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ABSTRACT

The concept of causality introduced by Wiener (1956) and Granger (1969) is defined in terms of
predictability one period ahead. This concept can be generalized by considering causality at a given
horizonh, and causality up to any given horizonh [Dufour and Renault (1998)]. This generalization
is motivated by the fact that, in the presence of an auxiliaryvariable vectorZ, it is possible that a
variableY does not cause variableX at horizon1, but causes it at horizonh > 1. In this case, there
is an indirect causality transmitted byZ. Another related problem consists in measuring the impor-
tance of causality between two variables. Existing causality measures have been defined only for
the horizon1 and fail to capture indirect causal effects. This paper proposes a generalization of such
measures for any horizonh. We propose nonparametric and parametric measures of unidirectional
and instantaneous causality at any horizonh. Parametric measures are defined in the context of
autoregressive processes of unknown order and expressed interms of impulse response coefficients.
On noting that causality measures typically involve complex functions of model parameters in VAR
and VARMA models, we propose a simple method to evaluate these measures which is based on
the simulation of a large sample from the process of interest. We also describe asymptotically valid
nonparametric confidence intervals, using a bootstrap technique. Finally, the proposed measures
are applied to study causality relations at different horizons between macroeconomic, monetary and
financial variables in the U.S. These results show that thereis a strong effect of nonborrowed re-
serves on federal funds rate one month ahead, the effect of real gross domestic product on federal
funds rate is economically important for the first three months, the effect of federal funds rate on
gross domestic product deflator is economically weak one month ahead, and finally federal funds
rate causes the real gross domestic product until16 months.

Keywords: time series; Granger causality; indirect causality; multiple horizon causality; causality
measure; predictability; autoregressive model; vector autoregression; VAR; bootstrap; Monte Carlo;
macroeconomics; money; interest rates; output; inflation.

Journal of Economic Literature classification: C1; C12; C15; C32; C51; C53; E3; E4; E52.

i



Contents

1. Introduction 1

2. Motivation 2

3. Framework 4

4. Causality measures 7

5. Causality measures for VARMA models 11
5.1. Parametric causality measures in the context of a VARMA(p, q) process . . . . . 11
5.2. Characterization of causality measures for VMA(q) processes. . . . . . . . . . . 18

6. Estimation 19

7. Evaluation by simulation of causality measures 23

8. Confidence intervals 25

9. Empirical illustration 31

10. Conclusion 37

A. Appendix: Proofs 39

List of Tables

1 Evaluation by simulation of causality ath = 1, 2 . . . . . . . . . . . . . . . . . 24
2 Evaluation by simulation of causality ath = 1, 2: Indirect causality. . . . . . . . 25
3 Dickey-Fuller tests: Variables in Logarithmic form. . . . . . . . . . . . . . . . 31
4 Dickey-Fuller tests: First difference. . . . . . . . . . . . . . . . . . . . . . . . 34
5 Stationarity test results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6 Summary of causality relations at various horizons for series in first difference . . 38

ii



List of definitions and propositions

3.1 Definition : Non-causality at horizonh . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Definition : Covariance characterization of non-causality at horizonh . . . . . . . . 6
3.3 Definition : Unconditional non-causality at horizonh . . . . . . . . . . . . . . . . . 6
4.1 Definition : Mean-square causality measure at horizonh relative to an information set 7
4.2 Definition : Unconditional mean-square causality measure at horizonh . . . . . . . 8
4.3 Definition : Measure of instantaneous causality at horizonh . . . . . . . . . . . . . 9
4.4 Definition : Dependence measure at horizonh . . . . . . . . . . . . . . . . . . . . 9
4.5 Proposition : Relation of causality measures with predictability measures . . . . . . 10
5.1 Lemma : Linear transformation of a VMA(q) process . . . . . . . . . . . . . . . . 12
5.2 Lemma : Linear transformation of a VARMA(p, q) process . . . . . . . . . . . . . 13
5.4 Theorem :Representation of causality measure in terms of impulse responses . . . . 16
5.6 Theorem :Representation of the instantaneous causality measure in terms of impulse

responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.7 Theorem :Characterization of causality measures for VMA(q) . . . . . . . . . . . . 19
6.2 Proposition : Consistency of causality measures. . . . . . . . . . . . . . . . . . . 22
8.2 Proposition : Asymptotic distribution of causality measures. . . . . . . . . . . . . 28
8.3 Proposition : Asymptotic validity of the residual-based bootstrap. . . . . . . . . . 30

Proof of Proposition4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Proof of Proposition6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Proof of Proposition8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Proof of Proposition8.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iii



1. Introduction

The concept of causality introduced by Wiener (1956) and Granger (1969) is now a basic notion for
studying dynamic relationships between time series. This concept is defined in terms of predictabil-
ity at horizon one of a variableX from its own past, the past of another variableY, and possibly a
vectorZ of auxiliary variables.

The theory of Wiener-Granger causality has generated a considerable literature; for reviews,
see Pierce and Haugh (1977), Newbold (1982), Geweke (1984a), Lütkepohl (1991), Boudjellaba,
Dufour and Roy (1992, 1994) and Gouriéroux and Monfort (1997, Chapter 10). Most of the work in
this field focus on predictability at horizon 1. In Dufour andRenault (1998), the concept of causality
in the sense of Granger (1969) is generalized by consideringcausality at a given (arbitrary) horizon
h and causality up to horizonh, whereh is a positive integer and can be infinite(1 ≤ h ≤ ∞);
for related work, see also Sims (1980), Hsiao (1982), and Lütkepohl (1993b). This generalization
is motivated by the fact that, in the presence of auxiliary variablesZ, it is possible to have the
variableY not causing variableX at horizon one, but causing it at a longer horizonh > 1. In
this case, we have an indirect causality transmitted by the auxiliary variablesZ. Necessary and
sufficient conditions of noncausality between vectors of variables at any horizonh for stationary
and nonstationary processes are also supplied.

The analysis of Wiener-Granger distinguishes among three types of causality: fromX to Y,
from Y toX, and instantaneous causality. In practice, it is possible that these three types of causal-
ity coexist, hence the importance of finding means to measuretheir degree and determine the most
important ones. Unfortunately, existing causality tests fail to accomplish this task, because they only
inform us about the presence or the absence of causality. To answer this type of question, Geweke
(1982, 1984b) has extended the causality concept by defining measures of causality and instanta-
neous effects, which can be decomposed in time and frequencydomains. Gouriéroux, Monfort and
Renault (1987) proposed causality measures based on the Kullback information. Polasek (1994)
showed how causality measures can be calculated using the Akaike Information Criterion (AIC).
Polasek (2002) also introduced new causality measures in the context of univariate and multivariate
ARCH models and their extensions based on a Bayesian approach.

Existing causality measures have been established only forthe one period horizon and fail to
capture indirect causal effects. In this paper, we develop causality measures at different horizons
which can detect indirect causality which becomes apparentonly after several periods. Specifically,
we propose generalizations to any horizonh of the measures proposed by Geweke (1982) for the
horizon one. Both nonparametric and parametric measures ofunidirectional causality and instan-
taneous effects at any horizonh are studied. Parametric measures are defined in terms of impulse
response coefficients. By analogy with Geweke (1982, 1984b), we also define a measure ofde-
pendenceat horizonh, which combines causality measures fromX to Y, from Y to X, and an
instantaneous effect at horizonh.

After noting that analytical formulae for causality measures in VAR and VARMA models typi-
cally involve complex functions of model parameters and maybe difficult to evaluate, we propose a
simple method based on a long simulation of the process of interest and we show that the approach
suggested works quite well in practice. For empirical implementation, we propose consistent es-
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timators, derive their asymptotic distribution under standard regularity conditions, and suggest a
bootstrap technique to build confidence intervals.

The proposed causality measures can be applied in differentcontexts and may help to solve
some puzzles from the economic and financial literatures. Inthis paper, we illustrate their use by
studying causality relations at different horizons between macroeconomic, monetary and financial
variables in the U.S. The data set considered is the one used by Bernanke and Mihov (1998) and
Dufour, Pelletier and Renault (2006). This data set consists of monthly observations on nonbor-
rowed reserves, the federal funds rate, the gross domestic product deflator, and real gross domestic
product.

The plan of the paper is as follows. Section 2 provides the motivation behind an extension of
causality measures at horizonh > 1. Section 3 presents the framework allowing the definition
of causality at different horizons. In Section 4, we proposenonparametric short-run and long-
run causality measures. In Section 5, we give parametric expressions for the proposed causality
measures in the context of linear stationary invertible processes, including VARMA processes. In
Section 6, we propose consistent estimators of the causality measures. In Section 7, we suggest a
simple method to evaluate the measures based on a simulationapproach. In Section 8, we establish
the asymptotic distribution of measures and the asymptoticvalidity of their nonparametric bootstrap
confidence intervals. Section 9 is devoted to an empirical application and the conclusion relating to
the results is given in Section 10. Proofs appear appendix.

2. Motivation

The causality measures proposed in this paper constitute extensions of those developed by Geweke
(1982, 1984b, 1984a) and others. The existing causality measures quantify the effect of a vector of
variables on another one at the one period horizon. The significance of such measures is however
limited in the presence of auxiliary variables, since it is possible that a vectorY causes another
vectorX at an horizonh strictly higher than1 even if there is no causality at horizon1. In this case,
we speak of an indirect effect induced by the auxiliary variablesZ. Causality measures defined
for the horizon1 do not capture this indirect effect. This paper proposes causality measures at
different horizons to quantify short- and long-run causality between random vectors. Such causality
measures detect and quantify the indirect effects due to auxiliary variables. To see the importance
of such causality measures, consider the following examples.

Example 2.1 Suppose we have two variablesX and Y . (X, Y )′ follows a stationary VAR(1)
model: [

X(t+ 1)
Y (t+ 1)

]

=

[
0.5 0.7
0.4 0.35

] [
X(t)
Y (t)

]

+

[
εX(t+ 1)
εY (t+ 1)

]

, (2.1)

so thatX(t+ 1) is given by the equation

X(t+ 1) = 0.5 X(t) + 0.7 Y (t) + εX(t+ 1). (2.2)

Since the coefficient ofY (t) in (2.2) is equal to0.7, we can conclude thatY causesX in the sense
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of Granger. However, this does not give any information on causality at horizons larger than1 nor
on its strength. To study causality at horizon2, consider the system (2.1) at timet+ 2 :

[
X(t+ 2)
Y (t+ 2)

]

=

[
0.53 0.595
0.34 0.402

] [
X(t)
Y (t)

]

+

[
0.5 0.7
0.4 0.35

][
εX(t+ 1)
εY (t+ 1)

]

+

[
εX(t+ 2)
εY (t+ 2)

]

.

In particular,X(t+ 2) is given by

X(t+ 2) = 0.53 X(t) + 0.595Y (t) + 0.5εX(t+ 1) + 0.7εY (t+ 1) + εX(t+ 2) . (2.3)

The coefficient ofY (t) in equation (2.3) is equal to0.595, soY causesX at horizon2. But, how
can one measure the importance of this “long-run” causality? Existing measures do not answer
this question.

Example 2.2 Suppose now that the information set contains not only the two variables of interest
X andY but also an auxiliary variableZ. Consider a trivariate stationary process(X, Y,Z)

′
which

follows a VAR(1) model:




X(t+ 1)
Y (t+ 1)
Z(t+ 1)



 =





0.6 0 0.8
0 0.4 0
0 0.6 0.1









X(t)
Y (t)
Z(t)



+





εX(t+ 1)
εY (t+ 1)
εZ(t+ 1)



 (2.4)

hence
X(t+ 1) = 0.6 X(t) + 0.8 Z(t) + εX(t+ 1) . (2.5)

Since the coefficient ofY (t) in equation (2.5) is0, we can conclude thatY does not causeX at
horizon1. If we consider model (2.4) at timet+ 2, we get:





X(t+ 2)
Y (t+ 2)
Z(t+ 2)



 =





0.6 0 0.8
0 0.4 0
0 0.6 0.1





2



X(t)
Y (t)
Z(t)





+





0.6 0 0.8
0 0.4 0
0 0.6 0.1









εX(t+ 1)
εY (t+ 1)
εZ(t+ 1)



+





εX(t+ 2)
εY (t+ 2)
εZ(t+ 2)



 , (2.6)

so thatX(t+ 2) is given by

X(t+ 2) = 0.36 X(t) + 0.48Y (t) + 0.56 Z(t) + 0.6εX(t+ 1)

+0.8εZ(t+ 1) + εX(t+ 2). (2.7)

The coefficient ofY (t) in equation (2.7) is equal to0.48, which implies thatY causesX at horizon
2. This shows that the absence of causality ath = 1 does not exclude the possibility of a causality
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at horizonh > 1. This indirect effect is transmitted by the variableZ:

Y →
︸︷︷︸

0.6

Z →
︸︷︷︸

0.8

X

where0.60 and0.80 are the coefficients of the one period effect ofY onZ and the one period effect
of Z onX, respectively. So,how can one measure the importance of this indirect effect?Again,
existing measures do not answer this question.

