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Motivation
Why do we care about time-varying volatility?

Dynamic volatility has consequences for many problems of financial decision:

(1) Risk management; (2) Portfolio allocation; (3) Asset pricing; (4) Hedging and Trading.
Example 1 (Portfolio Allocation): Optimal portfolio shares w∗ solve:

mi nw w ′Σw s.t . w ′µ=µp

— Importantly, w∗ = f (Σ), so if Σ varies, we have w∗
t = f (Σt ).

Example 2 (Asset pricing: Derivatives): Black-Scholes formula with constant volatility:

PC all = N (d1)S −N (d2)K e−rτ,

where, d1 = ln(S/K )+(r+σ2/2)τ
σ
p
τ

and d2 = ln(S/K )−(r+σ2/2)τ
σ
p
τ

.
— Completely different when σ varies !

Dynamic macroeconomic models (VAR, DSGE, Time-varying Uncertainty Measures)
[see Cogley and Sargent (2005), Primiceri (2005), Benati (2008), Koop, Leon-Gonzalez and Strachan
(2009), Koop and Korobilis (2013), Liu and Morley (2014), Jurado, Ludvigson, and Ng (2015), and many
recent papers]
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Motivation
Conditional volatility models

Two main classes of models have been proposed for dynamic (random) volatility:

1 GARCH-type models [Engle (1982)] where volatility is modelled as a deterministic process. A
GARCH(1,1) model:

yt =σt zt , σ2
t =α0 +α1 y2

t−1 +β1σ
2
t−1,

where α0 > 0, α1 > 0, β1 > 0 for positive variance and zt ’s are i .i .d . N (0,1), yt = rt −µr is the residual
return and σt is the volatility at time t .

2 Stochastic volatility (SV) models [Taylor (1982, 1986)] where volatility is modelled as a latent
stochastic process. An SV(1) model:

yt =σt zt , logσ2
t =α+φ logσ2

t−1 + vt ,

where the vectors (zt , vt )
′
are i .i .d . according to a N [0, I2] distribution.
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ARCH Models
Simple ARCH Model

The first and simplest model we will look at is an ARCH model, which stands for Autoregressive
Conditional Heteroscedasticity. The AR comes from the fact that these models are autoregressive
models in squared returns, which we will demonstrate later in this section.

The conditional comes from the fact that in these models, next period’s volatility is conditional on
information this period. Heteroscedasticity means non constant volatility.

In a standard linear regression where yi =α+βxi +ϵi , when the variance of the residuals, ϵi is
constant, we call that homoscedastic and use ordinary least squares to estimate α and β. If, on
the other hand, the variance of the residuals is not constant, we call that heteroscedastic and we
can use weighted least squares to estimate the regression coefficients.

Let us assume that the return on an asset is

rt =µ+σtϵt

where ϵt is a sequence of N (0, 1) i.i.d. random variables. We will define the residual return at
time t ,rt −µ, as

ut =σtϵt .
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ARCH Models
Simple ARCH Model

In an ARCH(1) model, first developed by Engle (1982),

σ2
t =α0 +α1u2

t−1

where α0 > 0 and α1 ≥ 0 to ensure positive variance and α1 < 1 for stationarity.

Under an ARCH(1) model, if the residual return, ut is large in magnitude, our forecast for next
period’s conditional volatility, σt+1 will be large.

We say that in this model, the returns are conditionally normal (conditional on all information up
to time t −1, the one period returns are normally distributed). We will relax that assumption on
conditional normality in a later
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ARCH Models
Heavy tails

We can see right away that a time varying σ2
t will lead to fatter tails, relative to a normal

distribution, in the unconditional distribution of ut (see Campbell, Lo, and Mackinlay(1997)).

The kurtosis of ut is defined as

kurt(ut ) = E [u4
t ]

(E [u2
t ])2

.

If ut were normally distributed, it would have a kurtosis of 3. Here,

kurt(ut ) = E [σ4
t ]E [ϵ4

t ]

(E [σ2
t ])2(E [ϵ2

t ])2

= 3E [σ4
t ]

(E [σ2
t ])2

and by Jensen’s inequality [for a convex function, f (x),E [ f (x)] > f (E [x])], E [σ4
t ] > (E [σ2

t ])2, so

kurt(ut ) > 3.
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ARCH Models
unconditional variance

We’ll discuss a few properties of an ARCH(1) model in particular. The unconditional variance of
ut is

Var(ut ) = E [u2
t ]− (E [ut ])2

= E [u2
t ]

= E [σ2
t ϵ

2
t ]

= E [σ2
t ]

= α0 +α1E [u2
t−1]

and since ut is a stationary process, the Var(ut ) = Var(ut−1) = E [u2
t−1], so

Var(ut ) = α0

1−α1
.
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ARCH Models
AR Representation

An ARCH(1) is like an AR(1) model on squared residuals, u2
t . To see this, define the conditional

forecast error, or the difference between the squared residual return and our conditional
expectation of the squared residual return, as

vt ≡ u2
t −E [u2

t |It−1] = u2
t −σ2

t

where It−1 is the information at time t −1.

Note that vt is a zero mean, uncorrelated series. The ARCH(1) equation becomes

σ2
t = α0 +α1u2

t−1

u2
t − vt = α0 +α1u2

t−1

u2
t = α0 +α1u2

t−1 + vt

which is an AR(1) process on squared residuals.
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GARCH Models
Motivation

In an ARCH(1) model, next period’s variance only depends on last period’s squared residual so a
crisis that caused a large residual would not have the sort of persistence that we observe after
actual crises.

