there exists an element
a ∈ E such that an → a, we say that {an} converges in E.

1.12 Definition CONVERGENCE IN THE SENSE OF CAUCHY. Let {an} ⊆ C. The sequence {an}
converges in the Cauchy sense iff for any ε > 0, there exists an integer N such that m ≥ N and n ≥ N

imply |am −an|< ε . A sequence which converges in the Cauchy sense is called a Cauchy sequence.

1.13 Definition INFINITE LIMITS. Let {an} ⊆ R. We say that the sequence {an} diverges to ∞ iff
for any real number M there exists an integer N such that n ≥ N implies an ≥ M. In this case, we
write an → ∞ or

lim
n→∞

an = ∞ .

Similarly, we say the sequence {an} diverges to −∞ iff for any real number M there is an integer N

such that n ≥ N implies an ≤ M. In this case, we write an →−∞ or

lim
n→∞

an = −∞ .
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We also wrote +∞ instead of ∞.

1.14 Definition MONOTONIC SEQUENCE. Let {an} ⊆ R. If an ≤ an+1, for all n ∈ N, we say
that the sequence {an} is monotonically increasing (or monotonic increasing) . If an ≥ an+1 for all
n ∈ N, we say the sequence {an} is monotonically decreasing (monotonic decreasing). If {an} is
monotonically increasing and an → a, we write an ↑ a. If {an} is monotonically decreasing and
an → a, we write an ↓ a.

1.15 Definition UPPER AND LOWER LIMITS. Let {an} ⊆ R. The upper limit of the sequence
{an} is defined by

limsup
n→∞

an = inf
N≥1

{

sup
n≥N

an

}

≡ inf{sup{an : n ≥ N} : N ≥ 1} .

The lower limit of the sequence {an}is defined by

liminf
n→∞

an = sup
N≥1

{

inf
n≥N

an

}

≡ sup{inf{an : n ≥ N} : N ≥ 1} .

We also write lim instead of limsup, and lim instead of liminf.

1.16 Remark The upper and lower limits of the sequence {an} ⊆ R always exist in R.

1.17 Definition ACCUMULATION POINT. Let {an} ⊆ C and a ∈ C. a is an accumulation point of
{an} iff for any real number ε > 0, the inequality |an −a| < ε is satisfied for an infinity of elements
of the sequence {an} .

1.18 Definition PARTIAL SUM AND SERIES. Let {an} ⊆ C and SN = ∑N
n=1 an. We call {SN}∞

N=1
the sequence of partial sums associated with {an}. The symbol ∑∞

n=1 an represents the series asso-
ciated with {an}. If limN→∞ SN = S where S ∈ C, we say the series ∑∞

n=1 an converges (or converges
to S) and we write

∞

∑
n=1

an = S .

If the series ∑∞
n=1 an does not converge, we say it diverges.

1.19 Remark If we consider a sequence of the form {an}∞
n=m where m ∈ Z, we say that the series

∑∞
n=m an converges to S if limN→∞ SN = S, where SN = ∑N+(m−1)

n=m an. Similarly, for a sequence of
the form {an}m

n=−∞, where m ∈ Z, we say that the series ∑m
n=−∞ an converges to S if limN→∞ SN = S,

where SN = ∑m+1−N
n=m an.

1.20 Definition ABSOLUTE AND CONDITIONAL CONVERGENCE. Let {an} ⊆ C. If the series
∑∞

n=1 |an| converges, we say that the series ∑∞
n=1 an converges absolutely. If ∑∞

n=1 an converges, but
∑∞

n=1 |an| does not converge, we say that ∑∞
n=1 an converges conditionally.
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1.21 Definition TWO-SIDED SEQUENCE. Let {an}∞
n=0 and {an}−1

n=−∞ be two sequences of com-
plex numbers. If the series ∑∞

n=0 an converges to S1 ∈ C and if the series ∑−1
n=−∞ an converges to

S2 ∈ C, we say that the two-sided series ∑∞
n=−∞ an converges to S1 +S2.

1.22 Definition DOUBLE SEQUENCE. A double sequence in E is a function f (m, n) = amn which
maps each pair (m,n) ∈ N2 to an element amn ∈ E. We usually denote the double sequence by

{amn}∞
m,n=1 ≡ {amn} .

To indicate that all the elements of the double sequence {amn} are in E, we write {amn} ⊆ E.

