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ABSTRACT

This paper provides an exhaustive characterization of the asymptotidistibution of Wald-type
statistics for testing restrictions given by polynomial functions — which maywevasymptotic sin-
gularities — when the limiting distribution of the parameter estimators is absolutely soonsrg.g,
Gaussian). In addition to the well-known finite-sample non-invarianceg tisealso an asymptotic
non-invariance (non-pivotality): with standard critical values, the test eiher under-reject or
over-reject, and may even diverge under the null hypothesis. Thepstic distributions of the
test statistic can vary under the null hypothesis and depends on the knexmparameter value.
All these situations are possible in testing restrictions which arise in the statestid@&conometric
literatures,e.g. for examining the specification of ARMA models, causality at different loorgg
indirect effects, zero determinant hypotheses on matrices of coefficaamd many other situations
when singularity in the restrictions cannot be excluded. We provide the linnitison and general
bounds for the single restriction case. For multiple restrictions, we giveessary and sufficient
condition for the existence of a limiting distribution and the form of the limit distributidrenever
it exists.

Key words: nonlinear restriction; deficient rank; singular covariance matrix; Waigl t@nstandard
asymptotic theory; bound.
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1. INTRODUCTION 1

1. Introduction

We consider the problem of testing nonlinear restrictions on a parameter vectdr=
(91,,9’3)/6@ng
H:9(0)=0 (1.1)

whereg(6) = [01(8),...,9q(8)]" is ag x 1 vector of polynomial functions angi< p. We denote

by 0 the “true” parameter vector, 5{6) = 0 unders#. Each polynomiab, (6) has ordemy in
the components d:

m p

0®)=3{ 3 alin.in[]ok} 1=1..a 12)

wherezjﬁ.‘.ﬂp:i represents the sum over all the distinct sgts ... ., jp} such thatjs,..., j, are
nonnegative integers and+--- + jp = i (with the conventior8® = 1). % defines an algebraic
variety G C RP. Further, we suppose that a consistent (typically asymptotically normal) estimato
61 of 6 is available (@9 — ), so it is natural to test# by using a Wald-type test statistic. On
the other hand, a completely specified model (like a likelihood function) map@atvailable, so
other types of tests — such as likelihood ratio (LR) or score-type tests —otdgrapplicable.

Many statistical problems lead one to consider tests of polynomial restrictions:

1. “collapsibility” and unions of conditional independence hypothesesirtitgency tables
[Simpson (1951), Whittemore (1978), Ducharme and Lepage (1986)s [DE089), Glonek
(1993)];

2. tests of dynamic specification in time series [Sargan (1980), Gouri@vtanfort and Renault
(1989), Galbraith and Zinde-Walsh (1997)];

3. tests for indirect effects and “mediation” analysis [Sobel (19826),9Baron and Kenny
(1986), MacKinnon, Lockwood, Hoffman, West and Sheets (2002;Kinnon, Lockwood
and Williams (2006), MacKinnon (2008), Emsley, Dunn and White (201@yds (2013),
Steyer, Mayer and Fiege (2014), VanderWeele (2015), Koo, Ledteddgina (2016), Tofighi
and MacKinnon (2016)];

4. tests on matrices of coefficientsg. for the rank (including singularity), the kernel or the
image of such matrices [Gouriéroux, Monfort and Renault (1990, 19®8bin and Smith
(2000), Al-Sadoon (2017)];

5. collapsibility and unconfoundness hypotheses in regression modetgj®etkova and Shi-
hadeh (1992), Clogg, Petkova and Haritou (1995), Alison (1995yegt&abler and Rucai
(1996), Gaffke, Steyer and von Davier (1999), Gaffke, Heiligeis @ffinger (2002)];

6. tests of Granger noncausality restrictions in VARMA models [Boudjellaldoly and Roy
(1992, 1994)];
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7. noncausality at multiple horizons in multivariate time series [Lutkepohl anda(1997),
Dufour and Renault (1998), Dufour, Pelletier and Renault (2006)];