This has led to an extension of the ARCH model to a GARCH, or Generalized ARCH model, first
developed by Bollerslev (1986), which is similar in spirit to an ARMA model.

In a GARCH(1,1) model,
σ2

t =α0 +α1u2
t−1 +β1σ

2
t−1

where α0 > 0,α1 > 0,β1 > 0, and α1 +β1 < 1, so that our next period forecast of variance is a blend
of our last period forecast and last period’s squared return.
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GARCH Models
ARMA representation

We can see that just as an ARCH(1) model is an AR(1) model on squared residuals, an
GARCH(1,1) model is an ARMA(1,1) model on squared residuals by making the same
substitutions as before, vt = u2

t −σ2
t

σ2
t = α0 +α1u2

t−1 +β1σ
2
t−1

u2
t − vt = α0 +α1u2

t−1 +β1(u2
t−1 − vt−1)

u2
t = α0 + (α1 +β1)u2

t−1 + vt −β1vt−1

which is an ARMA(1,1) on the squared residuals.
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GARCH Models
unconditional variance

The unconditional variance of ut is

Var(ut ) = E [u2
t ]− (E [ut ])2

= E [u2
t ]

= E [σ2
t ϵ

2
t ]

= E [σ2
t ]

= α0 +α1E [u2
t−1]+β1σ

2
t−1

= α0 + (α1 +β1)E [u2
t−1]

and since ut is a stationary process,

Var(ut ) = α0

1−α1 −β1

and since ut =σtϵt , the unconditional variance of returns, E [σ2
t ] = E [u2

t ], is also α0/(1−α1 −β1) .
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GARCH Models
ARCH (∞) Representation

Just as an ARMA(1,1) can be written as an AR(∞) , a GARCH(1,1) can be written as an ARCH
(∞),

σ2
t = α0 +α1u2

t−1 +β1σ
2
t−1

= α0 +α1u2
t−1 +β1(α0 +α1u2

t−2 +β1σ
2
t−2)

= α0 +α1u2
t−1 +α0β1 +α1β1u2

t−2 +β2
1σ

2
t−2

= α0 +α1u2
t−1 +α0β1 +α1β1u2

t−2 +β2
1(α0 +α1u2

t−3 +β1σ
2
t−3)

...

= α0

1−β1
+α1

∞∑
i=0

u2
t−1−iβ

i
1

so that the conditional variance at time t is the weighted sum of past squared residuals and the
weights decrease as you go further back in time.
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GARCH Models
Weighted combination

Since the unconditional variance of returns is E [σ2] =α0/(1−α1 −β1) , we can write the
GARCH(1,1) equation yet another way

σ2
t = α0 +α1u2

t−1 +β1σ
2
t−1

= (1−α1 −β1)E [σ2]+α1u2
t−1 +β1σ

2
t−1.

Written this way, it is easy to see that next period’s conditional variance is a weighted
combination of the unconditional variance of returns, E [σ2], last period’s squared residuals, u2

t−1,
and last period’s conditional variance, σ2

t−1, with weights (1−α1 −β1),α1,β1 which sum to one.
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GARCH Models
Forecasting

It is often useful not only to forecast next period’s variance of returns, but also to make an l -step
ahead forecast, especially if our goal is to price an option with l steps to expiration using our
volatility model.

Again starting from the GARCH(1,1) equation for σ2
t , we can derive our forecast for next period’s

variance, σ̂2
t+1

σ2
t =α0 +α1u2

t−1 +β1σ
2
t−1

σ̂2
t+1 = α0 +α1E [u2

t |It−1]+β1σ
2
t

= α0 +α1σ
2
t +β1σ

2
t

= α0 + (α1 +β1)σ2
t

= σ2 + (α1 +β1)(σ2
t −σ2)
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GARCH Models
Forecasting

σ̂2
t+2 = α0 +α1E [u2

t+1|It−1]+β1E [σ2
t+1|It−1]

= α0 + (α1 +β1)σ̂2
t+1

= σ2 + (α1 +β1)(σ̂2
t+1 −σ2)

= σ2 + (α1 +β1)2(σ2
t −σ2)
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GARCH Models
Forecasting

σ̂2
t+l = α0 + (α1 +β1)σ̂2

t+l−1

= σ2 + (α1 +β1)(σ̂2
t+l−1 −σ2)

= σ2 + (α1 +β1)l (σ2
t −σ2)

where we have substituted for the unconditional variance, σ2 =α0/(1−α1 −β1)

From the above equation we can see that σ̂2
t+l →σ2 as l →∞ so as the forecast horizon goes to

infinity, the variance forecast approaches the unconditional variance of ut .

From the l -step ahead variance forecast, we can see that (α1 +β1) determines how quickly the
variance forecast converges to the unconditional variance.
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GARCH Models
Maximum Likelihood Estimation

In general, to estimate the parameters using maximum likelihood, we form a likelihood function,
which is essentially a joint probability density function but instead of thinking of it as a function of
the data given the set of parameters, f (x1, x2, . . . , xn |Θ).

We think of the likelihood function as a function of the parameters given the data,
L(Θ|x1, x2, . . . , xn) , and we maximize the likelihood function with respect to the parameters,
which is essentially finding the mode of the distribution.
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GARCH Models
Heavy tails

If the residual returns were independent of each other, we could write the joint density function as
the product of the marginal densities, but in the GARCH model, returns are not, of course,
independent.