1.23 Definition LIMIT OF A COMPLEX DOUBLE SEQUENCE. Let a ∈ C and {amn} ⊆ C. The
double sequence {amn} converges to a when m, n → ∞ iff for any real number ε > 0, there is an
integer N such that m, n ≥ N implies |amn −a| < ε . In this case, we write amn −→

m,n→∞
a, or

lim
m,n→∞

amn = a ,

and a is called the limit of {amn} when m, n → ∞.

1.24 Remark For double sequences, we can consider several different limits: limm→∞ amn, limn→∞
amn, limm→∞ [limn→∞ amn] , limn→∞ [limm→∞ amn] . In general, these limits are not equal. Even if

lim
m→∞

amn ≡ bn , lim
n→∞

amn = cm

exist, we can have

lim
n→∞

[

lim
m→∞

amn

]

≡ lim
n→∞

bn 6= lim
m→∞

cm ≡ lim
m→∞

[

lim
n→∞

amn

]

.

2. Convergence of sequences

2.1 Theorem CONVERGENCE CRITERION FOR COMPLEX SEQUENCES. Let {cn} ⊆ C, where
cn = an + i bn, an ∈ R, bn ∈ R, for all n, and i =

√
−1. Then the sequence {cn} converges iff each

one of the sequences {an} and {bn} converges. Furthermore, if {cn} converges, we have:

lim
n→∞

cn =
(

lim
n→∞

an

)

+ i
(

lim
n→∞

bn

)

.

2.2 Theorem PROPERTIES OF CONVERGENT SEQUENCES. Let {an} ⊆ C, a ∈ C and a′ ∈ C.

(a) Limit unicity. If an → a and an → a′, then a = a′.

(b) Boundedness of convergent sequences. If the sequence {an} converges, then the set {a1, a2,
...} is bounded.
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(c) Convergence of bounded sequences (Bolzano-Weierstrass). If the sequence {an} is bounded,
then {an} contains a convergent subsequence {ank

}. In other words, a bounded sequence {an}
has at least one accumulation point.

(d) Convergence of subsequences. {an} converges to a ⇔ each subsequence {ank
} of {an} con-

verges to a ⇔ each subsequence {ank
} of {an} contains another subsequence {amk

} which
converges to a.

(e) Accumulation and convergence. If the sequence {an} is bounded and has exactly one accu-
mulation point a, then an → a. If the sequence {an} has no finite accumulation point or has
several, then it diverges.

2.3 Theorem CONVERGENCE OF TRANSFORMED SEQUENCES. Let {an} ⊆C and {bn} ⊆C two
sequences such that

lim
n→∞

an = a, lim
n→∞

bn = b

where a, b ∈ C. Then

(a) limn→∞ (an +bn) = a+b ;

(b) limn→∞ (c an) = c a, limn→∞ (an + c) = a+ c, ∀c ∈ C ;

(c) limn→∞ (anbn) = a b ;

(d) lim(an/bn) = a/b, provided b 6= 0 ;

(e) limn→∞ g(an) = g(a) for any function g : C → C continuous at x = a.

2.4 Theorem CONVERGENCE OF CAUCHY SEQUENCES. Let {an} ⊆ C.

(a) If the sequence {an} converges, then {an} converges in the Cauchy sense.

(b) Completeness. If the sequence {an} converges in the Cauchy sense, then the sequence {an}
converges.

2.5 Theorem CONVERGENCE OF REAL SEQUENCES. Let {an} ⊆ R, {bn} ⊆ R, a ∈ R and b ∈ R.

(a) liminf
n→∞

an ≤ limsup
n→∞

an.

(b) lim
n→∞

an = a ⇔ liminf
n→∞

an = limsup
n→∞

an = a.

(c) If an ≤ bn for n ≥ N, then

liminf
n→∞

an ≤ liminf
n→∞

bn ,

limsup
n→∞

an ≤ limsup
n→∞

bn .
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(d) If an ≤ bn for n ≥ N and if {an} and {bn} are convergent sequences, then

lim
n→∞

an ≤ lim
n→∞

bn .

(e) If the sequence {an} is monotonically increasing, then

{an} converges in R or lim
n→∞

an = ∞ .

( f ) If the sequence {an} is monotonically decreasing, then

{an} converges in R or lim
n→∞

an = −∞ .