3. Framework

The notion of noncausality studied here is defined in terms oforthogonality conditions between
subspaces of a Hilbert space of random variables with finite second moments. We denoteL2 ≡
L2(Ω,A, Q) a Hilbert space of real random variables with finite second moments, defined on a
common probability space(Ω,A, Q), with covariance as the inner product. IfE andF are two
Hilbert subspaces ofL2, we denoteE + F the smallest subspace ofL2 which contains bothE
andF, while E\F represents the smallest Hilbert subspace ofL2 which contains the difference
E − F = E ∩ F ′ = {x : x ∈ E, x /∈ F}.[If E − F is empty, we setE\F = {0}.]

“Information” is represented here by nondecreasing sequences of Hilbert subspaces ofL2. In
particular, we consider a sequenceI of “reference information sets”I(t),

I = {I(t) : t ∈ Z , t > ω} with t < t′ ⇒ I(t) ⊆ I(t′) for all t > ω , (3.1)

whereI(t) is a Hilbert subspace ofL2, ω ∈ Z ∪ {−∞} represents a “starting point”, andZ is the
set of the integers. The “starting point”ω is typically equal to a finite initial date (such asω = −1,
0 or 1) or to−∞; in the latter caseI(t) is defined for allt ∈ Z. We also consider three multivariate
stochastic processes

X = {X(t) : t ∈ Z, t > ω} , Y = {Y (t) : t ∈ Z, t > ω} , Z = {Z(t) : t ∈ Z, t > ω} , (3.2)

where

X(t) = (x1(t), . . . , xm1
(t))

′

, xi(t) ∈ L
2, i = 1, . . . , m1 , m1 ≥ 1,

Y (t) = (y1(t), . . . , ym2
(t))

′

, yi(t) ∈ L
2, i = 1, . . . , m2 , m2 ≥ 1,

Z(t) = (z1(t), . . . , zm3
(t))

′

, zi(t) ∈ L
2, i = 1, . . . , m3 , m3 ≥ 0,

and a (possibly empty) Hilbert subspaceH of L2, whose elements represent information available
at any time, such as time independent variables (e.g., the constant in a regression model) and deter-
ministic processes (e.g., deterministic trends). We denoteX(ω, t] the Hilbert space spanned by the
componentsxi(τ), i = 1, . . . ,m1, of X(τ ), ω < τ ≤ t, and similarly forY (ω, t] andZ(ω, t] :
X(ω, t], Y (ω, t] andZ(ω, t] represent the information contained in the history of the variablesX,
Y andZ respectively up to timet. Finally, the information sets obtained by “adding”X(ω, t] to
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I(t) andY (ω, t] to IX(t) are defined as

IX(t) = I(t) +X(ω, t] , IXY (t) = IX(t) + Y (ω, t] , (3.3)

and similarly forIZ(t), IZ(t), IXZ , etc. In most cases considered below, the information setI(t)
containsZ(ω, t] but may not containX(ω, t] or Y (ω, t].

For any information setBt [some Hilbert subspace ofL2] and positive integerh, we denote
P [xi(t+ h) |Bt] the best linear forecast ofxi(t+ h) based on the information setBt,

u[xi(t+ h)|Bt] = xi(t+ h)− P [xi(t+ h) |Bt]

the corresponding prediction error, andσ2[xi(t + h) |Bt] = E
{
u[xi(t + h)|Bt]

2
}
. Then, the best

linear forecast ofX(t+ h) is

P [X(t+ h)|Bt] =
(
P [x1(t+ h) |Bt], . . . , P [xm1

(t+ h) |Bt]
)′
,

the corresponding vector of prediction errors is

U [X(t+ h) |Bt] =
(
u[x1(t+ h) |Bt]

′

, . . . , u[xm1
(t+ h) |Bt]

)′
, (3.4)

and the corresponding matrix of second moments is

Σ[X(t+ h) |Bt] = E
{
U [X(t+ h) |Bt]U [X(t + h) |Bt]

′}
. (3.5)

ProvidedBt contains a constant,Σ[X(t + h) |Bt] is covariance matrix ofU [X(t + h) |Bt]. Each
componentP [xi(t + h) |Bt] of P [X(t + h) |Bt] is the orthogonal projection ofxi(t + h) on the
subspaceBt.

Following Dufour and Renault (1998), noncausality at horizonh is defined as follows, given an
information setI.

Definition 3.1 NON-CAUSALITY AT HORIZON h. For h ≥ 1,

(i) Y does not causeX at horizonh givenI [denotedY 9
h
X | I] iff

P [X(t+ h)| IX(t)] = P [X(t+ h) | IXY (t)], ∀t > ω, (3.6)

whereIX(t) = I(t) +X(ω, t] andIXY (t) = IX(t) + Y (ω, t];

(ii) Y does not causeX up to horizonh givenI [denotedY 9
(h)
X | I] iff

Y 9
k
X | I for k = 1, 2, . . . , h; (3.7)
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(iii) Y does not causeX at any horizon givenI [denotedY 9
(∞)

X | I] iff

Y 9
k
X | I for all k = 1, 2, . . . (3.8)

This definition corresponds to causality fromY toX. It means thatY causesX at horizonh if
the past ofY improves the forecast ofX(t+ h) based on the information inI(t) andX(ω, t]. It is
slightly more general than the one considered in Dufour and Renault (1998, Definition 2.2), because
the conformability assumptionX(ω, t] ⊆ I(t) is not imposed. But, clearly ifX(ω, t] ⊆ I(t), then
IX(t) = I(t). So, if the conformability assumption is added, Definition3.1(i) is equivalent to
the one in Dufour and Renault (1998, Definition 2.2). Below, relaxing the assumptionX(ω, t] ⊆
I(t) will facilitate the definition of causality measures. Giventhe above definition, the natural
specification forI(t) is one whereZ(ω, t] is a subset ofI(t), but X(ω, t] andY (ω, t] are not
subsets ofI(t), i.e.

X(ω, t] * I(t) , Y (ω, t] * I(t) , Z(ω, t] ⊆ I(t) . (3.9)

An alternative characterization of noncausality can be expressed in terms of the variance-
covariance matrix of the forecast errors. The following result is easily deduced from Definition
3.1.

Proposition 3.2 COVARIANCE CHARACTERIZATION OF NON-CAUSALITY AT HORIZON h. For
h ≥ 1,

(i) Y does not causeX at horizonh givenI iff

detΣ[X(t + h) | IX(t)] = detΣ[X(t+ h) | IXY (t)] , ∀t > ω,

whereΣ[X(t+ h) | · ] is defined by(3.5);

(ii) Y does not causeX up to horizonh givenI iff

detΣ[X(t+ k) | IX (t)] = detΣ[X(t+ k) | IXY (t)] , ∀t > ω, k = 1, 2, . . . , h ;

(iii) Y does not causeX at any horizon givenIX , iff

detΣ[X(t+ k) | IX(t)] = detΣ[X(t+ k) | IXY (t)] , ∀t > ω, k = 1, 2, . . . .

Below, we also consider unconditional causality properties induced by eliminating the auxil-
iary variable vectorZ from the information set. This suggests consideringZ−unconditional non-
causalitywhich is defined as follows.

Definition 3.3 UNCONDITIONAL NON-CAUSALITY AT HORIZON h. For h ≥ 1,

6



(i) Y does not causeX at horizonh givenI, unconditionally with respect toZ [denotedY 9
h

X | I(Z)] iff

P [X(t+ h)| I(Z)X (t)] = P [X(t+ h)| I(Z)XY (t)], ∀t > ω,

where I(Z)X(t) = I(Z)(t) + X(ω, t], I(Z)XY (t) = I(Z)X(t) + Y (ω, t] and I(Z)(t) =
I(t)\Z(ω, t] ;

(ii) Y does not causeX up to horizonh givenI, unconditionally with respect toZ [denotedY
9
(h)
X | I(Z)] iff

Y 9
k
X | I(Z) for k = 1, 2, . . . , h;

(iii) Y does not causeX at any horizon givenI, unconditionally with respect toZ [denotedY 9
(∞)

X | I(Z)] iff
Y 9

k
X | I(Z) for all k = 1, 2, . . .

If Z is empty (m3 = 0), there is no effective conditioning and we use the conventions
I(Z)X(t) = IX(t) and I(Z)XY (t) = IXY (t). On replacingI by I(Z), it is straightforward to see
that Proposition3.2also holds forZ−unconditional non-causality.

4. Causality measures

We will now develop extensions of the causality measures introduced by Geweke (1982, 1984b,
1984a) for the horizon 1. Important properties of these measures include: (1) they are nonnegative,
and (2) they cancel only when there is no causality at the horizon considered. Specifically, we
propose the following causality measures at horizonh ≥ 1, where by conventionln(0/0) = 0 and
ln(x/0) = +∞ for x > 0.

Definition 4.1 MEAN-SQUARE CAUSALITY MEASURE AT HORIZONh RELATIVE TO AN INFOR-
MATION SET. For h ≥ 1,

CL(Y →
h
X | I) = ln

[
detΣ[X(t+ h) | IX (t)]

detΣ[X(t+ h) | IXY (t)]

]

(4.1)

is themean-square causality measure[alt., theintensityof the causality] fromY toX at horizonh,
givenI.

Since we consider here only mean-square measures, the term “mean square causality measure”
will be abbreviated to “causality measure”. Clearly,CL(Y →

h
X | I) = 0 if Y (ω, t] ⊆ IX(t), so

CL(Y →
h
X | I) provides useful information mainly whenY (ω, t] * I(t). Form1 = m2 = 1,
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Definition 4.1 reduces to

CL(Y →
h
X | I) = ln

[
σ2[X(t+ h) |IX(t)]

σ2[X(t+ h) | IXY (t)]

]

.

CL(Y →
h
X | I) measures the causal effect fromY toX at horizonh givenI and the past ofX. In

terms of predictability, this can be viewed as the amount of information brought by the past ofY
which can improve the forecast ofX(t + h). Following Geweke (1982), this measure can be also
interpreted as the proportional reduction in the variance of the forecast error ofX(t + h) obtained
by taking into account the past ofY . This proportion is equal to:

σ2[X(t+ h) | IX (t)]− σ2[X(t+ h) | IXY (t)]

σ2[X(t+ h) | IX(t)]
=1− exp[− CL(Y →

h
X | I)] .

It can be useful to consider unconditional causality properties induced by eliminating the aux-
iliary variable vectorZ from the information set. Such unconditional causality measures can be
defined as follows.

Definition 4.2 UNCONDITIONAL MEAN -SQUARE CAUSALITY MEASURE AT HORIZONh. For
h ≥ 1,

CL(Y →
h
X | I(Z)) = ln

[
detΣ[X(t+ h) | I(Z)X (t)]

detΣ[X(t+ h) | I(Z)XY (t)]

]

(4.2)

is theZ-unconditional mean-square causality measurefromY toX at horizonh, givenI.

When there is no ambiguity concerning the reference information I, we shall also use the more
intuitive notation:

C(X →
h
Y |Z) = CL(Y →

h
X | I(Z)) . (4.3)

As in Geweke (1984b), we can rewrite the (conditional) causality measures given by Definition4.1
in terms of unconditional causality measures whereZ is eliminated form the reference information
set:

CL(X →
h
Y | I) = CL((Y, Z)→

h
X | I(Z)X)− CL(Z →

h
X | I(Z)X)

= C((Y, Z)→
h
X |Z)− C(Z →

h
X |Z) , (4.4)

CL(X →
h
Y | I) = CL((X, Z)→

h
Y | I(Z)Y )− CL(Z →

h
Y | I(Z)Y )

= C((Y, Z)→
h
X |Z)− C(Z →

h
X |Z) , (4.5)

where (Y, Z) and (X, Z) represent the joint process{
(
X(t)′, Z(t)′

)′
: t ∈ Z, t > ω} and

{
(
Y (t)′, Z(t)′

)′
: t ∈ Z, t > ω}.

