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Abstract

In this paper, we develop "nite-sample inference procedures for stationary and non-
stationary autoregressive (AR) models. The method is based on special properties of
Markov processes and a split-sample technique. The results on Markovian processes
(intercalary independence and truncation) only require the existence of conditional
densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate
Markov processes. In the context of a linear regression model with AR(1) errors, we show
how these results can be used to simplify the distributional properties of the model by
conditioning a subset of the data on the remaining observations. This transformation
leads to a new model which has the form of a two-sided autoregression to which standard
classical linear regression inference techniques can be applied. We show how to derive
tests and con"dence sets for the mean and/or autoregressive parameters of the model. We
also develop a test on the order of an autoregression. We show that a combination
of subsample-based inferences can improve the performance of the procedure. An
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application to U.S. domestic investment data illustrates the method. ( 2000 Elsevier
Science S.A. All rights reserved.
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1. Introduction

The presence of nuisance parameters is a crucial problem when making
inference on the parameters of a dynamic model. Typically, test statistics have
distributions which depend on those nuisance parameters so that they are
di$cult to interpret. A "rst approach to solve this di$culty consists in "nding
consistent estimates of the nuisance parameters which are then substituted for
these parameters in the distribution of the statistic considered. However, it is
well known that such approximations can be arbitrarily bad; see Park and
Mitchell (1980), Miyazaki and Gri$ths (1984) and DeJong et al. (1992) for
examples in the context of AR processes, Burnside and Eichenbaum (1994, 1996)
about Wald-type tests based on GMM estimators, Dufour (1997) for a more
general treatment of asymptotic approximation failures in the case of Wald
statistics, Savin and WuK rtz (1996) for a similar discussion in the case of logit
models, and Maasoumi (1992) for some general criticisms. Consequently, when
hypothesis testing is the main objective, such a procedure o!ers no guarantee
that the level constraint in the sense of Neyman}Pearson [see Lehmann, 1986, p.
69; GourieH roux and Monfort, 1989, p. 15] be satis"ed. This also makes compari-
sons between testing procedures di$cult.

A second approach consists in using bounds which typically lead to conserva-
tive tests. Suppose the true critical value for our test statistic is unknown, but
that it is possible to "nd bounds on this value, most importantly a bound
yielding a critical region whose probability under the null hypothesis is not
larger (but could be smaller) than the stated level of the test. For some examples
of such methods in time-series models, see Vinod (1976), Kiviet (1980) and
Hillier and King (1987). In these cases, the bounds appear to increase without
limit when the nuisance parameters approach some boundary (e.g., the station-
arity frontier in the case of ARMA processes) and/or with the sample size so they
become useless (see Dufour and Torrès, 1998). For regression models with AR(1)
disturbances, procedures which do not display this unattractive feature were
proposed in Dufour (1990); for further examples of such techniques, see also
Dufour (1989), Dufour and Kiviet (1996, 1998), Campbell and Dufour (1997),
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Dufour et al., (1998), and Kiviet and Dufour (1997). However, these methods
appear di$cult to extend to more complex dynamic models such as AR(p)
processes, p*2.

In this paper, we propose an exact inference procedure for the parameters of
Markov processes. It is based on extending old but little known results stated by
Ogawara, 1951 for univariate stationary Gaussian AR(p) process. Note
Ogawara's article does not contain the proof of the result, and such a demon-
stration does not appear to be available elsewhere. The procedure has been
extended by Hannan (1956) to multivariate, stationary, Gaussian processes
admitting a VAR(1) representation. In the two latter references, procedures are
developed for making inference on the autocorrelation parameters of pure AR
processes. Hannan (1955a, b) also showed this method can be applied to test
a hypothesis on the coe$cients of a linear regression model with stationary
AR(1) errors.

In this paper, we generalize and improve these results in several directions.
First, the initial results of Ogawara (1951) are extended to a larger class of
processes, which includes multivariate, possibly non-normal, integrated or ex-
plosive processes. In particular, for general Markov processes of order p, it is
shown that the variables separated by lags of p periods are mutually indepen-
dent conditional on the intercalary observations (intercalary independence),
a rather surprising property which is certainly of interest by itself. Second, we
consider a more general class of models and hypotheses which includes as
special cases all the models previously treated in the earlier literature (Ogawara,
1951; Hannan, 1955a, b, 1956; Krishnaiah and Murthy, 1966). In particular,
although this procedure was originally designed to make inference on the mean
of a dynamic model, we show it is also suitable for inference on the nuisance
parameters, such as autoregressive coe$cients. Furthermore, we develop a pro-
cedure for constructing con"dence regions. Third, we propose a way of resolving
the information loss due to the application of the Ogawara}Hannan procedure.
Fourth, we provide simulations results to evaluate the performance of our
method.

Our procedure involves several steps. First, the sample is split into several
subsets of observations. Next, on conditioning the original model on one of
these subsamples, a transformed model having the form of a two-sided autoreg-
ression is obtained, i.e., the dependent variable is regressed on its own leads and
lags. This transformed model has simpler distributional properties and allows
one to apply standard "xed regressor techniques. This is repeated for each
subsample. Then a pooling method described in Dufour and Torrès (1998) is
used to combine the results of subsample-based inferences and obtain a single
answer based on the whole sample.

The procedures are quite easy to implement, for they only require applying
standard test procedures (student, Fisher, s2) to a transformed model. This
means that there is no need to establish special critical points. The method is

J.-M. Dufour, O. Torre% s / Journal of Econometrics 99 (2000) 255}289 257



#exible enough to be easily adaptable to a wide variety of dynamic and
econometric models. In particular, we show it can easily be adapted to various
setups, such as: (1) integrated and explosive processes; (2) multidimensional
processes (VAR models); (3) various models with more general dynamic struc-
tures.

The paper is organized as follows. In Section 2, we motivate and expose the
procedures developed in this paper in the context a simple AR(1) model with
a deterministic trend. In particular, we demonstrate how to use a number of
general results on Markov processes which are exposed in Section 3. In Section
4, we discuss in detail how these results can be applied to obtain "nite sample
inference procedures in the context of an AR(1) process. In Section 5, we
consider a more general model by introducing a drift function in the AR(1)
model. In particular, we explicitly show how one can obtain an exact test on the
mean parameters and the autoregressive coe$cients. We also derive an exact test
for the order of an autoregression. In Section 6, we propose a method for
improving the performance of Ogawara's procedure and we present simulation
results. We conclude in Section 7. The proofs appear in the appendix.

2. An introductory example

As an example of the procedures presented in this paper, consider the
following AR(1) model:

>
t
"m

t
#j>

t~1
#u

t
, with m

t
"b

0
#b

1
t, t"1, 2,2,¹, (2.1)

where u
1
,2, u

T
are independent and identically distributed (i.i.d.) according to

a N(0, p2) distribution [henceforth denoted u
t
*.*.$.
& N(0, p2), t"1,2,¹].

Because such a model is recognized for describing well the dynamic behavior
of many economic time series, a large part of the econometrics literature has
been devoted to estimating it and making inferences on its parameters. One of
the most investigated issue consists in testing the unit root hypothesis H

0
: j"1.

Most of the (now) standard test procedures proposed in the literature use an
OLS estimate jK

T
of j to form a statistic which is usually a normalized version of

jK
T
!1. The non-standard asymptotic distribution of this statistic is used to

de"ne a critical region for H
0
. As mentioned in Section 1, the lack of reliability

of such procedures is well documented. We propose here a simple approach
which avoids the use of asymptotic approximations and provides tests and
con"dence regions having the stated level. Although the procedure presented in
this paper goes much beyond this single issue, we illustrate it in the context of
the simple AR(1) model (2.1) where we wish to test H

0
: j"1. For the sake of

simplicity, we assume the sample size is odd, so that ¹ may be written
¹"2n#1, for some strictly positive integer n.
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The method may then be described as follows. The results of this paper entail
the following properties: (1) conditionally on U

0$$
"(>

1
,>

3
,2,>

2n`1
)@, the

remaining observations>
2
,>

4
,2,>

2n
are mutually independent (see Theorem

3.1); (2) the conditional distribution of >
2t

given U
0$$

is identical to the condi-
tional distribution of >

2t
conditional on (>

2t~1
,>

2t`1
) (see Theorem 3.2). In

particular, for any t"1, 2,2, n, the mean of this conditional distribution is
E(>

2t
D>

2t~1
,>

2t`1
)"b

1
m

2t
#b

2
m

2t`1
#b(>

2t~1
#>

2t`1
), so that we may

write

>
t
"b

1
m

t
#b

2
m

t`1
#b(>

t~1
#>

t`1
)#g

t

or, using the expression of m
t
,

>
t
"a

0
#a

1
t#b(>

t~1
#>

t`1
)#g

t
(2.2)

for t"2, 4,2, 2n. The coe$cients a
0
, a

1
and b can be shown to be the

following transformations of the initial parameters:

a
0
"b

0A
1!j
1#j2B!b

1A
j

1#j2B, a
1
"b

1A
1!j
1#j2B, b"

j
1#j2

.

(2.3)

Further, the error terms g
2
, g

4
,2, g

2n
, are i.i.d. N(0, p2

1
), conditionally on U

0$$
.

