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ABSTRACT

The concept of causality introduced by Wiener (1956) anch@ea (1969) is defined in terms of
predictability one period ahead. This concept can be gépedaby considering causality at a given
horizonh, and causality up to any given horizéjDufour and Renault (1998)]. This generalization
is motivated by the fact that, in the presence of an auxilienyable vectorZ, it is possible that a
variableY does not cause variable at horizonl, but causes it at horizol > 1. In this case, there

is an indirect causality transmitted B Another related problem consists in measuring the impor-
tance of causality between two variables. Existing catysalieasures have been defined only for
the horizonl and fail to capture indirect causal effects. This paper @sep a generalization of such
measures for any horizan We propose nonparametric and parametric measures ofegtidnal
and instantaneous causality at any horizonParametric measures are defined in the context of
autoregressive processes of unknown order and exprestachimof impulse response coefficients.
On noting that causality measures typically involve complmctions of model parameters in VAR
and VARMA models, we propose a simple method to evaluatesthesasures which is based on
the simulation of a large sample from the process of intek&stalso describe asymptotically valid
nonparametric confidence intervals, using a bootstragniqoh. Finally, the proposed measures
are applied to study causality relations at different lemzbetween macroeconomic, monetary and
financial variables in the U.S. These results show that tiseaestrong effect of nhonborrowed re-
serves on federal funds rate one month ahead, the effeclofmess domestic product on federal
funds rate is economically important for the first three rhanthe effect of federal funds rate on
gross domestic product deflator is economically weak onetimainead, and finally federal funds
rate causes the real gross domestic product ufthonths.

Keywords: time series; Granger causality; indirect causality; ipléthorizon causality; causality
measure; predictability; autoregressive model; vecttoragression; VAR; bootstrap; Monte Carlo;

macroeconomics; money; interest rates; output; inflation.
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1. Introduction

The concept of causality introduced by Wiener (1956) anch@ea(1969) is now a basic notion for
studying dynamic relationships between time series. Tdnsept is defined in terms of predictabil-
ity at horizon one of a variabl& from its own past, the past of another varialbleand possibly a
vector Z of auxiliary variables.

The theory of Wiener-Granger causality has generated adayable literature; for reviews,
see Pierce and Haugh (1977), Newbold (1982), Geweke & 98dtkepohl (1991), Boudjellaba,
Dufour and Roy (1992, 1994) and Gouriéroux and Monfort (1¥apter 10). Most of the work in
this field focus on predictability at horizon 1. In Dufour aRdnault (1998), the concept of causality
in the sense of Granger (1969) is generalized by considedngality at a given (arbitrary) horizon
h and causality up to horizoh, whereh is a positive integer and can be infinite < » < o0);
for related work, see also Sims (1980), Hsiao (1982), an#tdpghl (1998). This generalization
is motivated by the fact that, in the presence of auxiliaryialdes 7, it is possible to have the
variableY not causing variableX at horizon one, but causing it at a longer horizen> 1. In
this case, we have an indirect causality transmitted by thdiary variablesZ. Necessary and
sufficient conditions of noncausality between vectors afaides at any horizoi for stationary
and nonstationary processes are also supplied.

The analysis of Wiener-Granger distinguishes among thyeestof causality: fromX to Y,
fromY to X, and instantaneous causality. In practice, it is possitadettiese three types of causal-
ity coexist, hence the importance of finding means to meabgiedegree and determine the most
important ones. Unfortunately, existing causality teaitité accomplish this task, because they only
inform us about the presence or the absence of causalitynSwea this type of question, Geweke
(1982, 1984) has extended the causality concept by defining measuresushlity and instanta-
neous effects, which can be decomposed in time and frequarogins. Gouriéroux, Monfort and
Renault (1987) proposed causality measures based on titeabkilinformation. Polasek (1994)
showed how causality measures can be calculated using thikeAlnformation Criterion A1C).
Polasek (2002) also introduced new causality measureg icathtext of univariate and multivariate
ARCH models and their extensions based on a Bayesian afproac

Existing causality measures have been established onpéoone period horizon and fail to
capture indirect causal effects. In this paper, we devetosality measures at different horizons
which can detect indirect causality which becomes appandgtafter several periods. Specifically,
we propose generalizations to any horiZowf the measures proposed by Geweke (1982) for the
horizon one. Both nonparametric and parametric measurasidirectional causality and instan-
taneous effects at any horizénare studied. Parametric measures are defined in terms ofsenpu
response coefficients. By analogy with Geweke (1982, ibp84e also define a measure dé-
pendenceat horizonh, which combines causality measures fromto Y, from Y to X, and an
instantaneous effect at horizén

After noting that analytical formulae for causality measiin VAR and VARMA models typi-
cally involve complex functions of model parameters and imagifficult to evaluate, we propose a
simple method based on a long simulation of the process efast and we show that the approach
suggested works quite well in practice. For empirical impdatation, we propose consistent es-



timators, derive their asymptotic distribution under si@m regularity conditions, and suggest a
bootstrap technique to build confidence intervals.

The proposed causality measures can be applied in diffemriexts and may help to solve
some puzzles from the economic and financial literatureghignpaper, we illustrate their use by
studying causality relations at different horizons betweeacroeconomic, monetary and financial
variables in the U.S. The data set considered is the one ysBeénmanke and Mihov (1998) and
Dufour, Pelletier and Renault (2006). This data set comsistmonthly observations on nonbor-
rowed reserves, the federal funds rate, the gross domestiagt deflator, and real gross domestic
product.

The plan of the paper is as follows. Section 2 provides thavaiidn behind an extension of
causality measures at horizén> 1. Section 3 presents the framework allowing the definition
of causality at different horizons. In Section 4, we propasaparametric short-run and long-
run causality measures. In Section 5, we give parametricesgns for the proposed causality
measures in the context of linear stationary invertiblecpsses, including VARMA processes. In
Section 6, we propose consistent estimators of the causadiisures. In Section 7, we suggest a
simple method to evaluate the measures based on a simugiiwoach. In Section 8, we establish
the asymptotic distribution of measures and the asymptatidity of their nonparametric bootstrap
confidence intervals. Section 9 is devoted to an empirigaliegtion and the conclusion relating to
the results is given in Section 10. Proofs appear appendix.

2. Motivation

The causality measures proposed in this paper constitteéesgns of those developed by Geweke
(1982, 1984, 1984) and others. The existing causality measures quantifyffeetef a vector of
variables on another one at the one period horizon. Thefignce of such measures is however
limited in the presence of auxiliary variables, since it gsgible that a vecto¥” causes another
vector X at an horizom strictly higher tharl even if there is no causality at horizanIn this case,
we speak of an indirect effect induced by the auxiliary a@ga 7. Causality measures defined
for the horizon1 do not capture this indirect effect. This paper proposesaldy measures at
different horizons to quantify short- and long-run caugdletween random vectors. Such causality
measures detect and quantify the indirect effects due tiiayxvariables. To see the importance
of such causality measures, consider the following exasnple

Example 2.1 Suppose we have two variablés andY. (X,Y) follows a stationary VAR(1)

model:
el o) [zen] e

so thatX (¢ + 1) is given by the equation
X(t+1)=05X(t)+0.7Y(t)+ex(t+1). (2.2)

Since the coefficient of (¢) in (2.2) is equal t@).7, we can conclude that causesX in the sense



of Granger. However, this does not give any information asedity at horizons larger thahnor
on its strength. To study causality at horizarconsider the system (2.1) at time- 2 :

vern )= om ome | [ vio)*[oa om ]| 26en [+ 2018 |

In particular, X (¢ + 2) is given by
X(t+2) =053 X(t) 4+ 0.595Y (t) + 0.5ex (t+ 1) + 0.7ey (t + 1) +ex(t +2).  (2.3)

The coefficient ofY'(¢) in equation (2.3) is equal 1©.595, soY causesX at horizon2. But, how
can one measure the importance of this “long-run” causalitigxisting measures do not answer
this question.

Example 2.2 Suppose now that the information set contains not only tleevaviables of interest
X andY but also an auxiliary variabl&. Consider a trivariate stationary procéss, Y, Z) which
follows a VAR(1) model:

X(t+1) 06 0 0.8 X(t) ex(t+1)
Y(t+1) ] = { 0 04 0 } Y (t) } + [ ey(t+1) ] (2.4)
Z(t+1) 0 0.6 0.1 Z(t) ez(t+1)
hence
X(t+1)=06X(t)+08Z(t)+ex(t+1). (2.5)

Since the coefficient o¥ (¢) in equation (2.5) i), we can conclude that does not caus& at
horizon1. If we consider model (2.4) at time+ 2, we get:

X(t+2) 0.6 0 (t)
[mm] _ [ 04 0 [ @]
Z(t+2) 0 06 0.1 Z(t)
06 O ex(t+1) ex(t+2)
04 0 ey (t+1) ey(t+2) |, (2.6)
{ 0.6 01”sz<t+1>] { <t+2>]
so thatX (¢ + 2) is given by
X(t+2) = 0.36 X(t)+0.48Y(t) + 0.56 Z(t) + 0.6ex(t + 1)
+0.8ez(t+ 1) +ex(t+2). (2.7)

The coefficient oft"(¢) in equation (2.7) is equal @48, which implies thatt” causesX at horizon
2. This shows that the absence of causality at 1 does not exclude the possibility of a causality



at horizonh > 1. This indirect effect is transmitted by the varialife

Y -7 - X
~—
0.6 0.8
where0.60 and0.80 are the coefficients of the one period effectobn Z and the one period effect

of Z on X, respectively So,how can one measure the importance of this indirect effédagain,
existing measures do not answer this question.

3. Framework

The notion of noncausality studied here is defined in termertffogonality conditions between
subspaces of a Hilbert space of random variables with fisitersd moments. We denofé =
L?(02, A, Q) a Hilbert space of real random variables with finite secondgnents, defined on a
common probability spacéf?, A, @), with covariance as the inner product. Afand F' are two
Hilbert subspaces of?, we denoteE + F the smallest subspace &f which contains both?
and F, while E\ F represents the smallest Hilbert subspacd.dfivhich contains the difference
E—-F=EnF ={x:x€ E,x ¢ F}[If E— Fisempty, we seE\F = {0}.]