8. tests on tetrads and other nonlinear hypotheses in graphical cawslingpand factor anal-
ysis [Bollen and Ting (2000), Spirtes, Glymour and Scheines (2000} &fig Bollen (2003),
Silva, Scheines, Glymour and Spirtes (2006), Drton, Sturmfels and Sull{a07, 2009),
Johnson and Bodner (2007), Drton, Massam and Olkin (2008), Bdliemnox and Dahly
(2009), Sullivant, Talaska and Draisma (2010), Zwiernik and Smith (8012

9. tests on volatility and covolatility in financial time series [Gouriéroux and J42i3)].

Under standard regularity conditions, the asymptotic distributions of theicdhsest statis-
tics, such as the likelihood ratio and the Wald-type statisticx%reand there is asymptotic (local)
equivalence between these tests. In many cases, Wald-type tests tarelyatanvenient because
they allow one to test a wide spectrum of null hypotheses using a single asically normal
estimatorfy. This feature may be important when the likelihood function is not availablés[or
difficult to maximize under the relevant restrictions]. The same remark holoedels estimated
by pseudo-likelihood, estimating functions, or generalized method-of-misni@WvM) methods.

Even though Wald-type tests are not generally invariant to equivalémtmelations of the
null hypothesis and reparameterizations [Gregory and Veall (1988yd8h and Schmidt (1988),
Phillips and Park (1988), Dagenais and Dufour (1991, 1994), Dw#od Dagenais (1992), Critch-
ley, Marriott and Salmon (1996), Dufour, Trognon and Tuvaand®iL{)] and tend to be strongly
affected by identification problems [Dufour (1997, 2003)], their coieece makes them difficult
to avoid in many circumstances. Since Wald-type tests depend crucially omthegterization
considered (which may reflect parameters of interest from a subjectfispviewpoint, such as
economic theory), their power also depends on the parameterization, alliels one to achieve
relatively high power in the “directions” associated with parameters of istetie the case of sin-
gle restrictiongq = 1), t-type statistics [obtained through the division of a parameter estimate by
a “standard error”] may be interpreted as “signed” Wald-type statistidseasily yield one-sided
tests: such tests explicitly aim at increasing power in a specific direction.

The standard regularity conditions fail when there are singularities in tied@g structure of
the restrictions. These are characterized by rank deficiency of tledidacmatrix of the restric-
tions. For singularities of the type we consider here in Wald-type statisticn[{2@09) examined
likelihood ratio tests using the tools of algebraic statistits particular, real algebraic varieties and
their tangent cones play a crucial role in describing the asymptotic distribotitthve LR statistic.
The set®y in RP where several real polynomial functions are zero is called a realraigelariety,
the tangent cone in this case is fully determined by the Jacobian; the ran& d&at¢bbian matrix
at a point determines the dimension of the tangent cone. If it is of full raakp®int6 € Gy, the
dimension of the tangent cone is di@) and there is no singularity &. If however there is a
rank deficiency a®, the tangent cone at that point has dimension lower that@jand this is a
singular point of the real algebraic variety. The limit distributions associat#drestrictions (and

1For other work on LR statistics in such nonregular contexts, see Cli¢t96#), Ritz and Skovgaard (2005), Azais,
Gassiat and Mercadier (2006), Kato and Kuriki (2013).
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algebraic varieties) involving such singularities are no longer pivotaltakel different forms de-
pending on whether the parameters at which they are evaluated defupdar & a singular point.
Moreover, the asymptotic equivalence between the test statistics no lasigser h

For Wald tests, the fact that the asymptotic distribution can be non-standargainted out
by Sargan (1980), Andrews (1987) and Glonek (1993) for thelpnolof testing an hypothesis
of the formJ% : 6,0, = 0, whenf; = 8, = 0. Glonek (1993) also showed that usual critical
values based on the? distribution are conservative. More recently, Drton and Xiao (201@) an
Pillai and Meng (2016) studied the hypothesis : 6{1652 . 6‘{," = 0, and the distribution of the

corresponding Wald-type statistic in the special case whgre 8, = --- = 8, =0 andvy,..., vy
are positive integers. Note the null hypothest§ holds wheneveB;, = --- = 6; = 0 for some
subset{iy,..., ik} of {1,..., p}, each of which may entail a different limiting distribution under
.