Now, it is interesting to note that (2.2) enjoys all the properties of a standard
linear regression model with Gaussian i.i.d. errors. Therefore, any linear hypoth-
esis on its coe$cients may be tested with usual procedures. In particular,
H

0
: j"1 in (2.1) may be reformulated as a linear restriction on the parameters

of (2.2), namely H(a)
0

: (a
1
"0 and b"1/2). A simple Fisher procedure gives

a critical region with any required level a for H(a)
0

.
To illustrate the procedure, we propose the following numerical example.

Following Dufour and Kiviet (1998), a model similar to (2.1) describes the
dynamics of the (logarithm of) U.S. gross private domestic investment in non-
residential structures over the period 1952:I to 1969:IV [see Berndt (1991, p. 278)
for a detailed description of the data]. The model is

>
t
"b

0
#b

1
t/100#j>

t~1
#m

t
#u

t
. (2.4)

When the latter is estimated by OLS, we obtain: jK "0.92143, bK
0
"0.87197,

bK
1
"0.06986 with unbiased error variance estimator s2"4.92300]10~4. jK be-

ing close to 1, one may wish to test for the presence of a unit root in the AR
polynomial. According to the discussion above, one would estimate the trans-
formed model similar to (2.2)

>
t
"a

0
#a

1
t/100#b(>

t`1
#>

t~1
)#g

t
, t"2, 4,2, 70, (2.5)
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where a
0
, a

1
and b are given by (2.3), and test H(a)

0
: (a

1
"0 and b"1/2).

Rewriting the null hypothesis under the form H(a)
0

: Rd!r"0 where

R"A
0 1 0

0 0 1B, d"(a
0
, a

1
, b)@, r"(0, 1

2
)@,

the unit root hypothesis may then be tested at any level a by forming the statistic
F
1
"(RdK

1
!r)@[R<K (dK

1
)R@]~1(RdK

1
!r) and using the critical region F

1
*

F(2, 31; 1!a). Here dK
1

denote the vector of the OLS estimates of the compo-
nents of (a

0
, a

1
, b)@ in (2.5), <K (dK

1
) is the usual (&unbiased') estimator of the

variance}covariance matrix of dK
1
, and F(2, 31; 1!a) is the (1!a) quantile of

the Fisher distribution with (2, 31) degrees of freedom. Computations yield the
following results:

dK
1
"A

0.17965

0.00883

0.49191B, <K (dK 1 )"A
0.21226 0.01775 !0.00968

) 0.00163 !0.00081

) ) 0.00044 B,
F
1
"0.211179.

The p-value associated with F
1

is 0.8107842 so that H(a)
0

is accepted at any level
less than 81.07842%.

In our example, the transformed model (2.2) [or (2.5)] uses>
2
,>

4
,2,>

2n
, as

dependent variables and>
1
,>

3
,2,>

2n`1
, as the conditioning variables. Obvi-

ously, the results we used for writing (2.2) may also be applied when
U

%7%/
"(>

2
,>

4
,2,>

2n
)@ are the conditioning variables. Another transformed

model is then

>
t
"a

0
#a

1
t#b(>

t~1
#>

t`1
)#l

t
, t"3, 5,2, 2n!1. (2.6)

The error terms l
3
, l

5
,2, l

2n~1
are independent N(0, p2

1
) conditionally on

U
%7%/

and (2.6) produces another critical region with level a for H(a)
0

. Back to the
U.S. gross private domestic investment in non-residential structures example,
OLS estimation of

>
t
"a

0
#a

1
t/100#b(>

t`1
#>

t~1
)#l

t
, t"3, 5,2, 71, (2.7)

yields

dK
2
"A

!0.49970

!0.03342

0.52265 B, <K (dK 2)"A
0.31227 0.02587 !0.01423

) 0.00234 !0.00118

) ) 0.00065 B,
F
2
"0.563799

with a p-value of 0.5747689 for F
2
.
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The tests based on F
1

and F
2

both agree on accepting H(a)
0

at level 5% so that
we would be tempted to accept the null at the same level of 5%. However, the
decision rule which consists of accepting the null hypothesis when m*2 tests
accept it each at level a has a level which is larger to a. Such a method is the
well-known-induced test procedure (see Savin, 1984) which combines several
results from separate (although not necessarily independent) inferences. A su$-
cient condition ensuring it has level a is that each one of the m tests which are
combined has level a/m (see Savin, 1984; Dufour and Torrès, 1998, for further
details). In model (2.1), we accept H

0
: j"1 at level a whenever the tests based

on (2.2) and (2.6) both accept (at level a/2) the hypothesis H(a)
0

: a
1
"0 and

b"1/2. In terms of p-values, this criterion can be reformulated as follows:
we reject H

0
: j"1 at level a when the minimum of the p-values obtained from

(2.2) and (2.6) is smaller than a/2. When applied to the U.S. investment data, it is
easy to see that the null hypothesis of a unit root is accepted at level 5% for
instance.

The procedure just described is very simple as it only requires standard
tabulated distributions. Its steps can be summarized as follows. The initial
model expresses the conditional mean of a Markov process, typically
>

t
"E(>

t
D>

t~1
)#u

t
. By using properties of such processes, we are able to

transform the initial model by "rst splitting the sample into two subsets of
variables, and then writing the conditional mean of the variables in the "rst
subset given some of the variables in the second subset. This leads to several
transformed models such as >

t
"E(>

t
D>

t~1
,>

t`1
)#u

it
, t3J

i
, i"1, 2, for

instance, where J
1

and J
2

are collections of indices de"ning the two subsets of
variables. The testing procedure exploits the fact that, due to some properties of
Markov processes, these transformed models are standard linear regressions for
which usual inference techniques apply.

In the next section, we present extensions of the theoretical results of Ogawara
(1951) and Hannan (1956). These results establish the properties of Markov
processes on which the inference procedures proposed rely.

3. Results on Markov processes

3.1. Notation

Let MX
t
: t3TN be a stochastic process on a probability space (X, F, P) with

trajectories in Rm, i.e. X(u, t),(X
1
(u, t),X

2
(u, t),2, X

m
(u, t))@, m*1, t3T,

where T is an interval of the integers Z. The symbol &,' means &equal by
de"nition'. We assume that for all t3T, the probability law of X

t
has density

f
Xt

with respect to the Lebesgue measure onRm (the Borel p-algebra of subsets of
Rm). For any random vector U of conditioning variables, we denote f

Xt @U
(xD/) the

conditional density of X
t
given U"/, evaluated at x3Rm.
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It will be useful to introduce the following notations. Let p and n be two
positive integers ( p*1, n*1). We consider the stochastic process MX

t
: t3TN

and de"ne

B
t,p

,(X
t~1

, X
t~2

,2, X
t~p

)"(X
t~q : 1)q)p),

b
t,p

,(x
t~q : 1)q)p),

for p#1)t)(n#1)(p#1), and

A
t,p

,(B
s(p`1),p

: t)s)n#1), a
t,p

,(b
s(p`1),p

: t)s)n#1),

for 1)t)n#1,

where we assume the set T contains 1 and (n#1)(p#1)!1. In other words,
B
t,p

denotes the set of p variables immediately preceding X
t
, and A

t,p
is

a collection of B
s,p

sets. We can give the following illustration of the way we split
the variables in MX

t
: t3TN:

X
t(p`1)~p

, X
t(p`1)~p`1

,2, X
t(p`1)~1hgggggggiggggggj

Bt(p`1),p

, X
t(p`1)

,

X
(t`1)(p`1)~p

, X
(t`1)(p`1)~p`1

,2, X
(t`1)(p`1)~1hgggggggggigggggggggj

B(t`1)(p`1),p

.

The following notation will provide a convenient shortcut: for any t3T, we set

X
t
,2(r)2

,X
t`kr

,(X
t
,X

t`r
, X

t`2r
,2,X

t`kr
)

for any positive integers r and k such that t#kr3T. With this notation, we may
now give the main de"nition.

Let MX
t
: t3TN be a stochastic process and p a positive integer. We say that

MX
t
: t3TN is a Markov process of order p on T (or MX

t
: t3TN is Markovian of

order p on T) if it satis"es condition M(p) de"ned as follows:

M(p): f
Xt @Xt~k ,2(1)2, Xt~1

"f
Xt @Xt~p ,2(1)2, Xt~1

, ∀k3N, ∀t3T,

with t!k3T and k*p. (3.1)

Note that, for T"Z and p"1, we have the standard de"nition of a Markov
process.