We now define an instantaneous causality measure betweenX andY at horizonh as follows.
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Definition 4.3 MEASURE OF INSTANTANEOUS CAUSALITY AT HORIZONh. For h ≥ 1,

CL(X −
h
Y | I) = ln

[
detΣ[X(t+ h) | IXY (t)] detΣ[Y (t+ h) | IXY (t)]

detΣ[X(t+ h), Y (t+ h) | IXY (t)]

]

,

whereΣ[X(t + h), Y (t + h) | IXY (t)] = E
{
U [W (t + h) | IXY (t)]U [W (t + h) | IXY (t)]

′}
and

W (t) =
(
X(t)′, Y (t)′

)′
, is themean-square instantaneous causality measure[alt.,the intensityof

the instantaneous causality] betweenY andX at horizonh.

Form1 = m2 = 1 and providedI(t) includes a constant variable, we have:

detΣ[
(
X(t+ h), Y (t+ h)

)
| IXY (t)] = σ2[X(t+ h) | IXY (t)]σ2[Y (t+ h) | IXY (t)]

−
(
cov[(X(t+ h), Y (t+ h) | IXY (t)]

)2
, (4.6)

so that

CL(X −
h
Y | I) = ln

[
1

1− ρ[X(t+ h), Y (t+ h) | IXY (t)]2

]

= ln

[
σ2[X(t+ h) |IXY (t)]

σ2[X(t+ h) | IXY (t) + IY (t+h)]

]

= ln

[
σ2[Y (t+ h) |IXY (t)]

σ2[Y (t+ h) | IXY (t) + IX(t+h)]

]

(4.7)

where

ρ[X(t+ h), Y (t+ h) | IXY (t)] =
cov[X(t+ h), Y (t+ h) | IXY (t)]

σ[X(t+ h) | IXY (t)]σ[Y (t+ h) | IXY (t)]
(4.8)

is the conditional correlation coefficient betweenX(t + h) andY (t+ h) given the information set
IXY (t), IY (t+h) represents the Hilbert subspace spanned by the components of Y (t+ h) and simi-
larly for IX(t+h). Thus, instantaneous causality increases with the absolutevalue of the conditional
correlation coefficient.

We also define a measure of dependence betweenX andY at horizonh. This will enable one to
check whether, at a given horizonh, the processesX andY must be considered together or whether
they can be treated separately.

Definition 4.4 DEPENDENCE MEASURE AT HORIZONh. For h ≥ 1,

C
(h)
L (X, Y | I) = CL(X →

h
Y | I) + CL(Y →

h
X | I) + CL(X −

h
Y | I) (4.9)

is theintensityof the dependence betweenX andY at horizonh, givenI.
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It is easy to see that the intensity of the dependence betweenX andY at horizonh can be
written in the alternative form:

C
(h)
L (X, Y | I) = ln

[
detΣ[X(t+ h) | IX(t)] detΣ[Y (t+ h) | IY (t)]

detΣ[X(t + h), Y (t+ h) | IXY (t)]

]

. (4.10)

When there is no ambiguity on the definition of the reference information setI(t), we shall also use
the following notations:

C(Y →
h
X) = CL(Y →

h
X | I) , C(Y →

h
X |Z) = CL(Y →

h
X | I(Z)), (4.11)

C(X −
h
Y ) = CL(X −

h
Y | I) , C(h)(X, Y ) = C

(h)
L (X, Y | I) . (4.12)

Now, it is possible to build a recursive formulation of causality measures. This one will depend
on the predictability measure introduced by Diebold and Kilian (2001). These authors proposed a
predictability measure based on the ratio of expected losses of short and long run forecasts:

P̄ (L, Ωt, j, k) = 1−
E
[
L(U [X(t+ j) |Ωt])

]

E
[
L(U [X(t+ k) |Ωt])

]

whereΩt is the information set at timet, L is a loss function,j andk represent respectively the
short and the long-run,et+s, t = X(t + s)− P [X(t+ s) |Ωt], for s = j, k, is the forecast error at
horizont + s. This predictability measure can be constructed according to the horizons of interest
and it allows for general loss functions as well as univariate or multivariate information sets. In this
paper, we focus on the case of a quadratic loss function,

L(et+s, t) = U [X(t+ s) |Ωt]
2, for s = j, k.

Then, we have the following relationships.

Proposition 4.5 RELATION OF CAUSALITY MEASURES WITH PREDICTABILITY MEASURES.
Leth1 andh2 be two different horizons,m1 = m2 = 1, and

P̄X

(
IX(t), h1, h2

)
= 1−

σ2
(
X(t+ h1) | IX(t)

)

σ2
(
X(t+ h2) | IX(t)

) ,

P̄X

(
IXY (t), h1, h2

)
= 1−

σ2
(
X(t+ h1) | IXY (t)

)

σ2
(
X(t+ h2) | IXY (t)

) ,

the predictability measures forX based on the information setsIX(t) andIXY (t). Then, forh2 >
h1 ≥ 1,

CL(Y →
h1

X | I)−CL(Y →
h2

X | I) = ln{1− P̄X [IX(t), h1, h2]}− ln{1− P̄X [IXY (t), h1, h2]} .
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The following identity follows immediately from the latterproposition: forh ≥ 2 andm1 =
m2 = 1,

CL(Y →
h
X | I) = CL(Y →

1
X | I)+ln[1−P̄X

(
IX(t)+Y (ω, t], 1, h

)
]−ln[1−P̄X

(
IX(t), 1, h

)
] .

Predictability measures look at the effect of changing the forecast horizon, for agiven information
set, while causality measures look at the joint effect of changing the information set and the forecast
horizon.

5. Causality measures for VARMA models

We now consider a more specific set of linear invertible processes which includes vector autoregres-
sive (VAR), moving average (VMA), and mixed (VARMA) models of finite order as special cases.
It is possible to provide parametric expressions for short-run and long-run causality measures in
terms of impulse response coefficients.

We consider in turn two distinct cases. First, we calculate parametric measures of short-
run and long-run causality in the context of an autoregressive moving average model. We as-
sume that the process{W (s) = (X(s)′, Y (s)′, Z(s)′)′ : s ≤ t} is a VARMA(p, q) model,
hereafter the unconstrained model, wherep and q can be infinite. The structure of the process
{W0(s) = (X(s)

′
, Z(s)′)

′
: s ≤ t}, hereafter theconstrainedmodel, can be deduced from the un-

constrained model using Corollary 6.1.1 in Lütkepohl (1993b). This model is a VARMA(p̄, q̄) with
p̄ ≤ mp andq̄ ≤ (m− 1)p + q. Second, we provide a characterization of the parametric causality
measures in the context of VMA(q) model, whereq is finite.

5.1. Parametric causality measures in the context of a VARMA(p, q) process

Without loss of generality, let us consider the discretem×1 vector process with zero mean{W (s) =
(X(s)

′
, Y

′
(s), Z(s)′)

′
: s ≤ t} defined onL2 and characterized by the following autoregressive

moving average representation:

W (t) =

p
∑

i=1

ΦiW (t− i) +

q
∑

j=1

Θju(t− j) + u(t) (5.1)

wherem = m1 +m2 +m3 and

Φi=





ϕXXi ϕXY i ϕXZi

ϕY Xi ϕY Y i ϕY Zi

ϕZXi ϕZY i ϕZZi



 , Θj=





θXXj θXY j θXZj

θY Xj θY Y j θY Zj

θZXj θZY j θZZj



 , (5.2)

E [u(t)] = 0, E
[
u(t)u(s)

′]
=

{
Σu, for s = t
0, for s 6= t .
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More compactly,
Φ(L)W (t) = Θ(L)u(t) (5.3)

with

Φ(L)=





ϕXX(L) ϕXY (L) ϕXZ(L)
ϕY X(L) ϕY Y (L) ϕY Z(L)
ϕZX(L) ϕZY (L) ϕZZ(L)



 , Θ(L)=





θXX(L) θXY (L) θXZ(L)
θY X(L) θY Y (L) θY Z(L)
θZX(L) θZY (L) θZZ(L)



 ,

ϕll(L) = Iml
−

p
∑

i=1

ϕlliL
i, ϕlk(L) = −

p
∑

i=1

ϕlkiL
i,

θll(L) = Iml
+

q
∑

j=1

θlljL
j, θlk(L) =

q
∑

j=1

θlkjL
j , for l 6= k, l, k = X, Y, Z.

We assume thatu(t) is orthogonal to the Hilbert subspace spanned{W (s) : s ≤ (t− 1)} with Σu

is symmetric positive definite matrix. Under stationarity,W (t) has a VMA(∞) representation:

W (t) = Ψ(L)u(t) (5.4)

where

Ψ(L) = Φ(L)−1Θ(L) =
∞∑

j=0

ΨjL
j =

∞∑

j=0





ψXXj ψXY j ψXZj

ψY Xj ψY Y j ψY Zj

ψZXj ψZY j ψZZj



Lj, Ψ0 = Im.

From the previous section, measures of dependence and causality are defined in terms of
variance-covariance matrices of the constrained and unconstrained forecast errors. Thus, to cal-
culate these measures, we need to know the structure of the constrained model (imposing non-
causality). This one can be deduced from the structure of theunconstrained model (5.1) using the
following proposition and corollary [Lütkepohl (1993b, pages 231-232)].

Lemma 5.1 L INEAR TRANSFORMATION OF AVMA (q) PROCESS. Letu(t) be aK-dimensional
white noise process with nonsingular variance-covariancematrixΣu and let

W (t) = µ+

q
∑

j=1

Ψju(t− j) + u(t)

be aK-dimensional invertible VMA(q) process. Furthermore, letF be an(M ×K) matrix of rank
M. Then theM -dimensional processW0(t) = FW (t) has an invertible VMA(q̄) representation:

W0(t) = Fµ+

q̄
∑

j=1

θ̄jε(t− j) + ε(t)

whereε(t) isM -dimensional white noise with nonsingular variance-covariance matrixΣε, the θ̄j ,
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j = 1, . . . , q̄, areM ×M coefficient matrices and̄q ≤ q.

Lemma 5.2 L INEAR TRANSFORMATION OF A VARMA (p, q) PROCESS. LetW (t) be aK-
dimensional, stable, invertible VARMA(p, q) process and letF be anM × K matrix of rankM.
Then the processW0(t) = FW (t) has a VARMA(p̄, q̄) representation with

p̄ ≤ Kp, q̄ ≤ (K − 1)p + q.

If we assume thatW (t) follows a VAR(p) [or VARMA (p, 0)] model, then its linear transfor-
mationW0(t) = FW (t) has a VARMA(p̄, q̄) representation with̄p ≤ Kp and q̄ ≤ (K − 1)p.
Suppose now that we are interested in measuring the causality from Y to X at a given horizonh.
We need to apply Lemma5.2 to obtain the structure of process{W0(s) = (X(s)

′
, Z(s)′)

′
: s ≤ t}.

If we left-multiply equation (5.3) by the adjoint matrix ofΦ(L), denotedΦ(L)∗, we get

Φ(L)∗Φ(L)W (t) = Φ(L)∗Θ(L)u(t) (5.5)

whereΦ(L)∗Φ(L) = det [Φ(L)]. Since the determinant ofΦ(L) is a sum of products involving
one operator from each row and each column ofΦ(L), the degree of the VAR polynomial, here
det [Φ(L)] , is at mostmp. We write:

det [Φ(L)] = 1− α1L− · · · − αp̄L
p̄

where p̄ ≤ mp. It is also easy to check that the degree of the operatorΦ(L)∗Θ(L) is at most
p(m− 1) + q. Thus, equation (5.5) can be written as follows:

det [Φ(L)]W (t) = Φ(L)∗Θ(L)u(t). (5.6)

This equation is another stationary invertible VARMA representation of processW (t), called the
final equation form. The model of the process{W0(s) = (X(s)′, Z(s)′)′ : s ≤ t} can be obtained
by choosing

F =

[
Im1

0 0
0 0 Im3

]

.