This paper establishes a full characterization of the limit distribution of the \yalel statistic
for restrictions defined by polynomials in several variables, w'hé(@T — 0) converges to some
asymptotic distribution. For monomial restrictions such/: 651652--- 8,° = 0, our results
allow for cases where only a subset of the element§6af..., 8,)" are zero. We also derive
stochastic dominance results and bounds on critical values. After emipigatsiat “anything can
happen” (underrejection or overrejection when regular chi-squitieat values are used, or even
divergence) — even whe‘h%(éT — 0) is asymptotically Gaussian — we study in turn the case of a
single polynomial restriction, and then several restrictions of this typefadi¢hat these two types
of situations lead to qualitatively different results is also underscored.

For the case of a single restriction involving only one term or a quadratic, fDrton and Xiao
(2016) provided the form of the limit distribution at a singular point and aegerbound on the
distribution. We consider here general polynomials — involving sevenaistand variables — and
provide a detailed form of the limit distribution which explicitly reflects the degresingularity
at any given singular point, together with a more precise bound at suolna {he issue of the
non-existence of a unique asymptotic distribution is underscored, whilaiterce of the uniform
bound allows to control test level asymptotically (leading to a possibly ceates test). We show
that standargt% critical values are uniformly conservative, provided the number ofrpaters is not
too large. Our results also entail that divergence does not occur avtigimne restriction is tested.
Special tighter bounds applicable when the function can be expressgut@duct polynomials are
also derived. We also observe that some of these bounds remain validvbea the asymptotic
covariance matrix of model parameters is not fully known: for so-calléaghal Wald-type statis-
tics” where some covariances between parameter estimates are (arbitedtidylsro, we show that
the null distribution of statistics for products of polynomials can be boundedum@isingly tight
way.

The case of several polynomial restrictions is also fully characterizbd.dependence of the
limiting distribution of the Wald-type statistic on the unknown true parameter valueeis more
crucial here. We show that, even und#g, the statistic can diverge toco at a singular point, so
no uniform generic bound exists for the Wald-type statistic. Theoreticaiytehtrictions could be
examined to verify whether at some singularity point divergence couladlctoccur. In any but
the most trivial cases of nonlinearity, this is a difficult and cumbersomertaideg. These consid-
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erations lead us to conclude that application of the Wald test to any multiple nentestrictions is
quite problematic for level control. We thus propose that in such case®plaee the test of multi-
ple restrictions by testing a single restriction that provides an identical aligalariety. Our results
extend those of Gaffke et al. (1999) and Gaffke et al. (2002), wdiietbased on rank assumptions
on the Jacobian or Hessian matrices of the restrictions (in the context oftaatonfoundedness)
and exclude the possibility that higher-order terms could play a role.

The paper is organized as follows. Section 2 describes the framewosideoed to study the
asymptotic distribution of Wald-type statistics with local singularities. Simple exanipissating
the types of problems which can arise in this context are also presentetibnSg provides limit
results for the case of a single restriction. Section 4 derives boundisef@ase of a single restric-
tion. Sections 5 and 6 are devoted to several restrictions: in Section Shavacterize the limit
distribution when it exists, while in Section 6 we give a necessary and isufficondition for the
existence of the limit distribution. Section 7 concludes. The proofs are in piperdix.

2. Framework

We consider a general probability model where the parameter spacegsmasubset dkP. Further,
we have consistent parameter estimators whose distribution convergealtealutely continuous
(possibly Gaussian) distribution. Throughout the pages (81, ..., Bp) andB = (04,...,0p)
represenp x 1 vectors of fixed real coefﬂmentQT = (QlT, .. epT)’ is ap x 1 real random vector,
andT is an integer such that > Tp > 1, andT:>o represents convergence in probabilityTas- .