However, we can still write the joint probability density function as the product of conditional
density functions

f (r1,r2, . . . ,rT ) = f (rT |r1,r2, . . . ,rT−1) f (r1,r2, . . . ,rT−1)

= f (rT |r1,r2, . . . ,rT−1) f (rT−1|r1,r2, . . . ,rT−2) f (r1,r2, . . . ,rT−2)
...

= f (rT |r1, r2, . . . , rT−1) f (rT−1|r1, r2, . . . , rT−2) · · · f (r1)
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GARCH Models
Maximum Likelihood Estimation

For a GARCH(1,1) model with Normal conditional returns, the likelihood function is

L(α0, α1, β1, µ|r1, r2, . . . , rT )

= 1√
2πσ2

T

exp(
−(rT −µ)2

2σ2
T

)
1√

2πσ2
T−1

exp(
−(rT−1 −µ)2

2σ2
T−1

)...
1√

2πσ2
1

exp(
−(r1 −µ)2

2σ2
1

).
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GARCH Models
Maximum Likelihood Estimation

Since the lnL function is monotonically increasing function of L, we can maximize the log of the
likelihood function

lnL(α0, α1, β1, µ|r1, r2, . . . , rT ) = −T

2
ln(2π)− 1

2

T∑
i=1

lnσ2
i −

1

2

T∑
i=1

(
(ri −µ)2

σ2
i

)

and for a GARCH(1,1), we can substitute σ2
i =α0 +α1a2

i−1 +β1σ
2
i−1 into the above equation, and

the likelihood function is only a function of the returns, rt and the parameters.

Notice that besides estimating the parameters, α0,α1,β1, and µ, we must also estimate the initial
volatility, σ1. If the time series is long enough, the estimate for σ1 will be unimportant.
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Introduction
Why do we care about time-varying volatility?

Finance: Dynamic volatility has consequences for many problems of financial decision:
(1) Risk management, (2) Portfolio allocation, (3) Asset pricing, (4) Hedging and Trading

Example 1 (Portfolio Allocation): Optimal portfolio shares w∗ solve:

mi nw w ′Σw s.t . w ′µ=µp

— Importantly, w∗ = f (Σ), so if Σ varies, we have w∗
t = f (Σt ).

Example 2 (Asset pricing: Derivatives): Black-Scholes formula with constant volatility:

PC all = N (d1)S −N (d2)K e−rτ,

where, d1 = ln(S/K )+(r+σ2/2)τ
σ
p
τ

and d2 = ln(S/K )−(r+σ2/2)τ
σ
p
τ

.
— Completely different when σ varies !

Macroeconomics: Dynamic volatility is also important for macroeconomic forecasting and
measurement of uncertainty, see Cogley and Sargent (2005), Primiceri (2005), Benati (2008), Koop,
Leon-Gonzalez and Strachan (2009), Koop and Korobilis (2013), Liu and Morley (2014), Jurado,
Ludvigson, and Ng (2015), and many recent papers.
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Introduction
What are the alternative classes of models?

Two main classes of models have been proposed for dynamic (random) volatility:

1 GARCH-type models [Engle (1982)] where volatility is modelled as a deterministic process. A
GARCH(1,1) model:

yt =σt zt , σ2
t =α0 +α1 y2

t−1 +β1σ
2
t−1,

where α0 > 0, α1 > 0, β1 > 0 for positive variance and zt ’s are i .i .d . N (0,1), yt = rt −µr is the residual
return (or the error term of any time series regression model) and σt is the volatility at time t .

2 Stochastic volatility (SV) models [Taylor (1982, 1986)] where volatility is modelled as a latent
stochastic process. An SV(1) model:

yt =σt zt , logσ2
t =α+φ logσ2

t−1 + vt ,

where the vectors (zt , vt )
′
are i .i .d . according to a N [0, I2] distribution.

Higher-order stochastic volatility [SV(p)] model:

logσ2
t =α+φ1 logσ2

t−1 + . . .+φp logσ2
t−p + vt .

Ahsan, M. N. and Dufour, J.-M. (2021), Simple estimators and inference for higher-order stochastic
volatility models, Journal of Econometrics 224(1), 181 – 197.
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Introduction
Is there a class of models that has better advantages?

SV models may be preferable to GARCH-type models for several reasons.

1 Discrete version of continuous time analogues
[Shephard and Andersen (2009), Taylor (1994)].

2 Empirical evidence suggests that SV models are robust to model misspecification
[Carnero, Peña and Ruiz (2004), Chan and Grant (2016)].

3 Provide more accurate forecasts of volatility
[Kim, Shephard and Chib (1998), Yu (2002), Poon and Granger (2003),
Koopman, Jungbacker and Hol (2005)].

4 Statistical properties of SV models are relatively easy to derive
[Davis and Mikosch (2009)].

Empirical popularity of SV models are deterred by two reasons:

1 No closed form solution for the likelihood function.
2 Statistical packages for estimating SV models are scarce whereas many statistical packages for

GARCH:
[EVIEWS, GAUSS, MATLAB, R, S+, SAS, TSP, STATA, PYTHON, OX, etc.]
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Introduction
What are the alternative SV estimator?