Let X and > be two random vectors of dimension q and r, respectively.
Whenever the relevant moments exist, the a$ne regression of X on > is the
random vector of size q, denoted E

L
(X D>), whose ith component is the ortho-

gonal projection of X
i
on the space spanned by the a$ne functions of > (an

a$ne function of > is a linear combination of the elements of > plus possibly
a constant). If= is another random vector, Xo> D= means that the residuals
from the a$ne regressions of X and > on = are uncorrelated, i.e.
E[X!E

L
(X D=)][>!E

L
(> D=)]@]"0.
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3.2. Intercalary independence and truncation properties

The procedures presented in Ogawara (1951) and Hannan (1955a, b, 1956)
exploit special properties of Markov processes (intercalary independence, trunc-
ation), which we now study in detail and generalize. The propositions below will
be used to build a transformed model that satis"es the assumptions of the
classical linear model on which standard inference techniques can be applied.
Further they provide interesting insights on the structure of Markovian pro-
cesses, and thus have interest by themselves. The intercalary independence
property was apparently "rst given without proof by Ogawara (1951) for
univariate Markov processes, while the truncation property was used implicitly
by him (again without proof) in the context of univariate autoregressive station-
ary Gaussian processes. Ogawara (1951) notes that these results have been
stated without proof in Linnik (1949). However no proof is given by Ogawara
(1951) nor (apparently) by any other author. In this section, we demonstrate and
extend these results to multivariate Markov processes of order p, allowing for
non-stationarity and non-normality. In order to keep things as simple as
possible, we shall assume that the time index set T contains the positive integers
N: T.N"M1, 2,2N.

The "rst result we state (intercalary independence for Markov processes of
order p) is an extension of Theorems 1 and 2 of Ogawara (1951). The proofs are
given in the appendix.

Theorem 3.1 (Intercalary independence). Let MX
t
: t3TN be a stochastic process

satisfying condition M(p), with T.N. Then for any positive integer n,
X

p`1
,X

2(p`1)
,2, X

n(p`1)
are mutually independent, conditionally on A

1,p
.

Consider a dynamic model of the form

X
t
"g

1,t
(Z

t
,Xl ,2(1)2

,Xq )#e
t
, t"1, 2,2,¹,n(p#1)#p, (3.2)

where MX
t
: t3¹M N is an m-dimensional Markov process of order p on

¹M ,M1, 2,2, n(p#1)#pN, and 1)l)q)t!1. If MX
t
: t3¹M N is Markovian

of order p, we have t!1*q*l*t!p. Z
t

is a vector of "xed exogenous

variables, e
i,t

*.*.$.
& N(0, p2

i
), i"1, 2,2, m, and g

1,t
is a deterministic function in

Rm. If we condition (3.2) on A
1,p

, we obtain a conditional model

X
t(p`1)

"g
2,t

(Z
t(p`1)

, A
1,p

)#g
t(p`1)

, t"1, 2,2, n, (3.3)

in which, according to Theorem 3.1, the endogenous variables are independent
and

E(g
t(p`1)

D A
1,p

)"0, t"1, 2,2, n.
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We achieve the independence at the expense of a larger number of variables in
the conditional mean of X

t(p`1)
(A

1,p
instead of Xl ,2(1)2

, Xq ). However, by
the following theorem, we can restrict ourselves to consider a more parsimoni-
ous model which is distributionally equivalent to (3.3).

Theorem 3.2 (Truncation property). Let MX
t
: t3TN be a stochastic process sat-

isfying condition M(p) with T.N. Then

f
Xt(p`1) @A1,p

"f
Xt(p`1)@B(t`1)(p`1),p ,Bt(p`1),p

for any t"1, 2,2, n, ∀n3N.

Note only the Markov property of the process is needed to establish these
results. In particular, stationarity and/or normality are not required. The above
theorem extends a result stated without proof by Ogawara (1951) in the context
of a univariate, stationary, Gaussian Markov process of order p. For complete-
ness, we state the latter as a corollary.

Corollary 3.3 (Intercalary independence for Gaussian processes). Let MX
t
: t3ZN

be a (multidimensional) Gaussian Markov process of order p (p*1). Then The-
orems 3.1 and 3.2 hold for MX

t
: t3ZN.

To see the latter corollary, we simply note that for any t, f
Xt @X~=,2(1)2,Xt~1

"

f
Xt @Xt~p ,2(1)2,Xt~1

Nf
Xt @Xt~s ,2(1)2,Xt~1

"f
Xt @Xt~p ,2(1)2,Xt~1

, for any s*p. Theorems
3.1 and 3.2 extend the results used by Ogawara to a larger class of processes.
Theorem 3.2 shows that, if MX

t
: t3TN is Markovian of order p, variables other

than those in B
t(p`1),p

and B
(t`1)(p`1),p

do not appear in the conditional density
of X

t(p`1)
given A

1,p
. For example in (3.3), this suggests we can limit ourselves to

consider a simpler equivalent model where X
t(p`1)

only depends on the adjacent
variables B

(t`1)(p`1),p
and B

t(p`1),p
, instead of the complete set A

1,p
:

X
t(p`1)

"g
t
(Z

t(p`1)
, B

(t`1)(p`1),p
, B

t(p`1),p
)#g

t(p`1)
, t"1, 2,2, n, (3.4)

where the X
t(p`1)

's are (conditionally) independent. The function g
t
( ) ) in (3.4)

may be interpreted as the &best approximation' (projection) of X
t(p`1)

on the
space spanned by (possibly nonlinear) functions of the variables in B

t(p`1),p
and

B
(t`1)(p`1),p

. Corollary 3.5 below gives a su$cient condition for such &projec-
tions' to be invariant with respect to t, e.g., to have g

t
( ) )"g( ) ), for all

t"1, 2,2, n. We "rst need to introduce the following de"nition.

Dexnition 3.4 (Conditional strict stationarity of order p). Let MX
t
: t3TN be

a stochastic process on T.N. We say that MX
t
: t3TN is conditionally strictly
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stationary of order p [denoted CSS(p)] if there exists a strictly positive integer
p such that

f
Xt @Xt~p ,2(1)2,Xt~1

( ) D ) )"f
Xs @Xs~p ,2(1)2,Xs~1

( ) D ) )

for all s3T and t3T such that s!p3T and t!p3T.

Corollary 3.5 (Truncation property for CSS Markov processes). Let MX
t
: t3TN

be a CSS(p) process satisfying condition M(p) with T.N. Then

f
Xt(p`1) @B(t`1)(p`1),p ,Bt(p`1),p

( ) D ) )"f
Xs(p`1)@B(s`1)(p`1),p ,Bs(p`1),p

( ) D ) ), ∀t*1, ∀s*1.

To see the latter property, we note that Bq,p"Xq~p
,2(1)2

,Xq~1
. Then

writing the conditional density as

f
Xt(p`1) @B(t`1)(p`1),p ,Bt(p`1),p

"

<t(p`1)`pq/t(p`1)
f
Xq @Bq,p

:<t(p`1)`pq/t(p`1)
f
Xq @Bq,p

dx
t(p`1)

[see the proof of Theorem 3.2, Eq. (A.4) in the appendix], the CSS(p) property of
MX

t
: t3TN yields the result. The CSS(p) condition is entailed by strict stationar-

ity. Furthermore, any random process that admits an AR(p) representation with
i.i.d. errors is Markovian of order p and CSS(p). This will be important for our
purpose, since (3.4) can be rewritten as

X
t(p`1)

"g(Z
t(p`1)

, B
(t`1)(p`1),p

, B
t(p`1),p

)#g
t(p`1)

, t"1, 2,2, n, (3.5)

where g no longer depends on t, which makes statistical inference much easier.
Furthermore, for g a$ne, (3.5) is the classical linear regression model.

We now give two other propositions that will be especially useful when the
process MX

t
: t3TN has an AR representation.

Theorem 3.6 (Truncation property for AR processes). Let MX
t
: t3TN be a Mar-

kov process of order p on T.N. Then for any integer q*p, we have
f
Xt @Bt`1`q,q ,Bt,q

"f
Xt @Bt`1`p,p ,Bt,p

, ∀t*q#1.

Corollary 3.7 (Projection truncation for AR processes). Let MX
t
: t3TN be

a Markov process of order p on T, whose elements have xnite second moments.
Then, for any q such that q*p, we have E

L
(X

t
DB

t`1`q,q
, B

t,q
)"

E
L
(X

t
DB

t`1`p,p
,B

t,p
).

In the context of random processes which satisfy only second-order properties
analogous to those of Markov processes, results similar to intercalary indepen-
dence and truncation hold. These are given in Theorems 3.8 and 3.9.
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Theorem 3.8 (Intercalary orthogonality). Let MX
t
: t3TN be a random process

with xnite second moments such that

X
t
o(X

1
,2(1)2

, X
t~p~1

) D B
t,p

.

Then

X
t(p`1)

oX
s(p`1)

DA
1,p

, ∀t*1, ∀s*1, tOs.

Theorem 3.9 (Intercalary orthogonal truncation). Let MX
t
: t3NN be a random

process with xnite second moments such that

X
t
o(X

1
,2(1)2

, X
t~p~1

)DB
t,p

.

Then for all t*1, we have

X
t(p`1)

oB
s(p`1),p

D[B
(t`1)(p`1),p

,B
t(p`1),p

], ∀t*1, ∀s*1, sOt

and sOt#1.

In the next section, we apply the above results to derive exact inference
procedures for the parameters of the original model (3.4). We start with AR(1)
processes. We then consider a Markov process of order 1 admitting a more
general dynamic representation, which includes the classical linear regression
model with AR(1) errors as a special case. In a subsequent section, we
shall derive an exact inference procedure in the context of Markov processes of
order p.