Absolute continuity is defined with respect to the Lebesgue measure.

Assumption 2.1 ESTIMATOR ASYMPTOTIC DISTRIBUTION The sequence@)T :T >To} satis-
fies B
%(GT—G)TLM]Z (2.1)

where J is a full-rank px p fixed matrix and Z is a p 1 real random vector. The distributions of Z
and 6+ for T > Ty are absolutely continuous.

Assumption 2.2 CONVERGENCE OF PARAMETER COVARIANCE ESTIMATOR {Vr} is a se-
guence of px p full-rank random matrices such that

plimVr =V where V=JJ. (2.2)

T—oo

Assumption 2.1 means thae (éT — 0) has an asymptotic distribution characterized by a (typ-
ically unknown) “scaling matrix’J and the distribution of the random vector In the important
special case wherg ~ N0, |, the asymptotic distribution oTz(GT - 6) is N[0, JJ']. The scal-
ing matrix J then determines the asymptotic covariance matrixX Z)(QT — 9) J may represent
the square roo¥/2, a lower triangular matrix (the Cholesky factor\d§, or any other appropriate
matrix. The form ofJ may not be identifiable whehZ is Gaussian, but with non-Gaussian distribu-
tions it can correspond to non-trivial distributional assumptions. The multipleceepresentation
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JZ allows one to consider cases where the distributioZ afiepends on additional nuisance pa-
rameters, including random covariance and location parameters. Theah2Zareed not be zero.
Various non-Gaussian distributions, such as mixtures of normal distrilsudiod spherically sym-
metric distributions are allowed.

Assumption 2.2 postulates the existence of a consistent estitpateV = JJ. WhenJJ is
the asymptotic covariance matrix o (éT —-0), Vr is a consistent parameter covariance estimator.
More generally, unless stated otherwigagepresents a general positive definite matrix, which may
differ from the asymptotic covariance matrix o% (67 —0).

We define the usual Wald-type test statistic:

W (0; 9, Vr) =T g(Br)' [G(B7)VrG(B1)']g(br) (2.3)

whereG(0) := %(6). We study here situations where the matig@+ )V G(87)’ is nonsingular
in finite samples (with probability one), so the Wald-type statistic is well defined prigbability
one. For the case of a single restriction, we also consider the cordisgddtudent-type statistic
based on dividing;(éT) by the usual asymptotic standard error:

T29(07)
[G(BrWrG(Br )]

tr(61;9,Vr) = (2.4)

tT(GT g,VT) allows one to perform one-sided tests, Whﬂ&(eT g, VT) yields two-sided tests.
The notatlonsT(E)T g,VT) andWr(BT g, VT) underscore the fact that these test statistics depend
crucially on three arguments: the functigft), and the “estlmatesQT andVr. When there is no
ambiguity, we may | writett andWr instead oftT(GT g,VT) andWr(BT g, VT) Note that the two
statlstlcs\/vr(eT g, VT) andtT(GT g,VT) are invariant to multiplication of(8) by a nonsingular
fixed matrixA: the test statistics remain the same if we consider the hypotbgsis\g(6) = 0.
Assumptions 2.1 - 2 2 allow one to conS|der cases wWite@pes not converge to the asymptotic
covariance matrix of z (61 — 6). Indeed,Tz (GT — B) may not even possess an asymptotic vari-
ance. Since is not restricted to follow the D, I,) distribution,Z can be redefined in a way that

allowsV to differ from the asymptotic covariance matrix. For examplé*,éllt Ot — 5) Ti> U where

U ~ N[O, 5] and %, is nonsingular, we can can defide= J-1U whereV = JJ. This feature can
be useful to allow for alternative variants of the Wald-type statistic whoggldison may be more
easily established or bounded. In particular, in Section 4, we will obskatdoounds obtain in im-
portant cases where the asymptotic covariance matrix of model parametetsudly known: for
diagonal Wald-type statistiowhere some covariances between parameter estimates are (wrongly)
set to zero, the null distribution of statistics for testing products of polynoro@ide bounded in a
remarkably tight way.

