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ABSTRACT

This paper provides an exhaustive characterization of the asymptotic nulldistribution of Wald-type
statistics for testing restrictions given by polynomial functions – which may involve asymptotic sin-
gularities – when the limiting distribution of the parameter estimators is absolutely continuous (e.g.,
Gaussian). In addition to the well-known finite-sample non-invariance, there is also an asymptotic
non-invariance (non-pivotality): with standard critical values, the test may either under-reject or
over-reject, and may even diverge under the null hypothesis. The asymptotic distributions of the
test statistic can vary under the null hypothesis and depends on the true unknown parameter value.
All these situations are possible in testing restrictions which arise in the statisticaland econometric
literatures,e.g. for examining the specification of ARMA models, causality at different horizons,
indirect effects, zero determinant hypotheses on matrices of coefficients, and many other situations
when singularity in the restrictions cannot be excluded. We provide the limit distribution and general
bounds for the single restriction case. For multiple restrictions, we give a necessary and sufficient
condition for the existence of a limiting distribution and the form of the limit distributionwhenever
it exists.

Key words: nonlinear restriction; deficient rank; singular covariance matrix; Wald test; nonstandard
asymptotic theory; bound.
Journal of Economic Literature classification: C3.
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1. INTRODUCTION 1

1. Introduction

We consider the problem of testingq nonlinear restrictions on a parameter vectorθ =
(θ 1, . . . , θ p)

′ ∈Θ ⊆ R
p:

H0 : g(θ) = 0 (1.1)

whereg(θ) = [g1(θ) , . . . , gq(θ)]′ is aq×1 vector of polynomial functions andq≤ p. We denote
by θ̄ the “true” parameter vector, sog(θ̄) = 0 underH0. Each polynomialgl (θ) has orderml in
the components ofθ :

gl (θ) =
ml

∑
i=0

{

∑
j1+···+ jp=i

cl ( j1, . . . , jp)
p

∏
k=1

θ jk
k

}

, l = 1, . . . , q, (1.2)

where∑ j1+···+ jp=i represents the sum over all the distinct sets{ j1, . . . , jp} such thatj1, . . . , jp are

nonnegative integers andj1 + · · ·+ jp = i (with the conventionθ 0 = 1). H0 defines an algebraic
varietyΘ0 ⊆ R

p. Further, we suppose that a consistent (typically asymptotically normal) estimator
θ̂ T of θ̄ is available (asT → ∞), so it is natural to testH0 by using a Wald-type test statistic. On
the other hand, a completely specified model (like a likelihood function) may notbe available, so
other types of tests – such as likelihood ratio (LR) or score-type tests – may not be applicable.

Many statistical problems lead one to consider tests of polynomial restrictions:

1. “collapsibility” and unions of conditional independence hypotheses in contingency tables
[Simpson (1951), Whittemore (1978), Ducharme and Lepage (1986), Davis (1989), Glonek
(1993)];

2. tests of dynamic specification in time series [Sargan (1980), Gouriéroux, Monfort and Renault
(1989), Galbraith and Zinde-Walsh (1997)];

3. tests for indirect effects and “mediation” analysis [Sobel (1982, 1986), Baron and Kenny
(1986), MacKinnon, Lockwood, Hoffman, West and Sheets (2002),MacKinnon, Lockwood
and Williams (2006), MacKinnon (2008), Emsley, Dunn and White (2010), Hayes (2013),
Steyer, Mayer and Fiege (2014), VanderWeele (2015), Koo, Leite and Algina (2016), Tofighi
and MacKinnon (2016)];

4. tests on matrices of coefficients,e.g. for the rank (including singularity), the kernel or the
image of such matrices [Gouriéroux, Monfort and Renault (1990, 1993), Robin and Smith
(2000), Al-Sadoon (2017)];

5. collapsibility and unconfoundness hypotheses in regression models [Clogg, Petkova and Shi-
hadeh (1992), Clogg, Petkova and Haritou (1995), Alison (1995), Steyer, Gabler and Rucai
(1996), Gaffke, Steyer and von Davier (1999), Gaffke, Heiligers and Offinger (2002)];

6. tests of Granger noncausality restrictions in VARMA models [Boudjellaba, Dufour and Roy
(1992, 1994)];
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7. noncausality at multiple horizons in multivariate time series [Lütkepohl and Burda (1997),
Dufour and Renault (1998), Dufour, Pelletier and Renault (2006)];

8. tests on tetrads and other nonlinear hypotheses in graphical causal modelling and factor anal-
ysis [Bollen and Ting (2000), Spirtes, Glymour and Scheines (2000), Hipp and Bollen (2003),
Silva, Scheines, Glymour and Spirtes (2006), Drton, Sturmfels and Sullivant (2007, 2009),
Johnson and Bodner (2007), Drton, Massam and Olkin (2008), Bollen, Lennox and Dahly
(2009), Sullivant, Talaska and Draisma (2010), Zwiernik and Smith (2012)];

9. tests on volatility and covolatility in financial time series [Gouriéroux and Jasiak(2013)].

Under standard regularity conditions, the asymptotic distributions of the classical test statis-
tics, such as the likelihood ratio and the Wald-type statistic areχ2

q, and there is asymptotic (local)
equivalence between these tests. In many cases, Wald-type tests are relatively convenient because
they allow one to test a wide spectrum of null hypotheses using a single asymptotically normal
estimatorθ̂ T . This feature may be important when the likelihood function is not available [oris
difficult to maximize under the relevant restrictions]. The same remark holds inmodels estimated
by pseudo-likelihood, estimating functions, or generalized method-of-moments (GMM) methods.

Even though Wald-type tests are not generally invariant to equivalent reformulations of the
null hypothesis and reparameterizations [Gregory and Veall (1985), Breusch and Schmidt (1988),
Phillips and Park (1988), Dagenais and Dufour (1991, 1994), Dufour and Dagenais (1992), Critch-
ley, Marriott and Salmon (1996), Dufour, Trognon and Tuvaandorj (2017)] and tend to be strongly
affected by identification problems [Dufour (1997, 2003)], their convenience makes them difficult
to avoid in many circumstances. Since Wald-type tests depend crucially on the parameterization
considered (which may reflect parameters of interest from a subject-specific viewpoint, such as
economic theory), their power also depends on the parameterization, whichallows one to achieve
relatively high power in the “directions” associated with parameters of interest. In the case of sin-
gle restrictions(q = 1), t-type statistics [obtained through the division of a parameter estimate by
a “standard error”] may be interpreted as “signed” Wald-type statistics and easily yield one-sided
tests: such tests explicitly aim at increasing power in a specific direction.

The standard regularity conditions fail when there are singularities in the algebraic structure of
the restrictions. These are characterized by rank deficiency of the Jacobian matrix of the restric-
tions. For singularities of the type we consider here in Wald-type statistic, Drton (2009) examined
likelihood ratio tests using the tools of algebraic statistics.1 In particular, real algebraic varieties and
their tangent cones play a crucial role in describing the asymptotic distributionof the LR statistic.
The setΘ0 in R

p where several real polynomial functions are zero is called a real algebraic variety,
the tangent cone in this case is fully determined by the Jacobian; the rank of the Jacobian matrix
at a point determines the dimension of the tangent cone. If it is of full rank at a pointθ̄ ∈ Θ0, the
dimension of the tangent cone is dim(Θ0) and there is no singularity at̄θ . If however there is a
rank deficiency at̄θ , the tangent cone at that point has dimension lower than dim(Θ0) and this is a
singular point of the real algebraic variety. The limit distributions associatedwith restrictions (and

1For other work on LR statistics in such nonregular contexts, see Chernoff (1954), Ritz and Skovgaard (2005), Azaïs,
Gassiat and Mercadier (2006), Kato and Kuriki (2013).
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algebraic varieties) involving such singularities are no longer pivotal andtake different forms de-
pending on whether the parameters at which they are evaluated define a regular or a singular point.
Moreover, the asymptotic equivalence between the test statistics no longer holds.

For Wald tests, the fact that the asymptotic distribution can be non-standard was pointed out
by Sargan (1980), Andrews (1987) and Glonek (1993) for the problem of testing an hypothesis
of the formH0 : θ 1θ 2 = 0, whenθ 1 = θ 2 = 0. Glonek (1993) also showed that usual critical
values based on theχ2

1 distribution are conservative. More recently, Drton and Xiao (2016) and
Pillai and Meng (2016) studied the hypothesisH0 : θ ν1

1 θ ν2
2 · · · θ ν p

p = 0, and the distribution of the
corresponding Wald-type statistic in the special case whereθ 1 = θ 2 = · · · = θ p = 0 andν1, . . . , ν p

are positive integers. Note the null hypothesisH0 holds whenever̄θ i1 = · · · = θ̄ ik = 0 for some
subset{i1, . . . , ik} of {1, . . . , p}, each of which may entail a different limiting distribution under
H0.

This paper establishes a full characterization of the limit distribution of the Wald-type statistic
for restrictions defined by polynomials in several variables, whenT

1
2 (θ̂ T − θ̄) converges to some

asymptotic distribution. For monomial restrictions such asH0 : θ ν1
1 θ ν2

2 · · · θ ν p
p = 0, our results

allow for cases where only a subset of the elements of(θ 1, . . . , θ p)
′ are zero. We also derive

stochastic dominance results and bounds on critical values. After emphasizing that “anything can
happen” (underrejection or overrejection when regular chi-square critical values are used, or even
divergence) – even whenT

1
2 (θ̂ T − θ̄) is asymptotically Gaussian – we study in turn the case of a

single polynomial restriction, and then several restrictions of this type. Thefact that these two types
of situations lead to qualitatively different results is also underscored.

For the case of a single restriction involving only one term or a quadratic form, Drton and Xiao
(2016) provided the form of the limit distribution at a singular point and a generic bound on the
distribution. We consider here general polynomials – involving several terms and variables – and
provide a detailed form of the limit distribution which explicitly reflects the degreeof singularity
at any given singular point, together with a more precise bound at such a point. The issue of the
non-existence of a unique asymptotic distribution is underscored, while the existence of the uniform
bound allows to control test level asymptotically (leading to a possibly conservative test). We show
that standardχ2

p critical values are uniformly conservative, provided the number of parameters is not
too large. Our results also entail that divergence does not occur whenonly one restriction is tested.
Special tighter bounds applicable when the function can be expressed asa product polynomials are
also derived. We also observe that some of these bounds remain valid even when the asymptotic
covariance matrix of model parameters is not fully known: for so-called “diagonal Wald-type statis-
tics” where some covariances between parameter estimates are (arbitrarily) set to zero, we show that
the null distribution of statistics for products of polynomials can be bounded in asurprisingly tight
way.

The case of several polynomial restrictions is also fully characterized. The dependence of the
limiting distribution of the Wald-type statistic on the unknown true parameter value is even more
crucial here. We show that, even underH0, the statistic can diverge to+∞ at a singular point, so
no uniform generic bound exists for the Wald-type statistic. Theoretically, the restrictions could be
examined to verify whether at some singularity point divergence could actually occur. In any but
the most trivial cases of nonlinearity, this is a difficult and cumbersome undertaking. These consid-
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erations lead us to conclude that application of the Wald test to any multiple nonlinear restrictions is
quite problematic for level control. We thus propose that in such cases onereplace the test of multi-
ple restrictions by testing a single restriction that provides an identical algebraic variety. Our results
extend those of Gaffke et al. (1999) and Gaffke et al. (2002), whichare based on rank assumptions
on the Jacobian or Hessian matrices of the restrictions (in the context of testing unconfoundedness)
and exclude the possibility that higher-order terms could play a role.

The paper is organized as follows. Section 2 describes the framework considered to study the
asymptotic distribution of Wald-type statistics with local singularities. Simple examplesillustrating
the types of problems which can arise in this context are also presented. Section 3 provides limit
results for the case of a single restriction. Section 4 derives bounds forthe case of a single restric-
tion. Sections 5 and 6 are devoted to several restrictions: in Section 5, we characterize the limit
distribution when it exists, while in Section 6 we give a necessary and sufficient condition for the
existence of the limit distribution. Section 7 concludes. The proofs are in the Appendix.

2. Framework

We consider a general probability model where the parameter space is an open subset ofRp. Further,
we have consistent parameter estimators whose distribution converges to anabsolutely continuous
(possibly Gaussian) distribution. Throughout the paper,θ = (θ 1, . . . , θ p)

′ and θ̄ = (θ̄ 1, . . . , θ̄ p)
′

representp×1 vectors of fixed real coefficients,θ̂ T = (θ̂ 1T , . . . , θ̂ pT)′ is ap×1 real random vector,

andT is an integer such thatT ≥ T0 ≥ 1, and
p−→

T→∞
represents convergence in probability asT → ∞.

Absolute continuity is defined with respect to the Lebesgue measure.

Assumption 2.1 ESTIMATOR ASYMPTOTIC DISTRIBUTION. The sequence{θ̂ T : T ≥ T0} satis-
fies

T
1
2 (θ̂ T − θ̄)

p−→
T→∞

J Z (2.1)

where J is a full-rank p× p fixed matrix and Z is a p×1 real random vector. The distributions of Z
and θ̂ T for T ≥ T0 are absolutely continuous.

Assumption 2.2 CONVERGENCE OF PARAMETER COVARIANCE ESTIMATOR. {V̂T} is a se-
quence of p× p full-rank random matrices such that

plim
T→∞

V̂T = V where V= JJ′. (2.2)

Assumption 2.1 means thatT
1
2 (θ̂ T − θ̄) has an asymptotic distribution characterized by a (typ-

ically unknown) “scaling matrix”J and the distribution of the random vectorZ. In the important
special case whereZ ∼ N[0, Ip], the asymptotic distribution ofT

1
2 (θ̂ T − θ̄) is N[0, JJ′]. The scal-

ing matrix J then determines the asymptotic covariance matrix ofT
1
2 (θ̂ T − θ̄). J may represent

the square rootV1/2, a lower triangular matrix (the Cholesky factor ofV), or any other appropriate
matrix. The form ofJ may not be identifiable whenJ Z is Gaussian, but with non-Gaussian distribu-
tions it can correspond to non-trivial distributional assumptions. The multiplicative representation
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J Z allows one to consider cases where the distribution ofZ depends on additional nuisance pa-
rameters, including random covariance and location parameters. The meanof Z need not be zero.
Various non-Gaussian distributions, such as mixtures of normal distributions and spherically sym-
metric distributions are allowed.

Assumption 2.2 postulates the existence of a consistent estimateV̂T of V = JJ′. WhenJJ′ is
the asymptotic covariance matrix ofT

1
2 (θ̂ T − θ̄), V̂T is a consistent parameter covariance estimator.

More generally, unless stated otherwise,V represents a general positive definite matrix, which may
differ from the asymptotic covariance matrix ofT

1
2 (θ̂ T − θ̄).