4. Exact inference for AR(1) models

In the previous section, we showed how to use Theorems 3.1 and 3.2 to derive
a time invariant transformed model (3.5) from the initial model (3.2). If we wish
to make inference on the parameters of (3.2) via those of (3.5), we must establish
in a more explicit way the relationship between the two models. We can
transform (3.2) into (3.5) by using two sorts of projections. Let M>

t
: t3¹M N be

a Markov process of order p on ¹M ,M1, 2,2, n(p#1)#pN. The "rst kind of
projection is suggested by the results of Section 3. It is the projection of
>

t(p`1)
on the space generated by the functions of the variables in B

t(p`1),p
and

B
(t`1)(p`1),p

(or the conditioning of >
t(p`1)

upon B
t(p`1),p

and B
(t`1)(p`1),p

).
Unless normality is assumed, this projection is likely to be nonlinear and
di$cult to establish. Moreover, if M>

t
: t3¹M N is not CSS(p), we have no guaran-

tee that this projection will be identical for all t.
The second type of projection is the a$ne regression of >

t(p`1)
on

B
t(p`1),p

and B
(t`1)(p`1),p

. The resulting model is linear by construction and the
relation between the initial and transformed parameters is likely to be simple
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enough for inference. A su$cient condition (although not necessary, as we will
see in the case of AR(1) processes) for this relation to be time invariant is weak
stationarity of the process M>

t
: t3¹M N. However, our objective is to make exact

inference and we will need to specify the probability distribution of M>
t
: t3¹M N.

We will then assume that M>
t
: t3¹M N is a Gaussian process. In that case, the two

projections coincide.
In this section, we show how the results of the previous section can be applied

to obtain exact tests and con"dence regions on the parameters of an AR(1)
model.

4.1. Model transformation

Suppose the scalar process M>
t
: t3¹M N, where ¹M ,M1, 2,2,¹N and

¹"2n#1 for some integer n, admits the following representation:

>
t
"/>

t~1
#e

t
, e

t

*.*.$.
& N(0, p2e ), t3¹M (4.1)

with >
0

given and /3R. If we assume the e
t
's are normally distributed, then

M>
t
: t3¹M N is a CSS(1) Markov process of order 1 on ¹M . We are now ready to

apply the results of Section 3. The conditional distribution of >
2t

given
(>

2t`1
,>

2t~1
) is normal, for all t"1, 2,2, n. Its mean is given by the a$ne

regression of >
2t

on (>
2t`1

,>
2t~1

) and takes the form

E
L
(>

2t
D>

2t`1
,>

2t~1
)"a#b

1
>

2t`1
#b

2
>

2t~1
, t"1, 2,2, n.

The following theorem shows that if D/D(1, then b
1
"b

2
,b.

Theorem 4.1 (Regression symmetry for weakly stationary processes). Let
MX

t
: t3¹M N be a weakly stationary regular univariate stochastic process. For all

strictly positive integers p, the coezcients of X
t`k

and X
t~k

in the azne regression
of X

t
on (B

t`p`1,p
, B

t,p
) are equal, 1)k)p, for all t*p#1.

Expressions for b and a are derived in the appendix where it is shown that
b"//(1#/2) and a"0. The variance of the residuals from the regression is
p2e /(1#/2). These expressions are valid for any /3R. Starting from (4.1), the
equivalent of the transformed model (3.5) is

>
2t
"b>H

2t
#g

2t
, t"1, 2,2, n,

g D (>H
2t

, t"1, 2,2, n)&NC0,
p2e

1#/2
I
nD, (4.2)

where >H
2t
,>

2t`1
#>

2t~1
, t"1, 2,2, n, g"(g

2
, g

4
,2, g

2n
)@ and I

n
is the

n]n identity matrix. Eq. (4.2) is a Gaussian linear regression model from which
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we can easily estimate b and make exact inference on it. In particular, using the
usual critical region =(a),MDt(b

0
)D't

1~a@2(n!1)N, with t(b
0
),(bK !

b
0
)/<K (bK )1@2 where bK and<(bK ) are the usual OLS estimators of b and<(bK ), we can

test any hypothesis of the form H
0
: b"b

0
against H

1
: bOb

0
. This test has

exact level a.

4.2. Exact tests on /

Since (1#/2)b"/, the relation between the &initial' parameter / and the
&transformed' parameter b is given by b/2!/#b"0. In order to make
inference on / using model (4.2), we need to examine the roots of the polynomial
q(x)"bx2!x#b"0. Since / is assumed to lie in R, we discard complex
roots, obtained with DbD'1/2. If we also exclude the trivial case b"0 which
yields /"0, the roots of q(x) are x

1
"(1#D1@2

q
)/2b, x

2
"(1!D1@2

q
)/2b, where

D
q
"1!4b2. Since x

1
x
2
"1, we have sign(x

1
)"sign(x

2
) and x

i
'1Q

x
j
(1, i, j"1, 2, iOj. Hence, with bO0 and DbD)1/2, two values of / only

are identi"ed in (4.2). These values are 1 and !1 which are, respectively,
equivalent to b"1/2 and !1/2. In other words, given an a priori value for b,
we can decide whether the process is integrated (D/D"1), but, if not, we cannot
distinguish a stationary process (D/D(1) from an explosive process (D/D'1).
However, this identi"cation problem can be avoided by excluding explosive
processes. This should not be a too restrictive practice if we admit that macro-
economic time series are usually integrated or stationary. The case where b"0
corresponds to a white noise process, i.e. /"0.

From the point of view of hypothesis testing, we have established the equiva-
lence of each one of the null hypotheses H

01
: /"0, H

02
: /"1, and

H
03

: /"!1, with HH
01

: b"0, HH
02

: b"1/2, and HH
03

: b"!1/2, respec-
tively. For these a priori values of /, we have derived an exact test procedure.
For other values of /, we can still consider the test of HH

0
: b!b

0
"0 which

corresponds to the test of H
0
: /3Mx

0
, x~1

0
N, where x

0
is the "rst root of q(x),

evaluated at b"b
0
.

4.3. Exact conxdence sets for /

It is easy to build an exact con"dence interval at level 1!a for the parameter
b in (4.2). Suppose the random variables c

1
and c

2
satisfy c

1
)c

2
with probabil-

ity one and P(Mc
1
)bNWMb)c

2
N)"1!a. Since the events Mc

1
/2!

/#c
1
)0NWMc

2
/2!/#c

2
*0N and Mc

1
)bNWMb)c

2
N are identical,

the set M/: c
1
/2!/#c

1
)0 and c

2
/2!/#c

2
*0N is a con"dence region

for / with level 1!a. To characterize this region in the space of the parameter
/, we need to "nd the roots of the polynomials q

i
(x)"c

i
x2!x#c

i
, i"1, 2,
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when c
1

and c
2

are treated as constants. We can then distinguish the following
cases:

1. If Dc
1
D(1/2, the polynomial q

1
(x) has two distinct real roots denoted x

1
and

x
2
, and we can assume that x

1
(x

2
. If !1/2(c

1
(0, then q

1
(x))0 if and

only if x3(!R,x
1
]X[x

2
,R). If 0(c

1
(1/2, q

1
(x))0 if and only if

x3[x
1
, x

2
]. If c

1
"0, q

1
(x))0 if and only if x3[0,R).

2. If Dc
1
D"1/2, q

1
(x) has only one root. In this case, when c

1
"1/2, q

1
(x))0 if

and only if x"1, and when c
1
"!1/2, q

1
(x))0 if and only if x"!1.

3. If Dc
1
D'1/2, q

1
(x) always takes the same sign on R. If c

1
(!1/2, q

1
(x))0

for all x3R; if c
1
'1/2, no real value of x satis"es q

1
(x))0.

Similarly, we determine the regions of R on which q
2
(x)*0. The di!erent

possibilities are summarized in Table 1.

5. Extension of the AR(1) model

In this section, we extend the procedures described in the previous section by
considering more general processes. Let M>

t
: t3¹M N, where ¹M ,M1, 2,2,

¹"n(p#1)#pN, be a random process with the following representation:

K(B)>
t
"m

t
#e

t
, e

t

*/$
& (0, p2e ), t"1, 2,2,¹,

K(B),1!
p
+
i/1

j
i
Bi, with >

0
,>

~1
,2,>

~p`1
"xed, (5.1)

where B is the backward shift operator, m
t

is an exogenous component,

e"(e
1
, e

2
,2, e

T
)@, and e

t
*/$
& (0, p2e ), t"1, 2,2,¹, means the e

t
's are indepen-

dent with common mean 0 and variance p2e . Taking expectations on both sides,
we obtain K(B)M

t
"m

t
, where M

t
,E(>

t
). De"ne the process MX

t
,>

t
!M

t
:

t3¹M N. Clearly, MX
t
: t3¹M N satis"es

K(B)X
t
"e

t
, e

t
*/$
& (0, p2e ), t"1, 2,2,¹, (5.2)

i.e. MX
t
: t3¹M N is a zero mean process which admits an AR(p) representation,

where the disturbances e
t
, t3¹M , are independent with common mean zero and

variance p2e . Consider now the case where p"1. We have

>
t
"m

t
#j>

t~1
#e

t
, e

t
*/$
& (0, p2e ), t"1, 2,2,¹.
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This representation includes as particular cases a wide range of models fre-
quently used in econometrics. In particular: (1) if m

t
"0, ∀t3¹M , and j"1, we

have the random walk model; (2) if m
t
"b

0
, ∀t3¹M , and j"1, we have a ran-

dom walk with drift; (3) if m
t
"b(t),+r

i/1
b
i
ti, ∀t3¹M , the process contains

a deterministic polynomial trend. In what follows, we assume m
t
has the form

m
t
"+K

k/0
b
k
Z

k,t
, where Z

0
, Z

1
,2,Z

K
are exogenous variables.