(g) If the sequence {an} is monotonic (increasing or decreasing) and bounded, then {an} converges
in R.

2.6 Theorem LIMITS OF IMPORTANT SPECIAL SEQUENCES. Let p and α be real numbers and x

a complex number.

(a) If p > 0, lim
n→∞

1
np = 0 .

(b) If p > 0, lim
n→∞

p1/n = 1 .

(c) lim
n→∞

n1/n = 1 .

(d) If p > 0, lim
n→∞

nα

(1+p)n = 0 .

(e) If |x| < 1, lim
n→∞

xn = 0 .

( f ) If b > 0 and b 6= 1, lim
n→∞

[logb(n)/n] = 0 .

3. Convergence of series

3.1 Theorem CAUCHY CRITERION FOR CONVERGENCE OF A SERIES. Let {an} ⊆ C. The series
∑∞

n=1 an converges iff, for any ε > 0, there is an integer N such that n≥m≥N implies |∑n
k=m ak|< ε.

3.2 Proposition ALTERNATIVE FORMS OF THE CAUCHY CRITERION FOR SERIES. Let {an} ⊆
C. The series ∑∞

n=1 an converges

⇔ for any ε > 0, there is an integer N such that n ≥ N implies
∣

∣

∣∑n+p
k=n+1 an

∣

∣

∣
< ε for any p ≥ 1

⇔ for any ε > 0, there is an integer N such that n ≥ N implies sup
p≥1

∣

∣

∣∑n+p
k=n+1 an

∣

∣

∣
< ε



3. CONVERGENCE OF SERIES 7

⇔ lim
n→∞

[

sup
p≥1

∣

∣

∣∑n+p
k=n+1 an

∣

∣

∣

]

= 0 .

3.3 Theorem NECESSARY CONDITIONS FOR CONVERGENCE OF A SERIES. Let {an} ⊆ C.

(a) If the series ∑∞
n=1 an converges, then lim

n→∞
an = 0 .

(b) If the series ∑∞
n=1 |an| converges and if |an+1| ≤ |an| for n ≥ N, then lim

n→∞
(nan) = 0 .

3.4 Corollary DIVERGENCE CRITERION FOR A SERIES. Let {an} ⊆ C and c > 0. If |an| ≥ c for
an infinite number values of n, then the series ∑∞

n=1 an diverges.

3.5 Theorem CHARACTERIZATION OF ABSOLUTE CONVERGENCE. Let {an} ⊆ C. The series
∑∞

n=1 an does not converge absolutely ⇔ ∑∞
n=1 |an| diverges ⇔ ∑∞

n=1 |an| = ∞ .

3.6 Remark To indicate that the series ∑∞
n=1 an converges absolutely, we can write ∑∞

n=1 |an| < ∞.

3.7 Theorem CRITERION FOR ABSOLUTE CONVERGENCE OF A SERIES. Let {an} ⊆ C. If the
series ∑∞

n=1 an converges absolutely, then ∑∞
n=1 an converges.

3.8 Corollary DIVERGENCE CRITERION FOR A SERIES. Let {an} ⊆ C. If the series ∑∞
n=1 an

diverges, then ∑∞
n=1 |an| = ∞ .

3.9 Theorem COMPARISON CRITERION FOR CONVERGENCE OF A SERIES. Let {an} ⊆ C,
{cn} ⊆ R and {dn} ⊆ R.

(a) If |an| ≤ cn for n ≥ n0, where n0 is a given integer, and if the series ∑∞
n=1 cn converges, then the

series ∑∞
n=1 an converges absolutely.

(b) If |an| ≥ dn ≥ 0 for n ≥ n0, where n0 is a given integer, and if ∑∞
n=1 dn diverges, then ∑∞

n=1 |an|=
∞ but ∑∞

n=1 an can converge or diverge.

3.10 Theorem CONVERGENCE OF A SERIES OF NONNEGATIVE NUMBERS. Let {an} ⊆ R where
an ≥ 0 for all n.

(a) The series ∑∞
n=1 an converges iff the sequence of partial sums {∑N

n=1 an}∞
N=1 is bounded.

(b) Cauchy’s condensation criterion. If the sequence {an} is monotonically decreasing (a1 ≥
a2 ≥ a3 ≥ ...), the series ∑∞

n=1 an converges iff the series

∞

∑
k=0

2ka2k = a1 +2a2 +4a4 +8 a8 + ... (3.1)

converges.
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3.11 Proposition CONVERGENCE OF SPECIAL SERIES. Let x a complex number and p a real
number.