We define the usual Wald-type test statistic:

WT(θ̂ T ; g, V̂T) = T g(θ̂ T)′
[

G(θ̂ T)V̂TG(θ̂ T)′
]−1

g(θ̂ T) (2.3)

whereG(θ) := ∂g
∂θ ′ (θ). We study here situations where the matrixG(θ̂ T)V̂TG(θ̂ T)′ is nonsingular

in finite samples (with probability one), so the Wald-type statistic is well defined withprobability
one. For the case of a single restriction, we also consider the corresponding Student-type statistic
based on dividingg(θ̂ T) by the usual asymptotic standard error:

tT(θ̂ T ; g,V̂T) =
T1/2g(θ̂ T)

[

G(θ̂ T)V̂TG(θ̂ T)′
]1/2

. (2.4)

tT(θ̂ T ; g,V̂T) allows one to perform one-sided tests, whileWT(θ̂ T ; g, V̂T) yields two-sided tests.
The notationstT(θ̂ T ; g,V̂T) andWT(θ̂ T ; g, V̂T) underscore the fact that these test statistics depend
crucially on three arguments: the functiong(·), and the “estimates”̂θ T andV̂T . When there is no
ambiguity, we may writetT andWT instead oftT(θ̂ T ; g,V̂T) andWT(θ̂ T ; g, V̂T). Note that the two
statisticsWT(θ̂ T ; g, V̂T) andtT(θ̂ T ; g,V̂T) are invariant to multiplication ofg(θ) by a nonsingular
fixed matrixA: the test statistics remain the same if we consider the hypothesisH0 : Ag(θ) = 0.

Assumptions 2.1 - 2.2 allow one to consider cases whereV̂T does not converge to the asymptotic
covariance matrix ofT

1
2 (θ̂ T − θ̄). Indeed,T

1
2 (θ̂ T − θ̄) may not even possess an asymptotic vari-

ance. SinceZ is not restricted to follow the N(0, Ip) distribution,Z can be redefined in a way that

allowsV to differ from the asymptotic covariance matrix. For example, ifT
1
2 (θ̂ T − θ̄)

p−→
T→∞

U where

U ∼ N[0, Σ0] andΣ0 is nonsingular, we can can defineZ = J−1U whereV = JJ′. This feature can
be useful to allow for alternative variants of the Wald-type statistic whose distribution may be more
easily established or bounded. In particular, in Section 4, we will observethat bounds obtain in im-
portant cases where the asymptotic covariance matrix of model parameters isnot fully known: for
diagonal Wald-type statisticswhere some covariances between parameter estimates are (wrongly)
set to zero, the null distribution of statistics for testing products of polynomialscan be bounded in a
remarkably tight way.

Consider now aq× p matrixF(x) whose elements are polynomial functions ofx∈ R
p [a matrix

of polynomialsor apolynomial matrixin x]. We say that a square polynomial matrixF(x) is non-
singular if its determinant is non-zeroa.e. (in R

p). More generally, we say thatF(x) hasfull row
rank [or full rank] if F(x)F(x)′ is nonsingulara.e. We define the rank of theq× p matrix F(x) as
the largest dimension of a square nonsingular submatrix.



2. FRAMEWORK 6

The following properties will play an important role in the rest of this paper:

1. a polynomial function is either identically zero or different from zeroa.e. [see Caron and
Traynor (2005), Mityagin (2015)];

2. since∆(x) := det[F(x)F(x)′] is a polynomial function, it is non-zeroa.e. as long as it is
distinct from zero at one pointx; so, if ∆(x) 6= 0 for somex, F(x)F(x)′ is nonsingulara.e.;

3. the determinants of square submatrices ofF (x) are either zero everywhere or non-zeroa.e.;
thus, if the largest nonsingular submatrix ofF (x) has dimensionrF × rF , its determinant is
non-zeroa.e., and any larger square submatrix have zero determinant everywhere:the rank
of F (x) is constant and equal torF for almost allx∈ R

p.

If a polynomial matrix function has rankq, the matrices formed by the numerical values of the
polynomial functions have rankq a.e. on R

p. But F(x) may not have full rank at points in a set
of Lebesgue measure zero. IfF(x) has full row ranka.e., its rows must belinearly independent
functions(of x): for λ ∈ R

p,

λ ′F(x) = 0 for all x∈ R
p ⇒ λ = 0. (2.5)

In this case, we also say that the rows ofF(x) are linearly independent vectors of polynomials
(or polynomial vectors). The converse does not however hold: if the rows ofF(x) are linearly
independent vectors of polynomials, the rank ofF(x) may be less thanq for all x.

Assumption 2.3 FULL -RANK JACOBIAN MATRIX . The q× p polynomial matrix∂g
∂θ ′ (θ) has full

rank qa.e.

Assumptions 2.2 and 2.3 ensure the existence of the Wald-type statistic with probability one.
However, it does not preclude the presence of singularities, which aredefined as follows.

Definition 2.1 SINGULARITY . If Assumption 2.3 holds and g(θ̄) = 0, but ∂g
∂θ ′ (θ̄) does not have

full rank, we say that̄θ is asingularity(or a singular point) of the null hypothesisH0 : g(θ) = 0.

WhenZ ∼ N(0, Ip), the standard asymptoticχ2
q distribution holds as long as the matrix∂g

∂θ ′ (θ̄)

has rankq. But this distributional result may not hold when̄θ is a singular point. We will now
discuss a number of simple examples which show that “anything can happen”.

Singular points do not occur with linear restrictions,i.e. wheng(θ) = Aθ −a. If ∂g
∂θ = A has full

rankq, there isno rank deficiencyat anyθ , hence no singularity. Ifrank(A) < q, then ∂g
∂θ has the

same reduced rank everywhere, and we can use a generalized inverse [Andrews (1987)], so there is
no singularity (as defined above) in this case.

In the examples below, we consider nonlinear restrictions withT
1
2 (θ̂ T − θ̄)

p−→
T→∞

Z ∼ N[0, V].

Unless stated otherwise, we takeJ = V = V̂T = Ip in these examples. Details on the derivations are
available in the Appendix A.
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Example 2.1 Asymptotic distribution depends on the form of the restriction. Consider the
two (equivalent) null hypotheses: (i)θ 1 = 0, and (ii)θ 2

1 = 0. In case (i), we haveg(θ) = θ 1 and
the asymptotic distribution of the Wald-type statisticWT(θ̂ T ; g, V̂T) is χ2

1 underH0. In case (ii), the
asymptotic null distribution ofWT(θ̂ T ; g, V̂T) is 1

4χ2
1. Thus, using the usualχ2

1 asymptotic distribu-
tion in case (ii) would lead to underrejections underH0 in large samples (asymptotically conserva-
tive tests).

Example 2.2 Non-pivotal but conservative Wald-type statistic. Let g(θ) = θ 1θ 2 . If either θ 1

or θ 2 is non-zero the limiting distribution isχ2
1. Whenθ 1 = θ 2 = 0,

WT(θ̂ T ; g, V̂T)
p−→

T→∞

Z2
1Z2

2

Z2
1 +Z2

2

. (2.6)

In the latter case, the limit distribution here is not chi-square [Andrews (1987)], but is given by
the 1

4χ2
1 distribution [Glonek (1993), Drton and Xiao (2016), Pillai and Meng (2016)]. Thus the

limit distribution isnot pivotalfor the null hypothesisθ 1θ 2 = 0, but theχ2
1 distribution provides a

uniformly valid boundasymptotically.

Example 2.3 Five asymptotic distributions. Let g(θ) = θ 1θ 2θ 3andV̂T = V, whereV = JJ′ =
[σ i j ]i, j=1.2.3 is a general positive definite matrix,X = J Z, andZ ∼ N[0, I3]. UnderH0, we have
θ̄ =

(

θ̄ 1, θ̄ 2, θ̄ 3
)′

where at least onēθ i is equal to zero. Then, the asymptotic distribution(under
H0) depends on the number of zero coefficients:

WT(θ̂ T ; g, V̂T) → X2
i /σ ii ∼ χ2

1 if θ i = 0 andθ j 6= 0 for j 6= i
→Wi if θ i 6= 0 andθ j = 0 for j 6= i , 1≤ i ≤ 3
→W0 if θ 1 = θ 2 = θ 3 6= 0

(2.7)

where

W1 =
X2

2 X2
3

∆1
, W2 =

X2
1 X2

3

∆2
, W3 =

X2
1 X2

2

∆3
, W0 =

X2
1 X2

2 X2
3

∆0
, (2.8)

∆1 = σ22X
2
3 +σ33X

2
2 +2σ23X2X3 , ∆2 = σ11X

2
3 +σ33X

2
1 +2σ13X1X3 , (2.9)

∆3 = σ11X
2
2 +σ22X

2
1 +2σ12X1X2 , ∆0 = G0VG′

0, G0 = [X2X3, X1X3, X1X2] . (2.10)

In this case, five different asymptotic distributions are possible. This example shows that the asymp-
totic distribution depends onV. Further, ifV = I3, we still have three different asymptotic distribu-
tions.

Example 2.4 Oversized test. Considerg(θ) = θ 2
1 + · · ·+ θ 2

p . Then the limit distribution is
1
4χ2

p . If p is large enough,χ2
1 critical values lead to overrejections.

Example 2.5 Asymptotic non-equivalence of Wald and LR tests. Considerg(θ) = θ 2
1 +θ 3

1−
θ 2

2. If θ̄ = 0, theng(θ̄) = 0 and the limit distribution of theWT(θ̂ T ; g, V̂T) statistic is 1
4χ2

1. On
the other hand, the asymptotic distribution of the LR statistic is given by the distribution of the
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minimum of two independentχ2
1; see Drton (2009, Example 1.1). Thus the two limit distributions

are different.

Example 2.6 Divergence underH0. Suppose thatq = 2 andg(θ) =
[

θ 2
1, θ 1θ 2

2

]′
. Then,

WT(θ̂ T ; g, V̂T) = T
4θ̂ 2

1 + θ̂ 2
2

16
. (2.11)

(i) If θ̄ 1 = θ̄ 2 = 0, the asymptotic distribution is14Z2
1 + 1

16Z2
2. This is a linear combination of two

independentχ2
1, bounded by1

4χ2
2. (ii) However, if θ̄ 1 = 0 andθ̄ 2 6= 0, the null hypothesis also

holds, but the Wald-type statistic diverges to+∞ asT → ∞ .2 In Section 3, we show thatdivergence
cannot happen in the case of one restriction.

3. The case of a single restriction

In this section, we focus on the case where only one restriction is tested(q = 1). Then, θ̄ is a
singular point if and only if

G(θ̄) =
∂g
∂θ ′ (θ̄) = 0 (3.1)

whereG(θ̄) is a 1× p row vector. It will be useful to reexpress the polynomialg(·) in terms of the
differenceθ − θ̄ :

g(θ) =
m

∑
i=0

g[θ − θ̄ ; i, θ̄ ] (3.2)

where

g[x; i, θ̄ ] = ∑
j1+···+ jp=i

c( j1, . . . , jp; θ̄)
p

∏
k=1

x jk
k , x = (x1, . . . , xp)

′ ∈ R
p. (3.3)

By convention, we set 00 = 1.
Whenθ̄ satisfies the null hypothesis (H0), we must have:

g[x; 0, θ̄ ] = c0(0, . . . , 0; θ̄) = 0. (3.4)

Of course, other coefficients could be zero, and in fact it is possible that all the coefficients
c( j1, . . . , jp; θ̄) with j1 + · · ·+ jp ≤ i be zero for somei. If this happens fori > 1, then ∂g

∂θ ′ (θ̄) = 0

andθ̄ is a singular point ofg(θ). Let us denote bys(θ̄) the integer that satisfies

s(θ̄) = min
{

i : c( j1, . . . , jp; θ̄) 6= 0 for some( j1, . . . , jp) with
p

∑
k=1

jk = i
}

. (3.5)

In other words, underH0, the lowest degree term in the centered form ofg(θ) [in (3.2)] has degree

2The polynomials in the restrictions of this example form a Grobner basis of the algebraic variety. This demonstrates
that rewriting restrictions in the Grobner basis form does not solve the problem of divergence.
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s(θ̄). Note also that

s(θ̄) = min{i : g[θ − θ̄ ; i, θ̄ ] 6= 0 for someθ} ≥ 1 (3.6)

where the inequality is entailed by the full-rank Assumption 2.3. Ifs(θ̄) = 1, θ̄ is a regular point;
if s(θ̄) > 1, θ̄ is asingular point. Consequently, we call

γ(θ̄) := s(θ̄)−1 (3.7)

the singularity orderat θ̄ . We focus here on cases where the singularity order is larger than zero
[γ(θ̄) > 0]: θ̄ is a singular point if and only ifγ(θ̄) > 0.

Let us gather all the polynomials corresponding to this lowest degree, anddefine

ḡ(θ − θ̄) := g[θ − θ̄ ; s(θ̄), θ̄ ] = ∑
j1+···+ jp=s(θ̄)

c( j1, . . . , jp; θ̄)
p

∏
k=1

(

θ k− θ̄ k
) jk . (3.8)

s(θ̄) and ḡ(θ) depend on the value of̄θ and may not be the same for different values ofθ̄ , even
when the latter satisfiesH0. The functiong[θ − θ̄ ; s(θ̄), θ̄ ] is homogeneous of degrees(θ̄) in θ − θ̄ .

Wheng(θ̄) = 0, we can write:

g(θ) = ḡ(θ − θ̄)+ r̄(θ − θ̄) , (3.9)

r̄(θ − θ̄) =
m

∑
i=s(θ̄)+1

g[θ − θ̄ ; i, θ̄ ] . (3.10)

Set

Ḡ(x) =
∂g[x; s(θ̄), θ̄ ]

∂x′
, x∈ R

p. (3.11)

Using the Euler formula for homogeneous polynomials of degrees(θ̄) ≥ 1, we get the following
identity:

ḡ(x) =
1

s(θ̄)
Ḡ(x)x (3.12)

whereḠ(x) is a 1× p row vector. Each element of̄G(x) is a homogenous polynomial of degree
s(θ̄)−1 [including possibly zeros]. Note the zero constant function is interpreted as a polynomial
of degree zero (like any other constant function) and it is homogeneousof any degree. The main
result of this section is the following theorem, where‖·‖2 represents the Euclidean norm (so‖·‖2

= xx′ whenx is a row vector).

Theorem 3.1 ASYMPTOTIC DISTRIBUTION OFWALD STATISTICS: ONE RESTRICTION. Sup-
pose the Assumptions 2.1, 2.2 and 2.3 hold. If g(θ) is a polynomial function ofθ as given in
(1.1) - (1.2) with q= 1, and if the true unknown valuēθ satisfies g(θ̄) = 0, then the Student-type
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statistic tT(θ̂ T ; g, V̂T) defined in(2.4) converges in probability to

t(θ̄ ; g, J) =
1

1+ γ(θ̄)

Ḡ∗(Z)Z
[

Ḡ∗(Z)Ḡ∗(Z)′
]1/2

=
1

1+ γ(θ̄)

Ḡ∗(Z)Z
∥

∥Ḡ∗(Z)
∥

∥

(3.13)

and the Wald-type statistic WT(θ̂ T ; g, V̂T) in (2.3) converges in probability to

W(θ̄ ; g, J) = t(θ̄ ; g, J)2 =
1

[1+ γ(θ̄)]2
[Ḡ∗(Z)Z]2
∥

∥Ḡ∗(Z)
∥

∥

2 (3.14)

whereḠ∗(Z) = Ḡ(JZ)J, withγ(θ̄) andḠ(·) defined in(3.7) and(3.11).