“Information” is represented here by nondecreasing sempsenf Hilbert subspaces @&f. In
particular, we consider a sequentef “reference information sets'(¢),

I={I{t):teZ,t>wiwitht <t = I(t)CI{)foralt>w, (3.1)

wherel(t) is a Hilbert subspace af?, w € Z U {—oco} represents a “starting point”, ar#lis the
set of the integers. The “starting point’is typically equal to a finite initial date (such as= —1,

0 or 1) or to —oo; in the latter casé () is defined for alk € Z. We also consider three multivariate
stochastic processes

X={X@):teZ t>w}, Y={Y(t):teZ t>w},Z={Z(t):t€Z, t>w}, (3.2

where
X(t) = (xl(t)v SRR xm1(t))l7 xl(t) € L27 t=1,...,my, m >1,
Y(t) = (yl(t)u vy ymz(t))/a yl(t) € L27 1= 17 e, M2, M2 2 ]-7
Z(t) = (z21(), ... s zmy (D)), z(t) €L?, i=1,...,m3, mg>0,

and a (possibly empty) Hilbert subspaHeof L2, whose elements represent information available
at any time, such as time independent variabteg, (the constant in a regression model) and deter-
ministic processes (e.g., deterministic trends). We aeldtv, ¢] the Hilbert space spanned by the
componentse;(7),i = 1,...,my, of X(7), w < 7 < t, and similarly forY (w, t] and Z(w, t] :
X(w, t], Y(w, t] andZ(w, t] represent the information contained in the history of thiatdes X,

Y and Z respectively up to time. Finally, the information sets obtained by “adding’(w, ¢] to



I(t) andY (w, t] to Ix (t) are defined as
Ix(t) = I(t) + X(w, t] 5 Ixy(t) = Ix(t) + Y(w, t] s (33)

and similarly forlz(t), I;(t), Ixz, etc. In most cases considered below, the informatiord @t
containsZ (w, t| but may not contairX (w, t] or Y (w, t].

For any information sef3; [some Hilbert subspace di?] and positive integeh, we denote
Plz;(t + h) | By] the best linear forecast of (¢ + ) based on the information sé&,

ulzi(t + h)| Bl = x;(t + h) — Plzi(t + h) | By

the corresponding prediction error, ané{z; (¢t + h) | B¢] = E{u[z;(t + h)| B;]*}. Then, the best
linear forecast ofX (¢t + h) is

P[X(t+h)| B = (Plzi(t+h)| By, ..., Plom, (t+h)|B]),
the corresponding vector of prediction errors is
UIX(t+h)| B = (ulzr(t+h) | By ..., ulzm, (t+h) | B) , (3.4)
and the corresponding matrix of second moments is
S[X(t+h)| By = E{U[X(t+h)| B U[X(t +h)| By’ }. (3.5)

ProvidedB; contains a constant,[X (¢ + h) | B;| is covariance matrix of/ [ X (¢t + h) | B;]. Each
componentP[z;(t + h) | B] of P[X (¢t + h)| B] is the orthogonal projection af;(¢ + h) on the
subspaceB;.

Following Dufour and Renault (1998), noncausality at hamiz is defined as follows, given an
information set/.

Definition 3.1 NON-CAUSALITY AT HORIZON h. Forh > 1,
(1) Y does not caus& at horizonh givenI [denotedY” - X | I] iff
P[X(t+ h)|Ix(t)] = P[X(t+ h) | Ixy(t)], Vt > w, (3.6)
wherelx (t) = I(t) + X (w, tj andIxy (t) = Ix(t) + Y (w, t];

(71) Y does not caus& up to horizonk given! [denotedY” (73 X | I] iff

Yo X|Ifork=1,2 ... I (3.7)



(73i) Y does not causé& at any horizon gived [denotedY’ (+>) X | I] iff
Y?X\Iforallkzl,z... (3.8)

This definition corresponds to causality framto X. It means that” causesX at horizonh if
the past oft” improves the forecast of (¢ + i) based on the information if(t) and X (w, t]. Itis
slightly more general than the one considered in Dufour agebRIt (1998, Definition 2.2), because
the conformability assumptioX (w, ¢t] C I(t) is not imposed. But, clearly iK (w, t] C I(t), then
Ix(t) = I(t). So, if the conformability assumption is added, Definiti®r(i) is equivalent to
the one in Dufour and Renault (1998, Definition 2.2). Belaslaxing the assumptioX (w, ¢] C
I(t) will facilitate the definition of causality measures. Gividre above definition, the natural
specification forl(t) is one whereZ(w, t] is a subset of (¢), but X (w, t] andY (w, ] are not
subsets of (¢), i.e.

X(w, | £ 1(t), Y(w, t] L 1(t), Z(w, t] CI(t). (3.9

An alternative characterization of noncausality can beresged in terms of the variance-
covariance matrix of the forecast errors. The followingutess easily deduced from Definition
3.1

Proposition 3.2 COVARIANCE CHARACTERIZATION OF NON-CAUSALITY AT HORIZON h. For
h>1,

(1) Y does not caus& at horizonh givenT iff
det X[X(t + h) | Ix(t)] = det D[ X (¢t + h) | Ixy (t)], Vt > w,
whereX[X (t + h) | -] is defined by3.5);
(74) Y does not caus& up to horizonh given iff
det Y[ X(t+ k)| Ix(t)] =det X[ X (t+ k) | Ixy ()], VI >w, k=1, 2, ..., h;
(7i7) Y does not caus& at any horizon givedy, iff
det V(X (t+ k)| Ix(t)] =det D[ X (t+ k) | Ixy ()], VE>w, k=1,2,....

Below, we also consider unconditional causality propsrireluced by eliminating the auxil-
iary variable vectoZ from the information set. This suggests considerfigunconditional non-
causalitywhich is defined as follows.

Definition 3.3 UNCONDITIONAL NON-CAUSALITY AT HORIZON h. For h > 1,



(1) Y does not caus& at horizonh givenI, unconditionally with respect t& [denotedY” "
X [ Iz)] iff

PIX(t+h)|I7)x ()] = PIX(t+h)| [ z)xy ()], Vt>w,

Wherej(z)x(t) = I(Z)(t) + X(UJ, t], I(Z)XY(t) = I(Z)X(t) + Y(UJ, t] and I(Z)(t) =
I(EN\Z (w, 1];

(77) Y does not caus& up to horizonh given I, unconditionally with respect t& [denotedY”

Y—;:X|I(Z)f0r]€:1, 2, ..., by

(731) Y does not caus& at any horizon gived, unconditionally with respect t& [denotedy” —

(c0)
X [ I z)] iff
Y?XH(Z) forallk=1,2, ...

If Z is empty (mg = 0), there is no effective conditioning and we use the conveastion
Iiz)x(t) = Ix(t) and Iz xy (t) = Ixy(t). On replacingl by I, it is straightforward to see
that Propositior8.2 also holds forZ —unconditional non-causality.

4. Causality measures

We will now develop extensions of the causality measure®duiced by Geweke (1982, 1984
1984) for the horizon 1. Important properties of these measurgsde: (1) they are nonnegative,
and (2) they cancel only when there is no causality at thezborconsidered. Specifically, we
propose the following causality measures at horizon 1, where by conventioin(0/0) = 0 and
In(z/0) = +oo for z > 0.

Definition 4.1 MEAN-SQUARE CAUSALITY MEASURE AT HORIZONA RELATIVE TO AN INFOR-
MATION SET. Forh > 1,

det Z[X (¢ + h) | Ix (1)]
det E[X(t + h) ‘ Ixy(t)]

CL(Y;>X|I):ln 4.1)

is themean-square causality measiak., theintensityof the causalityfromY to X at horizonh,
givenI.

Since we consider here only mean-square measures, thersgan“square causality measure”
will be abbreviated to “causality measure”. Cleady; (Y > X|I)=0if Y(w, t] C Ix(t), so

CLy - X | I) provides useful information mainly whe¥i(w, t] ¢ I(t). Form; = mgy = 1,



Definition 4.1 reduces to

a?[X(t+h) | Ix(1)]
o[ X (t+h) [ Ixy (t)]

CL(Y — X|I)=In

cLy > X | I) measures the causal effect framto X at horizonh givenI and the past oX. In

terms of predictability, this can be viewed as the amountfadrmation brought by the past &f
which can improve the forecast &f (¢ + h). Following Geweke (1982), this measure can be also
interpreted as the proportional reduction in the variarfddeforecast error oX (¢ + h) obtained

by taking into account the past &f. This proportion is equal to:

o?[X(t+h) | Ix ()] — o®[X(t + h) | Ixy ()]
o?[X(t + h) [ Ix(t)]

:1—exp[—C’L(Y7X|I)].

It can be useful to consider unconditional causality pripginduced by eliminating the aux-
iliary variable vectorZ from the information set. Such unconditional causality sueas can be
defined as follows.

Definition 4.2 UNCONDITIONAL MEAN-SQUARE CAUSALITY MEASURE AT HORIZONA. For
h>1,
det D[X(t + h) | Lz)x (1)]

" det YIX(E+h) [ 7xy ()]

is the Z-unconditional mean-square causality mea$um® Y to X at horizonh, given].

When there is no ambiguity concerning the reference inftiond , we shall also use the more
intuitive notation:
C(X7Y|Z) :CL(Y;>X|I(Z)). (4.3)

As in Geweke (1984), we can rewrite the (conditional) causality measuresrgiweDefinition4.1
in terms of unconditional causality measures whgrs eliminated form the reference information
set:

Cr(X —YI|I) = Cu(Y, 2) > X | z)x) = CL(Z = X [1(z)x)

= O, 2) > X|2)-C(2 - X|2), (4.4)
CoX —YI|I) = CuX, 2)> Y [liz)y) = CL(Z > Y |Lz)y)

= 0¥, 2) > X|2)-C(Z2 - X|2), (4.5)

!/

where (Y, Z) and (X, Z) represent the joint procesg X (t)’, Z(t)')
{((y@y, z@)y) - tez,t>w}
We now define an instantaneous causality measure betWemndY at horizonh as follows.

ct € Z,t > w}and



Definition 4.3 MEASURE OF INSTANTANEOUS CAUSALITY AT HORIZONA. For h > 1,

det E[X(t + h) ‘ Ixy(t)] det E[Y(t + h) |Ixy(t)]
det X[X(t + h), Y(t+h) | Ixy(t)] ’

CL(X-Y|I)=In
h

where X[ X (t + h), (t +h) [ Ixy (t)] = E{U[W(t + h) | Lxy ()JU[W(t + h) | Ixy (t)] } and
W) = (X)), Y@ ) , is themean- square instantaneous causality medsiirg¢he intensity of
the instantaneous causalithetweery” and X at horizonh.

Form, = ms = 1 and providedI(¢) includes a constant variable, we have:

det Z[(X(t+h), Y(E+h)) [ Ixy(®)] = o?[X(t+h)|Ixy (£)] o[V (t + h) | Ixy (t)]
—(cov[(X(t +h), Y(t+h) | Ixy (1)])°, (4.6)

so that
[ 1
CL(XZYH) - ln_l—p[ X(t+h), (t+h)|Ixy(t }
. o2[X(t + h) |IXy }
o[ X(t+h) | Ixy(t) +IY(t+h
o a2[Y (t +h) \IXY
= oY (t+h) [ Ixy (t) + Ix t-l—h)] (.7
where
PX(E+ ), Y (1 + )| Ty (1)) = — ot R), YAE L R) | Doy (0) (4.8)

o[ X(t+h) [ Ixy (D)oY (t + h) [ Lxy (1)]

is the conditional correlation coefficient betwe&it + ~) andY (¢ + k) given the information set
Ixy (t), Iy 1+n) represents the Hilbert subspace spanned by the comporiérifs ¢ ~) and simi-
larly for I'x(;44). Thus, instantaneous causality increases with the absadiie of the conditional
correlation coefficient.