(a) Geometric series. If |x| < 1 ,
∞

∑
n=0

xn =
1

1− x

where 00 ≡ 1. If |x| ≥ 1, the series ∑∞
n=0 xn diverges.

(b) The series ∑∞
n=1 1/np converges if p > 1 and diverges if p ≤ 1.

(c) The series ∑∞
n=2

1
n(logn)p converges if p > 1 and diverges if p ≤ 1.

(d) e = ∑∞
n=0

1
n! = lim

n→∞

(

1+ 1
n

)n
.

3.12 Theorem ROOT CONVERGENCE CRITERION (CAUCHY). Let {an} ⊆ C and α =

limsup
n→∞

|an|1/n .

(a) If α < 1, the series ∑∞
n=1 an converges absolutely.

(b) If α > 1, ∑∞
n=1 an diverges.

(c) If |an|1/n ≤ δ < 1 for n≥ n0, where n0 is a given integer, the series ∑∞
n=1 an converges absolutely.

(d) If |an|1/n ≥ 1 for an infinite number of values of n, ∑∞
n=1 an diverges.

(e) If none of the preceding conditions holds, we can find cases where ∑∞
n=1 an converges and cases

where ∑∞
n=1 an diverges.

3.13 Theorem RATIO CONVERGENCE CRITERION (D’ALEMBERT). Let {an} ⊆ C and 0/0 ≡ 0.

(a) If limsup
n→∞

∣

∣

∣

an+1
an

∣

∣

∣
< 1, the series ∑∞

n=1 an converges absolutely.

(b) If
∣

∣

∣

an+1
an

∣

∣

∣
≤ ε < 1 for n≥ n0, where n0 is a given integer, the series ∑∞

n=1 an converges absolutely.

(c) If
∣

∣

∣

an+1
an

∣

∣

∣
≥ 1 for n ≥ n0, where n0 is a given integer, the series ∑∞

n=1 an diverges.

(d) If liminf
n→∞

∣

∣

∣

an+1
an

∣

∣

∣
> 1, the series ∑∞

n=1 an diverges.

(e) If liminf
n→∞

∣

∣

∣

an+1
an

∣

∣

∣
≤ 1 ≤ limsup

n→∞

∣

∣

∣

an+1
an

∣

∣

∣
, the series ∑∞

n=1 an can converge or diverge.
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3.14 Theorem RELATION BETWEEN THE ROOT AND RATIO CONVERGENCE TESTS. Let {an} ⊆
C a sequence such that an 6= 0 for n ≥ n0, where n0 is a given integer. Then

liminf
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

≤ liminf
n→∞

|an|1/n ≤ limsup
n→∞

|an|1/n ≤ limsup
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

.

If we define 0/0≡ 0 and |x/0|= ∞ for x 6= 0, the above inequalities hold for any sequence {an}⊆C.

3.15 Theorem CAUCHY CRITERION FOR CONVERGENCE OF A SERIES. Let {an} ⊆ C and

L = liminf
n→∞

n

(

1−
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

)

, U = limsup
n→∞

n

(

1−
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

)

where L, U ∈ R.

(a) If L > 1, the series ∑∞
n=1 an converges absolutely.

(b) If U < 1, ∑∞
n=1 |an| = ∞ but the series ∑∞

n=1 an can converge or diverge.

(c) If L = U = 1, the series ∑∞
n=1 |an| can converge or diverge, and similarly for ∑∞

n=1 an.

3.16 Theorem GAUSS CRITERION FOR CONVERGENCE OF A SERIES. Let {an} ⊆ C, {cn} ⊆ R

and suppose that
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= 1− L

n
+

cn

np

where p > 1 and |cn| ≤ M < ∞ , ∀n.

(a) If L > 1, the series ∑∞
n=1 an converges absolutely.

(b) If L ≤ 1, ∑∞
n=1 |an| = ∞ but ∑∞

n=1 an can converge or diverge.

3.17 Theorem INTEGRAL CRITERION FOR CONVERGENCE OF A SERIES. Let f (x), x ∈ R, a
real-valued continuous function, non-negative and non decreasing for x ≥ A, and let {an} ⊆ C a
sequence such that |an| = f (n) for n ≥ A. Then

(a)
∫ ∞

A f (x)dx < ∞ ⇒ ∑∞
n=1 an converges absolutely;

(b)
∫ ∞

A f (x)dx = ∞ ⇒ ∑∞
n=1 |an| = ∞ .