From Theorem 3.1, it is clear that the asymptotic distributions oftT(θ̂ T ; g,V̂T) and
WT(θ̂ T ; g, V̂T) depend on nuisance parameters: the scaling matrixJ, the unknown value of̄θ
[throughs(θ̄) and the coefficientsc( j1, . . . , jp; θ̄)] and the distribution ofZ (if it is not specified).
These limit distributions are identical to those of the “pseudo test statistics”

t̄T(θ̂ T ; ḡ, V) =
T1/2 ḡ(θ̂ T − θ̄)

[

Ḡ(θ̂ T − θ̄)VḠ(θ̂ T − θ̄)′
]1/2

, (3.15)

W̄T(θ̂ T ; ḡ, V) = T ḡ(θ̂ T − θ̄)′
[

Ḡ(θ̂ T − θ̄)VḠ(θ̂ T − θ̄)′
]−1

g(θ̂ T − θ̄)

= T
ḡ(θ̂ T − θ̄)2

Ḡ(θ̂ T − θ̄)VḠ(θ̂ T − θ̄)′
, (3.16)

where V = JJ′, for testing the “pseudo hypothesis”

H̄0 : ḡ(θ − θ̄) = 0 (3.17)

instead ofH0 : g(θ) = 0. Of course,̄tT andW̄T cannot be computed in practice, becauseθ̄ is
typically unknown. However, the latter interpretation underscores the dependence of the null dis-
tributions on the unknown true parameter valueθ̄ . Note also that the components of̄G(x) and
Ḡ∗(x) are homogeneous of degreeγ(θ̄). In regular cases, we haveγ(θ̄) = 0, soḠ∗(Z) is a non-zero
constant vector. Further, ifZ ∼ N(0, Ip), we have:t(θ̄ ; g, V) ∼ N(0, 1) andW(θ̄ ; g, V) ∼ χ2

1.
If the distribution ofZ is symmetric with respect to zero [Z ∼ −Z] ands(θ̄) is an odd integer

[s(θ̄) = 1, 3, 5, . . .], the distribution oft(θ̄ ; g, V) is symmetric around zero. Further, whenZ is
Gaussian, or more generally, ifZ has a spherically symmetric distribution, it is possible to represent
t(θ̄ ; g, V) andW(θ̄ ; g, V) as products of independent variables.

Theorem 3.2 FACTORIZATION OF WALD -TYPE STATISTICS: ONE RESTRICTION. Under the
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conditions of Theorem 3.1,

t(θ̄ ; g, J) =
1

1+ γ(θ̄)

Ḡ∗(U)U
∥

∥Ḡ∗(U)
∥

∥

‖Z‖ , (3.18)

W(θ̄ ; g, J) =
1

[1+ γ(θ̄)]2
[Ḡ∗(U)U ]2
∥

∥Ḡ∗(U)
∥

∥

2
‖Z‖2 , (3.19)

where U= Z/‖Z‖ . If Z follows a spherically symmetric distribution, then U and‖Z‖ are indepen-
dent, and U follows a uniform distribution on the unit sphere inR

p.

The factorization result in Theorem 3.2 shows that the limitt−type and Wald-type statistics can
be represented as a product of three factors: the first one is a function of the singularity order at
θ̄ , the second onēG∗(U)U /

∥

∥Ḡ∗(U)
∥

∥ represents the orientation of the random vectorZ, and the
third one given by the norm‖Z‖ (or its square). If the distribution ofZ is spherically symmetric,
the factors are independent andU is uniformly distributed on the unit sphere inRp. If Z ∼ N(0, Ip)

then‖Z‖2 ∼ χ2
p, but for non-GaussianZ the distribution of‖Z‖2 could be fat-tailed (or thin-tailed).

This representation may be convenient for simulating the distribution of the limit statistic. In regular

cases,γ(θ̄) = 0 andḠ∗(Z) = c′ is a non-zero row vector of constants, soḠ∗(U) = c′ and

Ḡ∗(U)U
∥

∥Ḡ∗(U)
∥

∥

‖Z‖ =
c′Z/‖Z‖
‖c‖

‖Z‖ =
c′Z

‖c‖
; (3.20)

if Z ∼ N(0, Ip), we havet(θ̄ ; g, V) ∼ N(0, 1) andW(θ̄ ; g, V) ∼ χ2
1, as expected.

It is important to note thatθ may not represent all the parameters of the model, only those
involved in the restrictions of interest or (regular) transformations of these. For example, suppose
the original parameter vector of the model is ap0×1 vectorβ , with parameter estimatêβ T such
that

T
1
2 (β̂ T − β̄ )

p−→
T→∞

Z0 ∼ N[0, Σ0] , det(Σ0) 6= 0, (3.21)

andθ = Cβ whereC is a full-rankp× p0 fixed matrix with 1≤ p < p0;
d−→

T→∞
means convergence in

distribution asT → ∞. We can then takêθ T = Cβ̂ T , θ̄ = Cβ̄ , and

T
1
2 (θ̂ T − θ̄)

p−→
T→∞

CZ0 ∼ N[0, V] whereV = CΣ0C
′. (3.22)

Clearly,p can be much smaller thanp0, andp is the relevant degree-of-freedom number to be used
in the boundχ2

p/[1+ γ(θ̄)]2.
Similarly, supposeg(θ) has the form

g(θ) = g1(C1θ) (3.23)

whereC1 is a p1× p full-rank matrix (1≤ p1 ≤ p), e.g. the subvectorθ 1 = C1θ of θ = (θ ′
1, θ ′

2)
′.

In other words, the restrictions can be expressed in terms of the linear parameter transformation
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θ ∗
1 = C1θ :

H
∗

10 : g1(θ ∗
1) = 0. (3.24)

On settingθ̂ ∗
1T = C1θ̂ T and θ̄ ∗

1 = C1θ̄ , the t and Wald-type statistics for testingH ∗
10 are then

tT(θ̂ ∗
1T ; g1, C1V̂TC1) andWT(θ̂ ∗

1T ; g1, C1V̂TC1). Theorem 3.1 entails that this Wald-type statistic
converges in probability (underH ∗

10) to

t(θ̄ ∗
1; g1, C1J) =

1

[1+ γ1(θ̄
∗
1)]

Ḡ∗
1(Z)Z

∥

∥Ḡ∗
1(Z)

∥

∥

, (3.25)

W(θ̄ ∗
1; g1, C1J) = t(θ̄ ∗

1; g1, C1J)2, (3.26)

where γ1(θ̄
∗
1) is the singularity order ofg1 at θ̄ ∗

1 [which only depends onθ̄ ∗
1], Ḡ∗

1(Z) =
Ḡ1(C1JZ)C1J, and

Ḡ1(x1) =
∂g1[x1; s(θ̄ ∗

1), θ̄ ∗
1]

∂x′1
, x1 ∈ R

p1 . (3.27)

Here the distribution of the test statistic only depends ong1, thep1×1 parameter̄θ ∗
1, and thep1×1

random vectorC1JZ, rather than the higher-dimensionalp×1 vectorsθ̄ andJZ.
Another important invariance case is the one whereg(θ) can be represented as the product of

polynomials:
g(θ) = h1(θ)h2(θ) (3.28)

whereh1(θ) andh2(θ) are polynomials. Supposeh2(θ̄)= c 6= 0, i.e. the centered polynomialh2(θ)
expressed as a function ofθ − θ̄ [as in (3.2)] has a non-zero constant term [s(θ̄) = 0]. Consequently,
the coefficients ofh2(θ) only contribute to higher-order terms of the polynomial ¯g(θ − θ̄) [in (3.8)],
so the asymptotic null distributions of thetT(θ̂ T ; g, V̂T) and WT(θ̂ T ; g, V̂T) statistics only depend
onh1:

t(θ̄ ; g, J) = t(θ̄ ; h1, J) , W(θ̄ ; g, J) = W(θ̄ ; h1, J) . (3.29)

If furthermoreh1(θ) only depends onθ ∗
1 = C1θ as in (3.23),i.e.

h1(θ) = h∗1(C1θ) , (3.30)

(3.26) entails that

t(θ̄ ; g, J) = t(θ̄ ∗
1; h∗1, C1J) , W(θ̄ ; g, J) = W(θ̄ ∗

1; h∗1, C1J) . (3.31)

4. Bounds for Wald tests of a single restriction

Despite the fact that the asymptotic null distributions oftT(θ̂ T ; g, V̂T) andWT(θ̂ T ; g, V̂T) generally
depend on several nuisance parameters, it is of interest to note that these distributions are bounded
by nuisance-parameter-free distributions. In this section, we give “universal bounds” which hold
for general polynomials irrespective of the singularity order. We also examine cases where the
restriction function involves a product of differentiable functions or polynomials. In such cases, the
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universal bound can be tightened.

4.1. Universal bounds

We first give general bounds applicable to general polynomials of any order.

Theorem 4.1 BOUNDS FOR SINGLE-RESTRICTIONWALD STATISTICS. Under the conditions of
Theorem 3.1, the following properties hold.

(i) If γ(θ̄) = 0 [i.e., θ̄ is not a singularity point of g(θ)],

∣

∣t(θ̄ ; g, V)
∣

∣≤
∣

∣

∣
τ(θ̄)Z

∣

∣

∣
≤ ‖Z‖ , W(θ̄ ; g, V) = [τ(θ̄)Z]2 ≤ ‖Z‖2 , (4.1)

whereτ(θ̄) = Ḡ∗ (Z) /
∥

∥Ḡ∗ (Z)
∥

∥ is a p×1 unit-norm fixed vector; if furthermore Z∼N(0, Ip),

we haveτ(θ̄)Z ∼ N(0, 1) and W(θ̄ ; g, V) ∼ χ2
1.

(ii) If γ(θ̄) ≥ 1,
∣

∣t(θ̄ ; g, V)
∣

∣≤ 1

1+ γ(θ̄)
‖Z‖ ≤ 1

2
‖Z‖ ≤ ‖Z‖ , (4.2)

W
(

θ̄ ;g,V
)

≤ 1

[1+ γ(θ̄)]2
‖Z‖2 ≤ 1

4
‖Z‖2 ≤ ‖Z‖2 . (4.3)

(iii ) If Z ∼ N(0, Ip), we have: for all y≥ 0,

P[
∣

∣t(θ̄ ; g, V)
∣

∣> y] ≤ max{P[|Z0| > y], P[χ p/2 > y]} , (4.4)

P[W
(

θ̄ ;g,V
)

> y] ≤ max{P[χ2
1 > y], P[χ2

p/4 > y]} , (4.5)

where Z0 ∼ N(0, 1) andχ p ∼ (χ2
p)

1/2.

In all cases whereT
1
2 (θ̂ T − θ̄) is asymptotically Gaussian, the asymptotic distribution of the

Wald-type statisticWT(θ̂ T ; g, V̂T) is dominated byχ2
p/[1+ γ(θ̄)]2 distribution. In Example 2.4

with γ(θ̄) = 1, this bound is sharp. In singular cases [γ(θ̄) ≥ 1], the boundχ2
p/4 is thus applicable

irrespective ofθ̄ and γ(θ̄). When θ̄ may or may not be regular, valid (possibly conservative)
asymptoticp-values can be obtained by computing pmax[WT(θ̂ T ; g, V̂T)] with

pmax[y] = max{P[χ2
1 > y], P[χ2

p/4 > y]} , y∈ R. (4.6)

The critical region pmax[WT(θ̂ T ; g, V̂T)] ≤ α has levelα (or lower) asymptotically, irrespective of
the singularity order of̄θ (0 < α < 1).

Theorem 4.1 shows that, for a given level, standard (regular) critical values can be conservative
in non-standard cases, for dominance by the standard distribution is required only in the tail and not
everywhere. The following proposition shows that there existsᾱ such thatα ≤ ᾱ and pmax[y] ≤ α
entailsP[χ2

1 > y] ≤ α , for all y. In other words, theχ2
1 critical value leads to a conservative test
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Table 1
Maximum number of parameterspmax in g(θ)

for which χ2
1 critical values are conservative for scalar Wald statistics

Test level 0.1 0.05 0.025 0.01 0.001
χ2

1 critical value 2.706 3.841 5.024 6.635 10.828
pmax for conservative test 6 7 9 12 18

at levelα . The proposition is somewhat more general in that it derives tail dominance for scaled
χ2 distributions for various degrees of freedom: in addition to examining criticalvalues for Wald
tests of one restriction, it can also be applied to Wald statistics for testing several restrictions. We
can compare the critical values forχ2

q/ζ q and forχ2
p/ζ p with q≤ p andζ p ≥ ζ q. Without loss of

generality, we takeζ q = 1 andζ p = ζ > 1.

Proposition 4.2 TAIL CROSSING OF DIFFERENT CHI-SQUARE DISTRIBUTIONS. Let p and q be
two positive integers,ζ > 1, and0 < ᾱ < 1. If ᾱ is small enough, there always existsȳ > 0 such
thatP[χ2

p/ζ > ȳ] = ᾱ and

P[χ2
q > y] ≥ P[χ2

p/ζ > y] for y≥ ȳ. (4.7)

The latter proposition entails that, wheneverζ > 1, theχ2
p/ζ distribution is dominated by theχ2

q
distribution in the upper tail, irrespective of the values ofp andq (even ifq < p). Consequently, for
y≥ ȳ, P[χ2

q > y]≤ ᾱ impliesP[χ2
p/ζ > y] ≤ ᾱ . When the test statistic follows aχ2

p/ζ distribution,
critical values based on a non-scaledχ2

q distribution can be conservative.
Table 1 shows whenχ2

1 critical values are conservative at different levels. For example, at level
0.05, the usualχ2

1 critical value is conservative as long as the number of parameters does not exceed
7. In Table 2, we provide critical values for 1≤ p ≤ 20 at standard significance levels (α = 0.1,
0.05, 0.025, 0.01, 0.001). We see from the latter table that the bound grows slowly with the number
of parameters.

As observed in (3.21) - (3.26),θ may represent all the parameters in a model, only those involved
in the restriction tested. If the latter can be formulated in terms of a relatively smallnumber of
parameter transforms, tighter bounds can be achieved. For similar observations on testing nonlinear
hypotheses in regression models, see Dufour (1989).

We can also achieve better bounds by taking into account the form of the restrictiong(θ) = 0
or by considering special matricesV̂T or V. For example, this happens ifg(θ) is the product of two
polynomials, involving different coefficients. We will now discuss such cases.

4.2. Diagonal Wald statistics and product restrictions

We will now examine cases whereg(θ) is a product of differentiable functions,

g(θ) = h1(θ 1·) h2(θ 2·) · · · hn(θ n·) (4.8)
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Table 2
Universal bound critical values for testing a single restrictiong(θ)

Based on the uniform bound max{χ2
1, χ2

p/4}

Test level .1 .05 .025 .01 .001
p≤ 6 2.706 3.841 5.024 6.635 10.828
p = 7 3.004 3.841 5.024 6.635 10.828
p = 8 3.341 3.877 5.024 6.635 10.828
p = 9 3.671 4.230 5.024 6.635 10.828
p = 10 3.997 4.577 5.121 6.635 10.828
p = 11 4.319 4.919 5.480 6.635 10.828
p = 12 4.637 5.256 5.834 6.554 10.828
p = 13 4.953 5.591 6.184 6.992 10.828
p = 14 5.266 5.921 6.530 7.285 10.828
p = 15 5.577 6.249 6.872 7.645 10.828
p = 16 5.886 6.574 7.211 8.000 10.828
p = 17 6.192 6.897 7.548 8.352 10.828
p = 18 6.497 7.217 7.882 8.701 10.828
p = 19 6.801 7.536 8.213 9.048 10.955
p = 20 7.103 7.852 8.543 9.392 11.329

with θ =
(

θ ′
1·, θ ′

2·, . . . , θ ′
n·
)′

andθ̄ = (θ̄ ′
1·, θ̄ ′

2·, . . . , θ̄ ′
n·)

′, whereθ i· andθ̄ i· are pi ×1 vectors, and
p1 + p2 + · · ·+ pn = p. Clearly, g(θ) = 0 if and only if at least one of the functions satisfies
hi (θ i·) = 0. We have the estimator̂θ T = (θ̂ ′

1·T , θ̂ ′
2·T , . . . , θ̂ ′

n·T)′, whereθ̂ i·T is a pi × 1 random
vector, and a “covariance matrix estimator”Σ̃T for θ̂ T . Further, we focus on Wald-type statistics
whereΣ̃T is restricted to be block diagonal. This fits naturally the case whereθ̂ 1·T , . . . , θ̂ n·T are
asymptotically uncorrelated. However, we will observe below that the asymptotic distribution of
the Wald-type statistic can be bounded even ifθ̂ 1·T , . . . , θ̂ n·T are asymptotically correlated, possibly
with unknown covariances acrossθ̂ 1·T , . . . , θ̂ n·T .