We also define a measure of dependence betéeandY at horizonh. This will enable one to
check whether, at a given horizénthe processeX andY must be considered together or whether
they can be treated separately.

Definition 4.4 DEPENDENCE MEASURE AT HORIZONh. Forh > 1,
CL (XY 1) = OL(X - Y[ D)+ Cp(Y — X | 1)+ Co(X Y| ) (4.9)
h

is theintensityof the dependence betwe&nandY at horizonh, givenI.



It is easy to see that the intensity of the dependence betdeandY at horizonh can be
written in the alternative form:

det S[X (¢ + h) | Ix ()] det Z[Y (¢ + h) | Iy (1)]

(h) _
C1/(X,Y |I)=1n det Z[X(t + h), Y(t + h) | Ixy (t)]

(4.10)

When there is no ambiguity on the definition of the refereméermation sef (¢), we shall also use
the following notations:

C(Y —X) = Cu(Y — X |I), OY = X|2) = Cu(Y — X | ), (4.11)

CX-Y)=C(X-YI|I), "X, V)=Cc"(X, YI|I). (4.12)
h h

Now, it is possible to build a recursive formulation of cditganeasures. This one will depend
on the predictability measure introduced by Diebold andalki2001). These authors proposed a
predictability measure based on the ratio of expected $oskghort and long run forecasts:

E[L(UIX(t+) | )]

P(L, 8, j, k) =1 - E[L(U[X(t+k)|2]))]

where (2; is the information set at time L is a loss function,j and & represent respectively the
short and the long-rure; s + = X (t +s) — P[X(t + s) | £2], for s = j, k, is the forecast error at
horizont + s. This predictability measure can be constructed accordirtge horizons of interest
and it allows for general loss functions as well as univar@tmultivariate information sets. In this
paper, we focus on the case of a quadratic loss function,

L(epys,e) = ULX(t +5) | )%, for s = j, k.
Then, we have the following relationships.

Proposition 4.5 RELATION OF CAUSALITY MEASURES WITH PREDICTABILITY MEASURES.
Let hy and ho be two different horizonsp, = mo = 1, and

o2 (X(t+h)|Ix(t))
o (X (t+ha) | Ix (1))

PX(IX(t)7 h17 h?) = ]- -

o2 (X (t+ h) | Ixy (1))
02(X(t + hg) |Ixy(t)) ’

the predictability measures foX based on the information sefs (t) and Ixy (¢t). Then, forhy >
hl 2 ]-7

Px (Ixy(t), hi, ho) =1 —

CLly X | 1) = CL(Y X | 1) = In{1 — Px[Ix(t), b1, ho]} —In{1 — Px[Ixy(t), h1, ha]} .
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The following identity follows immediately from the latt@roposition: forh > 2 andm; =
mo = 1,

CLly — X | 1) =Cr(Y - X | D)+In[1—Px (Ix(t)+Y (w, t], 1, h)]—=In[1—Px (Ix(t), 1, h)].

Predictability measures look at the effect of changing tredast horizon, for given information
set while causality measures look at the joint effect of chagghe information set and the forecast
horizon.

5. Causality measures for VARMA models

We now consider a more specific set of linear invertible pgees which includes vector autoregres-
sive (VAR), moving average (VMA), and mixed (VARMA) model§ftnite order as special cases.
It is possible to provide parametric expressions for shamt-and long-run causality measures in
terms of impulse response coefficients.

We consider in turn two distinct cases. First, we calculsaeametric measures of short-
run and long-run causality in the context of an autoregvesmioving average model. We as-
sume that the procesgV (s) = (X(s),Y(s),Z(s)) : s < t} is a VARMA(p,q) model,
hereafter the unconstrained model, whgrand ¢ can be infinite. The structure of the process
{Wo(s) = (X(s)', Z(s)") :s < t}, hereafter theonstrainedmodel, can be deduced from the un-
constrained model using Corollary 6.1.1 in Lutkepohl (1993 his model is a VARMAp, ¢) with
p <mpandg < (m — 1)p + ¢q. Second, we provide a characterization of the parametrisatiy
measures in the context of VMAY model, wherey is finite.

5.1. Parametric causality measures in the context of a VARMAY, ¢) process

Without loss of generality, let us consider the discrete 1 vector process with zero medi/ (s) =

(X(s),Y'(s),Z(s)) : s <t} defined onL? and characterized by the following autoregressive
moving average representation:

W(t) =Y ®W(t—1i)+ Y Oult—j)+u(t) (5.1)

i—1 j=1

wherem = my; + mo + mgz and

Pxxi Y$xyi $YXzZi HXXJ HXYJ 0x Zj
Di=| vyxi Pyvi Yvzi |» ©j=| Ovx; Ovy; Ovz; |, (5.2)
Pzxi $Pzvi $zzi Ozx; Ozvj 0zz;

Efu(o] =0, Efuuts)] = { 5 oo}

11



More compactly,

BLYW(t) = O(L)u(t) (5.3)
with
oxx(L) eoxy(L) exz(L) Oxx(L) Oxy(L) Oxz(L)
D(L)=| pyx(L) (L) wyz(L) |, OWL)=| Oyx(L) Oyy(L) 0Oyz(L) |,
¢zx(L) (L) ¢zz(L) Ozx(L) Ozv(L) 6zz(L)
P P
(L) = Im, — Z el ou(L) = — Z Puril’s
9”( ) = Iml + ZHH]L Hlk ZHHWLJ for 2k LE=X,Y Z

Jj=1 j=1

We assume thai(¢) is orthogonal to the Hilbert subspace spanfiéd(s) : s < (¢t — 1)} with X,
is symmetric positive definite matrix. Under stationarlty¢) has a VMApo) representation:

W (t) = W(L)u(t) (5.4)

o0 o | Yxx; Yxy; Yxzj ,
¥(L)=®(L)"'O(L) = Z%LJ = Z Yyx; Vyy; Yvzi | L Yo =Inm.
= =0 | Yzx; Yzv; Yzz;
From the previous section, measures of dependence andlitaasa defined in terms of
variance-covariance matrices of the constrained and wheoned forecast errors. Thus, to cal-
culate these measures, we need to know the structure of tistramed model (imposing non-

causality). This one can be deduced from the structure ofiticenstrained model (5.1) using the
following proposition and corollary [Lutkepohl (1983pages 231-232)].

Lemma5.1 LINEAR TRANSFORMATION OF AVMA (q) PROCESS Letu(t) be aK-dimensional
white noise process with nonsingular variance-covariangrix 2, and let

W(t) = p+ Y Tu(t - j) + ult)
j=1

be aK-dimensional invertible VMA{ process. Furthermore, l&f be an(M x K') matrix of rank
M. Then theM -dimensional proces®/y(t) = FW (¢) has an invertible VMAg) representation:

Z et —7) +e(®)

wheres(t) is M-dimensional white noise with nonsingular variance-céaace matrix>., thed;,

12



j=1,...,q, are M x M coefficient matrices ang < q.

Lemmab5.2 LINEAR TRANSFORMATION OF AVARMA (p,q) PROCESS Let W (t) be aK-
dimensional, stable, invertible VARNIA ¢) process and lef’ be anM x K matrix of rank M.
Then the procesB/y(t) = FIW (t) has a VARMAp, ¢) representation with

p<Kp, ¢<(K—-1)p+gq.

If we assume thalV/ (¢) follows a VAR(p) [or VARMA (p, 0)] model, then its linear transfor-
mation Wy (t) = FW (t) has a VARMA(p, q) representation witlh < Kp andg < (K — 1)p.
Suppose now that we are interested in measuring the causalit Y to X at a given horizorh.
We need to apply Lemnta.2to obtain the structure of proce$®/;(s) = (X (s)', Z(s)') :s < t}.

If we left-multiply equation (5.3) by the adjoint matrix @f( L), denotedd(L)*, we get

O(LY*B(L)W (t) = B(L)*O(L)u(t) (5.5)

where®(L)*®(L) = det [#(L)]. Since the determinant @¥(L) is a sum of products involving
one operator from each row and each columrb6f.), the degree of the VAR polynomial, here
det [@(L)], is at mostmp. We write:

wherep < mp. It is also easy to check that the degree of the operatdr)*©(L) is at most
p(m — 1) + q. Thus, equation (5.5) can be written as follows:

det [B(L)] W (t) = &(L)*O(L)u(t). (5.6)

This equation is another stationary invertible VARMA regeatation of proces®/ (¢), called the
final equation form. The model of the proc€d&(s) = (X (s)’, Z(s)')’ : s < t} can be obtained
by choosing

On premultiplying (5.6) by, we get
det [@(L)] Wy(t) = FO(L)*O(L)u(t). (5.7)

The right-hand side of (5.7) is a linearly transformed fintder VMA process which, by Lemma
5.1, has a VMA(G) representation witly < p(m — 1) 4+ ¢ . Thus, we get the model:

oo =0 =[ 30 G [0 o
where |
Ele(t)] =0, E[e(t)e(s)] :{ 026 fgrrssjétt :

13



q q
éll(L) = Iml + Zéllej, élk(L) = Zélkij, forl 75 k, I,k=X, Z.
=1 j=1

Note that, in theory, the coefficien@% and elements of the variance-covariance mafktixcan be
computed from coefficientg;;;, O, [,k =X, Z, Y,i=1,... ,p,j =1,... ,q, and elements
of the variance-covariance matrk%,. This is possible by solving the following system:

75(”) = ’Yu(v)i v=0,1,2 ... (59)

where v.(v) and ~v,(v) are the autocovariance functions of the proces8€b)s(t) and
Fo(L)*O(L)u(t), respectively. The following example shows how one can ¢afeuhe theo-
retical parameters of the constrained model in terms ofettidsthe unconstrained model in the
context of a bivariate VAR(1) model.