Proposed estimation methods of SV models are limited to SV(1):
Generalized Method of Moments
[Melino and Turnbull (1990), Andersen and Sorensen (1996)];
Simulated Maximum likelihood (SML)
[Danielsson and Richard (1993), Durham (2006)];
Quasi Maximum Likelihood (QML) [Harvey et al. (1994), Ruiz (1994)];
Bayesian techniques based on Markov Chain Monte Carlo (MCMC)
[Jacquier et al. (1994), Kim et al. (1998), Chib et al. (2002),
Flury and Shephard (2011)];
Simulated Method of Moments (SMM)
[Gallant and Tauchen (1996), Monfardini (1998)];
Monte Carlo likelihood (MCL) [Sandmann and Koopman (1998)];
Linear-representation based estimation (LR) [Francq and Zakoïan (2006)];
Moment based closed-form estimator (DV) [Dufour and Valéry (2006, 2009)];
ARMA-SV estimator (ARMA-SV) [Ahsan and Dufour (2019)].

⋆ These estimation methods are either inefficient and/or very expensive from the computational viewpoint,
inflexible across models, not easy to implement in practice, and may not converge.
[Broto and Ruiz (2004), Ahsan and Dufour (2019)].
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Introduction
Why higher-order stochastic volatility?

The estimation of SV(p) models is even more challenging than it is for SV(1) models.

SV(p) models are rarely considered:
SMM [Gallant et al. (1997)], MCL [Asai (2008)], MCMC [Chan and Grant (2016)].

Methods proposed for SV(1) models are difficult to extend for an SV(p) models with arbitrary
order and may be computationally expensive.

The motivations for SV(p) models can be described as follows.

1 The SV(p) model is a natural extension of the SV(1) model, which can only generate geometrically
decaying autocovariance function, whereas volatility process generically features persistent memory.

2 Higher-order autoregressive terms in SV models emerge naturally in some setups [e.g., multi-factor
SV models].

3 SV(p) models provide more flexibility to represent volatility persistence.
4 Empirical evidence suggests that higher-order SV(p) models may be preferable for in-sample model

fitting (in this paper), out-of-sample volatility forecasting and option pricing (in Ahsan and Dufour
(2020)).
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Contributions
In this paper, we propose simple estimators for SV(p) models. These include:

Simple moment-based estimators — extension of DV and ARMA-SV methods
Restricted estimators
ARMA-based winsorized estimators — ensures stationarity condition, particularly in a small sample
or in the presence of outliers.

We also propose GMM-type estimators [extension of Andersen-Sorensen (1996)].
The proposed simple estimators (DV, ARMA-SV) are computationally inexpensive and easy to implement
in practice.
We show that recursive estimation algorithms [Durbin-Levinson-type (DL)] can be applied to SV(p)
models.
The proposed simple estimators are

p
T consistent and asymptotically normal.

Because of computational simplicity, we can do Monte Carlo (MC) or Bootstrap type tests using simple
estimators, entails that, which may not possible for other simulation based methods.

In simulation, we compare the performance of our estimators to Bayesian estimators:
⋆ W-ARMA estimator uniformly outperforms all other estimators in terms of Bias and RMSE

— Six times lower RMSE than Bayesian estimator.
⋆ It is on average 843,220 times faster than the Bayesian estimator for a sample size, T = 2000.

⋆ For S&P 500 index, both asymptotic and finite sample tests suggest that an SV(2) or SV(3) model could
be more appropriate than an SV(1) model.
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SV(p) Models
Stochastic volatility of order p: The process

{
yt : t ∈N0

}
follows an SV model of the type:

yt = exp(
wt

2
)σy zt , (1)

wt =
p∑

j=1
φ j wt− j +σv vt , (2)

where {φ j }
p
j=1, σy , σv are the fixed parameters of the model and yt = rt −µr is the residual return at time

t

This is an alternative re-parametrization of SV model with wt = logσ2
t and σy = exp(α/2(1−∑p

j=1φ j )).

The vectors (zt , vt )
′
, t ∈N0, are i .i .d . according to a N [0, I2] distribution.

The process lt = (yt , wt )
′
is strictly stationary.

We propose two simple estimators for SV(p) models:

1 Extension of Dufour and Valéry (EDV) Estimator.
2 Simple ARMA based (ARMA-SV) Estimator.

⋆ Although the EDV estimator is analytically tractable and computationally simple, it tends to
be less precise than ARMA-type estimators.
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Simple ARMA-SV Estimator
It is possible to obtain a more efficient simple estimator by exploiting an ARMA representation of SV
model [ARMA-SV].

Consider the return equation:
yt = exp(

wt

2
)σy zt

Transform yt by taking logarithms of the squares:

log(y2
t ) = [log(σ2

y )+E(log(z2
t ))]︸ ︷︷ ︸

≡µ

+wt + [log(z2
t )−E(log(z2

t ))]︸ ︷︷ ︸
≡ϵt

,

log(y2
t ) =µ+wt +ϵt . (3)

Since zt is a Gaussian noise, ϵt follows a logχ2
(1) distribution with

σ2
ϵ =π2/2, E(log(z2

t )) =−1.27.

Rewrite (3) as
y∗t = wt +ϵt (4)

where y∗t = (log(y2
t )−µ), and µ is the mean of log(y2

t ).
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Simple ARMA-SV Estimator
State Space Representation of SV model

Combining (2) and (4), we get a linear state space form:

wt =
p∑

j=1
φ j wt− j + vt (State Transition Equation) (5)

y∗t = wt +ϵt (Measurement Equation) (6)

where wt is a logarithm of latent daily volatility, y∗t is a logarithm of the daily squared residual return
corrected by its mean. The vt ’s and ϵt ’s are i .i .d . N (0,σ2

v ) and logχ2
(1) random variables, respectively.