We consider Wald-type statistics of the form

WT(θ̂ T ; g, Σ̃T) = T g(θ̂ T)′
[

G(θ̂ T)Σ̃TG(θ̂ T)′
]−1

g(θ̂ T) = T W(θ̂ T ; g, Σ̃T) (4.9)

whereθ̂ T = (θ̂ ′
1·T , θ̂ ′

2·T , . . . , θ̂ ′
n·)

′, θ̂ i·T is a pi ×1 random vector,

G(θ) =
∂g
∂θ ′ = [G1(θ), G2(θ), . . . , Gn(θ)] , Gi(θ) =

∂g
∂θ ′

i·
, i = 1, . . . , n, (4.10)

W(x; g, Σ̃T) ≡ g(x)2

G(x) Σ̃T G(x)′
, x∈ R

p, (4.11)

Σ̃T = diag[Σ̃1T , Σ̃2T , . . . , Σ̃nT] (4.12)
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is a block-diagonal matrix, and eachΣ̃iT is a (possibly random)pi × pi positive semidefinite matrix.
For example,Σ̃iT may be a consistent estimator of the asymptotic covariance matrix ofT

1
2 (θ̂ i·T −

θ̄ i). We call Wald statistics based on such block diagonal covariance estimates “diagonal Wald
statistics”.

Set

Hi(xi) =
∂hi

∂x′i
(xi) , ∆i(xi) = Hi(xi) Σ̃iT Hi(xi)

′ , xi ∈ R
pi , i = 1, 2, . . . , n. (4.13)

We can then show the following stochastic dominance property, which holds both in finite samples
and asymptotically.

Proposition 4.3 DOMINANCE PROPERTY FOR PRODUCT RESTRICTIONS. Suppose g(θ) satisfies
(4.8) along with Assumption 2.3, Y:= (Y′

1,Y
′
2, . . . ,Y

′
n )′ a random vector where each Yi has dimension

pi ×1, with Gi(·), Σ̃iT , W(x; g, Σ̃T) and∆i := ∆i(Yi) defined as in(4.9) - (4.13), i = 1, . . . , n. Then:

(i) conditional on∆i > 0,

W(Y; g, Σ̃T) ≤W(Yi ; hi , Σ̃iT ) for any i∈ {1, . . . , n} ; (4.14)

(ii) conditional on g(Y) 6= 0and∆i > 0 for all i ∈ {1, . . . , n},

W(Y; g, Σ̃T) ≤ min
1≤i≤n

W(Yi ; hi , Σ̃iT ) , (4.15)

1
n

min
1≤i≤n

W(Yi ; hi , Σ̃iT ) ≤ W(Y; g, Σ̃T) ≤ 1
n

[ n

∏
i=1

W(Yi ; hi , Σ̃iT )
]1/n

≤ 1
n

n

∑
i=1

W(Yi ; hi , Σ̃iT ) ≤ 1
n

max
1≤i≤n

W(Yi ; hi , Σ̃iT ) (4.16)

where

W(xi ; hi , Σ̃iT ) ≡ hi(xi)
2

Hi(xi) Σ̃iT Hi(xi)′
, xi ∈ R

pi . (4.17)

From (4.14) - (4.17), it is clear that:

P[W(Y; g, Σ̃T) ≤W(Yi ; hi , Σ̃iT ) |∆i > 0] = 1, i = 1, . . . , n. (4.18)

When
P[∆i(Yi) > 0] = 1, (4.19)

we can replace the conditional probabilities in (4.18) by the correspondingunconditional probabil-
ities:

P[W(Y; g, Σ̃T) ≤W(Yi ; hi , Σ̃iT )] = 1, i = 1, . . . , n ; (4.20)

this condition allowsP[∆ j(Yj) > 0] < 1 for somej 6= i. If P[∆i(Yi) > 0] = 1 for all i = 1, . . . , n, we
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also have
P[W(Y; g, Σ̃T) ≤ min

1≤i≤n
W(Yi ; hi , Σ̃iT )] = 1, (4.21)

which yields a tighter bound. (4.21) also underscores the fact that betterbounds can be achieved by
factoringh(θ) into the largest possible number of factors,i.e. by lettingn be large. Similarly, if

P[g(Y) 6= 0, ∆1 > 0, . . . , ∆n > 0] = 1, (4.22)

(4.16) holds with probability one.
When (4.19) holds, bothWg(Y) andWhi (Yi) are well defined (finite) with probability one. The

test statistic

WT(θ̂ i·T ; hi , Σ̃iT ) = T W(θ̂ i·T ; hi , Σ̃iT ) = T
hi(θ̂ i·T)2

Hi(θ̂ i·T) Σ̃iT Hi(θ̂ i·T)′
(4.23)

can be interpreted as a Wald-type statistic for testinghi (θ i·) = 0 using the parameter esti-
matesθ̂ i·T and Σ̃iT . So the distribution ofWT(θ̂ T ; g, Σ̃T) can be bounded by the distribution of
WT(θ̂ i·T ; hi , Σ̃iT ), under both the null and alternative hypotheses.

It is also remarkable that this dominance property holds without any assumption on the distri-
bution ofY. In particular, the distribution ofYj for j 6= i is irrelevant. UnderH0, we may have
hi (θ i·) = 0 along withh j (θ j·) 6= 0 for j 6= i, without the bound being affected. Note also that none
of the functionshi (θ i·) need be a polynomial.

Let us consider the case where at least one of the functions ing(θ) is a polynomial, along with
conditions similar to those in Assumptions2.1 - 2.3.

Assumption 4.1 POLYNOMIAL FACTOR REGULARITY. Let 1≤ i ≤ n. The function hi (θ i·) is a
polynomial, and the estimator̂θ i·T in (4.8) - (4.9) satisfies Assumptions 2.1 - 2.3 upon replacing p
by pi , J by Ji , Z by Zi , V by Vi = JiJ′i , andV̂T byV̂iT . Further,Σ̃iT = V̂iT andγ i(θ̄ i·) is the singularity
order of hi (θ i·) at θ̄ i· as defined in(3.6) - (3.7).

We can then get the following asymptotic dominance result on the asymptotic distribution of
WT(θ̂ T ; g, Σ̃T) as characterized in Theorem 3.1 (withV̂T = Σ̃T).

Proposition 4.4 POLYNOMIAL FACTOR BOUNDS FORWALD STATISTICS OF SINGLE RESTRIC-
TIONS. Under the conditions of Proposition 4.3, let V= diag[V1, V2, . . . , Vn] where each Vi is a
pi × pi positive semidefinite matrix, and W(θ̄ ; g, V) is defined as in(3.14).

(1) If hi0(θ̄ i0·) = 0 and Assumption 4.1 holds for i= i0 where io ∈ {1, 2, . . . , n}, then conditionally
on ∆i0(Yi0) > 0,

W(θ̄ ; g, V) ≤ ‖Zi0‖2/ [γ i0(θ̄ i0·)+1]2 ≤ ‖Zi0‖2 (4.24)

whereγ i0(θ̄ i0·) is the singularity order of hi0(θ i0·) at θ̄ i0·, and whenθ̄ i0· is a singular point of
hi0(θ i0·),

W(θ̄ ; g, V) ≤ 1
4
‖Zi0‖2 . (4.25)
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(2) If g(θ̄) = 0 and Assumption 4.1 holds for all i∈ {1, . . . , n}, then conditionally on∆i(Yi) > 0
for all i ∈ {1, . . . , n},

W(θ̄ ; g, V) ≤ ‖Zi‖2/[γ i(θ̄ i·)+1]2 ≤ ‖Zi‖2 for some i∈ {1, . . . , n} (4.26)

and, whenθ̄ is a singular point of g(θ),

W(θ̄ ; g, V) ≤ 1
4
‖Zi‖2 for some i∈ {1, . . . , n}. (4.27)

If Zi0 ∼ N[0, Ip0] andhi0(θ i0·) = 0, (4.24) entails that

W(θ̄ ; g, V) ≤ 1

[γ i0(θ̄ i0·)+1]2
χ2

p0
(4.28)

so the number of degrees of freedom in the bound can be substantially reduced with respect to the
χ2

p distribution. Similarly, whenZ ∼ N[0, Ip] andh1(θ 1·) , . . . , hn(θ n·) are all polynomials, (4.26)
yields:

W(θ̄ ; g, V) ≤ χ2
pi
/[γ i(θ̄ i·)+1]2 ≤ χ2

pi
for somei ∈ {1, 2, . . . , n} .

If furthermoreθ̄ is a singular point ofg(θ), we can write:

W(θ̄ ; g) ≤ 1
4

χ2
pi

for somei ∈ {1, 2, . . . , n}. (4.29)

Thus, whenZ ∼ N[0, Ip] andg(θ) is a product of polynomials of the form (4.8), valid asymptotic
p-values can be obtained by computing pmax[WT(θ̂ T ; g, V̂T)] using

pmax[y, n] ≡ max{P[χ2
1 > y], pv[y; p1, γ1(θ̄ 1·)], . . . , pv[y; pn, γn(θ̄ n·)]} , y∈ R, (4.30)

where
pv[y; pi , γ i ] = max{P[χ2

pi
/[γ i +1]2 > y]}, i = 1, . . . , n. (4.31)

If the singularity ordersγ i(θ̄ i·) are unknown, we can replace pv[y; pi , γ i ] by the upper bound
pv[y; pi , 1] = max{P[χ2

pi
/4 > y]}, which holds wheneverhi (θ i·) is singular atθ̄ i·: this yields the

p-value function upper boundpU
max[WT(θ̂ T ; g)] where

pU
max[y, n] ≡ max{P[χ2

1 > y], pv[y; p1, 1], . . . , pv[y; pn,1]} ≥ pmax[y, n] . (4.32)

4.3. Monomials

An important special case of the above problem is the one whereg(θ) is a monomial:

g(θ) = cθ ν1
1 · · · θ ν p

p (4.33)
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whereν1, . . . , ν p are positive integers (ν i > 0, i = 1, . . . , n) and c is non-zero constant. In this
case,θ̄ ν1

1 · · · θ̄ ν p
p = 0 underH0. Clearly,H0 holds if and only if at least one of thep parameters

θ̄ 1, . . . , θ̄ p is equal to zero. Letr = r(θ̄) be the number of such zero parameters. UnderH0, 1≤
r ≤ p. Without loss of generality, we can assume thatθ̄ i = 0 for 1≤ i ≤ r, andθ̄ i 6= 0 if i > r. This
allows us to write:

g(θ) =
[

θ̄ +(θ − θ̄)
]ν1 · · ·

[

θ̄ +(θ − θ̄)
]ν p =

r

∏
i=1

(θ i − θ̄ i)
ν i

p

∏
i=r+1

[

θ̄ i +(θ i − θ̄ i)
]ν i (4.34)

from which it is easy to see that

s(θ̄) = 1+ γ(θ̄) = v1 + · · ·+vr . (4.35)

In other words,s(θ̄) is the sum of the exponents associated with the zero components ofθ̄ . The
larger the number of zero coefficients, the tighter the bounds given by Theorem 4.1. IfZ∼N(0, Ip),
W(θ̄ ; g, V) is bounded from above by theχ2

p/(v1 + · · ·+ vr)
2 distribution. For monomials, this

bound can however be improved.
Consider first the case of diagonal Wald statistics. Monomial functions of the form (4.33) cor-

respond to the case wheren = p andhi = θ ν i
i , i = 1, . . . , p, in (4.8). We then get the following

stochastic dominance property.

Proposition 4.5 BOUND ON DIAGONAL WALD STATISTICS FOR MONOMIALS. Let Y =
(Y1, . . . , Yp) be a p× 1 real random vector. Then, for any monomial function of the form(4.33),
we have:

P[W(Y; g, Σ̃T) ≥ z] ≤ P

[

1

ν2
i

(

Yi

σ̃ i

)2

≥ z

]

, for i = 1, . . . , p, and z∈ R, (4.36)

where W(Y; g, Σ̃T) is defined by(4.11) andΣ̃T = diag[σ̃2
1, σ̃2

2, . . . , σ̃2
p].

The above result holds without any assumption on the distribution ofY. For example,Y1, . . . , Yp

need not be Gaussian or independent. However, if one of the componentsof Y, sayY1, follows a
N(0, σ2

1) distribution, the distribution ofWg(Y) is bounded by theχ2
1/ν2

1 distribution:

P[W(Y; g, Σ̃T) ≥ z] ≤ P

[

1

ν2
1

χ2
1 ≥ z

]

, for all z∈ R. (4.37)

If Yj ∼ N(0, σ2
j ) distribution andσ̃2

j = σ2
j for at least one of the variablesY1, . . . , Yp, but we do not

know which one, we can write:

P[W(Y; g, Σ̃T) ≥ z] ≤ max
1≤i≤p

P

[

1

ν2
i

χ2
1 ≥ z

]

= P





1

min
1≤i≤p

ν2
i

χ2
1 ≥ z



 , for all z∈ R. (4.38)

The result given by Proposition 4.5 is in fact a finite-sample one. It showsthat the distribution of
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a Wald-type statistic can be bounded (under appropriate conditions) evenwhen the distribution of
some component ofY is unknown. IfYj ∼ N(0, σ2

j ) distribution andσ̃2
j = σ2

j for all j = 1, . . . , p,
we have:

P[W(Y; g, Σ̃T) ≥ z] ≤ min
1≤i≤p

P

[

χ2
1

ν2
i

≥ z

]

= P





χ2
1

max
1≤i≤p

ν2
i

≥ z



 , for all z∈ R. (4.39)

This result complements earlier ones obtained under more restrictive conditions. The bounds in
(4.38) - (4.39) apply to a relatively specific type of restriction (monomials), but hold under weaker
distributional assumptions than the universal bound given in Section 4.1. Here, all cases where
the null hypothesisg(θ) = 0 holds are covered, not only the one whereθ = 0. Since max

1≤i≤p
ν2

i ≤
(

p

∑
j=1

ν j
)2

, we have:

P

[

χ2
1/
(

p

∑
j=1

ν j
)2 ≥ z

]

≤ P

[

χ2
1/ max

1≤i≤p
ν2

i ≥ z

]

≤ P

[

χ2
1/ min

1≤i≤p
ν2

i ≥ z

]

, for all z∈ R . (4.40)

Proposition 4.5 has the following analogue for the asymptotic distribution ofWT(θ̂ T ; g, Σ̃T)
wheng is a monomial function.