Example 5.3 Consider the following bivariate VAR(1) model:
[ X(t) }: [ PxXX  PXY ] {X(t—l) } n [ ux(t) ]
Y(?) Yyx  Pyy Y(t-1) uy (t)
:@{gg:3}+mw. (5.10)

We assume that all the roots @ét[®(z)] = det [I; — @z| are outside of the unit circle. Under this
assumption, model (5.10) has the following VMA] representation:

(0 )=ze (0l )2y bl (ni )

wherel; = &7 If we are interested in determining the model for the maigimacessX (¢), then
by Lemmab.2and for ' = [1, 0], we have

det[B(L)] X (t) = [1, 0] D(L)* u(t)

where
1—pyy L @xyL
B[ — YY XY
(L) oy x L 1—pxxL
and
det[P(L)] =1 — (¢yy + oxx)L — (pyxxy — exxPyy)L>.
Thus,

X(t) =1 X(t—1) = o X(t = 2) = pxyuy (t — 1) — pyyux(t — 1) + ux(t). (5.11)

wherep, = ¢yy + pxx andyy, = Py xPxy — Yxx¥yy. The right-hand side of equation
(5.11), denotedo (t), is the sum of an MA(1) process and a white noise process. Bymaehil,
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w(t) has an MA(l) representationy(t) = ex(t) + fex(t — 1). To determine parametefsand
V(ex(t)) = o2, interms of the parameters of the unconstrained model, wealae system (5.9)
forv =0 andv =1,

Viw(t)] = Viux(t) —eyyux(t—1) +oxyuy(t—1)],
Elw®)w(t —1)] = E[(ux(t) —pyyux(t—1)+pxyuy(t—1))
X (ux(t —1) — pyyux(t —2) + pxyuy(t —2))],

which is equivalent to solve the following system:
5 _
(146702, = (14 ¢3y)0n, + Py Ty — 20yyPxyOuyuy  aNd 002 = —pyyon, .

Here we have two equations and two unknown paramétansiagx. These parameters must satisfy
the constraint§ | < 1ando? > 0.

The VMA(x) representation of model (5.8) is given by

Wolt) = det[®(L)] " B(L)e(t) = 3 Te(t - j)

j=0
— s @Xxj @ij ex(t—17) }
B jzg [ 1/1ij 1/1sz ] [ ez(t—17) (5.12)

where¥ = I,,,, +m,- To quantify the degree of causality frorhto X at horizonh, we first consider
the unconstrained and constrained models of pro&esEhe unconstrained model is

Z¢XXJUX t—7j) +Z¢XYJUY +Z¢XZJUZ —J) tux(t),
7j=1
whereas the constrained model is
o B (o0} B
X(t) = Z¢XXJ'5X(75 —J)+ Z¢XZj€Z(t —Jj) +ex(t).
j=1 J=1

Second, we need to calculate the variance-covarianceaestsf the unconstrained and constrained
forecast errors oKX (¢ + h). From (5.4), the forecast error & (¢ + h) is given by

U[W(t+h)| Ly(t) ZWut—i—h—z
so that -
SW(t+h) [ Iw ()] = GV [ut)] & =Y % 2,7, (5.13)
=0 =
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The unconstrained forecast error &f(t + h) is given by

h—1 h—1

UX(E+h) [ Iw(@®)] = > dxxuxt+h—35)+ Y txyuy(t+h—j)
=1 =1
J - J
+3 bxguz(t+h—j) +ux(t+h),
j=1

which is associated with the unconstrained variance-camvee matrix

h—1
SIXE+h) [ Iw )] = hEGZ0, ],
=0

whereJ; = [ I,, 0 0 |.Similarly, the forecast error df’y(t + h) is given by

h—1
Uo[Wolt + ) | Iw, (t)] = > Wie(t + h — i)
1=0
associated with the variance-covariance matrix
h —
S[Wo(t + h) | Iw, (t) =§jw

Consequently, the constrained forecast errak ¢f + h) is given by

h— 1

h—
Jj=1 Jj=1

associated with the constrained variance-covariancebmatr
DX (t+ h) | I, (t) ZJOW bRV

whereJy = [ I,, 0 |.We can immediately deduce the following result by using téénition
of a causality measure froiri to X [see Definitiord4.1].

Theorem 5.4 REPRESENTATION OF CAUSALITY MEASURE IN TERMS OF IMPULSE RESINSES
Under assumptions(1) and (.4),

det(Y10 Jo¥i o Jy)
det(270 2, ;)

C(Y—X|Z)=h
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forh >1,whereJy =[ I, 0 0 ],andJo=[ I, 0 ].
We can, of course, repeat the same argument switching thefthe variablesy andY'.
Example 5.5 For a bivariate VAR(1) model [see Exam@e3], we can analytically compute the

causality measures at any horizarusing only the unconstrained parameters. For example, the
measures of causality froii to X at horizonsl and2 are given by

(1+ QO%Y)U%X + SO%(YU?W + \/((1 + SO%/Y)U%X + Wg(YU%Y)Q - 490%/5/‘7?@

C(Y — X)=1n

202 ’
(5.14)
CY — X) =In 4o3y o, + (14 03y)os, +oxyos, — A—2pyyos | (5.15)
2 2[(1+ 9% x)oh, + Py on (1 + ¢y )ol + okyol, — A

whereA = \/((1 + oyy)?ol, + ¢§Y03Y)2 — 4902YYU§X.

Now, we will determine the parametric measure of instardasecausality betweeX andY
at given horizomh. We know from Section 4 that a measure of instantaneous ldsusadefined
only in terms of the variance-covariance matrices of unitaireed forecast errors [see Definition
4.3. The variance-covariance matrix of the unconstraineédast error of joint proces(sX (t +

Y, Y'(t+h)")"is given by

h—1
S(X(t+h),Y(t+h) [ Iwt) =) GuI¥G
=0
| Im; O 0
whereG = [ 0 L, 0 ] . Consequently,
h—1
D(X({t+h)|Iwt) = [J19; X,9; J, ]
=0
h—1
D(Y(E+h)| Iw(t) = D[RS,
=0
whereJ; = [ 0 In, O ] . We can immediately deduce the following result by using thend

tion of the instantaneous causality measure [see Defirdtign

*Equations (5.14)-(5.15) are obtained under assumptiongux (t), uy (t)) = 0 and

2
[(1 + W%y)aix + nginy] — 47T§/y0’ix > 0.
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Theorem 5.6 REPRESENTATION OF THE INSTANTANEOUS CAUSALITY MEASURE IN TEMS OF
IMPULSE RESPONSESUnder assumption$(1) and 6.4),

det (I N7 2,0, 0,)) det(X0 ) [o¥ X, J5))
det(31 [G ¥ 2,%,G'])

C(XTY | Z) =In [

Imi, 0 0

> =
for h > 1, whereG [ 0 In, 0

}Jl [ Iy 0 O0],andfo=[0 In, O ]

The parametric measure of dependence betwéamndY at horizonh can be deduced from its
decomposition given by equation (4.9).
5.2. Characterization of causality measures for VMA{) processes

Now, assume that the proce§®/ (s) = (X(s), Y(s)', Z(s)") : s < t} follows an invertible
VMA( ¢) model:

q
Z u(t —§) +u(t) (5.16)
where

Q= | Oyx; Oyvy; bOyz;

Ozx; Ozv; 0zz;

Oxx; Oxvj 9XZj]

or, more compactly,

where
Oxx(L) Oxy(L) 6Oxz(L)
O(L)=| Oyx(L) Oyy(L) 6Ovz(L) |,
Ozx(L) Ozy(L) 6Ozz(L)
q
Ou(L) = I, + > _ Ou; L7, Op(L Zelkjy forl 4k, I,k=X, Z, Y.
j=1 j=1
From Lemma5.1 and letting F :[ éml 8 ? ] the model of the constrained process
m2

Wo(t) = FW (t) is an MA(q) with g < gq. We write,

W(’“):H(L)E(t):é t—ﬂ=fo[9”’j o (2020

0zx; 0zz; ez(t

We have the following result.



Theorem 5.7 CHARACTERIZATION OF CAUSALITY MEASURES FORVMA( ¢q). Leth; andhs be
two different horizons. Under assumptidni6 we have,

CY——X|2)=CY——=X|[Z), Vhe 2h 2 ¢
1 2

This result follows immediately from Propositigh5.

6. Estimation

From Section 5, we know that short-run and long-run caysalg#asures depend on the parameters
of the model describing the process of interest. Consetyéimése measures can be estimated by
replacing the unknown parameters by their estimates fromita Bample.

There are at least three different approaches to the e&iimaft causality measures. The first
and simplest approach assumes that the process of inteliests a finite-order VARp) model
which can be estimated by OLS. The second approach assuatebehprocess follows a finite-
order VARMA model. But standard methods for the estimatibWARMA models, such as max-
imum likelihood and nonlinear least squares, require meali optimization. This is difficult to
implement because the number of parameters can increaddygulo circumvent this problem,
several authors have developed a relatively simple apprbased only on linear regression [see
Hannan and Rissanen (1982), Hannan and Kavalieris é19884), Koreisha and Pukkila (1989),
Dufour and Pelletier (2005), and Dufour and Jouini (2004)pis approach enables estimation of
VARMA models using a long VAR whose order depends on the samsigk. The last approach as-
sumes that the process is autoregressive with potentrdihite order, but can can be approximated
by a VAR(k) model, where: = k(T") depends on the sample size. It is the focus of this section.

The precise form of the parametric model appropriate foroggss is typically unknown. For
this reason, several authors have considered a nonpaiaygroach to predicting future values
using an autoregressive model fitted to a seri€g observations; see, for example, Parzen (1974),
Bhansali (1978), Lewis and Reinsel (1985). This approadiaged on assuming the process con-
sidered has an infinite-order autoregressive model, whaohbe approximated in finite samples by
a finite-order autoregressive model. In particular, stetig invertible VARMA processes belongs
to this class. We will now describe how this approach can lpiegpto estimate causality mea-
sures at different horizons. We first discuss the estimaifahe fitted autoregressive constrained
and unconstrained models. Then we construct a consistémiagsr of the short-run and long-run
causality measures.

Consider a stationary vector proce§d/ (s) = (X(s)',Y(s),Z(s)") :s < t)}. By Wold’s
theorem, this process can be written in the form of a VMA(model:

W(t) = ult) + > _ Tu(t — j).
7j=1

We assume tha ;2 || ¥; ||< oo anddet{¥(z)} # 0forz € Cand |z| < 1, where|| &; ||=
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tr(Z;W;) and ¥ (z) = .22 @27, with ¥y = I,,, anm x m identity matrix Under the latter
assumptionsl¥ () is invertible and can be written as an infinite autoregrespiocess:

W(t) =Y ®;W(t—j)+ult) (6.1)
j=1

where) 22, || &; [|< co andd(z) = I, — Y52, Dj27 = ¥(z)"! satisfiesdet{®(z)} # 0 for
zeCand|z| <1.

Given a realizatiof W (1),... ,W(T)}, we can approximate (6.1) by a finite-order VAR
model, where: depends on the sample size

k
W(t) =Y ®pW(t—j) + ux(t).

j=1
The least squares estimators of the coefficigr{ls) = (@15, Dok, ... , Pri] Of the fitted VARk)
model and variance-covariance mattiy);, of the error term are given by
. T
D(k) = [k, Doy -+ Pra] = Tn L s Supp = Y ()i (t) /(T — k)
t=k+1
where
T T
D= (T =k > wtyw®t), Hu=T -k~ > weW(E+1),
t=k+1 t=k+1

w(t) = (W(E),... , W(t—k+1)") andiy(t) = W(t) — Z;‘?:l gﬁjkW(t — 7).