Since MX
t
: t3¹M N has an AR(1) representation, application of the procedure

described in Section 4 is straightforward. The projection is E
L
[X

2t
D

(X
2t`1

,X
2t~1

)]"b(X
2t`1

#X
2t~1

) with b"j/(1#j2) and we consider the
following transformed model:

X
2t
"bXH

2t
#g

2t
, t"1, 2,2, n, g&(0, p2gIn ), (5.3)

where XH
2t
,X

2t`1
#X

2t~1
, p2g,p2e /(1#j2) and g"(g

2
, g

4
,2, g

2n
)@. Eq.

(5.3) can be written

>
2t
"M

2t
!b(M

2t`1
#M

2t~1
)#b>H

2t
#g

2t

with >H
2t
">

2t`1
#>

2t~1
. Now, with m

t
"M

t
!jM

t~1
and b"j/(1#j2),

(5.3) becomes

>
2t
"b

1
m

2t
#b

2
m

2t`1
#b>H

2t
#g

2t
, t"1, 2,2, n,

in which b
1
,1/(1#j2), b

2
,!b. Finally, since m

t
"+K

k/0
b
k
Z

k,t
, the trans-

formed model is

>
2t
"b>H

2t
#

K
+
k/0

h
1k

Z
k,2t

#

K
+
k/0

h
2k

Z
k,2t`1

#g
2t

, (5.4)

where h
1k
,b

k
/(1#j2) and h

2k
,!jb

k
/(1#j2). Using the matrix notation,

(5.4) is equivalent to

l
t
"ZH@

t
d#gH

t
, t"1, 2,2, n (5.5)

with l
t
,>

2t
, ZH

t
,(Z

2t
,Z

2t`1
,>H

2t
)@, d,(h@

1
, h@

2
, b)@, h

i
,(h

i,0
, h

i,1
,2,

h
i,K

)@, i"1, 2. If we assume that g is normally distributed, we can perform exact
tests on j and/or b

k
, k"0, 1,2, K. This is done in the next section.

5.1. Exact conxdence sets and tests on b
k

As we showed, the parameters of (5.5) must satisfy h
2k
"!b

k
b,

k"0, 1,2, K. The hypothesis b
k
"b1

0
is therefore equivalent to h

2k
#b1

0
b"0

which can be tested in (5.5) by a standard F procedure. Furthermore, it is well
known that the set of all values bM

0
such that the hypothesis H

0
: h

2k
#bM

0
b"0 is

not rejected at level a forms a con"dence region for b
k

at level 1!a. Using the
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same relation between the transformed parameters h
2k

and b and the initial
parameters b

k
, k"0, 1,2, K, any linear hypothesis of the form Rb!r"0,

where R is a known q](K#1) matrix with rank q, r is a known q]1 vector
and b"(b

0
, b

1
,2, b

K
)@, can be tested at level a. To see how to exploit the

relation between the two sets of parameters, note that

Rb!r"0 Q Rh
2
#rb"0 Q RHd"0,

where RH,(0, R, r) so that a test of Rb!r"0 is equivalent to a test of
RHd"0. Again, this is a hypothesis on the parameters of (5.5) which can be
tested with the usual F procedure.

5.2. Exact tests on j

The components of d in (5.5) must satisfy h
2k
"!h

1k
j, k"0, 1,2,K and

b"j/(1#j2). From these relations, we see that a test of j"j
0

can be
performed by testing the joint hypothesis: h

2k
#j

0
h
1k
"0, k"0, 1,2,K, and

b"j
0
/(1#j2

0
). Using matrix notation we can easily write this set of restrictions

as a linear hypothesis on the parameters of (5.5), i.e., RI d"r
0

with

RI ,A
j
0
I
K`1

I
K`1

0

0@ 0@ 1B, r
0
,A

0

j
0
/(1#j2

0
)B.

Unlike for the pure AR(1) process of Section 4, we are now able to obtain a test
for any a priori value j

0
of the autocorrelation parameter j.

5.3. Exact conxdence sets for j

In Section 4.3 we showed how to build an exact con"dence region for j at
level 1!a. This con"dence region, denoted C

K`1
(y, a), satis"es

P[My :C
K`1

(y, a
1
) U jN]"1!a

1
or P[A

K`1
(a

1
)]"1!a

1
, where A

K`1
(a

1
),

My :C
K`1

(y, a
1
) U jN, ∀a

1
3(0, 1).

Similarly, we can also use the relation h
2k
#jh

1k
"0, k"0, 1,2, K, to

derive an exact test of H
0
: j"j

0
. This hypothesis entails H

0,k
(j

0
): a

k
(j

0
)@d"0,

where a
k
(x),(xι@

k`1
, ι@

k`1
, 0), ι

l
being the lth vector of the canonical basis of

RK`1, x3R. The set C
k
(y, a

1
) of all values j

0
of j such that H

0,k
(j

0
) is not

rejected at level a
1

is a 1!a
1

con"dence region for j. Therefore
P[A

k
(a

1
)]"1!a

1
, where A

k
(a

1
),My :C

k
(y, a

1
) U jN. Since this condition

holds for any k"0, 1,2,K, we can combine these regions to form a single
con"dence region for j which has level 1!a. Clearly, we have

PC
K`1
Y
k/0

A
k
(a

1
)D"1!PC

K`1
Z
k/0

A
k
(a

1
)D,
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where A
k
(a

1
) denotes the set of all y which are not in A

k
(a

1
), and

PC
K`1
Z
k/0

A
k
(a

1
)D)

K`1
+
k/0

P[A
k
(a

1
)]"(K#2)a

1
,

hence

PC
K`1
Y
k/0

A
k
(a

1
)D*1!(K#2)a

1

and choosing a
1

such that a
1
"a/(K#2), we get

PC
K`1
Y
k/0

A
k
(a

1
)D*1!a.

But 5K`1
k/0

A
k
(a

1
)"My: 5K`1

k/0
C

k
(y, a

1
) U jN. This shows that C(y, a),

5K`1
k/0

C
k
( a
K`2

) is a 1!a con"dence region for j.

5.4. Exact tests of joint hypotheses

It is also possible to use (5.5) to derive an exact test of a linear hypothesis on
the vector (j, b(m){)@, where b(m) is an m]1 subvector of b. Consider the null
hypothesis

H
0
: j"j

0
and Rb(m)!r"0,

where R is a known q]m matrix with rank q, r is a known q]1 vector and
b(m)"(b

k1
, b

k2
,2, b

km
)@. The following equivalences hold:

j"j
0

Rb(m)!r"0H Q G
h
2k
#j

0
h
1k
"0, k3K

m
Rb(m)b!rb"0 H Q G

I
m
h(m)
2

#j
0
I
m
h(m)
1

"0,

Rh(m)
2

#rb"0,

where K
m
,Mk

1
, k

2
,2, k

m
N, h(m)

i
,(h

ik1
, h

ik2
,2, h

ikm
)@, i"1, 2. De"ning

Q,A
I
m

j
0
I
m

0

0 R rB, d(m),A
h(m)
1

h(m)
2

b B,
we see that H

0
is equivalent to Qd(m)"0. Finally, H

0
appears as a linear

hypothesis on the parameters of (5.5): H
0
: RK dH"0 with RK ,(Q, 0), dH,

(d(m)@, d)m(@)@, d)m(,(h
1,k

h
2k

, kNK
m
)@. Once again, the standard Fisher procedure

solves the problem.
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5.5. Linear regression models with AR(1) errors

We now show that model (5.1) with p"1 includes as an important special
case the linear regression model with AR(1) errors. This model is given by

>
t
"m

t
#u

t
, u

t
"/u

t~1
#e

t
, t"1, 2,2,¹

with e
t

*.*.$.
& N(0, p2e ) and u

0
given. An alternative form of this model is

>
t
"m

t
#/u

t~1
#e

t
, t"1, 2,2,¹.

Since u
t
">

t
!m

t
, t"1, 2,2,¹, we have

>
t
"mH

t
#/>

t~1
#e

t
, t"2, 3,2,¹, (5.6)

where mH
t
,m

t
!/m

t~1
. It is now clear that this model is a special case of (5.1).

The procedures developed in the previous sections therefore apply to (5.6). In
particular, exact inference in integrated AR(1) models is available.

5.6. A test on the order of an autoregression

We now turn to another kind of inference problem. We are no longer
interested in inference on the components of the mean vector or autocovariance
matrix, but rather on the order of the autoregression in AR(p) models. There is
a situation in which Theorem 3.6 and its corollary are of special interest.
Consider MX

t
: t3TN, a stochastic process for which we know that one of the

following representations is true:

U(B)X
t
"e

t
, where U(z)"1!/

1
z!/

2
z2!2!/

p1
zp1 ,

W(B)X
t
"l

t
, where W(z)"1!t

1
z!t

2
z2!2!t

p2
zp2 ,

where e
t
and l

t
are both Gaussian white noises and p

1
Op

2
(we set p

1
(p

2
).