3.18 Theorem DIRICHLET CRITERION FOR CONVERGENCE OF A SERIES OF PRODUCTS. Let
{an} ⊆ C and {bn} ⊆ R two sequences such that

(a)
∣

∣∑N
n=1 an

∣

∣≤ M, for all N ≥ 1, where M ≥ 0 ,

(b) bn+1 ≤ bn, ∀n ,

(c) lim
n→∞

bn = 0 .
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Then the series ∑∞
n=1 anbn converges.

3.19 Corollary ALTERNATING SERIES CONVERGENCE CRITERION (LEIBNIZ). Let {an} ⊆ R a
sequence such that

(a) |an+1| ≤ |an|, ∀n ,

(b) an = (−1)n+1 |an|, ∀n ,

(c) lim
n→∞

an = 0 .

Then the series ∑∞
n=1 an converges and ∑∞

n=1 an ≤ a1 .

3.20 Theorem ABEL CRITERION FOR CONVERGENCE OF A SERIES OF PRODUCTS. Let {an} ⊆
C and {bn} ⊆ R be two sequences such that

(a) ∑∞
n=1 an converges ,

(b) bn is a monotonic bounded sequence.

Then the series ∑∞
n=1 anbn converges.

3.21 Remark In contrast with most criteria described above, the Abel and Dirichlet criteria do not
entail absolute convergence.

3.22 Theorem ABEL-DINI CRITERION FOR CONVERGENCE OF A SERIES OF RATIOS. If the
series ∑∞

n=1 an diverges such that SN = ∑N
n=1 an > 0, ∀N, and SN −→

N→∞
∞, then

(a) the series ∑∞
n=1 an/Sδ

n diverges for any δ ≤ 1,

(b) the series ∑∞
n=1 an/Sδ

n converges for any δ > 1 .

3.23 Theorem LANDAU CRITERION FOR CONVERGENCE OF A SERIES OF PRODUCTS. Let
{an} ⊆ R. The series ∑∞

n=1 |an|p , where p > 1, converges ⇔ the series ∑∞
n=1 anbn converges for all

sequences {bn} ⊆ C such that ∑∞
n=1 |bn|q converges, where q = p/(p−1) .

3.24 Remark The Landau theorem implies: if ∑∞
n=1 |an|p < ∞ and ∑∞

n=1 |bn|q < ∞, where p > 1 and
q = p/(p−1) , then the series ∑∞

n=1 anbn and ∑∞
n=1 |anbn| convergent. Further, it gives a necessary

condition for the convergence of ∑∞
n=1 |an|p when p > 1.

3.25 Theorem CONVERGENCE OF AN ARITHMETICALLY WEIGHTED MEAN. Let {an} ⊆ C. If
the series ∑∞

n=1 an converges, then

lim
N→∞

N

∑
n=1

(1− n

N
)an =

∞

∑
n=1

an

and

lim
N→∞

N

∑
n=1

n

N
an = lim

N→∞

1
N

N

∑
n=1

n an = 0 .
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3.26 Theorem CESARO CONVERGENCE. Let {an} ⊆ C a sequence such that an → a ∈ C. Then

lim
N→∞

1
N

N

∑
n=1

an = a .

4. Convergence of transformed series

4.1 Theorem CONVERGENCE OF LINEARLY TRANSFORMED SERIES. Let {an}∞
n=0 ⊆ C and

{bn}∞
n=0 ⊆ C be two sequences such that

∞

∑
n=0

an = A and
∞

∑
n=0

bn = B

where A, B ∈ C. Then the sequences ∑∞
n=0(an +bn) and ∑∞

n=0 can converge for any c ∈ C, and

∞

∑
n=0

(an +bn) = A+B,
∞

∑
n=0

can = c .

4.2 Definition CONVOLUTION. Let {an}∞
n=0 ⊆ C and {bn}∞

n=0 ⊆ C. We call the sequence

cn =
n

∑
k=0

akbn−k,n = 0,1,2, . . .

the convolution of the sequences {an}∞
n=0 and {bn}∞

n=0. Further, the series ∑∞
n=0 cn is called the

product of the series ∑∞
n=0 an and ∑∞

n=0 bn.