On premultiplying (5.6) byF, we get

det [Φ(L)]W0(t) = FΦ(L)∗Θ(L)u(t). (5.7)

The right-hand side of (5.7) is a linearly transformed finite-order VMA process which, by Lemma
5.1, has a VMA(q̄) representation with̄q ≤ p(m− 1) + q . Thus, we get the model:

det [Φ(L)]W0(t) = θ̄(L)ε(t) =

[
θ̄XX(L) θ̄XZ(L)
θ̄ZX(L) θ̄ZZ(L)

]

ε(t) (5.8)

where

E [ε(t)] = 0, E
[
ε(t)ε(s)

′]
=

{
Σε for s = t
0 for s 6= t

,
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θ̄ll(L) = Iml
+

q̄
∑

j=1

θ̄lljL
j , θ̄lk(L) =

q̄
∑

j=1

θ̄lkjL
j , for l 6= k, l, k = X, Z.

Note that, in theory, the coefficients̄θlkj and elements of the variance-covariance matrixΣε, can be
computed from coefficientsϕlki, Θlkj, l, k = X, Z, Y, i = 1, . . . , p, j = 1, . . . , q, and elements
of the variance-covariance matrixΣu. This is possible by solving the following system:

γε(v) = γu(v), v = 0, 1, 2, . . . (5.9)

where γε(v) and γu(v) are the autocovariance functions of the processesθ̄(L)ε(t) and
FΦ(L)∗Θ(L)u(t), respectively. The following example shows how one can calculate the theo-
retical parameters of the constrained model in terms of those of the unconstrained model in the
context of a bivariate VAR(1) model.

Example 5.3 Consider the following bivariate VAR(1) model:

[
X(t)
Y (t)

]

=

[
ϕXX ϕXY

ϕY X ϕY Y

] [
X(t− 1)
Y (t− 1)

]

+

[
uX(t)
uY (t)

]

= Φ

[
X(t− 1)
Y (t− 1)

]

+u(t). (5.10)

We assume that all the roots ofdet[Φ(z)] = det [I2 − Φz] are outside of the unit circle. Under this
assumption, model (5.10) has the following VMA(∞) representation:

(
X(t)
Y (t)

)

=

∞∑

j=0

Ψj

(
uX(t− j)
uY (t− j)

)

=

∞∑

j=0

[
ψXXj ψXY j

ψY X j ψY Y j

](
uX(t− j)
uY (t− j)

)

whereΨj = Φj. If we are interested in determining the model for the marginal processX(t), then
by Lemma5.2and forF = [1, 0] , we have

det[Φ(L)]X(t) = [1, 0]Φ(L)∗u(t)

where

Φ(L)∗ =

[
1− ϕY Y L ϕXY L
ϕY XL 1− ϕXXL

]

and
det[Φ(L)] = 1− (ϕY Y + ϕXX)L− (ϕY XϕXY − ϕXXϕY Y )L2.

Thus,

X(t)− ϕ1X(t− 1)− ϕ2X(t− 2) = ϕXY uY (t− 1)− ϕY Y uX(t− 1) + uX(t). (5.11)

whereϕ1 = ϕY Y + ϕXX andϕ2 = ϕY XϕXY − ϕXXϕY Y . The right-hand side of equation
(5.11), denoted̟ (t), is the sum of an MA(1) process and a white noise process. By Lemma5.1,
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̟(t) has an MA(1) representation,̟(t) = εX(t) + θ̄εX(t − 1). To determine parameters̄θ and
V(εX(t)) = σ2

εX
in terms of the parameters of the unconstrained model, we cansolve system (5.9)

for v = 0 andv = 1,

V [̟(t)] = V [uX(t)− ϕY Y uX(t− 1) + ϕXY uY (t− 1)] ,

E [̟(t)̟(t− 1)] = E[(uX(t)− ϕY Y uX(t− 1) + ϕXY uY (t− 1))

× (uX(t− 1)− ϕY Y uX(t− 2) + ϕXY uY (t− 2))] ,

which is equivalent to solve the following system:

(1 + θ̄
2
)σ2

εX
= (1 + ϕ2

Y Y )σ2
uX

+ ϕ2
XY σ

2
uY
− 2ϕY Y ϕXY σuY uX

and θ̄σ2
εX

= −ϕY Y σ
2
uX
.

Here we have two equations and two unknown parametersθ̄ andσ2
εX

. These parameters must satisfy
the constraints| θ̄ | < 1 andσ2

εX
> 0.

The VMA(∞) representation of model (5.8) is given by

W0(t) = det [Φ(L)]−1 θ̄(L)ε(t) =

∞∑

j=0

Ψ̄jε(t− j)

=
∞∑

j=0

[
ψ̄XXj

ψ̄XZj

ψ̄ZXj
ψ̄ZZj

] [
εX(t− j)
εZ(t− j)

]

(5.12)

whereΨ̄0 = Im1+m2
. To quantify the degree of causality fromY toX at horizonh,we first consider

the unconstrained and constrained models of processX. The unconstrained model is

X(t) =
∞∑

j=1

ψXXjuX(t− j) +

∞∑

j=1

ψXY juY (t− j) +

∞∑

j=1

ψXZjuZ(t− j) + uX(t) ,

whereas the constrained model is

X(t) =
∞∑

j=1

ψ̄XXjεX(t− j) +
∞∑

j=1

ψ̄XZjεZ(t− j) + εX(t) .

Second, we need to calculate the variance-covariance matrices of the unconstrained and constrained
forecast errors ofX(t+ h). From (5.4), the forecast error ofW (t+ h) is given by

U [W (t+ h) | IW (t)] =

h−1∑

i=0

Ψiu(t+ h− i)

so that

Σ[W (t+ h) | IW (t)] =
h−1∑

i=0

Ψi V [u(t)] Ψ
′

i =
h−1∑

i=0

ΨiΣu Ψ
′

i . (5.13)
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The unconstrained forecast error ofX(t+ h) is given by

U [X(t+ h) | IW (t)] =

h−1∑

j=1

ψXXjuX(t+ h− j) +

h−1∑

j=1

ψXY juY (t+ h− j)

+

h−1∑

j=1

ψXZjuZ(t+ h− j) + uX(t+ h),

which is associated with the unconstrained variance-covariance matrix

Σ[X(t+ h) | IW (t)] =
h−1∑

i=0

J1ΨiΣuΨ
′

iJ
′

1

whereJ1 =
[
Im1

0 0
]
. Similarly, the forecast error ofW0(t+ h) is given by

U0[W0(t+ h) | IW0
(t)] =

h−1∑

i=0

Ψ̄iε(t+ h− i)

associated with the variance-covariance matrix

Σ[W0(t+ h) | IW0
(t)] =

h−1∑

i=0

Ψ̄i ΣεΨ̄
′

i .

Consequently, the constrained forecast error ofX(t+ h) is given by

U0 [X(t+ h) | IW0
(t)] =

h−1∑

j=1

ψ̄XXj εX(t+ h− j) +
h−1∑

j=1

ψ̄XZj εZ(t+ h− j) + εX(t+ h)

associated with the constrained variance-covariance matrix

Σ[X(t+ h) | IW0
(t)] =

h−1∑

i=0

J0Ψ̄i ΣεΨ̄
′

i J0
′

whereJ0 =
[
Im1

0
]
. We can immediately deduce the following result by using the definition

of a causality measure fromY toX [see Definition4.1].

Theorem 5.4 REPRESENTATION OF CAUSALITY MEASURE IN TERMS OF IMPULSE RESPONSES.
Under assumptions (5.1) and (5.4),

C(Y−→
h
X |Z) = ln

[

det(
∑h−1

i=0 J0Ψ̄i ΣεΨ̄
′

i J
′

0)

det(
∑h−1

i=0 J1ΨiΣuΨ
′

iJ
′

1)

]
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for h ≥ 1, whereJ1 =
[
Im1

0 0
]
, andJ0 =

[
Im1

0
]
.

We can, of course, repeat the same argument switching the role of the variablesX andY .

Example 5.5 For a bivariate VAR(1) model [see Example5.3], we can analytically compute the
causality measures at any horizonh using only the unconstrained parameters. For example, the
measures of causality fromY toX at horizons1 and2 are given by1

C(Y −→
1
X)= ln




(1 + ϕ2

Y Y )σ2
uX

+ ϕ2
XY σ

2
uY

+
√

((1 + ϕ2
Y Y )σ2

uX
+ ϕ2

XY σ
2
uY

)2 − 4ϕ2
Y Y σ

4
uX

2σ2
uX



 ,

(5.14)

C(Y −→
2
X) = ln

[

4ϕ2
Y Y σ

4
uX

+ [(1 + ϕ2
Y Y )σ2

uX
+ ϕ2

XY σ
2
uY
−∆− 2ϕY Y σ

2
uX

]2

2[(1 + ϕ2
XX)σ2

uX
+ ϕ2

XY σ
2
uY

][(1 + ϕ2
Y Y )σ2

uX
+ ϕ2

XY σ
2
uY
−∆]

]

(5.15)

where∆ =
√

((1 + ϕY Y )2σ2
uX

+ ϕ2
XY σ

2
uY

)2 − 4ϕ2
Y Y σ

4
uX
.

Now, we will determine the parametric measure of instantaneous causality betweenX andY
at given horizonh. We know from Section 4 that a measure of instantaneous causality is defined
only in terms of the variance-covariance matrices of unconstrained forecast errors [see Definition
4.3]. The variance-covariance matrix of the unconstrained forecast error of joint process

(
X(t +

h)′, Y
′
(t+ h)′

)′
is given by

Σ
(
X(t+ h), Y (t+ h) | IW (t)

)
=

h−1∑

i=0

G ΨiΣuΨ
′

iG
′

whereG =

[
Im1

0 0
0 Im2

0

]

. Consequently,

Σ
(
X(t+ h) | IW (t)

)
=

h−1∑

i=0

[J1ΨiΣuΨ
′

iJ
′

1]

Σ
(
Y (t+ h) | IW (t)

)
=

h−1∑

i=0

[J2ΨiΣuΨ
′

iJ
′

2],

whereJ2 =
[

0 Im2
0
]
. We can immediately deduce the following result by using the defini-

tion of the instantaneous causality measure [see Definition4.3].

1Equations (5.14)-(5.15) are obtained under assumptionscov(uX(t), uY (t)) = 0 and

[
(1 + π

2

Y Y )σ2

uX
+ π

2

XY σ
2

uY

]2
− 4π

2

Y Y σ
4

uX
≥ 0.
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Theorem 5.6 REPRESENTATION OF THE INSTANTANEOUS CAUSALITY MEASURE IN TERMS OF

IMPULSE RESPONSES. Under assumptions (5.1) and (5.4),

C(X←→
h
Y |Z) =ln

[

det(
∑h−1

i=0 [J1ΨiΣuΨ
′

iJ
′

1]) det(
∑h−1

i=0 [J2ΨiΣuΨ
′

iJ
′

2])

det(
∑h−1

i=0 [G ΨiΣuΨ
′

iG
′
])

]

for h ≥ 1, whereG =

[
Im1

0 0
0 Im2

0

]

, J1 =
[
Im1

0 0
]
, andJ2 =

[
0 Im2

0
]
.

The parametric measure of dependence betweenX andY at horizonh can be deduced from its
decomposition given by equation (4.9).

5.2. Characterization of causality measures for VMA(q) processes

Now, assume that the process{W (s) = (X(s)′, Y (s)′, Z(s)′)′ : s ≤ t} follows an invertible
VMA( q) model:

W (t) =

q
∑

j=1

Θju(t− j) + u(t) (5.16)

where

Θj =





θXXj θXY j θXZj

θY Xj θY Y j θY Zj

θZXj θZY j θZZj





or, more compactly,
W (t) = Θ(L)u(t)

where

Θ(L) =





θXX(L) θXY (L) θXZ(L)
θY X(L) θY Y (L) θY Z(L)
θZX(L) θZY (L) θZZ(L)



,

θll(L) = Iml
+

q
∑

j=1

θlljL
j , θlk(L) =

q
∑

j=1

θlkjL
j , for l 6= k, l, k = X, Z, Y.

From Lemma5.1 and lettingF =

[
Im1

0 0
0 0 Im2

]

, the model of the constrained process

W0(t) = FW (t) is an MA(q̄) with q̄ ≤ q. We write,

W0(t) = θ̄(L)ε(t) =

q̄
∑

j=0

θ̄jε(t− j)=

q̄
∑

j=0

[
θ̄XX,j θ̄XZ j

θ̄ZX,j θ̄ZZ,j

](
εX(t− j)
εZ(t− j)

)

We have the following result.
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Theorem 5.7 CHARACTERIZATION OF CAUSALITY MEASURES FORVMA( q). Leth1 andh2 be
two different horizons. Under assumption (5.16) we have,

C(Y−→
h1

X |Z) = C(Y−→
h2

X |Z), ∀ h2 ≥ h1 ≥ q.