Several methods have been proposed in the literature that exploits the above state space form of SV
model [ Nelson (1988), Harvey et al. (1994), Ruiz (1994), Shephard (1994), Breidt and Carriquiry (1996), Harvey
and Shephard (1996), Kim et al. (1998), Sandmann and Koopman (1998), Steel (1998), Chib et al. (2002), Knight
et al. (2002), Francq and Zakoïan (2006), Omori et al. (2007)].
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Simple ARMA-SV Estimator
ARMA Representation of SV Model

The model defined by (5) and (6) has an ARMA(p,p) representation:

y∗t =
p∑

j=1
φ j y∗t− j + vt +ϵt −

p∑
j=1

φ j ϵt− j , (7)

where vt +ϵt −∑p
j=1φ j ϵt− j admits an MA(p) process.

The autocovariances structure of the observed process {y∗t } satisfies the following equations respectively:

γy∗ (k) =


φ1γy∗ (k −1)+·· ·+φpγy∗ (k −p)+σ2

v +σ2
ϵ ; if k = 0,

φ1γy∗ (k −1)+·· ·+φpγy∗ (k −p)−φkσ
2
ϵ ; if 1 ≤ k ≤ p,

φ1γy∗ (k −1)+·· ·+φpγy∗ (k −p); if k > p,

(8)

where γy∗ (k) = cov(y∗t , y∗t−k ), y∗t = (log(y2
t )−µ), µ= [log(σ2

y )+E(log(z2
t ))].

Ahsan and Dufour GARCH & Stochastic Volatility April 11, 2022 39 / 61



Motivation GARCH Models Stochastic Volatility - SVp Simple Estimators Simulation Study Empirical Results Concluding Remarks

Simple ARMA-SV Estimator
The model defined by (7) has the following analytical closed-form expressions for its parameters,
θ ≡ (φ1, ...,φp ,σy ,σv )

′
:

φp =Γ(p, j )−1γ(p, j ), j ≥ 1, σy = [exp(µ+1.27)]1/2 , σv = [γy∗ (0)−φ′
pγ(p)−π2/2]1/2, (9)

where φp := (φ1, . . . , φp )
′
, γ(p, j ) := [γy∗ (p + j ), . . . , γy∗ (2p + j −1)]

′
, γ(p) := [γy∗ (1), . . . , γy∗ (p)]

′
are p ×1

vectors and Γ(p, j ) is a p ×p matrix

Γ(p, j ) :=


γy∗ ( j +p −1) γy∗ ( j +p −2) · · · γy∗ ( j )
γy∗ ( j +p) γy∗ ( j +p −1) · · · γy∗ ( j +1)

...
...

...
γy∗ ( j +2p −2) γy∗ ( j +2p −3) · · · γy∗ ( j +p −1)

 .

where p is the SV order, γy∗ (k) = cov(y∗t , y∗t−k ), with y∗t = [log(y2
t )−µ] and µ := E[log(y2

t )].

Setting j = 1 in (9) and replacing theoretical moments by their corresponding empirical moments yield the
following simple ARMA-SV estimator of the SV(p) coefficients:

φ̂p = Γ̂(p, 1)−1γ̂(p, 1) , σ̂y = [exp(µ̂+1.27)]1/2 , σ̂v = [γ̂y∗ (0)− φ̂′
p γ̂(p)−π2/2]1/2. (10)
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Restricted Estimation
Proposed simple estimators may yield a solution outside the admissible area, i.e., some of the eigenvalues
of the latent volatility process may lie outside the unit circle or equal to unity.

When this happens, a simple fix is projecting the estimate on the space of acceptable parameter solutions
by altering the eigenvalues that lie on or outside the unit circle.

This can be done in the following two steps:

1 Given the estimated unstable parameters, we calculate the roots of the characteristic equation and
restrict their absolute values to less than unity.

2 Given these restricted roots, we calculate the constrained parameters which ensure stationarity.
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Winsorized ARMA-SV Estimator (W-ARMA-SV)
We can achieve better stability and efficiency of the ARMA-SV estimator by using “winsorization”.

From (9), it is easy to see that:

φp =
∞∑

j=1
ω j B (p, j ) =

∞∑
j=1

ω jΓ(p, j )−1γ(p, j ) (11)

for any ω j sequence with
∑∞

j=1ω j = 1, where

B (p, j ) :=Γ(p, j )−1γ(p, j ) = [B (p, j )1, . . . , B (p, j )p ]′

is a p ×1 vector.

Using (11), we can define a more general class of estimators for φp by taking a weighted average of
several sample analogs of the p ×1 vector:

φ̃p :=
J∑

j=1
ω j B̂ (p, j ) , B̂ (p, j ) := Γ̂(p, j )−1γ̂(p, j ) = [B̂ (p, j )1, . . . , B̂ (p, j )p ]′, (12)

where
∑J

j=1ω j = 1, 1 ≤ J ≤ T −p and T is the length of time series.
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Winsorized ARMA-SV Estimators
Four W-ARMA-SV Estimator

We consider four winsorized estimators based on the expression given in (12):
[see Kristensen and Linton (2006), Hafner and Linton (2017)]

1 The first winsorized estimate φ̂m
p is the arithmetic mean of sample ratios (equal weights):

ω j = 1/J , j = 1, . . . , J . (13)