4.3 Remark We denote the convolution of the sequences an and bn by an ∗bn:

an ∗bn =
n

∑
k=0

akbn−k .

4.4 Theorem SUFFICIENT CONDITION FOR CONVERGENCE OF THE PRODUCT OF TWO SERIES

(CAUCHY-MERTENS). . Let {an}∞
n=0 ⊆ C and {bn}∞

n=0 ⊆ C be two sequences such that

(a) ∑∞
n=0 an = A and ∑∞

n=0 bn = B, where A, B ∈ C , and

(b) ∑∞
n=0 an converges absolutely.

Then the series ∑∞
n=0 cn , where cn = ∑n

k=0 akbn−k, converges and

∞

∑
n=0

cn = AB . (Mertens)

If, furthermore, ∑∞
n=0 bn converges absolutely, the series ∑∞

n=0 cn converges absolutely.
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4.5 Theorem LIMIT OF THE PRODUCT OF TWO SERIES (ABEL). If {an}∞
n=0 ⊆ C, {bn}∞

n=0 ⊆ C

and {cn}∞
n=0 ⊆ C are three sequences such that the series ∑∞

n=0 an, ∑∞
n=0 bn and ∑∞

n=0 cn converge to
A, B and C respectively, and if

cn =
n

∑
k=0

akbn−k ,

then
C = AB .

4.6 Theorem NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE OF THE PRODUCT

OF TWO SERIES. Let {an} ⊆ R. The series ∑∞
n=0 cn , where cn = ∑∞

k=0 akbn−k , converges for all
sequences {bn} ⊆ R such that ∑∞

n=0 bn converges ⇔ ∑∞
n=0 |an| < ∞.

4.7 Theorem AGGREGATION OF TERMS IN A SERIES. Let {an}∞
n=0 ⊆ C be a sequence such that

∑∞
n=0 an = A ∈ C, {rn}∞

n=0 ⊆ N0 a monotonically increasing sequence of nonnegative integers such
that r0 = 0 and rn → ∞, and {bn}∞

n=1 the sequence defined by

bn =
rn−1

∑
k=rn−1

ak,n = 1,2, . . . .

Then the series ∑∞
n=1 bn converges and

∞

∑
n=1

bn = A .

4.8 Definition REARRANGEMENT. Let {kn}∞
n=0 be a sequence of nonnegative integers such that

each nonnegative integer appears once and only once in the sequence. If

a′n = akn
, n = 0,1,2, . . . ,

we call the series ∑∞
n=0 a′n a rearrangement of the series ∑∞

n=0 an.

4.9 Definition COMMUTATIVELY CONVERGENT SERIES. Let {an}∞
n=0 ⊆ C be a sequence such

that ∑∞
n=0 an converges to A ∈ C. The series ∑∞

n=0 an is commutatively convergent if all the rear-
rangements ∑∞

n=0 a′n of the series ∑∞
n=0 an converge to A.

4.10 Theorem REARRANGEMENT OF AN ABSOLUTELY CONVERGENT SERIES (DIRICHLET).
Let {an}∞

n=0 be a sequence such that ∑∞
n=0 an converges absolutely to A ∈ C. Then all the rearrange-

ments of the series ∑∞
n=0 an converge to A.

4.11 Theorem REARRANGEMENT OF A CONDITIONNALLY CONVERGENT SERIES (RIEMANN).
Let {an}∞

n=0 ⊆ R be a series such that the series ∑∞
n=0 an converges conditionally and let

−∞ ≤ α ≤ β ≤ ∞ .
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Then there is a rearrangement ∑∞
n=0 a′n such that

liminf
n→∞

(

n

∑
m=0

a′m

)

= α , limsup
n→∞

(

n

∑
m=0

a′m

)

= β .

4.12 Theorem EQUIVALENCE BETWEEN ABSOLUTE AND COMMUTATIVE CONVERGENCE. Let
{an} ⊆ C be a sequence such that the series ∑∞

n=0 an converges. Then ∑∞
n=0 an converges absolutely

iff ∑∞
n=0 an converges commutatively.

4.13 Theorem CONDITION FOR DOUBLE SERIES COMMUTATIVITY. Let {amn : m, n = 0, 1, 2,
...} ⊆ C be a double sequence such that

∞

∑
n=0

|amn| = bm,m = 0,1,2, . . .

and ∑∞
m=0 bm converges. Then

∞

∑
m=0

∞

∑
n=0

amn =
∞

∑
n=0

∞

∑
m=0

amn.