Suppose now we are interested in measuring causality ¥aim X at a given horizorh. For
that, we need to define the structure of the marginal profBsgs) = (X(s)', Z(s)") :s < t}.
Under general condition [and as therelig(t) follows a VARMA(p, ¢) model as in Lemm&.2],
Wy (t) has a VAREo) representation:

Wo(t) =Y &;Wo(t — j) +=(t). (6.2)
j=1
(6.2) can be approximated by VAR) model, where: depends on the sample size
k —
Wo(t) = Y W (t - ) +exlt):
j=1

It is more convenient to calculate the causality measuredmgidering the same ordérfor the
constrained and unconstrained models. This is to ensule\ant comparison of the determinants
of the variance-covariance matrices of the constraineduacsdnstrained forecast errors at horizon
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h.

The estimators of the autoregressive coefficiebts) = (@1, Do, ... , Pri| Of the fitted
constrained VAREK) model and variance-covariance matdix;, of the error termare given by the
following equation:

T
D(k) = (D1, Do, - D] = Ty I Y, S = > En(t)Ew(?)
t=k+1

/

/(T = k)

wherel,, I, andé(t) are defined as for unconstrained model.

Now to estimate the degree of causality frdmto X at horizonh, we need to estimate the
variance-covariance matrices of the unconstrained andt@ined forecast errors. The forecast
error of the unconstrained procéds(t + h) based on th& AR(co) model is given by

h—1
U(h) =) Wu(t+h - j)
j=0

with the variance-covariance matrix
h—1
D(h) =) ¥R,
j=0

wherey; = qﬁgj) and
et =30 1 oV g V) =) B =1, forj > 1; (6.3)

see Dufour and Renault (1998). An estimator of the variam@&riance matrix of the forecast error
of W(t + h) based on th& AR(k) model is given by

Se(h) =) WXy, (6.4)

whered,;;, = 3\ and$Y) are calculated using (6.3) (with”) replaced by5%)). Similarly, the
variance-covariance matrix of the forecast errobigf(¢ + h) is given by

where¥; = qs(lj) anddfigj) are defined in similar way as in (6.3). Furthermore, an estimaf the
variance-covariance matrix of the forecast erroViaf(t + h) based on th& AR (k) model is given



by
Zojk(h) = Sk (6.5)

Where@k is an estimate of the corresponding population paramigte€onsequently, from Theo-
remb5.4an estimator of the causality measure frinto X at horizont is given by

. [det [JOSOk(h)J(;}] |

C(YTX |Z)=1In ™ [Jli'k(h)Ji] (6.6)

The most basic property that the above estimator should isas@nsistency To prove con-
sistency, additional regularity assumptions are needed.ct¥isider here the set of standard as-
sumptions originally considered by Lewis and Reinsel (3985derive consistency of parameter
estimates for a VARoo) model. Of course, alternative — eventually weaker — assomgptould
also be studied.

Assumption 6.1 The following conditions are satisfied:

(1) E|up(t)ui(t)u;(@)w(t)| < v4 < oo, forl < h,i,j,1 < m; wherewy(t), ui(t), u;(t), and
u;(t) are elements of the vector of the error teutt);

(2) kis chosen as a function df such thatk3/T — 0 ask, T — oc;

(3) kis chosen as a function df such thatk!/2 322, | || &; ||— 0 ask, T — oo;

(4) the series used to estimate parameter¥ &fR(k) and the series used for prediction are gen-
erated from two independent processes having the sameastachktructure.

Theorem 1 in Lewis and Reinsel (1985) ensures convergendi{lo)funder conditions 1 and 3
of Assumption6.1 and by choosing: as a function off” such thatk?/T" — 0 ask,T — oo. The
latter is an implication of condition 2 of Assumptiénl Consequently, Assumptidhlis sufficient
for convergency ofb (k). Furthermore, their Theorem 4 derives the asymptotic distion ford (k)
under Assumptio.11 and by assuming that there exi§ték)} a sequence dfm? x 1 vectors such
that0 < My <|| (k) ||?= I(k)'I1(k) < My < oo, for k = 1,2, ... Under similar conditions the
estimatord(k) converges tab(k) and asymptotically follows a normal distributiorFinally, we
note thatﬁu| , converges td’,;,, ask andT’ — oo [Lutkepohl (1993, pages 308-309)].

Proposition 6.2 CONSISTENCY OF CAUSALITY MEASURES Under Assumptio.1 C‘(Y —
X | Z) is a weakly consistent estimator ©fY’ — X|2).

Finally, we note that in practice one must choose the valuetofuse for any given seri€s.
Lewis and Reinsel (1985, pages 408-409) suggest to use é&aiiformation criterion, which was
originally proposed to select the order of a finite autorsgike process by choosing the value of
k which minimizes the determinant of the estimated one-skeg@é mean square prediction error
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matrix, to determine a finite-order approximation to a tmfanite order autoregressive process [see
also Bhansali (1978) and Parzen (1974)].

7. Evaluation by simulation of causality measures

Except in very simple specifications, it is quite difficultadytical expressions for causality mea-
sures. To bypass this difficulty, we propose here a simplelsiion-based technique to calculate
causality measures at any horiziorfor A > 1. To illustrate the proposed technique we consider the
examples of Section 2 and limit ourselves to horizorad2. Since one source of bias in autore-
gressive coefficients is sample size, the proposed techriquosists of simulating a large sample
from the unconstrained model whose parameters are assorbecketther known or estimated from

a real data set. Once the large sample, hereafter largeadiomylis simulated, we use it to estimate
the parameters of the constrained model (imposing nonligyisén what follows, we describe an
algorithm to calculate the causality measure at given barfzusing a simulation technique.

1. Giventhe parameters of the unconstrained model andtitd ialues, simulate a large sample
of T observations under the assumption that the probabilityiloligion of the error termu(t)
is completely specified [in our work, we have used valueg as high ad000000]. Note that
the form of the probability distribution af(t) does not affect the value of causality measures.

2. Estimate the constrained model using a large simulation.

3. Calculate the variance-covariance matrices of the cainstd and unconstrained forecast er-
rors at horizorh [see Section 6].

4. Calculate the causality measure at horizamsing (6.6).

To see better how this works, consider again Exargple

[if(gii)) ] =? [ ?EQ ] +ult) (7.1)

where I
¢= [ 8}51 8:;5 }  Blu()] =0, Blu(t)u(s)] = {OQifl s:é_tt.

Our illustration involves two steps. First, we calculate theoretical values of the causality mea-
sures at horizong and2. We know from Examplés.5 that for a bivariate VAR(1) model it is
relatively easy to compute the causality measure at angdmhi using only the unconstrained pa-
rameters. Second, we evaluate the causality measuresautange simulation technique and we
compare them with theoretical values from step 1. The larterecovered as follows.

1. We compute the variances of the forecast errorX @it horizonsl and2 using its own past

and the past of’. We have:
h—1

S(h)y = (2') (2" (7.2)

1=0
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Table 1. Evaluation by simulation «ﬁ'(YTX) andC(YTX) for Model 7.1

D C(YTX) C’(YTX)
1 10.519 0.567
2 1 0.430 0.220
3 | 0.427 0.200
4 | 0.425 0.199
5 | 0.426 0.198
10 | 0.425 0.197
15 | 0.426 0.199
20 | 0.425 0.197
25 | 0.425 0.199
30 | 0.426 0.198
35 | 0.425 0.198

From (7.2), we get

VIX(t+1) | Ix(t), Iy (t)] = 1, V[X(t +2) | Ix (t), Iy ()] = 1.74.

2. We compute the variances of the forecast error @ft horizonsl and2 using only its own
past. To do that we need to determine the structure of thetraimsd model. This one is
given by the following equation [see Exam@e3]:

X(t+1)=0.85X(t) +0.105X (t — 1) + ex(t + 1) + Oex(¢).

The parameterg andV (¢ x (t)) = o2, are the solutions to the following system:

(1+6%02, =16125, 802 = —0.35.

£X

The set of possible solutions {6, 02 ) = (—4.378, 0.08), (—0.2285, 1.53)}. To get an
invertible solution we must choose the combination whidisBeas the condition|¢| < 1,
i.e. the combinatior{—0.2285, 1.53). Thus, the variance of the forecast erro6fat horizon

1 using only its own past i&[X (t+1) | Ix (t)] = 1.53, and the variance of the forecast error
of X at horizon2 is X[ X (¢t + 2) | Ix(t)] = 2.12. Consequently,

C(Y—X) = 0425, C(Y—X) = 0.197.
In a second step we use the algorithm described at the bagiofithis section to evaluate the
causality measures using a large simulation techniqude Taghows results that we get for different

lag ordersp in the constrained model (usify = 600000). These results confirm the convergence
ensured by the law of large numbers and that we have provestios 5
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Table 2. Evaluation by simulation 6f (Y - X|Z)andC(Y - X | Z) for Model 7.3

D C’(YTX|Z) C’(YTX\Z)

1 | 0.000 0.121

2 | 0.000 0.123

3 | 0.000 0.122

4 | 0.000 0.123

5 | 0.000 0.124

10 | 0.000 0.122

15 | 0.000 0.122

20 | 0.000 0.122

25 | 0.000 0.124

30 | 0.000 0.122

35 | 0.000 0.122

Now consider Examplg.2

X(t+1) 0.60 0.00 0.80 X(t) ex(t+1)
Y(t+1) | = | 0.00 0.40 0.00 Y(it) [+ exv(t+1) |. (7.3)
Z(t+1) 0.00 0.60 0.10 Z(t) ez(t+1)

In this example, analytical calculation of the causalityaswes is not easy. In model (73)does
not causeX at horizon one, but causes it at horizon 2 (indirect cay3alonsequently, we expect
that causality measure froii to X will be equal to zero at horizoth and different from zero
at horizon 2. Using a large simulation technique and by ctamsig different lag orders in the
constrained model, we get the results in Table 2. Thesetsesohfirm our expectation and show
clearly the presence of an indirect causality fribnio X.

8. Confidence intervals

In this section, we assume thdtandY are univariate processes:{ = my = 1) while Z can be
multivariate (n3 > 0). This corresponds to the case of most practical interesth&umore and for
simplicity of exposition, we assume that the procB8s= {W(s) = (X (s), Y (s), Z(s)) : s <
t)} follows a VAR(p) model:

W(t) = i@iW(t —4) +ult) (8.1)

i=1
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or equivalently,
P
= BLYW(t) = uft)
i=1

wherel,,, is anm x m identity matrix, the polynomiab(z) = I,,,—>"L_, &,2" satisfieslet[®(z)] #
0, for z € Cwith |z| <1, and{u(t)}$2, is a sequence dfi.d. random variables.