This result follows immediately from Proposition4.5.

6. Estimation

From Section 5, we know that short-run and long-run causality measures depend on the parameters
of the model describing the process of interest. Consequently, these measures can be estimated by
replacing the unknown parameters by their estimates from a finite sample.

There are at least three different approaches to the estimation of causality measures. The first
and simplest approach assumes that the process of interest follows a finite-order VAR(p) model
which can be estimated by OLS. The second approach assumes that the process follows a finite-
order VARMA model. But standard methods for the estimation of VARMA models, such as max-
imum likelihood and nonlinear least squares, require nonlinear optimization. This is difficult to
implement because the number of parameters can increase quickly. To circumvent this problem,
several authors have developed a relatively simple approach based only on linear regression [see
Hannan and Rissanen (1982), Hannan and Kavalieris (1984a, 1984b), Koreisha and Pukkila (1989),
Dufour and Pelletier (2005), and Dufour and Jouini (2004)].This approach enables estimation of
VARMA models using a long VAR whose order depends on the sample size. The last approach as-
sumes that the process is autoregressive with potentially infinite order, but can can be approximated
by a VAR(k) model, wherek = k(T ) depends on the sample size. It is the focus of this section.

The precise form of the parametric model appropriate for a process is typically unknown. For
this reason, several authors have considered a nonparametric approach to predicting future values
using an autoregressive model fitted to a series ofT observations; see, for example, Parzen (1974),
Bhansali (1978), Lewis and Reinsel (1985). This approach isbased on assuming the process con-
sidered has an infinite-order autoregressive model, which can be approximated in finite samples by
a finite-order autoregressive model. In particular, stationary invertible VARMA processes belongs
to this class. We will now describe how this approach can be applied to estimate causality mea-
sures at different horizons. We first discuss the estimationof the fitted autoregressive constrained
and unconstrained models. Then we construct a consistent estimator of the short-run and long-run
causality measures.

Consider a stationary vector process{W (s) = (X(s)′, Y (s)′, Z(s)′)′ : s ≤ t)}. By Wold’s
theorem, this process can be written in the form of a VMA(∞) model:

W (t) = u(t) +

∞∑

j=1

Ψju(t− j).

We assume that
∑∞

j=0 ‖ Ψj ‖< ∞ anddet{Ψ(z)} 6= 0 for z ∈ C and | z | ≤ 1, where‖ Ψj ‖=
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tr(ΨjΨj) andΨ(z) =
∑∞

j=0 Ψjz
j , with Ψ0 = Im anm × m identity matrix. Under the latter

assumptions,W (t) is invertible and can be written as an infinite autoregressive process:

W (t) =

∞∑

j=1

ΦjW (t− j) + u(t) (6.1)

where
∑∞

j=1 ‖ Φj ‖< ∞ andΦ(z) = Im −
∑∞

j=1 Φjz
j = Ψ(z)−1 satisfiesdet{Φ(z)} 6= 0 for

z ∈ C and | z | ≤ 1.
Given a realization{W (1), . . . ,W (T )}, we can approximate (6.1) by a finite-order VAR(k)

model, wherek depends on the sample sizeT :

W (t) =
k∑

j=1

ΦjkW (t− j) + uk(t).

The least squares estimators of the coefficientsΦ(k) = [Φ1k, Φ2k, . . . , Φkk] of the fitted VAR(k)
model and variance-covariance matrixΣu|k of the error term are given by

Φ̂(k) = [Φ̂1k, Φ̂2k, . . . , Φ̂kk] = Γ̂
′

k1Γ̂
−1

k , Σ̂u|k =

T∑

t=k+1

ûk(t)ûk(t)
′

/(T − k)

where

Γ̂k = (T − k)−1
T∑

t=k+1

w(t)w(t)
′

, Γ̂k1 = (T − k)−1
T∑

t=k+1

w(t)W (t+ 1)
′

,

w(t) = (W (t)
′
, . . . ,W (t− k + 1)

′
)
′
andûk(t) = W (t)−

∑k
j=1 Φ̂jkW (t− j).

Suppose now we are interested in measuring causality fromY to X at a given horizonh. For
that, we need to define the structure of the marginal process{W0(s) = (X(s)

′
, Z(s)′)

′
: s ≤ t}.

Under general condition [and as there isW (t) follows a VARMA(p, q) model as in Lemma5.2],
W0(t) has a VAR(∞) representation:

W0(t) =

∞∑

j=1

Φ̄jW0(t− j) + ε(t). (6.2)

(6.2) can be approximated by VAR(k) model, wherek depends on the sample sizeT :

W0(t) =

k∑

j=1

Φ̄jkW (t− j) + εk(t).

It is more convenient to calculate the causality measure by considering the same orderk for the
constrained and unconstrained models. This is to ensure a relevant comparison of the determinants
of the variance-covariance matrices of the constrained andunconstrained forecast errors at horizon
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h .
The estimators of the autoregressive coefficientsΦ̄(k) = [Φ̄1k, Φ̄2k, . . . , Φ̄kk] of the fitted

constrained VAR(k) model and variance-covariance matrixΣε|k of the error term are given by the
following equation:

Φ̃(k) = [Φ̃1k, Φ̃2k, . . . , Φ̃kk] = Γ̃
′

k1Γ̃
−1
k , Σ̃ε|k =

T∑

t=k+1

ε̃k(t)ε̃k(t)
′

/(T − k)

whereΓ̃k1, Γ̃k, andε̃k(t) are defined as for unconstrained model.
Now to estimate the degree of causality fromY to X at horizonh, we need to estimate the

variance-covariance matrices of the unconstrained and constrained forecast errors. The forecast
error of the unconstrained processW (t+ h) based on theV AR(∞) model is given by

U(h) =

h−1∑

j=0

Ψju(t+ h− j)

with the variance-covariance matrix

Σ(h) =

h−1∑

j=0

ΨjΣuΨ
′

j

whereΨj = Φ
(j)
1 and

Φ
(j+1)
1 = Φ

(j)
2 + Φ

(j)
1 Φ1, Φ

(1)
1 = Φ1, Φ

(0)
1 = Im, for j ≥ 1; (6.3)

see Dufour and Renault (1998). An estimator of the variance-covariance matrix of the forecast error
of W (t+ h) based on theV AR(k) model is given by

Σ̂k(h) =
h−1∑

j=0

Ψ̂jkΣ̂u|kΨ̂
′

jk (6.4)

whereΨ̂jk = Φ̂
(j)
1k and Φ̂(j)

1k are calculated using (6.3) (withΦ(j)
1 replaced byΦ̂(j)

1k ). Similarly, the
variance-covariance matrix of the forecast error ofW0(t+ h) is given by

Σ0(h) =

h−1∑

j=0

Ψ̄jΣεΨ̄j
′

whereΨ̄j = Φ̄
(j)
1 andΦ̄(j)

1 are defined in similar way as in (6.3). Furthermore, an estimator of the
variance-covariance matrix of the forecast error ofW0(t+h) based on theV AR(k) model is given
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by

Σ̃0|k(h) =
h−1∑

j=0

Ψ̃jkΣ̃ε|kΨ̃jk
′

(6.5)

whereΨ̃jk is an estimate of the corresponding population parameterΨ̄j. Consequently, from Theo-
rem5.4an estimator of the causality measure fromY toX at horizonh is given by

Ĉ(Y−→
h
X |Z) = ln

[

det
[
J0Σ̃0|k(h)J

′

0

]

det
[
J1Σ̂k(h)J

′

1

]

]

. (6.6)

The most basic property that the above estimator should haveis consistency. To prove con-
sistency, additional regularity assumptions are needed. We consider here the set of standard as-
sumptions originally considered by Lewis and Reinsel (1985) to derive consistency of parameter
estimates for a VAR(∞) model. Of course, alternative – eventually weaker – assumptions could
also be studied.

Assumption 6.1 The following conditions are satisfied:

(1) E |uh(t)ui(t)uj(t)ul(t) | ≤ γ4 < ∞, for 1 ≤ h, i, j, l ≤ m; whereuh(t), ui(t), uj(t), and
ul(t) are elements of the vector of the error termu(t);

(2) k is chosen as a function ofT such thatk3/T → 0 ask, T →∞;

(3) k is chosen as a function ofT such thatk1/2
∑∞

j=k+1 ‖ Φj ‖→ 0 ask, T →∞;

(4) the series used to estimate parameters ofV AR(k) and the series used for prediction are gen-
erated from two independent processes having the same stochastic structure.

Theorem 1 in Lewis and Reinsel (1985) ensures convergence ofΦ̂(k) under conditions 1 and 3
of Assumption6.1 and by choosingk as a function ofT such thatk2/T → 0 ask, T → ∞. The
latter is an implication of condition 2 of Assumption6.1. Consequently, Assumption6.1 is sufficient
for convergency ofΦ̂(k). Furthermore, their Theorem 4 derives the asymptotic distribution forΦ̂(k)
under Assumption6.11 and by assuming that there exists{l(k)} a sequence ofkm2×1 vectors such
that0 < M1 ≤‖ l(k) ‖

2= l(k)
′
l(k) ≤ M2 < ∞, for k = 1, 2, . . . Under similar conditions the

estimatorΦ̃(k) converges tōΦ(k) and asymptotically follows a normal distribution. Finally, we
note thatΣ̂u|k converges toΣu|k, ask andT →∞ [Lütkepohl (1993a, pages 308-309)].

Proposition 6.2 CONSISTENCY OF CAUSALITY MEASURES. Under Assumption6.1, Ĉ(Y −→
h

X |Z) is a weakly consistent estimator ofC(Y −→
h

X |Z).

Finally, we note that in practice one must choose the value ofk to use for any given seriesT .
Lewis and Reinsel (1985, pages 408-409) suggest to use Akaike’s information criterion, which was
originally proposed to select the order of a finite autoregressive process by choosing the value of
k which minimizes the determinant of the estimated one-step ahead mean square prediction error
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matrix, to determine a finite-order approximation to a true infinite order autoregressive process [see
also Bhansali (1978) and Parzen (1974)].

7. Evaluation by simulation of causality measures

Except in very simple specifications, it is quite difficult analytical expressions for causality mea-
sures. To bypass this difficulty, we propose here a simple simulation-based technique to calculate
causality measures at any horizonh, for h ≥ 1. To illustrate the proposed technique we consider the
examples of Section 2 and limit ourselves to horizons1 and2. Since one source of bias in autore-
gressive coefficients is sample size, the proposed technique consists of simulating a large sample
from the unconstrained model whose parameters are assumed to be either known or estimated from
a real data set. Once the large sample, hereafter large simulation, is simulated, we use it to estimate
the parameters of the constrained model (imposing noncausality). In what follows, we describe an
algorithm to calculate the causality measure at given horizonh using a simulation technique.

1. Given the parameters of the unconstrained model and its initial values, simulate a large sample
of T observations under the assumption that the probability distribution of the error termu(t)
is completely specified [in our work, we have used values ofT as high as1000000]. Note that
the form of the probability distribution ofu(t) does not affect the value of causality measures.

2. Estimate the constrained model using a large simulation.

3. Calculate the variance-covariance matrices of the constrained and unconstrained forecast er-
rors at horizonh [see Section 6].

4. Calculate the causality measure at horizonh using (6.6).

To see better how this works, consider again Example2.1:
[
X(t+ 1)
Y (t+ 1)

]

= Φ

[
X(t)
Y (t)

]

+ u(t) (7.1)

where

Φ =

[
0.5 0.7
0.4 0.35

]

, E[u(t)] = 0, E[u(t)u(s)′] =

{
I2 if s = t

0 if s 6= t .

Our illustration involves two steps. First, we calculate the theoretical values of the causality mea-
sures at horizons1 and 2. We know from Example5.5 that for a bivariate VAR(1) model it is
relatively easy to compute the causality measure at any horizonh using only the unconstrained pa-
rameters. Second, we evaluate the causality measures usinga large simulation technique and we
compare them with theoretical values from step 1. The latterare recovered as follows.