Corollary 4.6 BOUNDS FOR MONOMIAL WALD STATISTICS. Under the conditions of Proposi-
tion 4.3, suppose Assumption 4.1 also holds. Then, for any monomial function as defined in(4.33),
we have:

P[W(θ̄ ; g, V) ≥ z] ≤ P

[

1

ν2
i

(

Zi

σ i

)2

≥ z

]

, for i = 1, . . . , p, and z∈ R, (4.41)

where W(θ̄ ; g, V) is defined by(3.14) and V= diag[σ2
1,σ2

2, . . . , σ2
p].

Finally, we will give a result applicable to non-diagonal Wald-type statistics.

Proposition 4.7 BOUNDS FOR NON-DIAGONAL MONOMIAL WALD STATISTICS. Under the as-
sumptions of Theorem 3.1, suppose g(θ) is a monomial function ofθ as defined in(4.33), with
θ =

[

θ [1,r];θ [r+1,p]

]

and θ [1,r] = (θ 1, . . . , θ r)
′. If θ̄ i = 0 for 1 ≤ i ≤ r, and θ̄ i 6= 0 if i > r,

then the Student-type statistic tT(θ̂ T ; g, V̂T) defined in(2.4) converges in probability to t(θ̄ ; h1, J)
and the Wald-type statistic WT(θ̂ T ; g, V̂T) in (2.3) converges in probability to W(θ̄ ; h1, J), with
h1(θ) = θ ν1

1 · · · θ ν r
r , where t(θ̄ ; h1, J) and W(θ̄ ; h1, J) are defined as in(3.13) - (3.14). If further-

more Z∼ N(0, Ip),

W(θ̄ ; h1, J) ∼

1
(

r
∑
j=1

ν j
)2

χ2
1 (4.42)

and the distribution of(χ2
1/ min

1≤i≤p
ν2

i ) provides a uniform upper bound regardless of r.
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The distributional result (4.42) can be viewed as an asymptotic extension ofthe finite-sample
results given by Pillai and Meng (2016), applied to the subvectorθ [1,r], and functionh1

(

θ [1,r]

)

.
Related finite-sample results on monomial restrictions are also given by Drton and Xiao (2016), and
(for p = 2) Shepp (1962, 1964), Cohen (1981), Reid (1987), Glonek (1993), and Quine (1994); see
also DasGupta and Shepp (2004). These however hold providedY has mean zero, while the results
presented in this section allow for cases where only a subset of the elementsof θ̄ may be zero.
When we do not know how many and which elements ofθ̄ are zero, several asymptotic distributions
(generally up to 2p−1) are possible. Thus, whenZ ∼ N(0, Ip), the boundχ2

1/
(

min
1≤i≤p

v2
i

)

provides a

uniform upper bound on the asymptotic distribution of the Wald-type statistic.

5. Several restrictions

In this section, we consider the general problem of testingq restrictions whenq≥ 1:

gl (θ) = 0, l = 1, . . . , q, (5.1)

where eachgl (θ) is a polynomial function of degreeml . (3.2) - (3.4 ) then hold withg(θ), g(x, i, θ̄)

andc( j1, . . . , jp; θ̄) subscripted byl . We maintain the assumption that the true unknown valueθ̄

fulfills the null hypothesis [gl (θ̄) = 0, l = 1, . . . , q]. For eachl , we denote bysl (θ̄) the order

sl (θ̄) = min
{

i : cl ( j1, . . . , jp; θ̄) 6= 0 for some( j1, . . . , jp) with Σ p
i=1 jk = i

}

(5.2)

and byḡl (θ) the polynomial that gathers the monomials of lowest degree ingl :

ḡl (θ − θ̄) := gl [θ − θ̄ ; sl (θ̄), θ̄ ] = ∑
Σ p

i=1 jk=sl (θ̄)

cl ( j1, . . . , jp; θ̄)
p

∏
k=1

(

θ k− θ̄ k
) jk , 1≤ l ≤ q. (5.3)

We call ḡ(θ) = [ḡ1(θ) , . . . , ḡq(θ)]′ thevector of lowest degree polynomialsassociated withg(θ).
Note that the situation wheregl (x) = 0 for all x [and thus ¯g(x) = 0] is precluded by the assumption
thatG(x) has full ranka.e..

As in the one restriction case, each polynomial depends onθ̄ through its order and its coeffi-
cients. The Jacobian matrix of ¯g(θ) is then

Ḡ(x) =
∂ ḡ
∂θ ′ (x) =











Ḡ1(x)
Ḡ2(x)

...
Ḡq(x)











(5.4)

where each row̄Gl (x) satisfies (3.11) - (3.12) with ¯g replaced by ¯gl . Ḡ(x) will be called thematrix
of lowest degree polynomialsfor the Jacobian matrix ofg(θ). The elements of the row vector
Ḡl (x) are homogeneous polynomials of degreesl (θ̄)− 1, for 1≤ l ≤ q. Further, from the Euler
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homogeneous-function theorem, we have:

ḡ(θ − θ̄) = Λ(θ̄)Ḡ(θ − θ̄)(θ − θ̄) , Λ(θ̄) := diag

[

1

s1(θ̄)
, . . . ,

1

sq(θ̄)

]

, (5.5)

whereΛ(θ̄) is theq×q diagonal matrix. We study again the Wald-type statisticWT(θ̂ T ; g, V̂T) and
the “pseudo-statistic”

W̄T(θ̂ T ; ḡ, V) = T ḡ(θ̂ T − θ̄)′
[

Ḡ(θ̂ T − θ̄)V Ḡ(θ̂ T − θ̄)′
]−1

ḡ(θ̂ T − θ̄) (5.6)

for testingH̄0 : ḡ(θ − θ̄) = 0.
We will now see that there is a fundamental difference between considering theq restrictions

in (5.1) individually and jointly. The key issue is the rank of the Jacobian matrixḠ(x). While we
know from Assumption 2.3 that the matrix of polynomialsG(θ) has full row rankq, this does not
necessarily hold for the matrix̄G(θ − θ̄) which only contains the lowest-degree terms. This feature
has a strong impact on the distribution of the Wald-type test statistic in large samples, and may
jeopardize the existence of an asymptotic distribution.

5.1. Full rank reached at lowest degrees

We will now show that the asymptotic distribution of the Wald-type statistic forq polynomial re-
strictions is fully determined by the lowest-degree polynomials ¯gl (θ), l = 1, . . . , q, whenḠ(θ − θ̄)
has full row rankq (a.e. in R

p), as expressed by the following assumption.

Assumption 5.1 FULL RANK AT LOWEST DEGREE (FRALD). The q× p matrixḠ(x) of lowest
degree polynomials for the Jacobian matrix of g(θ) has full rank q(a.e.).

When the above condition holds, we say thatg(·) satisfies hasfull rank at lower degree
(FRALD) property. We can then formulate the following theorem.

Theorem 5.1 ASYMPTOTIC DISTRIBUTION OF WALD STATISTIC: FRALD RESTRICTIONS.
Suppose the Assumptions 2.1, 2.2, 2.3 and 5.1 hold. If g(θ) is a polynomial function ofθ as given
in (1.1) - (1.2), and if the true unknown valuēθ satisfies g(θ̄) = 0, then the Wald-type statistics
WT(θ̂ T ; g, V̂T) andW̄T(θ̂ T ; ḡ, V) [in (2.3) and(5.6)] both converge in probability to

W(θ̄ ; g, J) = Z′G∗(Z)′Λ(θ̄)
[

G∗(Z)G∗(Z)′
]−1Λ(θ̄)G∗(Z)Z (5.7)

where G∗(Z) = Ḡ(JZ)J.

Since the FRALD condition holds trivially with only one restriction (q = 1), Theorem 5.1 is a

generalization of Theorem 3.1. Indeed, when all the singularity orderssl (θ̄) are the same,i.e.

sl (θ̄) = s(θ̄) , l = 1, . . . , q, (5.8)
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we haveΛ(θ̄) = s(θ̄)−1Iq, and Theorem 5.1 provides a limit distribution quite similar to the one of
Theorem 3.1, except for the fact that several restrictions are now allowed (q≥ 1). However, when
(5.8) does not hold, the weighting matrixΛ(θ̄) can substantially modify the result.

Theorem 5.1 warrants the same kind of comments as Theorem 3.1. The limit distribution of
the Wald-type statistic underH0 is also the limit distribution ofW̄T(θ̂ T ; ḡ, V). In other words, this
asymptotic distribution again coincides with the asymptotic distribution of the Wald-type statistic for
testing the null hypothesisH ∗

0 : ḡ(θ − θ̄) = 0. As in the case of a single restriction, this pseudo-null
hypothesis and the corresponding asymptotic distribution depend on the true(unknown) parameter
valueθ̄ .

To allow for more than one restriction, the additional FRALD condition on the rank of Ḡ(θ) is
required. This condition may be violated. To make things more complicated, the FRALD condition
may indeed hold at some value ofθ̄ that satisfies the null, but not at another one. We demonstrate
this by reconsidering Example 2.6.

Example 5.1 FRALD failure for some θ̄ [Example 2.6 continued]. Let g(θ) =
[

θ 2
1 ,θ 1θ 2

2

]′

andV = I . Then

G(θ) =

[

2θ 1 0
θ 2

2 2θ 1θ 2

]

. (5.9)

As already noted, the null hypothesis clearly holds whenθ̄ 1 = θ̄ 2 = 0. In this case,Ḡ(θ − θ̄) is the
same asG(θ) and has full rank: the FRALD condition is satisfied, and Theorem 5.1 is applicable.
The null hypothesis also holds for̄θ with θ̄ 1 = 0 andθ̄ 2 = a 6= 0. In this case,

Ḡ(θ − θ̄) =

[

2θ 1 0
a2 0

]

(5.10)

does not have full rank, even though the rows ofḠ(x) are linearly independent polynomial vectors:
a constant and a linear function. The FRALD condition used by Theorem 5.1 does not hold.

In the above example, the Wald-type statistic diverges at points where the FRALD condition
fails. We shall now address the question whether this is always the case.

5.2. Full rank reached at lowest degrees after linear transformation (FRALD-T)

It is well known that the Wald-type test statistic is numerically invariant with respect to non-
degenerate linear transformations of the restriction vector. However, it isimportant to realize that
Theorem 5.1 is not invariant to linear transformations of the matrixG(θ): the rank assumption on
the matrixḠ(θ − θ̄) and its conclusion may change on applying a linear transformation to the vector
functiong(θ). The key reason for this feature is the following: ifS is a nonsingular matrix of size
q, we may have

S[Ḡ(θ − θ̄)] 6= SG(θ − θ̄) . (5.11)

In particular, even though̄G(θ − θ̄) andS[Ḡ(θ − θ̄)] do not have full rankq, the matrixSG(θ − θ̄)
of lowest degree polynomials insideS[G(θ − θ̄)] can have rankq. Example 5.2 below illustrates
such a case.
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Example 5.2 FRALD failure for some θ̄ : FRALD holds for a linear transformation of g(θ).
Considerg(θ) =

[

θ 1 +θ 3
2 , θ 1 +θ 2

2

]′
. Clearly,θ̄ = 0 andθ̄ = (−1, 1)′ both satisfyg(θ̄) = 0. Then

G(θ) =

(

1 3θ 2
2

1 2θ 2

)

. (5.12)

For θ̄ = 0, we haveḠ(θ − θ̄) =

(

1 0
1 0

)

, and the FRALD condition is not satisfied forg(θ);

however, forS=

(

1 0
1 −1

)

, we have:

SG(θ − θ̄) = SG(θ) =

(

1 3θ 2
2

0 3θ 2
2−2θ 2

)

, (5.13)

SG(θ) = SG(θ − θ̄) =

(

1 0
0 −2θ 2

)

, (5.14)

so that the FRALD condition holds forSg(θ) at θ̄ = 0. Forθ̄ = (−1, 1)′, det[G
(

θ̄
)

] = −1 6= 0, so
there is no singularity at this point.

We thus consider the following extension of the FRALD condition.

Assumption 5.2 FRALD-T. There exists a nonsingular q×q matrix S such that the q× p matrix
SG(x) of lowest degree polynomials for the Jacobian matrix of Sg(θ) satisfies

rank{SG(x)} = q for almost all x∈ R
p. (5.15)

When the above condition is satisfied, we say that theFRALD-T propertyholds forg(θ) . This
leads to a straightforward but important extension of Theorem 5.1.

Theorem 5.2 ASYMPTOTIC DISTRIBUTION OFWALD STATISTIC: TRANSFORMEDFRALD RE-
STRICTIONS. Suppose the Assumptions 2.1, 2.2 and 2.3 hold. If g(θ) is a polynomial function of
θ as given in(1.1) - (1.2), if the true unknown valuēθ satisfies g(θ̄) = 0, and if Assumption 5.2 is
satisfied, then the Wald-type statistic WT(θ̂ T ; g, V̂T) in (2.3) converges in probability to

W(θ̄ ; g, J, S) = Z′Ḡ∗
S(Z)′ΛS(θ̄)

[

Ḡ∗
S(Z)Ḡ∗

S(Z)′
]−1ΛS(θ̄)Ḡ∗

S(Z)Z (5.16)

where S is any matrix satisfying(5.15) andḠ∗
S(Z) = SG(JZ)J .

Under the null hypothesis, the limit distribution for the Wald-type statistic forg(θ̄) = 0 [in
(5.16)] is also the asymptotic distribution of the Wald-type statistic to testH0(S) : h(θ) = 0, with
h(θ) = Sg(θ). It is the same for any choice ofS compatible with the FRALD-T condition. In
Section 6, Lemma 6.2 provides a way to derive such a matrixS. The asymptotic distribution given
by Theorem 5.2 is also the one applicable to the Wald-type statistic forH ∗

0 (S) : h̄(θ) = 0. The
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latter, however, may not be identical to the asymptotic distribution of the Wald-type statistic for
testingH ∗

0 : ḡ(θ) = 0.

6. Divergence

As observed in Example 2.6, the asymptotic distribution ofWT(θ̂ T ; g, V̂T) may not exist underH0.
In Theorem 5.2, we showed that the FRALD-T condition is sufficient to ensure the existence of a
non-degenerate asymptotic distribution for the Wald-type statistic underH0. We will now show the
condition is also necessary, so the FRALD-T condition is both necessary and sufficient to have a
non-degenerate asymptotic distribution ofWT(θ̂ T ; g, V̂T). When this condition fails, the Wald-type
statistic diverges towards infinity at the true unknown valueθ̄ , even thoughH0 holds.