For a realization{W (1), ... ,W(T')} of processiW, estimates oft = [&,... ,9,] and the
variance-covariance matrix,, of u(t) are given by the following equations:

T
b=D0"" 2= ayat) /(T - p), (8.2)
t=p+1

where

~ ) / ~ T ’

F=(T-p) " ) wtw®t), H=T-p)" > wt)WE+1),

t=p+1 t=p+1

wt)=(Wt),...,Wt-p+1)), anda(t) = W(t) — P, &;W(t —i).

Suppose that we are interested in measuring causality ¥fam X at given horizonh. To do
that we need to know the structure of the marginal prod@gs(s) = (X (s), Z(s)') : s < t)}.
This one has a VARMAp, ¢) representation withh < mp andg < (m — 1)p,

D q
Z@CWO t—i)+ > 05e(t —i) +e(t) (8.3)
=1 i=1

where{e(t)};2, is a sequence of uncorrelated random variables that satisfie

Ele(t)) =0, E [s(t)gl(s)] = { (?e ii‘f;;tt ;

and . is a positive definite matrix. Equation (8.3) can be rewnittethe following reduced form:

P(L)Wo(t) = 0°(L)e(t)

whered®(L) = Iz, — P§L—---—PCLP andd(L) = I, +07L+---+05L9, for m = m3+1and
I; anm x m identity matrix. We assume théf(z) = I,;, + ZJ | 0577 satisfiesdet[0°(z)] # 0
forz € Cand |z| < 1. Under the latter assumption, the VARMA ¢) process is invertible and

has a VAR (o) representation:

Wolt) = > &;Wo(t — j) = 0°(L) "' (L) Wy (t) = &(t). (8.4)

J=1

2If W follows a VAR(co) model, then one can use Inoue and Kilian's (2002) approaget results that are similar
to those developed in this section.
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We approximate (8.4) by a finite-order VAR) model, where: depends on sample siZé:
k —
Z@ xWolt — J) +ex(t). (8.5)

The estimators of the coefficiedgk) = [®13, Pox, - .. , Pri] Of the fitted constrained VAR)
model and variance-covariance matkix,, of the error term are given by the following equation:

T
D(k) = [Pk, Dok, - D] = Ty I Y, S =Y En(®)E(t) /(T — k),
t=k+1

wherel, I, andé(t) are calculated as for the unconstrained model.
The theoretical value of the causality measure fiorto X at horizonh is given by

C(Y—X|Z)=In (det UOEO(h)Jé))

h det (1 2(h)J;)
where
h—1 ~ ., h—1 )
So(h) =D WXy, L(h) =) X0,
=0 =0
v, = g), v, = 45(3) and 45(3) is defined in similar way as in (6.3). Using Lemnsa2
cly X\ Z) may be written as follows:
det (G(®, %,
CY—x|2)—n [ L LE22) )
h det (H(®, X))
h—1 h—1
G(P,5,) =Y Jo0 0]y, H(®, 2,) =Y I8, T,
=0 i=0

J
G(-) and H(-) are continuous and differentiabfenctions of (¢, >7,,). A consistent estimator of
cly - X | Z) is given by

. det (JoZoi(h)J,
O —X|Z)=In [ (%o Ol ),0) (8.6)
h det (J1 X (h)Jy)
where
_ h—1 ~ _ . h—1 .,
Sow(h) =i Zepr, 2(h) = 2,05,
j=0 =0
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ﬁj, ﬁu,ijk, and ﬁdk are estimates of the corresponding population quantities®,,, ¥;x, and
ek )

To establish the asymptotic distribution ©fY - X | Z), we recall the following result [see
Litkepohl (1993, Chapter 3) and Kilian (1998, page 221)]:

A

e < ve:lfzjg)): :Séjﬁgu) > < N[0, ] (8.7)

wherevec denotes the column stacking operatafh is the column stacking operator that stacks
the elements on and below the diagonal only,

—1
Q:[F 2%, 0 (8.8)

0 2D, D) ' D, (24 ® 2) Dy (D, D)~ |7

and D,,, is the duplication matrix, defined such thaich(F') = D,,vech(F') for any symmetric
m X m matrix F'. Thereafter, we will consider the following assumptions.

Assumption 8.1 The following conditions are satisfied:

(1) Elep(t)ei(t)ej(t)e(t)| < v4 < 00, forl < h,i,j,1 < m; whereey(t), €;(t), €;(¢), and
e;(t) are elements of the vector of the error tes(n);

(2) kis chosen as a function @f such thatk® /T — 0 ask, T — oc;

(3) kis chosen as a function of such thatk!/2 3>, | || &; |— 0 ask,T — oo;

(4) the series used to estimate parameter¥ efR(k) and the series used for prediction are gen-
erated from two independent processes having the sameastachtructure.

Proposition 8.2 ASYMPTOTIC DISTRIBUTION OF CAUSALITY MEASURES Under Assumptions
6.1 we have:

Tl/Q[C'(YTX 1Z) — C(YTX 1 2)] % N[0, oc(h)?]

whereo.(h)?> = De2Dg, Do = OC(Y—X|2) /00,6 = (vec(®)', vech(%,)")" and 2 is
given by(8.8).

Differentiating analytically the causality measures witispect td is typically difficult. One
way to build confidence intervals for causality measures isse a large simulation technique [see
Section 7] to calculate the derivative numerically. Anotivay consists in building bootstrap confi-
dence intervals. As mentioned by Inoue and Kilian (2002)bfunded measures, as in our case, the
bootstrap approach is more reliable than the delta-metboeé.reason is because the delta-method
interval is not range respecting and may produce confidertieevals that are logically invalid. In
contrast, the bootstrap percentile interval preserveshgteuction these constraints [see Inoue and
Kilian (2002, pages 315-318) and Efron and Tibshirani (3P93
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Let us consider the following bootstrap approximation t® distribution of the causality mea-
sure at given horizoh.

1. Estimate a VARp) process and save the residuals
p A
at) =W(t) =Y eW(t—i), for t=p+1,...,T,
=1

&;, fori = 1,...,p, are given by (8.2) and the OLS estimate Xf is given by ¥, =
ZtT:er} a(t)a(t) /(T — p), whered(t) = a(t) — >/, @(t)/(T — p) andi(t) = W (t) -
S W (t— i),

2. GeneratdT — p) bootstrap residualsg*(t) by random sampling with replacement from the
residualsi(t), t=p+1,...,T.

3. Choose the vector gfinitial observationss(0) = (W (1), ..., W(p)')". 3
4. Givend = [y,... &), {u*(t)}L .1, andw(0), generate bootstrap data for the dependent
variableW*(t) from equation:
p A
W*(t)=> &;W*(t —i) +u*(t), for t=p+1,...,T. (8.9)
i=1

5. Calculate the bootstrap OLS regression estimates

T
Ot = [@F, &5, ..., By =T7 "7, Sn= > ar()ar(t) /(T —p),
t=p+1
where
T T
[*=(T-p) " Y wtw @), If=T-p) " D wEOW(t+1),
t=p+1 t=p+1

wH(t) = (W(t),... Wt —p+ D), a@%(t) = @*(t) = X py @ (8)/(T — p), and
a*(t) = W*(t) — Y8 &;W*(t — ).

6. Estimate the constrained model of the marginal pro¢&ss7) using the bootstrap sample
(W)},

*The choice of using the initial vector(sI/V(l)’, e W(p)l)/ seems natural, but any block of p vectors from
W = {W(@Q),...,W(T)} would be appropriate. Berkowitz and Kilian (2000) note tbanditioning each bootstrap
replicate on the same initial value will understate the wadety associated with the bootstrap estimates, and tiuike
is randomised in the simulations by choosing the startilgeviomW = {W(1),... ,W(T)} [see Patterson (2007)].
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7. Calculate the causality measure at horizgdenotedC()* (Y - X | Z), using equation
(6.6) and the bootstrap sample.

8. ChooseB suchia(B + 1) is an integer and repeat ste{3-(7) B times.

We have the following result which establish the validitytioé percentile bootstrap technique.

Proposition 8.3 ASYMPTOTIC VALIDITY OF THE RESIDUAL-BASED BOOTSTRAR Under as-
sumptionss.1, we have

T1/2[C*(Y_>X | Z) (Y—>X | Z)] i N[0> Uc(h)Q]

whereo.(h)? and {2 are defined in Propositio8.2

Kilian (1998) proposes an algorithm to remove the bias inuls@ response functions prior to
bootstrapping the estimate. As he mentioned, the smalllggnigs in an impulse response function
may arise from bias in slope coefficient estimates or frormthrdinearity of this function, and this
can translate into changes in interval width and locatibthd ordinary least-squares small-sample
bias can be responsible for bias in the estimated impulgense function, then replacing the biased
slope coefficient estimates by bias-corrected slope c@ffiestimates may help to reduce the bias
in the impulse response function. Kilian (1998) shows thatddditional modifications proposed
in the bias-corrected bootstrap confidence intervals ndedlomnot alter its asymptotic validity. The
reason is that the effect of bias corrections is negligisiggptotically.

To improve the performance of the percentile bootstraprvate described above, we almost
consider the same algorithm as in Kilian (1998). Before simapping the causality measures, we
correct the bias in the VAR coefficients. We approximate ias termBias =E[$ — @] of the VAR
coefficients by the corresponding bootstrap bidgs* =FE* [gﬁ* — 43], whereE* is the expectation
based on the bootstrap distributiondf. This suggests the bias estimate

Bias :—ZQP* @

We substituted — Bias in equatlon (8.9) and generaf2 new bootstrap replicationg*. We use
the same bias estlmathas , to estimate the mean bias of nei[see Kilian (1998)]. Then we
calculate the bias-corrected bootstrap estimétor= &* — Bias that we use to estimate the bias-
corrected bootstrap causality measure estimate. Basé aliscussion by Kilian (1998, page 219),
given the nonlinearity of the causality measure, this pdace will not in general produce unbiased
estimates, but as long as the resulting bootstrap estinsafpproximately unbiased, the implied
percentile intervals are likely to be good approximatidastther, to reduce the bias in the causality
measure estimate, in the empirical application we congidether bias correction applied directly
on the measure itself, this one is given by

é(j>*(YT>X|Z):C*U)*(YTXIZ) [ (Y—>X|Z) CY — X|2)]
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Table 3. Augmented Dickey-Fuller tests for the variableleuel

With Intercept With Intercept and Trend

ADF test statistic| 5% Critical Value ADF test statistic| 5% Critical Value
NBR —0.510587 —2.8694 —1.916428 —3.4234
R —2.386082 —2.8694 —2.393276 —3.4234
P —1.829982 —2.8694 —0.071649 —3.4234
GDP —1.142940 —2.8694 —3.409215 —3.4234

where

B
—x 1 =0

. i Gy _
c (Y - X|2) jEZlC (Y - X|2).