Suppose we wish to test H
0
: MX

t
: t3TN&AR(p

1
) against H

1
: MX

t
: t3TN&AR

(p
2
). If H

0
is true, then MX

t
: t3TN is Markovian of order p

1
, and we know from

Corollary 3.7 that the coe$cient of Xq in the a$ne regression of X
t
on p

2
leads

and p
2

lags will be zero for any q such that Dq!tD"p
1
#1,2, p

2
. Since the

a$ne regression is a classical linear regression model, standard inference pro-
cedures apply. From the exposition of the procedures, it is clear that splitting the
sample entails an information loss. We may then suspect the tests to lack power.
We investigate this issue in the next section.

6. Combination of tests

One of the purposes of this paper is to improve the Ogawara}Hannan testing
procedure. In the previous sections, we showed that Ogawara's results can be
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extended to a much wider class of processes than those considered in Ogawara
(1951) and Hannan (1955a, b, 1956). We also showed one can use these results to
obtain "nite sample inference procedures for a wide variety of econometric
models. However, when we apply those, we are led to leave one half of the
sample apart, at least. In this section, we discuss methods that allow one to make
use of the full sample. We also present simulation results which show our
method performs better than that of Ogawara and Hannan.

6.1. Theoretical results

Consider a statistical model characterized by a family of probability laws,
parameterized by h: P"MPh , h3HN. Suppose we wish to test H

0
: P3P

0
against H

1
: P3PCP

0
. If the model is identi"ed, which will be assumed, this

amounts to test H
0
: h3H

0
against H

1
: h3H

1
, where h3H

0
8Ph3P

0
. Assume

we have m statistics ¹
i
, i3J,M1, 2,2,mN, that can be used for testing H

0
.

Further assume that under H
0
, Ph[My: ¹

i
(y)'tN] is known, for all t3R, i3J.

The relation between these statistics is typically unknown or di$cult to estab-
lish. We wish to combine the information provided by each of those m statistics
on the true probability distribution of the model.

A natural way of doing this is to proceed as follows. Using the m statistics ¹
i
,

we build m critical regions=
i
(a

i
),¹~1

i
((t

i
(a

i
),R)), where the t

i
(a

i
)'s are chosen

so that Ph[=i
(a

i
)]"a

i
. We reject H

0
with a test based an the ith statistic if y is

in=
i
(a

i
), or equivalently if the observed value t

i
of ¹

i
is in (t

i
(a

i
),R). Consider

the decision rule which consists in rejecting H
0

when it has been rejected by at
least one of the tests based on a ¹

i
statistic. The rejection region corresponding

to this decision rule is 6
i|J
=

i
(a

i
). This test is called an induced test of H

0
(see

Savin, 1984). Its size is impossible or di$cult to determine since the distribution
of the vector (¹

1
,¹

2
,2,¹

m
)@ is generally unknown or intractable. It is however

possible to choose the a
i
's so that the induced test has level a. We have

PhCZ
i|J

=
i
(a

i
)D)+

i|J

Ph[=i
(a

i
)])+

i|J

a
i

and so we only need to choose the a
i
's so that they sum to a. To our knowledge,

there is no criterion for choosing the a
i
's in a way that could be optimal in some

sense. Without such a rule, we will set a
i
"a

0
"a/m for all i3J.

It is di$cult to compare the power of an a level test based on a single statistic
¹

i
with that of a a level-induced test. The latter uses the information provided

by the whole sample, but is obtained by combining m tests of level a/m only,
whereas the former has level a'a/m, but only exploits a subsample. In other
words, with respect to power, what can be gained from the larger sample size on
which is based the induced test could be lost because the levels of the individual
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tests combined are lower (e.g., a/m instead of a). We now present simulations
that reveal the power increase associated with combining tests.

6.2. Power simulations for AR(1) processes

Let M>
t
: t3¹M N, where¹M "M1, 2,2,¹N, a random process admitting an AR(1)

representation

>
t
"j>

t~1
#e

t
, e

t

*.*.$.
& N(0, I

T
), t3¹M (6.1)

with >
0

given. For the sake of simplicity, we assume that ¹ is even with ¹"2n.
Since M>

t
: t3¹M N is a Markov process of order 1, the results of Section 2 apply

and we know that: (1) >
2t

, t"1, 2,2, n!1, are mutually independent, condi-
tionally to (>

1
,>

3
,2,>

2n~1
); (2) >

2t`1
, t"1, 2,2, n!1, are mutually inde-

pendent, conditionally to (>
2
,>

4
,2,>

2n
). If we de"ne two subsets of

T, J
1
"M2, 4,2, 2n!2N and J

2
"M3, 5,2, 2n!1N, we obtain two trans-

formed models of type (4.2):

>
t
"

j
1#j2

(>
t`1

#>
t~1

)#g
it
, t3J

i
, g

i
&N(0, p2gIni ), (6.2)

where g
i
,(g

it
, t3J

i
)@, i"1, 2, and n

1
"n!1, n

2
"n. In each of these two

models it is possible to test H
0
: j"j

0
at level a/2, as shown in Section 4. We

combine these two tests according to the procedure described in Section 6.1.
In our simulations, we proceed as follows. We consider j

0
"0, 0.5, 1 and

¹"100. For a set <(j
0
) of S values of j in a neighborhood of j

0
, we simulate

a sample of size ¹ from the AR(1) process (6.1). Then we form the two
subsamples (y

t
: t3J

i
), i"1, 2, from which we test H

0
(b

0
): b"b

0
in the trans-

formed model (6.2), with b
0
"j

0
/(1#j2

0
). For purposes of comparison, these

tests are performed at levels 5% and 2.5%. The two 2.5% level tests are
combined to give a 5% level induced test. These computations are repeated 1000
times, for each value of j in <(j

0
). The number of rejections of H

0
(b

0
) gives an

estimation of the performance of the test. Results are shown in Figs. 1}6 where
the solid line (*) represents the 5% induced test and the dashed lines (} }) and
(! )!) represent the 5% subsample-based tests.

Figs. 1}3 display the estimated power function for j"0, 0.5, 1, respectively,
whereas the last three (Figs. 4}6) show the di!erences of rejection frequencies for
j"0, 0.5, 1, respectively. More precisely these di!erences are computed as:
Number of rejections of H

0
(b

0
) with the induced test } Number of rejections of

H
0

with the test based on subsample (y
t
: t3J

i
): i"1, 2.

Apart from the case where j
0
"0, the combination method leads to a power

increase, relative to a 5% level test based on a subsample. When j
0
"0, the

power loss from combining is about 8% at most, which appears small. For
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Fig. 1. Rejection frequencies of H
0
: j"0.

Fig. 2. Rejection frequencies of H
0
: j"0.5.
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Fig. 3. Rejection frequencies of H
0
: j"1.

Fig. 4. Di!erences of rejection frequencies for H
0
: j"0.
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Fig. 5. Di!erences of rejection frequencies for H
0
: j"0.5.

Fig. 6. Di!erences of rejection frequencies for H
0
: j"1.
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j
0
O0, it is important to note that the values j and j~1 yield the same value of

b in (6.2). For example j"0.5 and j"2.0 both yield b"0.4. In other words,
unless we impose restrictions such as DjD)1 or DjD*1, the value of b does not
completely identify j. This explains the presence of the mirror peak at j"2
(Fig. 2).

7. Conclusion

In this paper we proposed a method allowing one to make "nite-sample
inference on the parameters of autoregressive models. This was made possible
by special properties of Markov processes. The conditions under which such
results hold are very mild since their demonstrations only require the existence
of density functions. In particular, they are general enough to be applied to
multivariate and possibly non stationary and/or non-Gaussian processes. How-
ever, with the addition of conditional stationarity and normality assumptions,
we were able to use these properties to derive exact tests and con"dence regions
on the parameters of AR(1) models. In order to apply our procedure, it is
necessary to split the sample as two subsets of observations. Our simulations in
the case of a pure AR(1) model showed that a combination of separate inference
results based on these subsamples generally leads to an improvement in the
performance of the procedure.

Our method displays several attractive features. First, since it is exact, it
controls the probability of making a type I error. Second, it is readily applicable
to a wide range of econometric speci"cations of AR(1) models. In particular, it
can be used to deal with random walk models, models with a deterministic mean
expressed as a linear combination of exogenous variables, including polynomial
deterministic trends, etc. Third, the critical regions are built from standard
distributions which, unlike most asymptotic procedures, do not change with the
sample size and/or model speci"cation. Finally, Monte Carlo experiments show
that it has good power properties. For those reasons, we think that our
procedure should be considered as a good alternative to asymptotic inference
methods.

In Section 6, we argued that simulations of power functions were necessary
because we could not say a priori whether the combination method yields more
power. Indeed, on the one side we make use of the whole sample when
combining, but on the other side we must lower the bound on the probability of
making a type I error (the level) in each of the tests we combine. The
former should increase the performance of the procedure whereas the latter
should decrease it. The method is easily transposable to higher-order autoreg-
ressive models and it appears quite plausible the same e!ect will take place in
more general processes. It would certainly be of interest to study this issue
further.