1. We compute the variances of the forecast errors ofX at horizons1 and2 using its own past
and the past ofY . We have:

Σ(h) =

h−1∑

i=0

(Φi)(Φi)
′

. (7.2)
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Table 1. Evaluation by simulation ofC(Y−→
1
X) andC(Y−→

2
X) for Model 7.1

p C(Y−→
1
X) C(Y−→

2
X)

1 0.519 0.567

2 0.430 0.220

3 0.427 0.200

4 0.425 0.199

5 0.426 0.198

10 0.425 0.197

15 0.426 0.199

20 0.425 0.197

25 0.425 0.199

30 0.426 0.198

35 0.425 0.198

From (7.2), we get

V[X(t+ 1) | IX (t), IY (t)] = 1, V[X(t+ 2) | IX (t), IY (t)] = 1.74.

2. We compute the variances of the forecast errors ofX at horizons1 and2 using only its own
past. To do that we need to determine the structure of the constrained model. This one is
given by the following equation [see Example5.3]:

X(t+ 1) = 0.85X(t) + 0.105X(t− 1) + εX(t+ 1) + θ̄εX(t).

The parameters̄θ andV(εX(t)) = σ2
εX

are the solutions to the following system:

(1 + θ̄
2
)σ2

εX
= 1.6125 , θ̄σ2

εX
= −0.35.

The set of possible solutions is
{
(θ̄, σ2

εX
) = (−4.378, 0.08), (−0.2285, 1.53)

}
. To get an

invertible solution we must choose the combination which satisfies the condition| θ̄ | < 1,
i.e. the combination(−0.2285, 1.53). Thus, the variance of the forecast error ofX at horizon
1 using only its own past isΣ[X(t+1) | IX (t)] = 1.53, and the variance of the forecast error
of X at horizon2 isΣ[X(t+ 2) | IX (t)] = 2.12. Consequently,

C(Y−→
1
X) = 0.425, C(Y−→

2
X) = 0.197.

In a second step we use the algorithm described at the beginning of this section to evaluate the
causality measures using a large simulation technique. Table 1 shows results that we get for different
lag ordersp in the constrained model (usingT = 600000). These results confirm the convergence
ensured by the law of large numbers and that we have proved is Section 5
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Table 2. Evaluation by simulation ofC(Y −→
1
X |Z) andC(Y −→

2
X |Z) for Model 7.3

p C(Y−→
1
X |Z) C(Y−→

2
X |Z)

1 0.000 0.121

2 0.000 0.123

3 0.000 0.122

4 0.000 0.123

5 0.000 0.124

10 0.000 0.122

15 0.000 0.122

20 0.000 0.122

25 0.000 0.124

30 0.000 0.122

35 0.000 0.122

Now consider Example2.2:




X(t+ 1)
Y (t+ 1)
Z(t+ 1)



 =





0.60 0.00 0.80
0.00 0.40 0.00
0.00 0.60 0.10









X(t)
Y (t)
Z(t)



+





εX(t+ 1)
εY (t+ 1)
εZ(t+ 1)



 . (7.3)

In this example, analytical calculation of the causality measures is not easy. In model (7.3)Y does
not causeX at horizon one, but causes it at horizon 2 (indirect causality). Consequently, we expect
that causality measure fromY to X will be equal to zero at horizon1 and different from zero
at horizon 2. Using a large simulation technique and by considering different lag ordersp in the
constrained model, we get the results in Table 2. These results confirm our expectation and show
clearly the presence of an indirect causality fromY toX.

8. Confidence intervals

In this section, we assume thatX andY are univariate processes (m1 = m2 = 1) while Z can be
multivariate (m3 ≥ 0). This corresponds to the case of most practical interest. Furthermore and for
simplicity of exposition, we assume that the processW ≡ {W (s) = (X(s)′, Y (s)′, Z(s)′)′ : s ≤
t)} follows a VAR(p) model:

W (t) =

p
∑

i=1

ΦiW (t− i) + u(t) (8.1)
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or equivalently,
(
Im −

p
∑

i=1

ΦiL
i
)
W (t) = u(t)

whereIm is anm×m identity matrix, the polynomialΦ(z) = Im−
∑p

i=1 Φiz
i satisfiesdet[Φ(z)] 6=

0, for z ∈ C with | z | ≤ 1, and{u(t)}∞t=0 is a sequence ofi.i.d. random variables.2

For a realization{W (1), . . . ,W (T )} of processW , estimates ofΦ = [Φ1, . . . , Φp] and the
variance-covariance matrixΣu of u(t) are given by the following equations:

Φ̂ = Γ̂
′

1Γ̂
−1, Σ̂u =

T∑

t=p+1

û(t)û(t)
′

/(T − p), (8.2)

where

Γ̂ = (T − p)−1
T∑

t=p+1

w(t)w(t)
′

, Γ̂1 = (T − p)−1
T∑

t=p+1

w(t)W (t+ 1)
′

,

w(t) = (W (t)
′
, . . . ,W (t− p+ 1)

′
)
′
, andû(t) = W (t)−

∑p
i=1 Φ̂iW (t− i).

Suppose that we are interested in measuring causality fromY to X at given horizonh. To do
that we need to know the structure of the marginal process{W0(s) = (X(s), Z(s)

′
)
′

: s ≤ t)}.
This one has a VARMA(p̄, q̄) representation with̄p ≤ mp andq̄ ≤ (m− 1)p,

W0(t) =

p̄
∑

i=1

Φc
iW0(t− i) +

q̄
∑

i=1

θc
iε(t− i) + ε(t) (8.3)

where{ε(t)}∞t=0 is a sequence of uncorrelated random variables that satisfies

E [ε(t)] = 0, E

[

ε(t)ε
′

(s)
]

=

{
Σε if s = t
0 if s 6= t

,

andΣε is a positive definite matrix. Equation (8.3) can be rewritten in the following reduced form:

Φc(L)W0(t) = θc(L)ε(t)

whereΦc(L) = Im̄−Φ
c
1L−· · ·−Φ

c
p̄
Lp̄ andθc(L) = Im̄ +θc

1L+ · · ·+θc
q̄L

q̄, for m̄ = m3 +1 and

Im̄ anm̄ × m̄ identity matrix. We assume thatθc(z) = Im̄ +
∑q̄

j=1 θ
c
jz

j satisfiesdet[θc(z)] 6= 0
for z ∈ C and | z | ≤ 1. Under the latter assumption, the VARMA(p̄, q̄) process is invertible and
has a VAR(∞) representation:

W0(t)−

∞∑

j=1

Φ̄jW0(t− j) = θc(L)−1Φc(L)W0(t) = ε(t). (8.4)

2If W follows a VAR(∞) model, then one can use Inoue and Kilian’s (2002) approach to get results that are similar
to those developed in this section.
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We approximate (8.4) by a finite-order VAR(k) model, wherek depends on sample sizeT :

W0(t) =

k∑

j=1

Φ̄jkW0(t− j) + εk(t). (8.5)

The estimators of the coefficients̄Φ(k) = [Φ̄1k, Φ̄2k, . . . , Φ̄kk] of the fitted constrained VAR(k)
model and variance-covariance matrixΣε|k of the error term are given by the following equation:

Φ̃(k) = [Φ̃1k, Φ̃2k, . . . , Φ̃kk] = Γ̃
′

k1Γ̃
−1
k , Σ̃ε|k =

T∑

t=k+1

ε̃k(t)ε̃k(t)
′

/(T − k),

whereΓ̃k, Γ̃k1, andε̃k(t) are calculated as for the unconstrained model.
The theoretical value of the causality measure fromY toX at horizonh is given by

C(Y−→
h
X |Z) = ln

(

det
(
J0Σ0(h)J

′

0

)

det
(
J1Σ(h)J

′

1

)

)

where

Σ0(h) =
h−1∑

j=0

Ψ̄jΣεΨ̄
′

j, Σ(h) =
h−1∑

j=0

ΨjΣuΨj
′

,

Ψ̄j = Φ̄
(j)
1 , Ψj = Φ

(j)
1 and Φ(j)

1 is defined in similar way as in (6.3). Using Lemma5.2
C(Y−→

h
X |Z) may be written as follows:

C(Y−→
h
X |Z) = ln

(

det
(
G
(
Φ,Σu

))

det
(
H
(
Φ, Σu

))

)

,

G
(
Φ,Σu

)
=

h−1∑

j=0

J0Ψ̄jΣεΨ̄
′

jJ
′

0 , H
(
Φ, Σu

)
=

h−1∑

j=0

J1ΨjΣuΨj
′

J
′

1 ,

G(·) andH(·) are continuous and differentiablefunctions of
(
Φ,Σu

)
. A consistent estimator of

C(Y −→
h

X |Z) is given by

Ĉ(Y−→
h
X |Z) = ln

(

det
(
J0Σ̃0|k(h)J

′

0

)

det
(
J1Σ̂(h)J

′

1

)

)

(8.6)

where

Σ̃0|k(h) =
h−1∑

j=0

Ψ̃jk Σ̃ε|kΨ̃jk
′

, Σ̂(h) =
h−1∑

j=0

Ψ̂jΣ̂uΨ̂j
′

,
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Ψ̂j, Σ̂u, Ψ̃jk, andΣ̂ε|k are estimates of the corresponding population quantitiesΨj, Σu, Ψ̄jk, and
Σε|k.

To establish the asymptotic distribution ofĈ(Y −→
h

X |Z), we recall the following result [see

Lütkepohl (1993a, Chapter 3) and Kilian (1998, page 221)]:

T 1/2

(
vec(Φ̂)− vec(Φ)

vech(Σ̂u)− vech(Σu)

)

d
→ N [0, Ω] (8.7)

wherevec denotes the column stacking operator,vech is the column stacking operator that stacks
the elements on and below the diagonal only,

Ω =

[
Γ−1 ⊗Σu 0

0 2(D
′

mDm)−1D
′

m(Σu ⊗Σu)Dm(D
′

mDm)−1

]

, (8.8)

andDm is the duplication matrix, defined such thatvech(F ) = Dmvech(F ) for any symmetric
m×m matrixF . Thereafter, we will consider the following assumptions.

Assumption 8.1 The following conditions are satisfied:

(1) E | εh(t)εi(t)εj(t)εl(t) | ≤ γ4 < ∞, for 1 ≤ h, i, j, l ≤ m̄; whereεh(t), εi(t), εj(t), and
εl(t) are elements of the vector of the error termε(t);

(2) k is chosen as a function ofT such thatk3/T → 0 ask, T →∞;

(3) k is chosen as a function ofT such thatk1/2
∑∞

j=k+1 ‖ Φ̄j ‖→ 0 ask, T →∞;

(4) the series used to estimate parameters ofV AR(k) and the series used for prediction are gen-
erated from two independent processes having the same stochastic structure.

Proposition 8.2 ASYMPTOTIC DISTRIBUTION OF CAUSALITY MEASURES. Under Assumptions
6.1, we have:

T 1/2[Ĉ(Y−→
h
X |Z)− C(Y−→

h
X |Z)]

d
→ N

[
0, σc(h)

2
]

whereσc(h)
2 = DCΩD

′

C , DC = ∂C(Y−→
h
X |Z) / ∂θ′, θ =

(
vec(Φ)′, vech(Σu)

′)′
andΩ is

given by(8.8).

Differentiating analytically the causality measures withrespect toθ is typically difficult. One
way to build confidence intervals for causality measures is to use a large simulation technique [see
Section 7] to calculate the derivative numerically. Another way consists in building bootstrap confi-
dence intervals. As mentioned by Inoue and Kilian (2002), for bounded measures, as in our case, the
bootstrap approach is more reliable than the delta-method.One reason is because the delta-method
interval is not range respecting and may produce confidence intervals that are logically invalid. In
contrast, the bootstrap percentile interval preserves by construction these constraints [see Inoue and
Kilian (2002, pages 315-318) and Efron and Tibshirani (1993)].
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Let us consider the following bootstrap approximation to the distribution of the causality mea-
sure at given horizonh.

1. Estimate a VAR(p) process and save the residuals

ũ(t) = W (t)−

p
∑

i=1

Φ̂iW (t− i), for t = p+ 1, . . . , T,

Φ̂i, for i = 1, . . . , p, are given by (8.2) and the OLS estimate ofΣu is given byΣ̂u =
∑T

t=p+1 û(t)û(t)
′
/(T − p), whereû(t) = ũ(t)−

∑T
t=p+1 ũ(t)/(T − p) andũ(t) = W (t)−

∑p
i=1 Φ̂iW (t− i).