5. Uniform convergence

5.1 Notation In this section, fn and f refer to functions on a set E to the complex numbers C, i.e.
fn : E → C and f : E → C.

5.2 Definition UNIFORM CONVERGENCE. We say that the sequence of functions { fn}∞
n=0 con-

verges uniformly on E to the function f if, for any ε > 0, there is an integer N such that

n ≥ N ⇒ | fn(x)− f (x)| < ε,∀x ∈ E .

In this case, we write fn → f uniformly on E.

5.3 Remark We dit that the series ∑∞
i=0 fi(x) converges uniformly on E if the sequence of partial

sums sn(x) = ∑n
i=0 fi(x), n = 0, 1 , . . . converges uniformly on E.

5.4 Theorem CAUCHY CRITERION FOR UNIFORM CONVERGENCE. The sequence of functions
{ fn}∞

n=0 converges uniformly on E to a function f if and only if, for any ε > 0, there is an integer N

such that
m,n ≥ N ⇒ | fm(x)− fn(x)| < ε,∀x ∈ E .

5.5 Theorem SUPREMUM CRITERION FOR UNIFORM CONVERGENCE. Suppose

lim
n→∞

fn(x) = f (x),∀x ∈ E ,
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and let
Mn = sup

x∈E

| fn(x)− f (x)| .

Then, fn → f uniformly on E if and only if lim
n→∞

Mn = 0.

5.6 Theorem WEIERSTRASS UNIFORM CONVERGENCE CRITERION. Suppose | fn (x)| ≤ Mn ,
∀x ∈ E , n = 0,1, 2, ... and ∑∞

n=0 Mn < ∞ . Then the series ∑∞
n=0 fn (x) converges uniformly on E.

5.7 Theorem UNIFORM CONVERGENCE AND CONTINUITY. If { fn}∞
n=0 is a sequence of contin-

uous functions on E and if fn → f uniformly on E, then the function f is continuous on E.

5.8 Remark A sequence of continuous functions { fn}∞
n=0 can converge to a continuous function f

without uniform convergence.

5.9 Theorem CONDITIONS OF UNIFORM CONVERGENCE (DINI). If

(a) K is a compact set,

(b) { fn}∞
n=0 is a sequence of continuous functions on K,

(c) lim
n→∞

fn (x) = f (x), ∀x ∈ K, where f is a continuous function on K,

(d) fn (x) ≥ fn+1 (x), ∀x ∈ K, n = 0, 1, 2, .... ,

then fn → f uniformly on K.

5.10 Theorem UNIFORM CONVERGENCE AND DIFFERENTIATION OF FUNCTIONS OF REAL

VARIABLES. Suppose [a, b] ⊆ E ⊆ R and let fn : E → C, a sequence of differentiable functions
on the interval [a,b] such that the sequence { fn(x0)}∞

n=0 converges for at least one x0 ∈ [a,b]. If
the sequence { f ′n}∞

n=0 converges uniformly on [a,b], then { fn}∞
n=0 converges uniformly on [a,b] to

a differentiable function f on E, and

f ′ (x) = lim
n→∞

f ′n (x) ,∀x ∈ [a,b] .

5.11 Theorem UNIFORM CONVERGENCE AND DIFFERENTIATION OF FUNCTIONS OF COMPLEX

VARIABLES. Let E ⊆ C and fn : E → C, n = 0, 1, 2, ... , a sequence of differentiable functions on
E. If the sequence { fn}∞

n=0 converges to a function f in E and { f ′n}∞
n=0 converges uniformly in E,

then the function f is differentiable in E and

f ′(z) = lim
n→∞

f ′n(z),∀z ∈ E.
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3.3. Knopp (1956, Section 2.6.2, Theorem 1, p. 49, and Section 3.3, Theorem 1, p. 61).
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2.6.2, Theorem 1, p. 49, and Section 3.3, Theorem 1, p. 61).
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5.2. Ahlfors (1979, Section 2.3, p. 36) and Rudin (1976, Definition 7.7, p. 147).
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5.5. Rudin (1976, Theorem 7.9, p. 148).
5.6. Rudin (1976, Theorem 7.10, p. 148).
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