280 J.-M. Dufour, O. Torre% s / Journal of Econometrics 99 (2000) 255}289



Of course, the "nite-sample validity of the t- and F-type tests described in
Sections 4 and 5 remain limited to models with Gaussian errors. As usual, these
procedures will however be asymptotically valid under weaker distributional
assumptions. Further, it is of interest to remember that the general theorems on
Markovian processes given in Section 3 hold without parametric distributional
assumptions. In particular, the conditional independence and truncation prop-
erties do not at all require the Gaussian distributional assumption, hence
opening the way to distribution-free procedures. Similarly, the test combination
technique described in Section 6, which is based on the Boole}Bonferroni
inequality, is by no way restricted to parametric models. For example, the latter
might be applied to combine distribution-free tests or bootstrap tests (see
Nankervis and Savin, 1996) which accommodate more easily non-Gaussian
distributions. Such extensions go however beyond the scope of the present
paper.
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Appendix A. Proofs

A.1. Proof of Theorem 3.1

We must show that

f
X(p`1) ,2(p`1)2,Xn(p`1)@A1,p

"

n
<
t/1

f
Xt(p`1) @A1,p

.

The following equality is always true:

f
X(p`1) ,2(p`1)2,Xn(p`1)@A1,p

"f
X(p`1) @A1,p

n
<
t/2

f
Xt(p`1) @A1,p ,X(p`1) ,2(p`1)2,X(t~1)(p`1)

. (A.1)
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Consider the tth term of the product in (A.1) for t*2:

f
Xt(p`1) @A1,p ,X(p`1) ,2(p`1)2,X(t~1)(p`1)

"f
Xt(p`1) @X1 ,2(1)2,Xt(p`1)~1,At`1,p

"

f
Xt(p`1) ,At`1,p @X1 ,2(1)2,Xt(p`1)~1

f
At`1,p @X1,2(1)2,Xt(p`1)~1

. (A.2)

The numerator in (A.2) can be written

f
Xt(p`1) ,At`1,p @X1 ,2(1)2,Xt(p`1)~1

"P2P f
Xt(p`1) ,2(1)2,Xn(p`1)`p @X1,2(1)2,Xt(p`1)~1

d(x
(t`1)(p`1)

,2(p`1)2
,x

n(p`1)
)

"P2P
n(p`1)`p

<
s/t(p`1)

f
Xs @X1,2(1)2,Xs~1

d(x
(t`1)(p`1)

,2(p`1)2
,x

n(p`1)
)

"P2P
n(p`1)`p

<
s/t(p`1)

f
Xs @Xs~p ,2(1)2,Xs~1

d(x
(t`1)(p`1)

,2(p`1)2
, x

n(p`1)
),

where the last identity follows from the Markovian property M(p). Set

g
1
(a

t`1,p
,x

t(p`1)
),f

Xt(p`1) ,At`1,p @X1 ,2(1)2,Xt(p`1)~1
(a

t`1,p
,x

t(p`1)
).

Similarly, we can write the denominator of (A.2) as

f
At`1,p @X1,2(1)2,Xt(p`1)~1

"P2P
n(p`1)`p

<
s/t(p`1)

f
Xs @Xs~p ,2(1)2,Xs~1

d(x
t(p`1)

,2(p`1)2
, x

n(p`1)
)

and we denote g
2
(a

t`1,p
),f

At`1,p @X1 ,2(1)2,Xt(p`1)~1
(a

t`1,p
). Clearly, neither

g
1
(a

t`1,p
, x

t(p`1)
) nor g

2
(a

t`1,p
) depends on (X

(p`1)
,2(p`1)2

, X
(t~1)(p`1)

).
Therefore these variables do not enter the ratio (A.2) and we may write the tth
term of product (A.1) for t*2 as

f
Xt(p`1) @A1,p ,X(p`1) ,2(p`1)2,X(t~1)(p`1)

"f
Xt(p`1) @A1,p

.

Since this is true for any t"1, 2,2, n, we can factor the conditional density as

f
X(p`1)2(p`1)2,Xn(p`1) @A1,p

"

n
<
t/1

f
Xt(p`1) @A1,p

which yields the result to be proved. Q.E.D

A.2. Proof of Theorem 3.2

From Theorem 3.1, X
p`1

,X
2(p`1)

,2, X
n(p`1)

are mutually independent con-
ditionally on A

1,p
, hence

f
Xt(p`1) @A1,p

"f
Xt(p`1)@X1,2(1)2,Xt(p`1)~1,Xt(p`1)`1,2(1)2,X(n`1)(p`1)
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"

f
Xt(p`1) ,2(1)2,X(n`1)(p`1)@X1 ,2(1)2,Xt(p`1)~1

f
Xt(p`1)`1,2(1)2,X(n`1)(p`1) @X1,2(1)2,Xt(p`1)~1

"

f
Xt(p`1) ,2(1)2,X(n`1)(p`1) @X1 ,2(1)2,Xt(p`1)~1

: f
Xt(p`1) ,2(1)2,X(n`1)(p`1) @X1,2(1)2,Xt(p`1)~1

dx
t(p`1)

"

<(n`1)(p`1)
s/t(p`1)

f
Xs @X1,2(1)2,Xs~1

:<(n`1)(p`1)
s/t(p`1)

f
Xs @X1 ,2(1)2,Xs~1

dx
t(p`1)

"

<(n`1)(p`1)
s/t(p`1)

f
Xs @Xs~p ,2(1)2,Xs~1

:<(n`1)(p`1)
s/t(p`1)

f
Xs @Xs~p ,2(1)2,Xs~1

dx
t(p`1)

p, (A.3)

where the last equality is derived using the Markovian property M(p). The
product of conditional densities in the numerator of (A.3) can be splitted as
<(n`1)(p`1)

s/t(p`1)
f
Xs @Bs,p

"G
1
]G

2
, where

G
1
,

(t`1)(p`1)~1
<

s/t(p`1)

f
Xs @Xs~p ,2(1)2,Xs~1

, G
2
,

(n`1)(p`1)
<

s/(t`1)(p`1)

f
Xs @Xs~p ,2(1)2,Xs~1

.

Clearly, G
2

does not depend on X
t(p`1)

. Therefore, the ratio (A.3) simpli"es as

f
Xt(p`1) @A1,p

"

G
1

:G
1

dx
t(p`1)

. (A.4)

Now, due to the Markovian property M(p), any of the conditional densities
in the product G

1
can be written as f

Xs @Xs~p ,2(1)2,Xs~1
"

f
Xs @Xt(p`1)~p ,2(1)2,Xs~1

, s"t(p#1), t(p#1)#1,2,(t#1)(p#1). Therefore, it is
easy to see that

G
1
"

(t`1)(p`1)~1
<

s/t(p`1)

f
Xs @Xt(p`1)~p ,2(1)2,Xs~1

"f
Xt(p`1) ,2(1)2,X(t`1)(p`1)~1 @Xt(p`1)~p ,2(1)2,Xt(p`1)~1

.

Hence,

PG1
dx

t(p`1)
"f

Xt(p`1)`1,2(1)2,X(t`1)(p`1)~1 @Xt(p`1)~p ,2(1)2,Xt(p`1)~1

and

f
Xt(p`1) @A1,p

"

G
1

:G
1

dx
t(p`1)

"f
Xt(p`1)@Xt(p`1)~p ,2(1)2,Xt(p`1)~1,Xt(p`1)`1 ,2(1)2,X(t`1)(p`1)~1

.

J.-M. Dufour, O. Torre% s / Journal of Econometrics 99 (2000) 255}289 283



Since X
t(p`1)`1

"X
(t`1)(p`1)~p

, we can use the notation of Section 3.1 to write
f
Xt(p`1) @A1,p

"f
Xt(p`1) @Bt(p`1),p ,B(t`1)(p`1)

which is the desired result. Q.E.D

A.3. Proof of Theorem 3.6

We need to show that f
Xt @Bt,q ,Bt`q`1,q

does not depend on X
t~q and X

t`q , for
q"p#1, p#2,2, q. We have:

f
Xt @Bt`q`1,q ,Bt,q

"

f
Xt ,Bt`q`1,q @Bt,q

f
Bt`q`1,q @Bt,q

"

f
Xt ,Bt`q`1,q @Bt,q

: f
Xt ,Bt`q`1,q @Bt,q

dx
t

.

Now, using the fact that MX
t
: t3TN is Markovian of order p, the numerator of

this last term can be written f
Xt ,Bt`q`1,q @Bt,q

"f
Xt ,2(1)2,Xt`q @Bt,q

"<t`q
s/t

f
Xs @Bs,p

so that

f
Xt @Bt`q`1,q ,Bt,q

"

<t`q
s/t

f
Xs @Bs,p

:<t`q
s/t

f
Xs @Bs,p

dx
t

"

<t`q
s/t

f
Xs @Bs,p

(<t`q
s/t`p`1

f
Xs @Bs,p

)(:<t`pq/t
f
Xq @Bq,p

dx
t
)

"

<t`p
s/t

f
Xs @Bs,p

:<t`p
s/t

f
Xs @Bs,p

dx
t

.