6.1. Characterization of the FRALD-T condition

We first establish auxiliary results on polynomial matrices which will help verifywhether the
FRALD-T condition holds. We denote byFq the space of all nonsingularq× q matrices, and
by Pq the subspace ofq×q permutation matrices. The elements ofPq are obtained by permut-
ing the rows of the identity matrixIq, and these constitute orthogonal matrices; see Harville (1997,
section 8.4c). For a generalq× p polynomial matrixF (x) = [Fkl (x)] with

Fkl (x) =
mkl

∑
i=0

{

∑
j1+···+ jp=i

ckl( j1, . . . , jp)
p

∏
n=1

x jn
n

}

, (6.1)

denoteFk· (x) = [Fk1(x) , . . . , Fkp(x)] the k-th row of F (x), s̄kl the lowest degree of the non-zero
terms inFkl (x) [settings̄kl = 0 if Fkl (x) is a non-zero constant, and ¯skl = +∞ if Fkl (x) = 0 for all x],
and

s̄k = min{s̄kl : Fkl (x) 6= 0 and 1≤ l ≤ p} if Fk· (x) 6= 0
= +∞ if Fk· (x) = 0

(6.2)

the lowest degree among the polynomials ofFk· (x). Overbar on a polynomial matrixF (x) means
that each row of̄F (x) only contains the terms with the lowest order ¯sk on thek-th row ofF (x), i.e.,
F̄ (x) = [F̄kl (x)] where

F̄kl (x) =
s̄k

∑
i=0

{

∑
j1+···+ jp=i

ckl( j1, . . . , jp)
p

∏
n=1

x jn
n

}

= ∑
j1+···+ jp=s̄k

ckl( j1, . . . , jp)
p

∏
n=1

x jn
n , (6.3)

k = 1, . . . , q. Clearly, F̄kl (x) = 0 if the orders of the terms ofFkl (x) are all greater than ¯sk [or if
Fkl (x) = 0]. The zero constant function is interpreted as polynomial of degree zero (like any other
constant function) and it is homogeneous of any degree. IfP∈ Pq, it is useful to observe that

PF (x) = PF̄ (x) (6.4)
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sincePF (x) simply involves a permutation of the rows ofF(x); see Harville (1997, section 8.4c).
The lemma below gives a linear independence property for transformationsof polynomial matri-

ces, while the following lemma provides a construction of an “echelon-type” form for such matrices.

Lemma 6.1 SEPARATION OF LOWEST ORDER POLYNOMIAL ROWS. Let F(x) be a q× p non-
zero matrix of polynomial functions where x∈ R

p, and let s1 be the minimum degree over all the
non-zero polynomials of̄F (x). Then, there is a matrix S∈ Fq such that

SF(x) =

[

[SF(x)]1
[SF(x)]2

]

(6.5)

where[SF(x)]1 is a matrix whose rows are linearly independent vectors of homogeneous polyno-
mials all with degree s1, [SF(x)]2 is a matrix whose non-zero elements are polynomials with lowest
degree larger than s1, row{[SF(x)]1} ≥ 1, row{[SF(x)]2} ≥ 0, androw{·} denotes the number of
rows in a matrix.

Lemma 6.2 ECHELON POLYNOMIAL-DEGREE FORM. Let F(x) be a q× p non-zero matrix of
polynomial functions where x∈ R

p. Then there is a matrix S∈ Fq such that

SF(x) =







[SF(x)]1
...

[SF(x)]ν






(6.6)

where each submatrix[SF(x)]i only contains homogeneous polynomials of degree si , for i =
1, . . . , ν , with 0 ≤ s1 < · · · < si < · · · < sν (where sν = +∞ if the corresponding rows are zero),
and the rows of the matrix

[

[SF(x)]′1, . . . , [SF(x)]′ν−1

]′
are linearly independent functions. Further,

if F (x) has full ranka.e., all the rows ofSF(x) are linearly independent functions.

Using the above lemmas, we can now establish that full rank of the “echelon-type” form is a
necessary and sufficient condition for the FRALD-T property to hold for a polynomial matrix.

Proposition 6.3 FRALD-T PROPERTY CHARACTERIZATION. Let g(θ) be a polynomial function
of θ as given in(1.1) - (1.2), suppose Assumption 2.3 holds, and let S∈Fq be any matrix such that
SG(x) has the form(6.6) with F = G. Then, the FRALD-T property is satisfied if and only

rank{SG(x)} = q for almost all x∈ R
p. (6.7)

6.2. Characterization of convergence for Wald statistics

We now establish that failure of the FRALD-T condition entails that Wald-type statistics diverge
underH0.

Theorem 6.4 DIVERGENCE CONDITION. Suppose the Assumptions 2.1, 2.2 and 2.3 hold, and
g(θ̄) = 0 for the true unknown valuēθ . If g(θ) is a polynomial function as given in(1.1) - (1.2) but
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Assumption 5.2[FRALD-T property] is not satisfied for g(θ), then WT(θ̂ T ; g, V̂T) in (2.3) diverges
in probability to+∞.

On combining Theorems 5.2 and 6.4, we finally see that the FRALD-T propertyis bothneces-
sary and sufficientfor a limit distribution ofWT(θ̂ T ; g, V̂T) to exist underH0.

Corollary 6.5 NECESSARY AND SUFFICIENT CONDITION FORWALD STATISTIC CONVER-
GENCE. Suppose the Assumptions 2.1, 2.2 and 2.3 hold. If g(θ) is a polynomial function as given
in (1.1) - (1.2) and if the true unknown valuēθ satisfies g(θ̄) = 0, then WT(θ̂ T ; g, V̂T) in (2.3)
converges if and only if Assumption 5.2 is satisfied.

7. Conclusion

This paper provides a complete characterization of the limit properties of the Wald statistic for
testing polynomial restrictions under assumptions that include the standard asymptotic Gaussianity.
General distributional results in the case of one restriction demonstrate thatuniform bounds on the
distribution and on critical values can provide tests with correct asymptotic level. Derivations for
some specific cases (such as product restrictions) show that the bounds can be significantly tightened
in many cases. When there is more than one polynomial restriction divergence of the Wald statistic
under the null is possible, even with asymptotically Gaussian parameter estimates. A necessary and
sufficient condition for convergence of the distribution of the statistic under the null hypothesis is
provided, and a construction that would verify whether the condition holds isoutlined in the proofs
of Lemmas 6.1 and 6.2.

Thus only a full investigation of the restrictions at every point in the algebraic variety induced
by the null can indicate: (1) whether singular points exist, (2) whether (withseveral restrictions)
there are any points at which divergence occurs, and (3) what formsthe limit distributions can
take on the algebraic variety studied. A practical implementation of such an investigation would
require establishing minimal degrees of homogeneity of polynomial functions based on estimated
polynomials. This could be implemented by using “superconsistent estimators”,but implementing
such methods goes beyond the scope of this paper.

Barring such a complete investigation, we note that, due to the possibility of divergence, em-
ploying the Wald statistic to test more than one restriction is risky as the test may have size arbitrarily
close to one. There are various methods for combining several restrictions into one such as combin-
ing results from tests of individual restrictions or combining the multiple restrictions into one that
defines the same algebraic variety.

Finally, for one restriction the results on the bounds on the distribution of the test statistic and
on the critical values make it possible to implement conservative tests based onthe Wald statistic.
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Appendix

A. Underrejections and overrejections: examples

The derivations in the examples below assumeZ ∼ N(0, I) and (except for Example 2.3)J = V =
V̂T = I .
Example 2.1. (i) θ 1 = 0 is a regular linear hypothesis, so the asymptotic distribution underH0 is
χ2

1. (ii) For g(θ) = θ 2
1, we have:

WT(θ̂ T ; g, V̂T) = T
θ̂ 2

1

4θ̂ 2
1

=
1
4

T θ̂ 2
1 =

1
4
[T

1
2 (θ̂ 1− θ̄)]2

p−→
T→∞

1
4

Z2 ∼ 1
4

χ2
1. (A.1)

The usual critical value is conservative in this case.
Example2.2. Forg(θ) = θ 1θ 2, we haveG(θ) = (θ 2, θ 1) and

WT(θ̂ T ; g, V̂T) = Tg′(θ̂ T)
[

G(θ̂ T)V̂TG(θ̂ T)′
]−1

g(θ̂ T)

= T
θ̂ 2

1θ̂ 2
2

(θ̂ 2, θ̂ 1)(θ̂ 2, θ̂ 1)′
= T

θ̂ 2
1θ̂ 2

2

θ̂ 2
1 + θ̂ 2

2

. (A.2)

(i) If θ 1 = 0 andθ 2 6= 0, then

WT(θ̂ T ; g, V̂T) = T
θ̂ 2

1θ̂ 2
2

θ̂ 2
1 + θ̂ 2

2

p−→
T→∞

Z2
2 ∼ χ2

1 (A.3)

and similarly ifθ 1 6= 0 andθ 2 = 0. These represent regular cases. (ii) Ifθ 1 = θ 2 = 0,

WT(θ̂ T ; g, V̂T)
p−→

T→∞

Z2
1Z2

2

Z2
1 +Z2

2

. (A.4)

The above limit random variable does not follow a chi-square distribution. However, it can
be bounded a chi-square distribution. The spherically distributed (standard Gaussian) vector

(Z1, Z2)
′ can be viewed in polar coordinates:r(sinφ , cosφ)′, wherer =

(

Z2
1 +Z2

2

)1/2
and sinφ =

Z1/r, cosφ = Z2/r. φ is distributed uniformly over[0, 2π] and independently ofr. Then

Z2
1Z2

2

Z2
1 +Z2

2

=
r4

r2 sin2 φ cos2 φ = r21
4

sin2(2φ) =
1
4

r2sin22φ (A.5)

where the distribution of sin2φ is the same as that of sinφ and thus the limit distribution is the same
as for

1
4

r2sin2 φ =
1
4

Z2
1 ∼ 1

4
χ2

1. (A.6)

Example 2.3. The limit forms of the statistic in the non-standard cases when more than oneθ̄ i is
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zero are obtained by substituting the limit variablesX for θ̂ T and the limit elements of thêVT matrix
into the expression for the Wald statistic. Convergence follows from Slutsky’s theorem and the fact
that∆i 6= 0 with probability one fori = 0, 1, 2, 3.
Example2.4. Forg(θ) = θ 2

1 + · · ·+θ 2
p, we have:

WT(θ̂ T ; g, V̂T) = Tg′(θ̂ T)
[

G(θ̂ T)G(θ̂ T)′
]−1

g(θ̂ T)

= T

(

θ̂ 2
1 + · · ·+ θ̂ 2

p

)2

4
(

θ̂ 2
1 + · · ·+ θ̂ 2

p

)

=
1
4

T
(

θ̂ 2
1 + · · ·+ θ̂ 2

p

)

p−→
T→∞

1
4

(

Z2
1 + · · ·+Z2

p

)

∼ 1
4

χ2
p . (A.7)

Example2.5. Forg(θ) = θ 2
1 +θ 3

1−θ 2
2, we haveG =

(

3θ 2
1 +2θ 1 −2θ 2

)

. Then

WT = T

(

θ̂ 3
1 + θ̂ 2

1− θ̂ 2
2

)2

9θ̂ 4
1 +12θ̂ 3

1 +4θ̂ 2
1 +4θ̂ 2

2

. (A.8)

At θ̄ 1 = θ̄ 2 = 0 we get thatWT
p−→

T→∞

(Z2
1−Z2

2)
2

4(Z2
1+Z2

2)
. As in Example 2.2, on substituting the same spherical

coordinatesr (sinφ ,cosφ) for (Z1,Z2), we get

(

Z2
1 −Z2

2

)2

4(Z2
1 +Z2

2)
=

1
4

r2cos22φ ∼ 1
4

Z2
2 ∼ 1

4
χ2

1 . (A.9)

Example2.6. Forq = 2 andg(θ) =
[

θ 2
1, θ 1θ 2

2

]′
, we have:

G(θ) =

[

2θ 1 0
θ 2

2 2θ 1θ 2

]

, (A.10)

WT(θ̂ T ; g, V̂T) = Tg′(θ̂ T)
[

G(θ̂ T)G(θ̂ T)′
]−1

g(θ̂ T)

= T

(

θ̂ 2
1

θ̂ 1θ̂ 2
2

)′ 



(

2θ̂ 1 0

θ̂ 2
2 2θ̂ 1θ̂ 2

)(

2θ̂ 1 0

θ̂ 2
2 2θ̂ 1θ̂ 2

)′



−1
(

θ̂ 2
1

θ̂ 1θ̂ 2
2

)

= T
4θ̂ 2

1 + θ̂ 2
2

16
. (A.11)

(i) If θ̄ 1 = θ̄ 2 = 0,

WT(θ̂ T ; g, V̂T) = T
4θ̂ 2

1 + θ̂ 2
2

16
p−→

T→∞

1
4

Z2
1 +

1
16

Z2
2 ∼ 1

4
χ2

1 +
1
16

χ2
1 . (A.12)

The asymptotic distribution is14Z2
1 + 1

16Z2
2, is a linear combination of two independentχ2

1 . Since
1
4Z2

1 + 1
16Z2

2 ≤ 1
4(Z2

1 +Z2
2), its distribution is bounded by14χ2

2 distribution. (ii) If θ̄ 1 = 0 andθ̄ 2 6= 0,
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the null hypothesis holds, and

WT(θ̂ T ; g, V̂T) = T
4θ̂ 2

1 + θ̂ 2
2

16
=

4Tθ 2
1 +Tθ̄ 2

2

16
→ 4Z2

1 +Tθ̄ 2
2

16
. (A.13)

As T → ∞ WT(θ̂ T ; g, V̂T) diverges to+∞.

B. Proofs

PROOF OFTHEOREM 3.1 Using the representation given by (3.2) - (3.8), we can write:

g(θ̂ T) = ḡ(θ̂ T − θ̄)+ r̄(θ̂ T − θ̄) (B.1)

where

ḡ(θ̂ T − θ̄) = g[θ̂ T − θ̄ ; s̄, θ̄ ] = ∑
j1+···+ jp=s̄

c( j1, . . . , jp; θ̄)
p

∏
k=1

(θ̂ kT − θ̄ k)
jk , (B.2)

r̄(θ̂ T − θ̄) =
m

∑
i=s̄+1

g[θ̂ T − θ̄ ; i, θ̄ ] , (B.3)

with s̄= s(θ̄). On multiplying both sides of (B.1) byT s̄/2, we get:

T s̄/2g(θ̂ T) = T s̄/2ḡ(θ̂ T − θ̄)+T s̄/2r̄(θ̂ T − θ̄) , (B.4)

T s̄/2 ḡ(θ̂ T − θ̄) = ∑
j1+···+ jp=s̄

c( j1, . . . , jp; θ̄)
p

∏
k=1

[

T1/2(θ̂ kT − θ̄ k)
] jk

, (B.5)

T s̄/2 r̄(θ̂ T − θ̄) =
m

∑
i=s̄+1

T(s̄−i)/2 ∑
j1+···+ jp=i

c( j1, . . . , jp; θ̄)
p

∏
k=1

[

T1/2(θ̂ kT − θ̄ k)
] jk

. (B.6)

By Assumption 2.1,
√

T(θ̂ T − θ̄)
p−→

T→∞
Y whereY = JZ = (Y1, . . . , Yp)

′, hence

p

∏
k=1

[

T1/2(θ̂ kT − θ̄ k)
] jk p−→

T→∞

p

∏
k=1

Y jk
k , (B.7)

T s̄/2ḡ(θ̂ T − θ̄)
p−→

T→∞ ∑
j1+···+ jp=s̄

c( j1, . . . , jp; θ̄)
p

∏
k=1

Y jk
k = g[Y; s̄; θ̄ ] = ḡ(Y) , (B.8)

T s̄/2r̄(θ̂ T − θ̄) = op(1) . (B.9)

The last equation follows from (B.7) and the fact thatT(s̄−i)/2 → 0 for i > s̄. Thus,

T s̄/2g(θ̂ T)
p−→

T→∞
ḡ(Y) = ḡ(J Z) , (B.10)

T s̄/2[g(θ̂ T)− ḡ(θ̂ T − θ̄)
]

= T s̄/2r̄(θ̂ T − θ̄) = op(1) . (B.11)



B. PROOFS 31

By differentiation of the functions in (B.1), we can write:

G(θ) = Ḡ(θ − θ̄)+ R̄(θ − θ̄) , (B.12)

with

Ḡ(θ − θ̄) =
∂ ḡ(θ − θ̄)

∂θ ′ =
∂ ḡ(θ)

∂
(

θ − θ̄
)′ = ∑

j1+···+ jp=s̄

c( j1, . . . , jp; θ̄)Mk[θ − θ̄ ; j1, . . . , jp]
′ , (B.13)

R̄(θ − θ̄) =
m

∑
i=s̄+1

∑
j1+···+ jp=i

c( j1, . . . , jp; θ̄)Mk[θ − θ̄ ; j1, . . . , jp]
′ , (B.14)

whereM[x; j1, . . . , jp] = (M1[x; j1, . . . , jp], . . . , Mp[x; j1, . . . , jp])
′ and

Mk[x; j1, . . . , jp] =
∂

∂xk

(

p

∏
h=1

x jk
h

)

= jk x jk−1
k

p

∏
h=1,h6=k

x jh
h , x∈ R

p, k = 1, . . . , p. (B.15)

Since the polynomials in̄G(θ − θ̄) have degreēγ = s̄−1, we have:

T γ̄/2G(θ̂ T) = T γ̄/2Ḡ(θ̂ T − θ̄)+T γ̄/2R̄(θ̂ T − θ̄) , (B.16)

T γ̄/2Ḡ(θ̂ T − θ̄) = ∑
j1+···+ jp=s̄

c( j1, . . . , jp; θ̄)T γ̄/2Mk(θ̂ T − θ̄ ; j1, . . . , jp)
′

p−→
T→∞ ∑

j1+···+ jp=s̄

c( j1, . . . , jp; θ̄)Mk(Y; j1, . . . , jp)
′ ≡ Ḡ(Y) = Ḡ(J Z) , (B.17)

T γ̄/2R̄(θ̂ T − θ̄) =
m

∑
i=s̄+1

T(γ̄−i)/2 ∑
j1+···+ jp=s̄

c( j1, . . . , jp; θ̄)Mk
(

T1/2(θ̂ T − θ̄); j1, . . . , jp
)′

= op(1) (B.18)

where againT(γ̄−i)/2 → 0 for i > s̄. Thus

T γ̄/2G(θ̂ T)
p−→

T→∞
Ḡ(Y) = Ḡ(J Z) . (B.19)

Now, the Student-type statistic can be rewritten as

tT(θ̂ T ; g,V̂T) =
T1/2g(θ̂ T)

[

G(θ̂ T)V̂TG(θ̂ T)′
]1/2

(B.20)
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can be rewritten as

tT(θ̂ T ; g,V̂T) =
T(γ̄+1)/2g(θ̂ T)

[

(

T γ̄/2G(θ̂ T)
)

V̂T
(

T γ̄/2G(θ̂ T)
)′]1/2

. (B.21)

Using Assumptions 2.1 - 2.2 and the limits obtained above, we get

tT(θ̂ T ; g,V̂T)
p−→

T→∞
t(θ̄ ; g, V) , (B.22)

t(θ̄ ; g, V) :=
ḡ(Y)

[

Ḡ(Y)VḠ(Y)′
]1/2

. (B.23)

Further, since ¯g(x) is homogeneous of degree ¯s, Euler’s theorem yields the identity:

ḡ(Y) =

(

1
s̄

)

Ḡ(Y)Y , (B.24)

hence

t(θ̄ ; g) =
1
s̄

Ḡ(Y)Y
[

Ḡ(Y)VḠ(Y)′
]1/2

=

(

1
s̄

)

Ḡ(J Z)JZ
[

Ḡ(J Z)JJ′Ḡ(J Z)′
]1/2

=

(

1

s̄

)

Ḡ∗(Z)Z
[

Ḡ∗(Z)Ḡ∗(Z)′
]1/2

, (B.25)

whereḠ∗(Z) = Ḡ(JZ)J. The result for the Wald-type statisticWT(θ̂ T ; g, V̂T) follows on observing
that

WT(θ̂ T ; g, V̂T) = Tg(θ̂ T)′[G(θ̂ T)V̂TG(θ̂ T)′]−1g(θ̂ T)

= T
g(θ̂ T)2

G(θ̂ T)V̂TG(θ̂ T)′
= tT(θ̂ T ; g,V̂T)2 (B.26)

hence

WT(θ̂ T ; g, V̂T)
p−→

T→∞
t(θ̄ ; g)2 =

(

1

s̄

)2 1

s̄2

[Ḡ∗(Z)Z]2

Ḡ∗(Z)Ḡ∗(Z)′
=

(

1

s̄

)2 [Ḡ∗(Z)Z]2
∥

∥Ḡ∗(Z)
∥

∥

2 . (B.27)

This concludes the proof.

PROOF OFTHEOREM 3.2 Since ¯g(θ) := g[θ − θ̄ ; s(θ̄), θ̄ ] in (3.8) is homogeneous of degree
1+ γ(θ̄) with respect toθ − θ̄ , the functionsḠ(z) defined in (3.11) and̄G∗(z) = Ḡ(Jz)J are homo-
geneous of degreeγ(θ̄). Thus

Ḡ∗(U) = Ḡ∗(Z/‖Z‖) = ‖Z‖−γ(θ̄) Ḡ∗(Z) , (B.28)
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Ḡ∗(U)U
∥

∥Ḡ∗(U)
∥

∥

=
‖Z‖−γ(θ̄) Ḡ∗(Z)Z

‖Z‖−γ(θ̄)
∥

∥Ḡ∗(Z)
∥

∥

1
‖Z‖ =

Ḡ∗(Z)Z
∥

∥Ḡ∗(Z)
∥

∥

1
‖Z‖ , (B.29)

and the identities (3.18)- (3.19) follow. WhenZ is spherically symmetric, the fact thatU and‖Z‖
are independent is a consequence of the fact the density ofZ is constant on spheres. Finally, when
Z ∼ N(0, Ip), ‖Z‖2 is a sum ofp independentχ2

1 variables, so‖Z‖2 ∼ χ2
p.

PROOF OFTHEOREM 4.1 By (3.13), we get on using the Cauchy-Schwarz inequality:

∣

∣t(θ̄ ; g, V)
∣

∣=
1

1+ γ(θ̄)

∣

∣Ḡ∗(Z)Z
∣

∣

∥

∥Ḡ∗(Z)
∥

∥

≤ 1

1+ γ(θ̄)

∥

∥Ḡ∗(Z)
∥

∥ ‖Z‖
∥

∥Ḡ∗(Z)
∥

∥

=
1

1+ γ(θ̄)
‖Z‖ . (B.30)

If γ(θ̄) = 0, Ḡ∗(Z) is a non-zero fixed vector by the definition ofγ(θ̄) [see (3.6) - (3.7)], and the
inequalities (4.1) follow on observing thatW(θ̄ ; g, V) = t(θ̄ ; g, V)2. WhenZ ∼ N(0, Ip), we get
using (3.20) thatτ(θ̄)Z ∼ N(0, 1) andW(θ̄ ; g, V) ∼ χ2

1. If γ(θ̄) ≥ 1, (4.2) and (4.3) also follow
from (B.30). Since‖Z‖2 ∼ χ2

p whenZ ∼ N(0, Ip), the global inequalities (4.4) -(4.5) follow by
combining (4.1), (4.2) and (4.3).

PROOF OFPROPOSITION4.2 If q≥ p, the result is trivial because theχ2
q distribution dominates

theχ2
p distribution. So we considerq< p. If y is large, the density functions ofχ2

q andχ2
p/ζ random

variables are monotonically decreasing. Let us denote byfX(x) the density function of a random
variableX. We will now establish that we can find ¯y0 > 0 for which

fχ2
q
(y) ≥ fχ2

p/ζ (y) wheny≥ ȳ0 . (B.31)

The probability density functions of theχ2
q andχ2

p/ζ distributions are:

fχ2
q
(y) =

1

2q/2Γ (q/2)
y(q/2)−1exp(−y/2) , (B.32)

fχ2
p/ζ (y) =

ζ
2p/2Γ (p/2)

(ζy)(p/2)−1exp(−ζy/2) , (B.33)

hence the ratio

fχ2
q
(y)

fχ2
p/ζ (y)

= 2
p−q

2
Γ (p/2)

Γ (q/2)

1

ζ (p/2)
y(q−p)/2exp[(ζ −1)y/2]

= 2
p−q

2
Γ (p/2)

Γ (q/2)

1

ζ (p/2)
exp{[(ζ −1)y− (p−q) ln(y)]/2} (B.34)

Since(ζ −1) > 0 and(p−q) > 0, this ratio goes to zero asy → +∞, so (B.31) holds fory large
enough, say fory≥ ȳ0, hence

P[χ2
q > y] ≥ P[χ2

p/ζ > y] for y≥ ȳ0 . (B.35)
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If ᾱ = P
[

χ2
p/ζ > ȳ

]

for some ¯y≥ ȳ0, we have:

P[χ2
q > y] ≥ P[χ2

p/ζ > y] for y≥ ȳ. (B.36)

PROOF OFPROPOSITION4.3 The proof of this dominance result is based on observing that

Gi(θ) =
∂g

∂θ ′
i·

= Hi(θ i·)h(i) , h(i) =
n

∏
j=1
j 6=i

h j (θ j·) , Hi(θ i·) =
∂hi

∂θ ′
i·
(θ i·) , (B.37)

for i = 1, . . . , n, hence

W(y; g, Σ̃T) =
g(y)2

G(y) Σ̃T G(y)′
=

h1(y1)
2 · · · hn(yn)

2

H1(y1)Σ̃1TH1(y1)′h2
(1) + · · ·+Hn(yn)Σ̃nTHn(yn)′h2

(n)

. (B.38)

Let 1≤ i ≤ n. If Hi(yi)Σ̃iT Hi(yi)
′ > 0, we can consider two distinct cases: ifh(i) = 0, we have

W(y; g, Σ̃T) = 0≤ hi(yi)
2

Hi(yi) Σ̃iT Hi(yi)′
= W(Yi ; hi , Σ̃iT ) ; (B.39)

if h(i) 6= 0, we have

W(y; g, Σ̃T) =
hi(yi)

2

Hi(yi) Σ̃iT Hi(yi)′ + ∑
j 6=i

[H j(y j)Σ̃ jH j(y j)′h2
( j)/h2

(i)]

≤ hi (yi)
2

Hi(yi)Σ̃iT Hi(yi)′
= W(yi ; hi , Σ̃iT ) . (B.40)

ThusW(Y; g, Σ̃T) ≤ W(Yi ; hi , Σ̃iT ) when∆i > 0, and (4.14) is established. Wheng(Y) 6= 0 and
∆1 > 0, . . . , ∆n > 0, (4.14) holds for all 1≤ i ≤ n and (4.15) follows. Further, in this case, we can
observe that

W(Y; g, Σ̃T) =

{

n

∑
i=1

[Hi(Yi)Σ̃iT Hi(Yi)
′/hi (Yi)

2]

}−1

=

{

n

∑
i=1

1

W(Yi ; hi , Σ̃iT )

}−1

(B.41)

so nW(Y; g, Σ̃T) is the harmonic mean ofW(Y1; h1, Σ̃1T), . . . , W(Yn; hn, Σ̃nT). (4.16) follows on
applying classical inequalities between harmonic, geometric and arithmetic means; see Mitrinovíc
and Vasíc (1970, Section 2.1) or Cloud and Drachman (1998, Section 3.4).

PROOF OF PROPOSITION 4.4 This result follows directly on applying Proposition 4.3 to
W(Y; g, Σ̃T), and Proposition 4.1 to the statisticsW(Yi ; hi , Σ̃iT ) associated with different fac-
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tors.

PROOF OFPROPOSITION4.5 If g(y) = yν1
1 · · · y

ν p
p , we see easily thatG(y) =

[

∂g
∂y1

, . . . , ∂g
∂yp

]

with

∂g
∂y j

= n j y
ν j−1
j

p

∏
h=1,h6= j

yνh
h =

ν j g(y)

y j
, j = 1, . . . , p, (B.42)

so that

G(y)G(y)′ = g(y)2
p

∑
j=1

(

ν j

y j

)2

, (B.43)

W(y; g) =
g(y)2

G(y)G(y)′
=

[

p

∑
j=1

(

ν j

y j

)2
]−1

≤
(

ν j

y j

)−2

=

(

y j

ν j

)2

, j = 1, . . . , p. (B.44)

This entails (4.36).

PROOF OFPROPOSITION4.7 This result is a direct consequence of (3.31) along with Theorem

2.1 of Pillai and Meng (2016). Since min
1≤i≤p

ν2
i ≤

(
r
∑
j=1

ν j
)2

for 1≤ r ≤ p, the bound(χ2
1/ min

1≤i≤p
ν2

i )

dominates the expression in (4.1) for any 1≤ r ≤ p.

PROOF OFTHEOREM 5.1 We want to show that the Wald-type statisticWT(θ̂ T ; g, V̂T) has the
same asymptotic distribution as

W̄T(θ̂ T ; g, V) = T ḡ(θ̂ T)′
[

Ḡ(θ̂ T − θ̄)V Ḡ(θ̂ T − θ̄)′
]−1

ḡ(θ̂ T) . (B.45)

By considering theq components of the functiong(θ), we can reproduce component by component
the proof of Theorem 3.1: forl = 1, . . . , q, we get

Tsl /2gl (θ̂ T)
p−→

T→∞
ḡl (Y) , Tsl /2[gl (θ̂ T)− ḡl (θ̂ T − θ̄)

]

= op(1) , (B.46)

wheres̄l := sl (θ̄) = 1+ γ̄ l and

ḡl (Y) = ∑
j1+···+ jp=s̄l

cl ( j1, . . . , jp; θ̄)
p

∏
k=1

[Yk]
jk , (B.47)

T γ̄ l /2Gl (θ̂ T)
p−→

T→∞
Ḡl (Y) , T γ̄ l /2[Gl (θ̂ T)− Ḡl (θ̂ T − θ̄)

]

= op(1) , (B.48)

Ḡl (θ − θ̄) =
∂ ḡl (θ)

∂θ ′ =
∂ ḡl (θ)

∂
(

θ − θ̄
)′ = ∑

j1+···+ jp=s̄l

cl ( j1, . . . , jp; θ̄)Mk[θ − θ̄ ; j1, . . . , jp]
′ , (B.49)

Ḡl (Y) = ∑
j1+···+ jp=s̄l

cl ( j1, . . . , jp; θ̄)Mk(Y; j1, . . . , jp)
′. (B.50)
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whereMk(·) is defined in (B.15). Setting∆T(θ̄) := diag[T γ̄1/2, . . . , T γ̄q/2] , we then have:

T1/2∆T(θ̄)g(θ̂ T)
p−→

T→∞
ḡ(Y) , ∆T(θ̄)G(θ̂ T)

p−→
T→∞

Ḡ(Y) , (B.51)

T1/2∆T(θ̄) ḡ(θ̂ T − θ̄)
p−→

T→∞
ḡ(Y) , ∆T(θ̄)G(θ̂ T − θ̄)

p−→
T→∞

Ḡ(Y) . (B.52)

By Assumption 2.1 and 2.2,̂VT
p−→

T→∞
V whereV = JJ′ is invertible, so that

[∆T(θ̄)G(θ̂ T)]V̂T [∆T(θ̄)G(θ̂ T)]′
p−→

T→∞
Ḡ(Y)V Ḡ(Y)′ , (B.53)