2 The second estimate φ̂l d
p is a mean of ratios with linearly declining (LD) weights:

ω j = (2/J )[1− ( j /(J +1))], j = 1, . . . , J . (14)

3 The third estimate is the median-based estimate which is obtained by taking the median of J estimates of
each one of the p components of φp :

φ̂med
p = [φ̂med

1 , . . . , φ̂med
p ]′ , φ̂med

i = med
{

B̂ (p, j )i : 1 ≤ j ≤ J
}

, i = 1, . . . , p. (15)

4 The fourth estimate is obtained by an OLS regression coefficient (without intercept):

φ̂ol s
p = [A(p, J )′A(p, J )]−1 A(p, J )′e(p, J ) (16)

where e(p, J ) is a (p J )×1 vector and A(p, J ) a (p J )×p matrix defined by

e(p, J ) = [γ̂(p, 1)ω1/2
1 , . . . , γ̂(p, J )ω1/2

J ]′ , A(p, J ) = [Γ̂(p, 1)ω1/2
1 , . . . , Γ̂(p, J )ω1/2

J ]′ . (17)

The above estimators are depend on J and for J = 1, they are same as the ARMA-SV estimator that given
by (10).
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Winsorized ARMA-SV Estimators
W-ARMA-SV-OLS: Possible Choices of J
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Figure: S&P 500: 1996-2016. W-ARMA-SV-OLS estimators of volatility persistence parameters (φ’s) as a
function of the number of lags (J).
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Recursive Estimation Algorithm
Using simple estimators, one can recursively estimate an SV (p) model from the estimates
of an SV (p −1) model.
By recursion, we can easily estimate an SV model of any order.
Durbin-Levinson (DL) type algorithm [Levinson (1947), Durbin (1960)].

For EDV: Use the DL algorithm that designed for the autoregressive process.
Go

For ARMA-SV/W-ARMA-SV: Use a Generalized DL algorithm proposed by Tsay and Tiao
(1984).

Go
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Asymptotic Theory
ARMA based Estimator: Assumptions
We derive the asymptotic properties of θ̂ ≡ (φ̂1, . . . , φ̂p , σ̂y , σ̂v )

′
under the following set of assumptions:

A.1 : The the vectors (zt , vt )
′
are i .i .d . according to a N [0, I2] distribution.

A.2 : The latent process is strictly stationary with s-th order finite moment, i.e., E [|wt |]s <∞.

*** Note that under A.1 and A.2 with s = 2, the observed process {yt } is strictly stationary and ergodic.

*** Furthermore, these properties are preserved by any continuous transformation of {yt }, i.e., { f (yt )} where f
is any measurable function.

*** The ARMA based estimator exploits the empirical moments of y∗t = log(y2
t )−µ and log(y2

t ). Both y∗t and
log(y2

t ) are strictly stationary and ergodic.
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Asymptotic theory
ARMA-SV Estimator: Consistency, Asymptotic Normality

Empirical Moments:

R-1. Consistency: Under A.1 and A.2 with s = 2, the estimators Γ̂(m) = (γ̂y∗ (k))k=0,...,m and µ̂ in
(??) satisfy:

Γ̂(m)
p−→ Γ(m) and µ̂

p−→µ.

R-2. Asymptotic Distribution: Under A.1, A.2 with s = 4, and using R-1, the estimators
Γ̂(m) = (γ̂y∗ (k))k=0,...,m , µ̂ satisfy:

p
T [µ̂−µ, Γ̂(m)−Γ(m)]

d−→ N (0,VM ).

Asymptotic Distribution of Simple Estimators: Under A.1, A.2 with s = 4, and using R-1 and R-2, the
estimator θ̂ ≡ (φ̂1, . . . , φ̂p , σ̂y , σ̂v )

′
given in (??)-(??) is consistent and asymptotically normal, i.e., θ̂

p−→ θ

and p
T (θ̂−θ)

d→ N (0,V ).
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Finite Sample Inference
Monte Carlo Tests

Simulating an SV model is easy.

Further, we can simulate the test statistic of SV parameters based on a computationally inexpensive
estimator.

However, if the estimator is computationally expensive then we cannot simulate the test statistic easily.
The simulation will run forever.

Using our proposed computationally simple estimators, one can construct more reliable finite sample
inference.

Monte Carlo test with level α as follows:

1 Let S0, be the observed test statistic (based on data).
2 By Monte Carlo methods, draw N i .i .d . replications of S, i.e., (S1, . . . ,SN ) under H0 hypothesis.
3 Obtain the rank of S0, R̂N [S0] in the series, S0,S1, . . . ,SN .
4 Reject the null hypothesis if R̂N [S0] ≥ (N +1)(1−α)+1, and do not reject, otherwise.

*** Note that the number of simulations, N , should be chosen such that α(N +1) is an integer, so that
the test can control the level exactly.
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Simulation Study
We consider an SV(2) model with different sets of parameters.
In our GMM setting, we consider two sets of moments: one set with 24 moments suggested by Andersen
and Sørensen (1996) and the other one with 6 lower order moments. The large and small sets are denoted
by ML and MS and given by

ML =

 |yt | j −µ j (θ) f or j = 1, ...,4
|yt ||yt− j |−µ1,1( j |θ ) f or j = 1, ...,10

y2
t y2

t− j −µ2,2( j |θ ) f or j = 1, ...,10

 ,

MS =
(

|yt | j −µ j (θ) f or j = 1, ...,4
y2

t y2
t− j −µ2,2( j |θ ) f or j = 1,2

)
.