2. Generate(T − p) bootstrap residualsu∗(t) by random sampling with replacement from the
residualŝu(t), t = p+ 1, . . . , T.

3. Choose the vector ofp initial observationsw(0) = (W (1)
′
, . . . , W (p)

′
)
′
. 3

4. GivenΦ̂ = [Φ̂1, . . . , Φ̂p], {u
∗(t)}Tt=p+1, andw(0), generate bootstrap data for the dependent

variableW ∗(t) from equation:

W ∗(t) =

p
∑

i=1

Φ̂iW
∗(t− i) + u∗(t), for t = p+ 1, . . . , T . (8.9)

5. Calculate the bootstrap OLS regression estimates

Φ̂∗ = [Φ̂∗
1, Φ̂

∗
2, . . . , Φ̂

∗
p] = Γ̂ ∗′

1 Γ̂
∗−1, Σ̂∗

u =

T∑

t=p+1

û∗(t)û∗(t)
′

/(T − p),

where

Γ̂ ∗ = (T − p)−1
T∑

t=p+1

w∗(t)w∗(t)
′

, Γ̂ ∗
1 = (T − p)−1

T∑

t=p+1

w∗(t)W ∗(t+ 1)
′

,

w∗(t) = (W ∗(t)
′
, . . . ,W ∗(t − p + 1)

′
)
′
, , û∗(t) = ũ∗(t) −

∑T
t=p+1 ũ

∗(t)/(T − p), and

ũ∗(t) = W ∗(t)−
∑p

i=1 Φ̂iW
∗(t− i).

6. Estimate the constrained model of the marginal process(X,Z) using the bootstrap sample
{W ∗(t)}Tt=1.

3The choice of using the initial vectors(W (1)
′

, . . . , W (p)
′

)
′

seems natural, but any block of p vectors from
W ≡ {W (1), . . . ,W (T )} would be appropriate. Berkowitz and Kilian (2000) note thatconditioning each bootstrap
replicate on the same initial value will understate the uncertainty associated with the bootstrap estimates, and this choice
is randomised in the simulations by choosing the starting value fromW ≡ {W (1), . . . , W (T )} [see Patterson (2007)].
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7. Calculate the causality measure at horizonh, denotedĈ(j)∗(Y −→
h

X |Z), using equation

(6.6) and the bootstrap sample.

8. ChooseB such1
2α(B + 1) is an integer and repeat steps(2)-(7) B times.

We have the following result which establish the validity ofthe percentile bootstrap technique.

Proposition 8.3 ASYMPTOTIC VALIDITY OF THE RESIDUAL-BASED BOOTSTRAP. Under as-
sumptions6.1, we have

T 1/2[Ĉ∗(Y−→
h
X |Z)− Ĉ( Y−→

h
X |Z)]

d
→ N

[
0, σc(h)

2
]

whereσc(h)
2 andΩ are defined in Proposition8.2.

Kilian (1998) proposes an algorithm to remove the bias in impulse response functions prior to
bootstrapping the estimate. As he mentioned, the small sample bias in an impulse response function
may arise from bias in slope coefficient estimates or from thenonlinearity of this function, and this
can translate into changes in interval width and location. If the ordinary least-squares small-sample
bias can be responsible for bias in the estimated impulse response function, then replacing the biased
slope coefficient estimates by bias-corrected slope coefficient estimates may help to reduce the bias
in the impulse response function. Kilian (1998) shows that the additional modifications proposed
in the bias-corrected bootstrap confidence intervals method do not alter its asymptotic validity. The
reason is that the effect of bias corrections is negligible asymptotically.

To improve the performance of the percentile bootstrap intervals described above, we almost
consider the same algorithm as in Kilian (1998). Before bootstrapping the causality measures, we
correct the bias in the VAR coefficients. We approximate the bias termBias =E[Φ̂−Φ] of the VAR
coefficients by the corresponding bootstrap biasBias∗ =E∗[Φ̂∗ − Φ̂], whereE∗ is the expectation
based on the bootstrap distribution ofΦ̂∗. This suggests the bias estimate

B̂ias
∗

=
1

B

B∑

j=1

Φ̂∗(j) − Φ̂.

We substituteΦ̂ − B̂ias
∗

in equation (8.9) and generateB new bootstrap replicationŝΦ∗. We use

the same bias estimate,̂Bias
∗
, to estimate the mean bias of neŵΦ∗[see Kilian (1998)]. Then we

calculate the bias-corrected bootstrap estimatorΦ̃∗ = Φ̂∗ − B̂ias
∗

that we use to estimate the bias-
corrected bootstrap causality measure estimate. Based on the discussion by Kilian (1998, page 219),
given the nonlinearity of the causality measure, this procedure will not in general produce unbiased
estimates, but as long as the resulting bootstrap estimatoris approximately unbiased, the implied
percentile intervals are likely to be good approximations.Further, to reduce the bias in the causality
measure estimate, in the empirical application we consideranother bias correction applied directly
on the measure itself, this one is given by

C̃(j)∗(Y −→
h

X |Z) = Ĉ(j)∗(Y −→
h

X |Z)− [C
∗

(Y −→
h

X |Z)− Ĉ(Y −→
h

X |Z)]
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Table 3. Augmented Dickey-Fuller tests for the variables inlevel

With Intercept With Intercept and Trend
ADF test statistic 5% Critical Value ADF test statistic 5% Critical Value

NBR −0.510587 −2.8694 −1.916428 −3.4234

R −2.386082 −2.8694 −2.393276 −3.4234

P −1.829982 −2.8694 −0.071649 −3.4234

GDP −1.142940 −2.8694 −3.409215 −3.4234

where

C
∗

(Y −→
h

X |Z) =
1

B

B∑

j=1

C̃(j)∗(Y −→
h

X |Z).

In practice, specially when the true value of causality measure is close to zero, it is possible that for
some bootstrap samples

Ĉ(j)∗(Y −→
h
X |Z) ≤ [C

∗
(Y −→

h
X |Z)− Ĉ(Y −→

h
X |Z)].

In this case we impose the following non-negativity truncation:

C̃(j)∗(Y −→
h

X |Z) = max

{

C̃(j)∗(Y −→
h

X |Z), 0

}

.

9. Empirical illustration

We apply our causality measures to measure the strength of relationships between macroeconomic
and financial variables. The data set considered is the one used by Bernanke and Mihov (1998)
and Dufour et al. (2006). This data set consists of monthly observations on nonborrowed reserves
(NBR), the federal funds rate (r), the gross domestic product deflator (P ), and real gross domestic
product (GDP ). The monthly data onGDP and theGDP deflator were constructed using state
space methods from quarterly observations [for more details, see Bernanke and Mihov (1998)]. The
sample runs from January 1965 to December 1996 for a total of 384 observations.

All variables are in logarithmic form [see Figures 1-4]. These variables were also transformed
by taking first differences [see Figures 5-8], consequentlythe causality relations have to be inter-
preted in terms of the growth rate of variables.

We performed an Augmented Dickey-Fuller test (hereafterADF -test) for nonstationarity of the
four variables of interest and their first differences. The values of the test statistics, as well as the
critical values corresponding to a5% significance level, are given in tables 3 and 4. Table 5, below,
summarizes the results of the stationarity tests for all variables.

As we can read from Table 5, all variables in logarithmic formare nonstationary. However,
their first differences are stationary except for the GDP deflator,P. We performed a nonstationarity
test for the second difference of variableP. The test statistic values are equal to−11.04826 and
−11.07160 for theADF -test with only an intercept and with both intercept and trend, respectively.
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Figure 3: P in logarithmic form
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Table 4. Augmented Dickey-Fuller tests for the variables infirst difference

With Intercept With Intercept and Trend
ADF test statistic 5% Critical Value ADF test statistic 5% Critical Value

NBR −5.956394 −2.8694 −5.937564 −3.9864

r −7.782581 −2.8694 −7.817214 −3.9864

P −2.690660 −2.8694 −3.217793 −3.9864

GDP −5.922453 −2.8694 −5.966043 −3.9864

Table 5. Unit root test results

Variables in logarithmic form First difference
NBR No Y es

r No Y es

P No No

GDP No Y es

The critical values in both cases are equal to−2.8695 and −3.4235. Thus, the second difference
of variableP is stationary. Once the data is made stationary, we use a nonparametric approach for
the estimation and Akaike’s information criterion to specify the orders of the long VAR(k) models.
Using Akaike’s criterion for the unconstrained VAR model, which corresponds to four variables, we
observe that it is minimized atk = 16. We use same criterion to specify the orders of the constrained
VAR models, which correspond to different combinations of three variables, and we find that the
orders are all less than or equal to16. To compare the determinants of the variance-covariance
matrices of the constrained and unconstrained forecast errors at horizonh, we take the same order
k = 16 for the constrained and unconstrained models. We compute different causality measures for
horizonsh = 1, . . . , 40 [see Figures9-14]. Higher values of measures indicate greater causality.
We also calculate the corresponding nominal95% bootstrap confidence intervals as described in the
previous section.

From Figure9 we see that nonborrowed reserves have a strong effect on the federal funds
rate one month ahead comparatively with other variables [see Figures10 and11 ]. This effect is
well known in the literature and can be explained by the theory of supply and demand for money.
We also note that nonborrowed reserves have a short-term effect onGDP and can cause theGDP
deflator until5 months. Figure14 shows the effect ofGDP on the federal funds rate is economically
important and statistically significant for the first three months. The effect of the federal funds rate
on theGDP deflator is economically weak one month ahead [see Figure12]. Other significant
results concern the causality fromr to GDP. Figure13 shows that federal funds rate causes the
GDP until 16 months. These results are consistent with conclusions obtained by Dufour et al.
(2006).

Table 6 represents results of other causality directions until 20 months. As we can read from
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this table, there is no causality in these other directions.Finally, note that the above results do not
change when we consider the second, rather than first, difference of variableP .

10. Conclusion

New concepts of causality were introduced in Dufour and Renault (1998): causality at a given
(arbitrary) horizonh, and causality up to any given horizonh, whereh is a positive integer and
can be infinite(1 ≤ h ≤ ∞). These concepts are motivated by the fact that, in the presence of an
auxiliary variableZ, it is possible to have a situation in which the variableY does not cause variable
X at horizon1, but causes it at a longer horizonh > 1. In this case, this is an indirect causality
transmitted by the auxiliary variableZ.

Another related problem arises when measuring the importance of the causality between two
variables. Existing causality measures have been established only for horizon1 and fail to capture
indirect causal effects. This paper proposes a generalization of such measures for any horizonh. We
propose parametric and nonparametric measures of causality at any horizonh. Parametric measures
are defined in terms of impulse response coefficients in the VMA representation. By analogy with
Geweke (1982), we show that it is possible to define a measure of dependence at horizonhwhich can
be decomposed into a sum of causality measures fromX to Y, from Y toX, and an instantaneous
effect at horizonh. We also show how these causality measures can be related to the predictability
measures developed in Diebold and Kilian (2001).

We propose a new approach to estimating these measures basedon simulating a large sample
from the process of interest. We also propose a valid nonparametric confidence interval, using the
bootstrap technique.

From an empirical application we found that there is a strongeffect of nonborrowed reserves on
federal funds rate one month ahead, the effect of real gross domestic product on federal funds rate is
economically important for the first three months, the effect of federal funds rate on gross domestic
product deflator is economically weak one month ahead, and finally federal funds rate causes the
real gross domestic product until16 months
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Table 6. Summary of causality relations at various horizonsfor series in first difference

h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NBR→ R yes
NBR→ P yes yes yes yes
NBR→ GDP yes
R→ NBR
R→ P yes
R→ GDP yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes
P → NBR
P → R
P → GDP

GDP → NBR
GDP → R yes yes yes yes yes
GDP → P
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A. Appendix: Proofs

PROOF OFPROPOSITION4.5

C(Y−→
h2

X |Z) = C(Y−→
h1

X |Z) + ln

[
σ2(X(t+ h1) | I(t))

σ2(X(t+ h2) | I(t))

]

− ln

[

σ2
(
X(t+ h1) | IX(t)

)

σ2
(
X(t+ h2) | IX(t)

)

]

According to Diebold and Kilian (2001), the predictabilitymeasure of vectorX under the informa-
tion setsIX(t) andIXY (t) are, respectively, defined as

P̄X

(
IX(t), h1, h2

)
= 1−

σ2
(
X(t+ h1) | IX(t)

)

σ2
(
X(t+ h2) | IX(t)

) ,

P̄X

(
IXY (t), h1, h2

)
= 1−

σ2
(
X(t+ h1) | IXY (t)

)

σ2
(
X(t+ h2) | IXY (t)

) .