In practice, specially when the true value of causality meass close to zero, it is possible that for
some bootstrap samples

Oy —X|2)< (v — X[2) - c\y — X12)].

In this case we impose the following non-negativity trumat

9. Empirical illustration

We apply our causality measures to measure the strengthatibreships between macroeconomic
and financial variables. The data set considered is the arek lug Bernanke and Mihov (1998)
and Dufour et al. (2006). This data set consists of monthseolations on nonborrowed reserves
(N BR), the federal funds rate'), the gross domestic product deflatét)( and real gross domestic
product GDP). The monthly data oD P and theGD P deflator were constructed using state
space methods from quarterly observations [for more detsgle Bernanke and Mihov (1998)]. The
sample runs from January 1965 to December 1996 for a tots84€bBservations.

All variables are in logarithmic form [see Figures 1-4]. Shevariables were also transformed
by taking first differences [see Figures 5-8], consequethilycausality relations have to be inter-
preted in terms of the growth rate of variables.

We performed an Augmented Dickey-Fuller test (hereafterF'-tes for nonstationarity of the
four variables of interest and their first differences. Th&igs of the test statistics, as well as the
critical values corresponding to5 significance level, are given in tables 3 and 4. Table 5, helow
summarizes the results of the stationarity tests for albiées.

As we can read from Table 5, all variables in logarithmic faare nonstationary. However,
their first differences are stationary except for the GDPadlef] P. We performed a nonstationarity
test for the second difference of variabie The test statistic values are equal-td1.04826 and
—11.07160 for the AD F'-test with only an intercept and with both intercept anddreespectively.
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Figure 1: NBR in logarithmic form
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Figure 2: r in logarithmic form
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Figure 4: GDP in logarithmic form
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Growth rate of NBR
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Figure 5: The first dfferentiation of In(NBR) Figure 6: The first dfferentiation of In(r)
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Table 4. Augmented Dickey-Fuller tests for the variableBrst difference

With Intercept With Intercept and Trend
ADF test statistic| 5% Critical Value ADF test statistic| 5% Critical Value
NBR —5.956394 —2.8694 —5.937564 —3.9864
T —7.782581 —2.8694 —7.817214 —3.9864
P —2.690660 —2.8694 —3.217793 —3.9864
GDP —5.922453 —2.8694 —5.966043 —3.9864

Table 5. Unit root test results

Variables in logarithmic form First difference
NBR | No Yes
r No Yes
P No No
GDP | No Yes

The critical values in both cases are equal-8695 and —3.4235. Thus, the second difference
of variable P is stationary. Once the data is made stationary, we use aremptric approach for
the estimation and Akaike’s information criterion to sfie¢the orders of the long VAR:) models.
Using Akaike’s criterion for the unconstrained VAR modehiah corresponds to four variables, we
observe that itis minimized at= 16. We use same criterion to specify the orders of the congtrain
VAR models, which correspond to different combinationstoke variables, and we find that the
orders are all less than or equal 6. To compare the determinants of the variance-covariance
matrices of the constrained and unconstrained forecastseat horizom, we take the same order

k = 16 for the constrained and unconstrained models. We compifiéeadit causality measures for
horizonsh = 1,... ,40 [see Figure9-14]. Higher values of measures indicate greater causality.
We also calculate the corresponding nomiigl, bootstrap confidence intervals as described in the
previous section.

From Figure9 we see that nonborrowed reserves have a strong effect oredeeaf funds
rate one month ahead comparatively with other variables f8guresiO and11 ]. This effect is
well known in the literature and can be explained by the thedrsupply and demand for money.
We also note that nonborrowed reserves have a short-teett efiG D P and can cause th&D P
deflator until5 months Figure14 shows the effect off D P on the federal funds rate is economically
important and statistically significant for the first threemths. The effect of the federal funds rate
on theGDP deflator is economically weak one month ahead [see Figj2re Other significant
results concern the causality fromto G D P. Figure 13 shows that federal funds rate causes the
GDP until 16 months. These results are consistent with cormhgsbbtained by Dufour et al.
(2006).

Table 6 represents results of other causality directioris 2t months. As we can read from
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Figure 9: Causality measures from Nonborrowed reserves to Federal funds rate
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Figure 11: Causality measures from Nonborrowed reserves to Real GDP
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this table, there is no causality in these other directi¢fisally, note that the above results do not
change when we consider the second, rather than first, eliiferof variableP.

10. Conclusion

New concepts of causality were introduced in Dufour and BErA998): causality at a given
(arbitrary) horizonh, and causality up to any given horizén whereh is a positive integer and
can be infinite{1 < h < o0). These concepts are motivated by the fact that, in the presafnan
auxiliary variableZ, it is possible to have a situation in which the variableloes not cause variable
X at horizonl, but causes it at a longer horizén> 1. In this case, this is an indirect causality
transmitted by the auxiliary variablg.

Another related problem arises when measuring the impoetaf the causality between two
variables. Existing causality measures have been edtatllisnly for horizonl and fail to capture
indirect causal effects. This paper proposes a geneiializat such measures for any horizbnWe
propose parametric and nonparametric measures of cgusadity horizor,. Parametric measures
are defined in terms of impulse response coefficients in thVapresentation. By analogy with
Geweke (1982), we show that it is possible to define a mea$dependence at horizdnwhich can
be decomposed into a sum of causality measures o Y, from Y to X, and an instantaneous
effect at horizom.. We also show how these causality measures can be relatee poedictability
measures developed in Diebold and Kilian (2001).

We propose a new approach to estimating these measuresdasedulating a large sample
from the process of interest. We also propose a valid nonpatrc confidence interval, using the
bootstrap technique.

From an empirical application we found that there is a strefifect of nonborrowed reserves on
federal funds rate one month ahead, the effect of real gasestic product on federal funds rate is
economically important for the first three months, the d@ftddederal funds rate on gross domestic
product deflator is economically weak one month ahead, amadlyfifederal funds rate causes the
real gross domestic product untih months
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Table 6. Summary of causality relations at various horiZonseries in first difference

h 1 2 3 4 5 6 7 8 9 10 (11 |12 |13 (14 |15 |16 |17 |18 | 19| 20
NBR — R yes

NBR — P yes | yes| yes| yes

NBR — GDP | yes

R — NBR

R—P yes

R — GDP yes yes| yes| yes| yes| yes| yes| yes| yes| yes| yes| yes| yes| yes| yes
P — NBR

P—R

P— GDP

GDP — NBR

GDP — R yes | yes | yes| yes| yes

GDP — P




A. Appendix: Proofs

PROOF OFPROPOSITION4.5

o2(X(t + hy)
o?(X(t + ha)

C(Y—=X|2)=C(Y-=X|Z)+In | (t))} ' [UQ(X(t+h1)|IX(t))
ho |

I(t)) o2 (X (t+ho) | Ix (1))

According to Diebold and Kilian (2001), the predictabilityeasure of vectak under the informa-
tion setslx (t) andIxy (t) are, respectively, defined as

) hi)| 1
Px(Ix(t), h1, ho) = 1- J2EXEE I h:; :Iiﬁgg ’
) B UQ(X(t+hl)|IXY(t))

Px(Ixy(t), h1, ha) = (X (t+ho) [ Ixy (1)

By Definition 4.1, we then see that

[ X () I ()] F2[X(t+ o) | (1)
CLlY & X[ =y 5 XD = In L X ) [T t)]] ln[ X (thu;(t)ﬂ
]
]

7 (
_ [UQ[X(tJrhl)UX()} n[ [<t+h1>uxy<>1]
a?[X (t + ho) |Ix(t) a?[X(t+ ha) | Ixy (t)]
)

= In [1 ( ( 5 hl, 2)] In [1 - Px(fxy(t), hl, hg)]

O

PROOF OFPROPOSITIONG6.2 Under Assumptior.1and using Theorem 1 in Lewis and Reinsel
(1985), we have R
D(k) =P(k) + op(1).

Using (4.1) of Lewis and Reinsel (1985) and Assumptioh we have:

Seh)= (1) Z(h)+0,(1) = D(h)+ 5 (R)op(T~) + 0p(1), for 6 < >,
hence .
S (h) T%OO 2(h). (A1)
Similarly, we can show that i
Zop(h) 2 So(h). (A2)

Consequently,

T—oo

. det [Jo oy, (h)Jy] P det [JoXo(h)(h)J)
det [J1 5(h)J]] det [12(h).0;] |’
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and A
Cy —X|z) & oy — X|2).
h T h

O
PROOF OFPROPOSITION8.2 We know that, fory < %
G(B(k), Z.jx) = (1+0)(T°))G(®, Zu) +op(1), (A3)
or ~ ~
In (G(®(k), 2. 1))=1n (G(P, £)) + 0p(T~°) + 0,(1). (A.4)
By the differentiability ofG(-),
In(G(®, £,))=1n(G(®, X)) + 0,(1). (A.5)

From (A.3) and (A.5)we get
In (G(®(k), Zoy1))=1n (G(B, £.)) + 0p(T %) + 0,(1).

Consequently, A .
CY —X|2)=C0(Y — X|2) + 0p(T7%) + 0,(1)

CY — X|Z)=In (det (G, %) > .
. det (H(®, 5,,))

where

SinceC (Y - X | Z) =0,(1), the asymptotic distribution of' (Y - X | Z) will be the same
as that ofC'(Y - X | Z). Using a first-order Taylor expansion 6fY - X |Z), we get

~ vec(P) — vec(d) 1
Y X Z)=C(Y—X|Z)+ D A T

¢l o 12) = T 12)+ C( vech(X,) — vech(X,,) >+0p( )

where
IC(Y—X | 2) 0C(Y—X|2)
D - =
“ 7 B(vec(d)', vech(2,)) o0’

hence

~ T2 vee(P) — vee(d)
TV2[C(Y—X|Z) - C(Y—X | Z)]~ D . .
L h 12) - ¢ h | 2)l= De ( T ?vech(X,) — vech(X,)
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Using (8.7),
T —X|2) = CY —X | 2) 5N (0, oc(h)?).

Consequently,
TYP(C(Y — X | 2)=C(Y —X| Z)[ 5N (0, oc(h)*)
where
o.(h)?> = Dcf2D,
0_ r‘tex, 0
Lo 2(D}, D) "L D}y (30 ® ) Dn( Dy, D) !

D,, is the duplication matrix, defined such thath(F') = D,,,vech(F’) for any symmetrion x m
matrix F'. O

PROOF OFPROPOSITION8.3  We start by showing that conditional on the sample

vee(*) B vec(®), vech(X¥) B vech(X,),

T—o00 T—o00

vec(®'(k)) B vec(®(k)), vech(L7,) B vech(Zyy).