Different weighting matrix to gain efficiency for the GMM estimators.
We compare our estimators to two Bayesian estimators:
— Bayes-1 is based on the precision sampler of Chan and Jeliazkov (2009), where latent volatility states
are sampled jointly.
— Bayes-2 is based on a single-move independent Metropolis-Hastings algorithm within Gibbs sampler,
which breaks the joint posterior into univariate conditional posteriors.
— For both estimators, the posteriors are based on 20000 draws of the sampler, after discarding 5000
draws.
The simulations use 500 replications .
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Simulation Results - SV(2): RMSE
True value M1 = (φ1,φ2,σy ,σv ) = (0.30, 0.60, 0.025, 2.5)

T = 500 T = 2000

φ1 φ2 σy σv φ1 φ2 σy σv

GMM-6M-E 1.0739 0.9177 0.1060 4.1666 1.0048 0.9817 0.2108 3.8913
GMM-6M-E-R 1.0556 0.9133 0.1060 4.1666 0.9845 0.9761 0.2108 3.8913
GMM-6M-NW 0.8992 0.7567 2.5178 2.0229 0.7536 0.6778 3.3015 1.2647
GMM-6M-NW-R 0.8293 0.7278 2.5178 2.0229 0.7424 0.6737 3.3015 1.2647
GMM-24M-E 0.5506 0.5991 0.1006 4.3062 0.7068 0.7414 0.0697 4.6590
GMM-24M-E-R 0.5247 0.5845 0.1006 4.3062 0.6466 0.7027 0.0697 4.6590
GMM-24M-NW 0.9997 0.8748 3.0388 3.1042 0.9656 0.8586 3.7781 2.0984
GMM-24M-NW-R 0.9744 0.8526 3.0388 3.1042 0.9606 0.8549 3.7781 2.0984
Bayes-1 0.5766 0.5835 1.7308 2.0068 0.2950 0.3267 2.7178 2.1542
Bayes-2 0.1491 0.1437 0.0973 0.6148 0.1680 0.1584 0.0394 0.5928
EDV 0.3801 0.4811 4.4211 1.2310 0.2908 0.3730 1.0332 1.1156
EDV-R 0.4938 0.5656 3.9991 1.4913 0.4455 0.4968 1.5429 1.3793
ARMA-SV 0.1838 0.1806 0.0181 0.1861 0.0861 0.0845 0.0077 0.0899
R-ARMA-SV 0.1900 0.1861 0.0188 0.1847 0.0861 0.0845 0.0077 0.0899
W-ARMA-SV-OLS(J = 10) 0.1412 0.1377 0.0188 0.1831 0.0783 0.0763 0.0077 0.0890
W-ARMA-SV-OLS(J = 100) 0.1179 0.1150 0.0188 0.1854 0.0749 0.0729 0.0077 0.0893
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Simulation Results - SV(2): RMSE
True value M2 = (φ1,φ2,σy ,σv ) = (0.95, −0.85, 0.025, 2.5)

T = 500 T = 2000

φ1 φ2 σy σv φ1 φ2 σy σv

GMM-6M-E 0.8756 0.5273 0.1158 2.0796 0.8268 0.6287 0.1595 2.0601
GMM-6M-E-R 0.8628 0.4996 0.1158 2.0796 0.8000 0.5608 0.1595 2.0601
GMM-6M-NW 1.1262 0.8471 2.2744 0.8664 1.0421 0.7413 2.2072 0.6990
GMM-6M-NW-R 1.1237 0.8436 2.2744 0.8664 1.0421 0.7413 2.2072 0.6990
GMM-24M-E 0.6349 1.3978 0.5772 6.8450 0.3983 1.5975 0.6545 6.6632
GMM-24M-E-R 0.7613 1.1746 0.5772 6.8450 0.6201 1.3403 0.6545 6.6632
GMM-24M-NW 1.2920 0.8144 3.6846 1.5207 1.1021 0.7327 3.7249 1.1020
GMM-24M-NW-R 1.2900 0.8101 3.6846 1.5207 1.1021 0.7327 3.7249 1.1020
Bayes-1 0.2017 0.7453 3.7717 1.9174 0.3480 1.0969 8.7618 2.1449
Bayes-2 0.1824 0.2981 0.0176 0.4300 0.1408 0.3096 0.0072 0.4754
EDV 1.0498 0.0847 1.0031 1.8172 0.9293 0.1124 1.1515 1.8843
EDV-R 1.2065 0.3540 4.8938 2.4661 1.0175 0.2597 6.3289 2.4868
ARMA-SV 0.0336 0.0395 0.0020 0.1868 0.0164 0.0186 0.0010 0.0930
R-ARMA-SV 0.0336 0.0395 0.0020 0.1868 0.0164 0.0186 0.0010 0.0930
W-ARMA-SV-OLS(J = 10) 0.0331 0.0302 0.0020 0.1902 0.0168 0.0155 0.0010 0.0980
W-ARMA-SV-OLS(J = 100) 0.0330 0.0306 0.0020 0.1969 0.0170 0.0157 0.0010 0.0993
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Simulation Results - SV(2)
Number of inadmissible values / non-convergence and relative computing time

Panel A: Inadmissible values / Panel B: Relative computing
non-convergence (out of 500) time with respect to the
T = 500 T = 2000 ARMA-SV estimator