By Definition 4.1, we then see that

CL(Y →
h1

X | I)−CL(Y →
h2

X | I) = ln

[
σ2[X(t+ h1) |IX(t)]

σ2[X(t+ h1) | IXY (t)]

]

− ln

[
σ2[X(t+ h2) |IX(t)]

σ2[X(t+ h2) | IXY (t)]

]

= ln

[
σ2[X(t+ h1) |IX(t)]

σ2[X(t+ h2) |IX(t)]

]

− ln

[
σ2[X(t+ h1) | IXY (t)]

σ2[X(t+ h2) | IXY (t)]

]

= ln
[
1− P̄X

(
IX(t), h1, h2

)]
− ln

[
1− P̄X

(
IXY (t), h1, h2

)]
.

PROOF OFPROPOSITION6.2 Under Assumption6.1and using Theorem 1 in Lewis and Reinsel
(1985), we have

Φ̂(k) = Φ(k) + op(1).

Using (4.1) of Lewis and Reinsel (1985) and Assumption6.1, we have:

Σ̂k(h)= (1+
mk

T
)Σ(h)+op(1) = Σ(h)+Σ(h)op(T

−δ) + op(1), for δ ≤
2

3
,

hence
Σ̂k(h)

p
→

T→∞
Σ(h). (A.1)

Similarly, we can show that
Σ̃0|k(h)

p
→

T→∞
Σ0(h). (A.2)

Consequently,

ln

[

det
[
J0Σ̃0|k(h)J

′

0

]

det
[
J1Σ̂k(h)J

′

1

]

]

p
→

T→∞
ln

[

det
[
J0Σ0(h)(h)J

′

0

]

det
[
J1Σ(h)J

′

1

]

]

,
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and
Ĉ(Y −→

h
X |Z)

p
→

T→∞
C(Y −→

h
X |Z).

PROOF OFPROPOSITION8.2 We know that, forδ ≤ 2
3 ,

G
(
Φ̃(k), Σ̃ε| k

)
= (1 + op(T

−δ))G
(
Φ,Σu

)
+op(1), (A.3)

or
ln
(
G
(
Φ̃(k), Σ̃ε| k

))
= ln

(
G
(
Φ,Σu

))
+ op(T

−δ) + op(1). (A.4)

By the differentiability ofG(·),

ln
(
G
(
Φ̂, Σ̂u

))
= ln

(
G
(
Φ, Σu

))
+ op(1). (A.5)

From (A.3) and (A.5),we get

ln
(
G
(
Φ̃(k), Σ̃ε| k

))
= ln

(
G
(
Φ̂, Σ̂u

))
+ op(T

−δ) + op(1).

Consequently,
Ĉ(Y −→

h
X |Z) = C̃(Y −→

h
X |Z) + op(T

−δ) + op(1)

where

C̃(Y −→
h

X |Z) = ln

(

det
(
G(Φ̂, Σ̂u)

)

det
(
H(Φ̂, Σ̂u)

)

)

.

SinceC̃(Y −→
h

X |Z) =Op(1), the asymptotic distribution of̂C(Y −→
h

X |Z) will be the same

as that ofC̃(Y −→
h

X |Z). Using a first-order Taylor expansion of̃C(Y −→
h

X |Z), we get

C̃(Y −→
h

X |Z) = C(Y−→
h
X |Z) +DC

(
vec(Φ̂)− vec(Φ)

vech(Σ̂u)− vech(Σu)

)

+op(T
− 1

2 ),

where

DC =
∂C(Y−→

h
X |Z)

∂(vec(Φ)′ , vech(Σu)′)
=
∂C(Y−→

h
X |Z)

∂θ′

hence

T 1/2[C̃(Y−→
h
X |Z)− C(Y−→

h
X |Z)]≃ DC

(

T 1/2 vec(Φ̂)− vec(Φ)

T 1/2vech(Σ̂u)− vech(Σu)

)

.
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Using (8.7),

T 1/2[C̃(Y−→
h
X |Z)− C(Y−→

h
X |Z)]

d
→N(0, σc(h)

2).

Consequently,

T 1/2[Ĉ (Y −→
h
X |Z)−C(Y−→

h
X |Z)]

d
→N(0, σc(h)

2)

where
σc(h)

2 = DCΩD
′

C

Ω =

[
Γ−1 ⊗Σu 0

0 2(D
′

mDm)−1D
′

m(Σu ⊗Σu)Dm(D
′

mDm)−1

]

.

Dm is the duplication matrix, defined such thatvech(F ) = Dmvech(F ) for any symmetricm×m
matrixF .

PROOF OFPROPOSITION8.3 We start by showing that conditional on the sample

vec(Φ̂∗)
p
→

T→∞
vec(Φ̂) , vech(Σ̂∗

u)
p
→

T→∞
vech(Σ̂u),

vec(Φ̃
∗
(k))

p
→

T→∞
vec(Φ̃(k)) , vech(Σ̃∗

ε| k)
p
→

T→∞
vech(Σ̃ε| k).

We first note that

vec(Φ̂
∗
) = vec(Γ̂ ∗′

1 Γ̂
∗−1) = vec((T − p)−1

T∑

t=p+1

W (t+1)∗w∗(t)
′

Γ̂ ∗−1)

= vec((T − p)−1
T∑

t=p+1

[Φ̂w∗(t)+ u∗ (t+ 1)]w∗(t)
′

Γ̂ ∗−1)

= vec(Φ̂((T − p)−1
T∑

t=p+1

w∗(t)w∗(t)
′

)Γ̂ ∗−1)

+ vec((T − p)−1
T∑

t=p+1

u∗(t+ 1)w∗(t)
′

Γ̂ ∗−1)

= vec(Φ̂ Γ̂ ∗Γ̂ ∗−1) + vec((T − p)−1
T∑

t=p+1

u∗(t+ 1)w∗(t)
′

Γ̂ ∗−1).

Letℑ∗
t = σ(u∗(1), . . . , u∗(t)) denote theσ-algebra generated byu∗(1), . . . , u∗(t). Then,

E
∗[u∗(t+ 1)w∗(t)

′

Γ̂ ∗−1] = E
∗[E∗[u∗(t+ 1)w∗(t)

′

Γ̂ ∗−1 | ℑ∗
t ]]

= E
∗[E∗[u∗(t+ 1) | ℑ∗

t ]w
∗(t)

′

Γ̂ ∗−1] = 0.

41



By the law of large numbers,

(T − p)−1
T∑

t=p+1

u∗(t+ 1)w∗(t)
′

Γ̂ ∗−1=E∗[u∗(t+ 1)w∗(t)
′

Γ̂ ∗−1]+op(1) ,

and
vec(Φ̂∗)− vec(Φ̂)

p
→

T→∞
0 .

Now, to prove thatvech(Σ̂∗
u)

p
→

T→∞
vech(Σ̂u), we observe that

vech(Σ̂∗
u−Σ̂u) = (T − p)−1 vech

[
T∑

t=p+1

u∗(t)û∗(t)
′

−
T∑

t=p+1

û(t)û(t)
′]

= (T − p)−1vech
[

T∑

t=p+1

(u∗(t)u∗(t)
′

−
T∑

t=p+1

û(t)û(t)
′

)
]
.

Conditional on the sample and by the law of iterated expectations, we have:

E
∗[u∗(t)u∗(t)

′

−(T − p)−1
T∑

t=p+1

û(t)û(t)
′

] = E
∗[E∗[u∗(t)u∗(t)

′

−(T − p)−1
T∑

t=p+1

û(t)û(t)
′

| ℑ∗
t ]]

= E
∗[E∗[u∗(t)u∗(t)

′

| ℑ∗
t ]− (T − p)−1

T∑

t=p+1

û(t)û(t)
′

].

Because

E∗[E∗[u∗(t)u∗(t)
′

| ℑ∗
t−1]=(T − p)−1

T∑

t=p+1

E
∗[u∗(t)u∗(t)

′

],

then

E∗[u∗(t)u∗(t)
′

−(T − p)−1
T∑

t=p+1

û(t)û(t)
′

] = 0.

Since

(T − p)−1[
T∑

t=p+1

(u∗(t)u∗(t)
′

−(T − p)−1
T∑

t=p+1

û(t)û(t)
′

)
]

= E∗[u∗(t)u∗(t)
′

−(T − p)−1
T∑

t=p+1

û(t)û(t)
′

] + op(1),

we get
vec(Σ̂∗

u)− vec(Σ̂u)
p
→

T→∞
0.
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Similarly, we can show that

vec(Φ̃
∗
(k))

p
→

T→∞
vec(Φ̃(k)) and vech(Σ̃∗

ε| k)
p
→

T→∞
vech(Σ̃ε| k).

SinceG(.) andH(.) and differentiable functions, we have:

ln
(
H
(
Φ̂∗,Σ̂∗

u

))
= ln

(
H
(
Φ̂,Σ̂u

))
+ o

p
(1),

ln
(
G
(
Φ̃∗(k),Σ̃∗

ε| k

))
= ln

(
G
(
Φ̃(k),Σ̃ε| k

))
+ o

p
(1).

By Theorems 2.5–3.4 in Paparoditis (1996) and Theorem 6 in Lewis and Reinsel (1985), we have,
for δ ≤ 2

3 ,

ln
(
G
(
Φ̃∗(k), Σ̃∗

ε| k

))
= ln

(
G
(
Φ̄,Σε

))
+ op(T

−δ) + op(1)

Consequently,
Ĉ∗(Y −→

h
X |Z) =C̃∗(Y−→

h
X |Z) + op(T

−δ) + op(1)

where

C̃∗(Y−→
h
X |Z) =ln

(

detG
(
Φ̂∗, Σ̂∗

u

)

detH
(
Φ̂∗, Σ̂∗

u

)

)

.

We have shown that forδ ≤ 2
3 [see the proof of Proposition8.2],

Ĉ(Y−→
h

X |Z) = ln

(

det
(
G
(
Φ̂, Σ̂u

))

det
(
H
(
Φ̂, Σ̂u

))

)

+op(T
−δ)+op(1).

Consequently

Ĉ∗(Y → X |Z) = ln

(

det
(
G
(
Φ̂, Σ̂u

))

det
(
H
(
Φ̂, Σ̂u

))

)

+op(T
−δ)+op(1).

Conditional on the sample, the first order Taylor expansion of C̃∗(Y → X |Z) aroundC̃(Y−→
h

X |Z) is given by

Ĉ∗(Y−→
h
X |Z) = C̃(Y−→

h
X |Z)+DC

(
vec(Φ̂∗)− vec(Φ̂)

vech(Σ̂∗
u)− vech(Σ̂u)

)

+op(T
1

2 ) ,

hence

T 1/2[Ĉ∗(Y−→
h
X |Z)− C̃(Y−→

h
X |Z)]≃DC

(

T 1/2(vec(Φ̂∗)− vec(Φ̂))

T 1/2(vech(Σ̂∗
u)− vech(Σ̂u))

)

.
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Conditional on the sample, we have [see Inoue and Kilian (2002)],

T 1/2

(
vec(Φ̂∗)− vec(Φ̂)

vech(Σ̂∗
u)− vech(Σ̂u)

)

d
→ N(0, Ω), (A.6)

where

Ω =

[
Γ−1 ⊗Σu 0

0 2(D
′

mDm)−1D
′

m(Σu ⊗Σu)Dm(D
′

mDm)−1

]

,

Dm is the duplication matrix defined such thatvech(F ) = Dmvech(F ) for any symmetricm×m
matrixF . Thus,

T 1/2[Ĉ∗(Y−→
h
X |Z)− C̃(Y−→

h
X |Z)]

d
→ N(0, σc(h)

2),

and
T 1/2[Ĉ∗(Y−→

h
X |Z)− Ĉ(Y −→

h
X |Z)]

d
→ N(0, σc(h)

2)

where

σc(h)
2 =DCΩD

′
C , DC =

∂C(Y−→
h
X |Z)

∂(vec(Φ)′ , vech(Σu)′)
.
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