T—oo T—oo

We first note that

T
vec(d') = vec(IT ") =vec((T—p)~" Y W(t+1)*w*(t) I 1)
t=p+1
T
=vec((T—p) ™" D [Dw*(t)+ u* (t + Jw (1) [*71)
t=p+1
~ T 7oA
= vec(®((T —p) ™" D w(t)w*(t) )
t=p+1
T " .
+vec((T—p)~" > wi(t+ Dw () )
t=p+1
T
= vee(d I ) +vec(T —p) ™" Y w(t+Dw(t) 7).
t=p+1

Let 3} = o(u*(1),... ,u*(t)) denote ther-algebra generated hy (1), ... ,u*(¢). Then,

EX[u(t+ Dw*(t) I = E*[E[u*(t+ 1)w*(t)/f*_l1 \A 37
= EY[E[u(t+1)|Sfw(t) I =0.
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By the law of large numbers,
T
(T—p) " ) wt+ Dw* () T =E*u*(t + Dw*(t) T +0,(1),
t=p+1

and
vec(P*) — VGC(@)T& 0.

— 00

Now, to prove thatech(£*) Ti vech(X,), we observe that

T T
vech(£5-5,) = (T—p) 'vech[ Y w®)a ()= Y a(t)a(t)]
t=p+1 t=p+1
T / T /
= (T—p)~'vech[ > (W' (t) - > a@®)a(t))].
t=p+1 t=p+1

Conditional on the sample and by the law of iterated expiectatwe have:

T T
Efu*(t)u*(t) —(T—p)"" Y ama)] = E[E @ @u ) —(T-p)" Y ata) |37
t=p+1 t=p+1
T
= E[Eu (Ou ) |S5] - (T —p)" Y aa)].
t=p+1
Because .
B E Tt (t)u () | S )=(T =)™ Y B (t)u* (1)),
t=p+1
then .
E* () (t) —(T —p)™" Y a)a)] =0
t=p+1
Since
T . T
T -p) ' [ Y @ou )~ -p) Y aa))]
t=p+1 t=p+1
T
= B [u (tu(t) —(T —p)™" Y altya(t) ] +o,(1)
t=p+1
we get
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Similarly, we can show that

vec(®"(k)) 5 vec(®(k)) and vech(27 ) Ti vech(Z,1)-

T—o0 —00

SinceG(.) and H(.) and differentiable functions, we have:

In(H(#*,27) = In(H(&5.)) +o, (1),

In (G (®*(K),27,)) = Wn(G(S(k).Z k) +o,(1).

By Theorems 2.5-3.4 in Paparoditis (1996) and Theorem 6\vid.and Reinsel (1985), we have,
fors < 2,

In (G(®*(k), £5;)) =In (G(P, 22)) + 0p(T7°) + 0,(1)
Consequently, ) )

CY — X|2) =C"(Y — X| Z) + 0p(T7°) + 0,(1)

where

C*(Y—X|Z) =In w :
h det H (0, 5%)

We have shown that fay < % [see the proof of Propositiod.Z],

R ( det (G(dg, ﬁ'u))

=In 0,(T~%)+o .
C(YT X|Z)=1 Tt (H(@, 2u))> +0,(T°)40,(1)

Consequently

—— . det (G(2, 2,)) s
Y - X|2)=1 (det(H@ 2u))>+op(T )+0,(1).

Conditional on the sample, the first order Taylor expansib@qY — X | Z) aroundC‘(YT
X | Z) is given by

C(Y—X|2) = Oy — X| Z)+Dc< veo(d) — vee(®)

N K T
vech(57) — vech(5,) > ol

S

)

hence

T2 (vee(9*) — vec(d))

TRC (Y =X | 2) = C(Y — X| ZW}C( ()b 5] > |
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Conditional on the sample, we have [see Inoue and KilianZ}00

T1/2 < vec($*) — vec(

) )
vech (%) — vech(2,) ) = N(0, 2), (A.6)

where
o rtex, 0
1o 2(D,y, D)~ Dy (2 ® ) Doy (Dl D) ™4 |

D,, is the duplication matrix defined such thath(F) = D,,vech(F') for any symmetrian x m
matrix . Thus,

TP (Y —X | 2) - C(Y — X | 2)] % N(0,0.(h)?),

and
T (Y — X |2) = O — X| 2)] % N(0,0¢(h)?)

where

I(vec(P)', vech(X,))

o.(h)> =Dc2D}, Do =

44



References

Berkowitz, J. and Kilian, L. (2000), ‘Recent developmem$bootstrapping time serie€€conomet-
ric Reviewsl9, 1-48. With Comment by Russell Davidson, 49-54.

Bernanke, B. S. and Mihov, I. (1998), ‘Measuring monetarjicgg The Quarterly Journal of
Economicsl133), 869-902.

Bhansali, R. J. (1978), ‘Linear prediction by autoregnessnodel fitting in the time domainThe
Annals of Statistic§, 224—-231.

Boudjellaba, H., Dufour, J.-M. and Roy, R. (1992), ‘Testoaysality between two vectors in multi-
variate ARMA models’ Journal of the American Statistical Associati®fi(420), 1082—1090.

Boudjellaba, H., Dufour, J.-M. and Roy, R. (1994), ‘Sim@diconditions for non-causality between
two vectors in multivariate ARMA modelsJournal of Econometric63, 271-287.

Diebold, F. X. and Kilian, L. (2001), ‘Measuring predictlty: Theory and macroeconomic appli-
cations’,Journal of Applied Econometricks, 657—669.

Dufour, J.-M. and Jouini, T. (2004), Asymptotic distritari of a simple linear estimator for
VARMA models in echelon formin P. Duchesne and B. Rémillard, eds, ‘Statistical Model-
ing and Analysis for Complex Data Problems’, Kluwer/Spanyerlag, Canada, chapter 11,
pp. 209-240.

Dufour, J.-M. and Pelletier, D. (2005), Practical methoolsrhodelling weak VARMA processes:
Identification, estimation and specification with a macoexmic application, Technical re-
port, Département de sciences économiques and CIREQ, idinévele Montréal, Montréal,
Canada.

Dufour, J.-M., Pelletier, D. and Renault, E. (2006), ‘Shart and long run causality in time series:
Inference’,Journal of Econometrict322), 337-362.

Dufour, J.-M. and Renault, E. (1998), ‘Short-run and long-causality in time series: Theory’,
Econometrica66, 1099-1125.

Efron, B. and Tibshirani, R. J. (1993)\n Introduction to the Bootstrap/ol. 57 of Monographs on
Statistics and Applied ProbabilitfChapman & Hall, New York.

Geweke, J. (1982), ‘Measurement of linear dependence adthdek between multiple time series’,
Journal of the American Statistical Associatiéi, 304—313.

Geweke, J. (1989, Inference and causality in economic time series,. Griliches and M. D. In-
triligator, eds, ‘Handbook of Econometrics, Volume 2’, HeHolland, Amsterdam, pp. 1102—
1144.

Geweke, J. (1989), ‘Measures of conditional linear dependence and feedbatkeen time series’,
Journal of the American Statistical Associatie®(388), 907-915.

45



Gouriéroux, C. and Monfort, A. (19977ime Series and Dynamic ModglSambridge University
Press, Cambridge, U.K.

Gouriéroux, C., Monfort, A. and Renault, E. (1987), ‘Kultdhacausality measuresAnnales
d’Economie et de Statistique#7, 369—410.

Granger, C. W. J. (1969), ‘Investigating causal relatiopgtonometric models and cross-spectral
methods’ Econometrica37, 424—459.

Hannan, E. J. and Kavalieris, L. (1984°A method for autoregressive-moving average estimation
Biometrika71(2), 273-280.

Hannan, E. J. and Kavalieris, L. (1984 ‘Multivariate linear time series modelsAdvances in
Applied Probabilityl6, 492-561.

Hannan, E. J. and Rissanen, J. (1982), ‘Recursive estimafionixed autoregressive-moving-
average orderBiometrika69(1), 81-94. Errata 70 (1983), 303.

Hsiao, C. (1982), ‘Autoregressive modeling and causalrargeof economic variablesJournal of
Economic Dynamics and Contrd] 243—-259.

Inoue, A. and Kilian, L. (2002), ‘Bootstrapping smooth ftinas of slope parameters and innova-
tion variances i’ AR (co) models’,International Economic Revied3(2), 309-332.

Kilian, L. (1998), ‘Small-sample confidence intervals fanpulse response functionsReview of
Economics and Statistic)(2), 218-230.

Koreisha, S. G. and Pukkila, T. M. (1989), ‘Fast linear eation methods for vector autoregressive
moving-average modelsJournal of Time Series Analysi§(4), 325—-339.

Lewis, R. and Reinsel, G. C. (1985), ‘Prediction of multigte time series by autoregressive model
fitting’, Journal of Multivariate Analysid6, 393—411.

Lutkepohl, H. (1991)|ntroduction to Multiple Time Series AnalysBSpringer-Verlag, Berlin.

Litkeponhl, H. (1993), Introduction to Multiple Time Series Analys&econd edn, Springer-Verlag,
Berlin.

Litkepohl, H. (1998), Testing for causation between two variables in higheretigional VAR
models,in H. Schneeweiss and K. Zimmermann, eds, ‘Studies in ApplieohBmetrics’,
Springer-Verlag, Heidelberg.

Newbold, P. (1982), Causality testing in economing). D. Anderson, ed., ‘Time Series Analysis:
Theory and Practice 1’, North-Holland, Amsterdam.

Paparoditis, E. (1996), ‘Bootstrapping autoregressiwt rapving average parameter estimates of
infinite order vector autoregressive processdsirnal of Multivariate Analysi&7, 277-296.

46



Parzen, E. (1974), ‘Some recent advances in time serieslimgdelEEE Trans. Automat. Control
AC-19, 723-730.

Patterson, K. (2007), ‘Bias reduction through first-orderam correction, bootstrapping and recur-
sive mean adjustmentournal of Applied Statistic84, 23—45.

Pierce, D. A. and Haugh, L. D. (1977), ‘Causality in tempagstems: Characterizations and
survey’,Journal of Econometric§, 265—293.

Polasek, W. (1994), Temporal causality measures based ©ni\H. Bozdogan, ed., ‘Proceed-
ings of the Frontier of Statistical Modeling: An Informal pmach’, Kluwer, Dordrecht, The
Netherlands, pp. 159-168.

Polasek, W. (2002), Bayesian causality meaures for mel#fRCH models using marginal likeli-
hoods, Technical report, Institute of Statistics and Eowgivics, Univeristy of Basel., Switzer-
land.

Sims, C. (1980), ‘Macroeconomics and realitgconometricad8, 1-48.

Wiener, N. (1956), The theory of predictioim E. F. Beckenback, ed., “The Theory of Prediction’,
McGraw-Hill, New York, chapter 8.

47