It is easy to see that the variables X
s

with t#q*s*t#p#1 and
t!p!1*s*t!q do not appear in the latter expression. Q.E.D

A.4. Proof of Theorem 3.8

Let M>
t
: t3TN be a Gaussian process having the same "rst and second order

moments as MX
t
: t3TN. Then M>

t
: t3TN must also satisfy the condition in the

theorem

>
t
o(>

1
,2(1)2

,>
t~p~1

)D>
t~p

,2(1)2
,>

t~1
, ∀t*p#1,

which is equivalent to the Markovian condition f
Yt @Y1 ,2(1)2,Yt~1

"

f
Yt @Yt~p ,2(1)2,Yt~1

, ∀t*p#1, since M>
t
: t3TN is Gaussian. From Theorem 3.1,

>
p`1

,2(p`1)2
,>

n(p`1)
are mutually independent, conditional on AY

1,p
, where

AY
1,p

is de"ned like A
1,p

in Section 3.1 with X replaced by >. Using the
normality of M>

t
: t3TN, this is equivalent to

>
t(p`1)

o>
s(p`1)

DAY
1,p

, ∀t, s such that 1)t, s)n, tOs.

This is a condition on the "rst and second order moments of M>
t
: t3TN, which

must also be satis"ed by the "rst and second order moments of MX
t
: t3TN.

Hence, if A
1,p

denotes the set of X variables as de"ned in Section 3.1,

X
t(p`1)

oX
s(p`1)

DA
1,p

, ∀t, s such that 1)t, s)n, tOs. Q.E.D
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A.5. Proof of Theorem 3.9

Let M>
t
: t3TN be a Gaussian process having the same "rst and second order

moments as MX
t
: t3TN. From the proof of Theorem 3.8, we know that

M>
t
: t3TN must also satisfy

f
Yt @Y1 ,2(1)2,Yt~1

"f
Yt @Yt~p ,2(1)2,Yt~1

, ∀t*p#1.

Then, from Theorem 3.2, we have

f
Yt(p`1) @A

Y
1,p
"f

Yt(p`1) @ B
Y
(t`1)(p`1),p ,BY

t(p`1),p
, ∀t such that 1)t)n,

where for any s, BY
s,p

,(>
s~p

,2(1)2
,>

s~1
). Since M>

t
: t3TN is Gaussian, this

condition is equivalent to

>
t(p`1)

oBY
s(p`1),p

D (BY
(t`1)(p`1),p

, BY
t(p`1),p

)

for all t*1 and s*1 such that sOt and sOt#1. Since this is condition on
the "rst and second order moments of M>

t
: t3TN, it must also be satis"ed by

those of MX
t
: t3TN. Q.E.D

A.6. Proof of Theorem 4.1

E
L
[X

t
D (B

t`p`1,p
, B

t,p
)]"E

L
[X

t
D (B

t`p`1,p
, BH

t,p
)] is the a$ne regression of

X
t
on (B

t`p`1,p
, B

t,p
), where BHl,p,(Xl~p

, Xl~p`1
,2, Xl~1

). The matrix of
the coe$cients of this regression is given by W

12
W~1

22
, where

W
12

,cov[X
t
, (B

t`p`1,p
, BH

t,p
)], W

22
,V[(B

t`p`1,p
, BH

t,p
)].

W
22

is non-singular by the regularity assumption. We partition these matrices in
the following way:

W
12

,(C
1

C
2
), W

22
,A

A
11

A
12

A
21

A
22
B,

where

A
11

,V(B
t`p`1,p

), A
22

,V(BH
t,p

), A@
21

"A
12

,cov (B
t`p`1,p

, BH
t,p

),

C
1
,cov(X

t
, B

t`p`1,p
), C

2
,cov(X

t
, BH

t,p
).

Since MX
t
: t3TN is weakly stationary, C

1
"C

2
,C and A

11
"A

22
,A

1
. We

next show that A
12

"A
21

, i.e., A
12

is symmetric. The (i, j)th element of this
matrix is

cov(X
t`p`1~i

, X
t~p`j~1

)"c
@t`p`1~i~t`p~j`1@

"c
@2(p`1)~(i`j)@

,
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where c
@s~t@

,cov(X
s
, X

t
), and its ( j, i)th element is

cov(X
t`p`1~j

, X
t~p`i~1

)"c
@t`p`1~j~t`p~i`1@

"c
@2(p`1)~(j`i)@

.

These two terms are identical and consequently A
12

"A@
12

"A
21

,A
2
. The

vector P whose components are the coe$cients of X
t`k

and X
t~k

, 1)k)p, in
the a$ne regression of X

t
on (B

t`p`1,p
, BH

t,p
) is given by

P"(C C)A
A

1
A

2
A

2
A

1
B

~1
.

De"ne P
1

and P
2
, the two (1]p) subvectors of P whose elements are the

coe$cients of the variables in B
t`p`1,p

and in BH
t,p

, respectively. Then

C"P
1
A

1
#P

2
A

2

C"P
1
A

2
#P

2
A

1
HNG

A
1
(P

1
!P

2
)#A

2
(P

2
!P

1
)"0,

A
2
(P

1
!P

2
)#A

1
(P

2
!P

1
)"0

which is equivalent to

W
22A

P
1
!P

2
P

2
!P

1
B"0.

Since the variance}covariance matrix W
22

is non-singular, we must have
P

1
"P

2
. Q.E.D.

Appendix B. Coe7cients of two-sided autoregressions for AR(1) processes

The model is

>
t
"/>

t~1
#u

t
, t"1, 2,2, n,

u"(u
1
,2, u

n
)@&N(0, p2

u
I
n
),

with >
0

given. Rewriting >
t
"/t>

0
#+t~1

i/0
/iu

t~i
and taking expectations, we

get E(>
t
)"/t>

0
. The mean deviation process MX

t
,>

t
!E(>

t
): t"1, 2,2, nN

satis"es the autoregression X
t
"/X

t~1
#u

t
.

B.1. Computation of xrst-order moments

De"ne W
12

,cov[>
2t

, (>
2t`1

,>
2t~1

)@] and W
22

,V[(>
2t`1

,>
2t~1

)@].
From the de"nition of MX

t
: t"1, 2,2, nN, we have X

t
"+t~1

i/0
/iu

t~i
and

286 J.-M. Dufour, O. Torre% s / Journal of Econometrics 99 (2000) 255}289



E(X
t
)"0, E(X2

t
)"p2

u
+t~1

i/0
/2i. Furthermore, the autocovariances are

cov(>
2t`1

,>
2t

)"E(X
2t`1

X
2t

)"p2
u
/
2t~1
+
i/0

/2i,

cov(>
2t

,>
2t~1

)"E(X
2t

X
2t~1

)"p2
u
/
2t~2
+
i/0

/2i,

cov(>
2t`1

,>
2t~1

)"E(X
2t`1

X
2t~1

)"p2
u
/2

2t~2
+
i/0

/2i,

hence

W
12

"/p2
uA

2t~1
+
i/0

/2i,
2t~2
+
i/0

/2iB, W
22

"p2
u A

2t
+
i/0

/2i /2
2t~2
+
i/0

/2i

/2
2t~2
+
i/0

/2i
2t~2
+
i/0

/2i B.
B.2. The azne regression of >

2t
on (>

2t`1
,>

2t~1
)@ when D/DO1

In general we have:

E
L
[>

2t
D (>

2t`1
>

2t~1
)]"E(>

2t
)#W

12
W~1

22 A
>

2t`1
!E(>

2t`1
)

>
2t~1

!E(>
2t~1

)B.
Using the fact that, for D/DO1,

k
+
i/0

/2i"
1!/2(k`1)

1!/2
,

we obtain the following expressions:

W
12

"

/p2
u

1!/2
(1!/4t, 1!/4t~2),

W
22

"

p2
u

1!/2 A
1!/4t`2 /2(1!/4t~2)

/2(1!/4t~2) 1!/4t~2 B,
hence

E
L
[>

2t
D (>

2t`1
, Y

2t~1
)]"E(>

2t
)#

/

1#/2
(1 1)A

>
2t`1

!E(>
2t`1

)

>
2t~1

!E(>
2t~1

)B
"a#b(>

2t`1
#>

2t~1
),
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where a"E(>
2t

)!b[E(>
2t`1

)#E(>
2t~1

)] and b"//(1#/2). Since for all
t*0, E(>

t
)"/kE(>

t~k
), k"0, 1,2, t, we have a"0.

B.3. The azne regression of >
2t

on (>
2t`1

,>
2t~1

)@ when D/D"1

When D/D"1, we have

W
12

"/p2
u
(2t, 2t!1), W

22
"p2

uA
2t#1 2t!1

2t!1 2t!1B,
hence

E
L
[>

2t
D (>

2t`1
, >

2t~1
)]"(//2) (>

2t`1
#>

2t~1
)

"[//(1#/2)](>
2t`1

#>
2t~1

).

Note that from the derivations in the case where D/DO1, a"0 irrespective to
the value of /. In any case, the residual variance is

V[>
2t
!E

L
[>

2t
D (>

2t`1
>

2t~1
)]]"V(>

2t
)!W

12
W~1

22
W@

12
"

p2
u

1#/2
,

/3(!R,R).
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