[∆T(θ̄)Ḡ(θ̂ T − θ̄)]V̂T [∆T(θ̄)Ḡ(θ̂ T − θ̄)]′
p−→

T→∞
Ḡ(Y)VḠ(Y)′. (B.54)

Since the matrix of polynomials̄G(θ) has full rankq (as a matrix of polynomials) and the vector
Y is absolutely continuous, the random matrix̄Gl (Y)V Ḡl (Y)′ is almost surely nonsingular. By
Slutsky’s theorem, we thus have

{[∆T(θ̄)G(θ̂ T)]V̂T
(

∆T(θ̄)G(θ̂ T)
)′}−1 p−→

T→∞
{Ḡ(Y)V Ḡ(Y)′}−1, (B.55)

{[∆T(θ̄)Ḡ(θ̂ T − θ̄)]V̂T [∆T(θ̄)Ḡ(θ̂ T − θ̄)]′}−1 p−→
T→∞

{Ḡ(Y)V Ḡ(Y)′}−1, (B.56)

hence

WT(θ̂ T ; g, V̂T) = T g(θ̂ T)′
[

G(θ̂ T)V̂T G(θ̂ T)′
]−1

g(θ̂ T)

= [∆T(θ̄)T1/2g(θ̂ T)]′{[∆T(θ̄)G(θ̂ T)]V̂T [∆T(θ̄)G(θ̂ T)]′}−1[∆T(θ̄)T1/2g(θ̂ T)]
p−→

T→∞
W(θ̄ ; g, J) , (B.57)

W̄T(θ̂ T ; ḡ, V) = T ḡ(θ̂ T − θ̄)′
[

Ḡ(θ̂ T − θ̄)V Ḡ(θ̂ T − θ̄)′
]−1

ḡ(θ̂ T − θ̄)

= [∆T(θ̄)T1/2ḡ(θ̂ T − θ̄)]′[G̃T V G̃′
T ]−1[∆T(θ̄)T1/2ḡ(θ̂ T − θ̄)]

p−→
T→∞

W(θ̄ ; g, J) , (B.58)

whereG̃T := ∆T(θ̄)Ḡ(θ̂ T − θ̄) and, using (5.5),

W(θ̄ ; g, J) = ḡ(Y)′
[

Ḡ(Y)V Ḡ(Y)′
]−1

ḡ(Y)

= Y′Ḡ(Y)′Λ(θ̄)
[

Ḡ(Y)V Ḡ(Y)′
]−1Λ(θ̄)Ḡ(Y)Y . (B.59)

Finally, by the definition ofY andḠ∗, we haveḠ∗(Z) = Ḡ(JZ)J and

W(θ̄ ; g, J) = Z′Ḡ∗ (Z)′Λ(θ̄)
[

Ḡ∗ (Z)Ḡ∗ (Z)′
]−1Λ(θ̄)Ḡ∗ (Z)Z . (B.60)
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PROOF OFLEMMA 6.1 SinceF(x) is non-zero, it has at least one row containing a non-zero
homogeneous polynomial of degrees1, and similarly forF̄(x). Further, we can write

F(x) = F̄(x)+R(x) (B.61)

whereR(x) := [Rkl (x)] and each rowRk· (x) = [Rk1(x) , . . . , Rkp(x)] of R(x) only contains polyno-
mials with lowest order larger than ¯sk (or zeros). The proof is split into three main steps.
(1) Let n1 ≥ 1 be the number of non-zero rows ofF (x) for which the minimum lowest degree of
any polynomial iss1, andI (s1) = {i1, . . . , in1} the indices of the corresponding rows ofF (x). Then
there is aq×q permutation matrixP1 such that

P1F (x) =

[

H1(x)
H2(x)

]

(B.62)

whereH1(x) := [P1F(x)]1 is ann1× p matrix containing all the rows with numbers inI (s1) , and
H2(x) := [P1F(x)]2 contains the other rows ofF (x): each row ofH1(x) contains at least one non-zero
homogenous polynomial of degrees1 (plus possibly higher-order homogeneous polynomials and
zeros) [i.e., the rows with numbers inI (s1)], while the non-zero elements ofH2(x) are polynomials
with lowest degree larger thans1. Then

P1F(x) = P1F̄(x)+P1R(x) , P1F(x) = P1F̄ (x) =

[

H̄1(x)
H̄2(x)

]

, (B.63)

whereH̄1(x) only contains homogeneous polynomials of degrees1, H̄2(x) only contains zeros and
non-zero homogeneous polynomials of order greater thans1, andP1R(x) only contains polynomials
with lowest degree larger thans1 (or zeros).
(2) Let r1 be the number of linearly independent polynomial (row) vectors inH̄1(x). Clearly, 1≤
r1 ≤ n1. If r1 = n1, the rows ofH̄1(x) are linearly independent functions, and (6.5) holds on taking
S= P1, so thatH̄1(x) = [SF(x)]1 andH̄2(x) = [SF(x)]2.
(3) If r1 < n1, H̄1(x) containsr1 linearly independent polynomial rows, while the remainingk1 =
n1 − r1 rows are linear combinations of the rows in the first group. Then we can find a q× q
permutation matrixP2 such that

P2

[

H̄1(x)
H̄2(x)

]

=





H̄11(x)
H̄21(x)
H̄2(x)



 (B.64)

whereH̄11(x) is an r1 × p matrix obtained by takingr1 linearly independent polynomial rows of
H̄1(x), andH̄21(x) is ak1× p matrix containing the other rows of̄H1(x). By the definition of linear
independence between polynomial vectors [see (2.5)], we can find ak(s1)×q constant matrixC21
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such thatH̄21(x) = C21H̄11(x). Set

Q =





Ir1 0 0
−C21 Ik1 0

0 0 Iq−n1



 , S= QP2P1 , SR(x) =





R11(x)
R21(x)
R22(x)



 , R2(x) =

[

R21(x)
R22(x)

]

, (B.65)

where the matricesR11(x), R21(x) andR22(x) have dimensionsr1× p, k1× p and[q−n1]× p respec-
tively, and only contain polynomial terms with order larger thans1. ClearlyQ andSare nonsingular,
and

SF̄(x) = Q





H̄11(x)
H̄21(x)
H̄2(x)



=





H̄11(x)
H̄21(x)−C21H̄11(x)

H̄2(x)



=





H̄11(x)
0

H̄2(x)



 , (B.66)

SF(x) = SF̄(x)+SR(x) =





H̄11(x)+R11(x)
R21(x)
R22(x)



=

[

H̄11(x)+R11(x)
R2(x)

]

. (B.67)

It is then easy to see that

SF(x) =

[

H̄11(x)
R̄2(x)

]

=

[

[SF(x)]1
[SF(x)]2

]

, (B.68)

whereH̄11(x) is a matrix whose rows are linearly independent vectors of homogeneous polynomials
all with degrees1, and R̄2(x) is a matrix whose non-zero elements are polynomials with lowest
degree larger thans1. Thus (6.5) holds on setting[SF(x)]1 := H̄11(x) and[SF(x)]2 := R̄2(x).

PROOF OFLEMMA 6.2 Let s1 ≥ 0 be the lowest degree of any non-zero polynomial inF(x). By
Lemma 6.1, we can find a matrixS1 ∈ Fq such that

S1F (x) =

[

[S1F (x)]1
[S1F (x)]2

]

(B.69)

where[S1F (x)]1 is anr1×q matrix whose rows are linearly independent vectors of homogeneous
polynomials all with degrees1, 1≤ r1 ≤ q, and[SF(x)]2 is a matrix whose non-zero elements are
polynomials with lowest degree larger thans1. If r1 = q or [S1F (x)]2 = 0, (6.6) is satisfied with
S= S1. Otherwise, letF2(x) = [S1F(x)]2, a (q− r1)× p matrix, ands2 the lowest degree of any
non-zero polynomial inF2(x). Clearlys2 > s1, and we can apply Lemma 6.1 toF2(x): we can find
a matrixQ2 ∈ Fq−r1 such that

Q2F2(x) =

[

[Q2F2(x)]1
[Q2F2(x)]2

]

(B.70)

where[Q2F2(x)]1 is anr2×q matrix whose rows are linearly independent vectors of homogeneous
polynomials all with degrees2, 1≤ r2 ≤ q− r1, and[Q2F2(x)]2 is a matrix whose non-zero elements
are polynomials with lowest degree larger thans2. Then, for

S2 =

[

Ir1 0
0 Q2

]

S1 , (B.71)
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we have:

S2F (x) =

[

Ir1 0
0 Q2

][

[S1F(x)]1
[S1F(x)]2

]

=

[

[S1F(x)]1
Q2[S1F(x)]2

]

=

[

[S1F(x)]1
Q2F2(x)

]

, (B.72)

hence on setting[S2F (x)]1 = [S1F (x)]1, [S2F (x)]2 = [Q2F2(x)]1 and[S2F (x)]3 = [Q2F2(x)]2,

S2F(x) =

[

[S1F (x)]1
Q2F2(x)

]

=





[S1F (x)]1
[Q2F2(x)]1
[Q2F2(x)]2



=
[S2F (x)]1
[S2F (x)]2
[S2F (x)]3

(B.73)

where[S1F (x)]1 and[S2F (x)]2 only contain linearly independent vectors of homogeneous polyno-
mials all with degrees1 ands2, and[S2F (x)]3 is a matrix whose non-zero elements are polynomials
with lowest degree larger thans2.
The same process is repeated as long as the last block

[

Sv−1F (x)
]

either contains non-zero linearly
independent polynomial rows of degreesv with 0≤ s1 < s2 < ... < sv−1 < sv < ∞, or contains only
zeros in which case the corresponding rows inSv−1F (x) are zeros. (6.6) then follows on taking
S= Sν−1.
Finally, if F (x) hasfull rank q a.e., SF(x) also has full rankq a.e., and the last block[Sν−1F (x)]ν
has full row rank a.e.. so all the rows of[Sν−1F (x)]ν must be non-zero, and the lowest degree of
any non-zero polynomial issν < +∞. Further, all the rows of[Sν−1F (x)]ν must be linearly inde-
pendent functions, for otherwise[Sν−1F (x)]ν would not be the last block. Since the different blocks
must be linearly independent functions, it follows that all the rows ofSF(x) all linearly independent
functions.

PROOF OFPROPOSITION6.3 When the FRALD-T condition does not hold, the rank ofSG(y)
constructed in Lemma 6.2 has to be less thanq. If the FRALD-T condition holds forG(y) with
some matrixS̄, then for anyS∈ Fq the FRALD-T property also holds forSG(y) on selecting the
matrix SSG := S̄S−1. Consider the matrixS defined in the proof of Lemma 6.2. ThenSG(y) =
SG(y)+ R(y), where by constructionSG(y) hasq linearly independent rows and, in each row of
R(y), the degree of the polynomials is higher than for the corresponding row ofSG(y) . Multiplying
SG(y) by SSG, we then see thatSSGSG(y) = SSGSG(y). By the FRALD-T property, the rank of
SSGSG(y) is q. Multiplication by S−1

SG does not change the rank, so the rank ofSG(y) is q as
well.

PROOF OFTHEOREM 6.4 By applying Lemma 6.2 to the Jacobian matrixG
(

θ − θ̄
)

, we can
find a nonsingularq×q matrixSsuch that

SG(x) =







[SG(x)]1
...

[SG(x)]ν






(B.74)

where each submatrix[SG(x)]k is annk×q matrix which only contains homogeneous polynomials
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of degreesi , with 0≤ s1 < · · · < sk < · · · < sν , and all the rows ofSG(x) are linearly independent
functions ofx. Since the Wald test statistic is invariant with respect to linear transformations,we
can assume without loss of generality thatS is the identity matrix:S= Iq. This just means that
we have already applied a nonsingular linear transformation to the restrictions under test [since
g(θ) = 0⇔ Sg(θ) = 0].
If the FRALD-T property does not hold, we have rank{G(x)}= r for r < q a.e.. Write the Wald-type
test statistic as follows:

WT(θ̂ T ;g,V̂T) =
Tg(θ̂ T)′

[

G(θ̂ T − θ̄)V̂TG(θ̂ T − θ̄)′
]#

g(θ̂ T)

det
[

G(θ̂ T − θ̄)V̂TG(θ̂ T − θ̄)′
]

(B.75)

whereA# stands for the adjoint matrix (transpose of the cofactor matrix) of a matrixA. Note that
the adjoint matrix and the cofactor matrix actually coincide (by symmetry) in the caseof (B.75).
Denote by∆T the diagonal matrix of sizeq with i-th diagonal termTsk/2 when Σ k−1

j=1n j < i ≤
Σ k

j=1n j , k = 2, . . . , ν . We can rewrite the Wald test statistic as follows:

WT(θ̂ T ;g,V̂T) =
(∆T

√
Tg(θ̂ T))′

[(

∆TG(θ̂ T − θ̄)
)

V̂T
(

G(θ̂ T − θ̄)′∆T
)]#

(∆T
√

Tg(θ̂ T))

Tα det
[

G(θ̂ T − θ̄)V̂TG(θ̂ T − θ̄)′
]

(B.76)

whereα = ∑ν
i=1nisi . By a straightforward application of the derivation in the proof of Theorem5.1

using (B.51) - (B.52),̂VT
p−→

T→∞
V = JJ′, and the continuity of the polynomial matrix function[A(x)]#,

we have

(∆T

√
Tg(θ̂ T))′

[(

∆TG(θ̂ T − θ̄)
)

V̂T
(

G(θ̂ T − θ̄)′∆T
)]#

(∆T

√
Tg(θ̂ T))

p−→
T→∞

ḡ(Y)′
[

Ḡ(Y)VḠ(Y)′
]#

ḡ(Y) (B.77)

and, by the definition ofY andḠ∗, we get the limit for the numerator as

Z′Ḡ∗(Z)′Λ(θ̄)
[

Ḡ∗(Z)Ḡ∗(Z)′
]#Λ(θ̄)Ḡ∗(Z)Z . (B.78)

Note that this quadratic form is non-zero almost surely. Indeed by Assumption 2.1, Z is abso-
lutely continuous.Z is thus non-zero almost surely; by construction the rows ofḠ∗(Z) and thus of
Λ(θ̄)Ḡ∗(Z) are linearly independent as row vectors of polynomials and thus linearly independent

almost surely and the polynomial matrix
[

Ḡ∗(Z)Ḡ∗(Z)′
]#

is non-zero almost surely. Thus the limit
of the numerator is almost surely non-zero.
By an argument similar to the one leading to (B.77), we get for the denominator:

Tα det
[

G(θ̂ T − θ̄)V̂TG(θ̂ T − θ̄)′
]

= det
[

(

∆TG(θ̂ T − θ̄)
)

V̂T
(

∆TG(θ̂ T − θ̄)
)′]

p−→
T→∞

det
[

Ḡ∗(Z)Ḡ∗(Z)′
]

. (B.79)
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SinceḠ∗ (Z) = Ḡ(JZ)J, the rank ofḠ∗ (Z) equals the rank of̄G(JZ) and is the same as rank{Ḡ(θ −
θ̄)} = r∗ < q when FRALD-T does not hold.
Thus the limit matrix

[

Ḡ∗(Z)Ḡ∗(Z)′
]

does not have full rankq, and the limit determinant has to
be zero almost everywhere. Then the denominator converges to zero and the statistic diverges to
+∞.
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