Estimators M1 M2 M1 M2 T = 500 T = 2000

GMM-6M-E 23 6 25 20 734.81 717.67
GMM-6M-NW 60 3 13 0 1019.49 1467.50
GMM-24M-E 13 477 39 498 1752.19 1785.62
GMM-24M-NW 63 5 16 0 3091.74 4059.37
Bayes-1 33 7 9 3 55750.12 127080.14
Bayes-2 0 0 0 0 440922.67 1146786.30
EDV 98 497 88 498 0.99 0.99
ARMA-SV 12 0 0 0 1.00 1.00
W-ARMA-SV-OLS(J = 10) 0 0 0 0 1.38 1.36
W-ARMA-SV-OLS(J = 100) 0 0 0 0 8.42 7.46
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Empirical Results
Evidence of Higher-order Stochastic Volatility: W-ARMA-SV-OLS Estimates

S&P 500 index, 1928 - 2016, number of observations: 23372

p = 1 p = 2

Coefficient Std. Error Coefficient Std. Error

φ1 0.9938*** (0.0357) 0.6887*** (0.0719)
φ2 0.2863*** (0.0734)
σy 0.3356*** (0.0167) 0.3356*** (0.0167)
σv 0.6533*** (0.0623) 0.6166*** (0.3204)

p = 3 p = 4

Coefficient Std. Error Coefficient Std. Error

φ1 0.5477*** (0.1204) 0.3633*** (0.2183)
φ2 -0.4264*** (0.0936) -0.0251 (0.2142)
φ3 0.6211*** (0.0122) 0.6305*** (0.0174)
φ4 0.0005 (0.0169)
σy 0.3356*** (0.0167) 0.3356*** (0.0142)
σv 0.6211** (0.3993) 0.6133 (0.5456)
***, **, and * indicate significance at 1%, 5%, and 10% levels
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Empirical Results
Finite Sample Inference: Monte Carlo Tests

The p-values tabulated in the earlier tables are based on the asymptotic approximation.

Simulation studies reveal that asymptotic p-values can be markedly different and may be quite unreliable
in finite samples:

Ahsan (2020) in the context of stochastic volatility model
Schwert (2002) in the context of ARMA models
Park and Mitchell (1980), Miyazaki and Griffiths (1984), Dejong, Nankervis, Savin and Whiteman
(1992) in the context of AR(1) models

To tackle this problem, we propose Local Monte Carlo tests / parametric Bootstrap in order to make a
reliable inference.
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Empirical Results
Finite Sample Inference: Local Monte Carlo / Parametric Bootstrap Tests

S&P 500 index, 1928 - 2016, number of observations: 23372

p = 1

Coefficient S0 Asy. tests LMC tests

N = 19 N = 99 N = 999

φ1 0.9938 27.84 0.00 0.05 0.01 0.001
σy 0.3356 20.06 0.00 0.05 0.01 0.001
σv 0.6533 10.48 0.00 0.05 0.01 0.001
Time (in seconds) 0.69 1.5 4.5 38.2

p = 2

Coefficient S0 Asy. tests LMC tests

N = 19 N = 99 N = 999

φ1 0.6887 9.58 0.00 0.05 0.01 0.001
φ2 0.2863 3.90 0.00 0.05 0.01 0.001
σy 0.3356 20.06 0.00 0.05 0.01 0.001
σv 0.6166 1.92 0.03 0.10 0.06 0.075
Time (in seconds) 0.70 2.6 10.3 95.1
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Empirical Results
Finite Sample Inference: Local Monte Carlo / Parametric Bootstrap Tests

S&P 500 index, 1928 - 2016, number of observations: 23372

p = 3

Coefficient S0 Asy. tests LMC tests

N = 19 N = 99 N = 999

φ1 0.5477 4.55 0.00 0.05 0.01 0.001
φ2 -0.4264 -4.55 0.00 0.05 0.01 0.001
φ3 0.8489 69.67 0.00 0.05 0.01 0.001
σy 0.3356 20.06 0.00 0.05 0.01 0.001
σv 0.6211 1.56 0.06 0.10 0.09 0.082
Time (in seconds) 0.79 12.2 60.2 622.1
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Empirical Results
Finite Sample Inference: Local Monte Carlo / Parametric Bootstrap Tests

S&P 500 index, 1928 - 2016, number of observations: 23372

p = 4

Coefficient S0 Asy. tests LMC tests

N = 19 N = 99 N = 999

φ1 0.3633 1.69 0.05 0.05 0.01 0.001
φ2 -0.0251 -0.12 0.45 0.85 0.88 0.865
φ3 0.6305 37.68 0.00 0.05 0.01 0.001
φ4 0.0005 0.03 0.49 0.70 0.65 0.623
σy 0.3356 20.06 0.00 0.05 0.01 0.001
σv 0.6133 0.67 0.25 0.20 0.15 0.185
Time (in seconds) 0.97 20.7 105.0 1237.2
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Concluding Remarks
The simple W-ARMA-SV estimator uniformly outperforms other estimators in terms of statistical
efficiency and time.

Our results cast doubt on the advice that one should use a large number of moments, consistent with
Buse (1992), Bekker (1994), Chao and Swanson (2007).
—Using too many moments can be very costly from an efficiency viewpoint.

Empirical results can be summarized as follows:

1 Daily returns could be better modeled as an SV(p) model.
2 It is easy to construct simulation-based inference for SV(p) models using simple estimators.
3 SV(p) models are superior in forecasting daily volatility.
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