Consider now @ x p matrix F (x) whose elements are polynomial functionxaf RP [a matrix
of polynomialsor apolynomial matrixin x]. We say that a square polynomial matFfxx) is non-
singular if its determinant is non-zeeoe. (in RP). More generally, we say th&t(x) hasfull row
rank [or full rank] if F(x)F(x)’ is nonsingula@a.e. We define the rank of the x p matrix F(x) as
the largest dimension of a square nonsingular submatrix.
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The following properties will play an important role in the rest of this paper:

1. a polynomial function is either identically zero or different from zare. [see Caron and
Traynor (2005), Mityagin (2015)];

2. sinceA(x) := defF (x)F(x)'] is a polynomial function, it is non-zera.e. as long as it is
distinct from zero at one point so, if A(x) # 0 for somex, F(x)F (x)’ is nonsingulaa.e;

3. the determinants of square submatricek @f) are either zero everywhere or non-zere;
thus, if the largest nonsingular submatrixfofx) has dimensiomg x rg, its determinant is
non-zeroa.e, and any larger square submatrix have zero determinant everywhereank
of F (x) is constant and equal tg for almost allx € RP.

If a polynomial matrix function has rang, the matrices formed by the numerical values of the
polynomial functions have rang a.e. on RP. But F(x) may not have full rank at points in a set
of Lebesgue measure zero. Afx) has full row ranka.e, its rows must bdinearly independent
functions(of x): for A € RP,

AM'F(x)=0forallxe RP = A =0. (2.5)

In this case, we also say that the rowskqfx) are linearly independent vectors of polynomials
(or polynomial vectors The converse does not however hold: if the rowd=¢%) are linearly
independent vectors of polynomials, the ranke@k) may be less thagq for all x.

Assumption 2.3 FULL-RANK JACOBIAN MATRIX. The gx p polynomial matrixjg,
rank ga.e.

(8) has full

Assumptions 2.2 and 2.3 ensure the existence of the Wald-type statistic withbgitybone.
However, it does not preclude the presence of singularities, whiothedireed as follows.

Definition 2.1 SINGULARITY. If Assumption 2.3 holds and &) = 0, but%(@) does not have

full rank, we say tha® is asingularity (or a singular poin} of the null hypothesis# : g(6) = 0.

WhenZ ~ N (0, Ip), the standard asymptot)'(f] distribution holds as long as the matlﬁ(e_)

has rankg. But this distributional result may not hold whehis a singular point. We will now
discuss a number of simple examples which show that “anything can happen”

Singular points do not occur with linear restrictions, wheng(6) = A6 —a. If g—g = Ahasfull

rankq, there isno rank deficiencyat any8, hence no singularity. Iifank(A) < g, theng—g has the

same reduced rank everywhere, and we can use a generalizee ijivedsews (1987)], so there is
no singularity (as defined above) in this case. 3
In the examples below, we consider nonlinear restrictions Wﬁ(‘éT -0) Ti> Z ~ N[O, V].

Unless stated otherwise, we take-V = V; = Ip in these examples. Details on the derivations are
available in the Appendix A.
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Example 2.1 Asymptotic distribution depends on the form of the regiction. Consider the
two (equivalent null hypotheses: (ip1 = 0, and (||)62 = 0. In case (|) we havg(8) = 01 and
the asymptotic distribution of the Wald- type staﬂSM—:(BT g, VT) is X1 unders#. In case (ii), the
asymptotic null distribution cWr(eT o, VT) IS 4)( Thus, using the usur;;d2 asymptotic distribu-
tion in case (ii) would lead to underrejections undég in large samples (asymptotically conserva-
tive tests).

Example 2.2 Non-pivotal but conservative Wald-type statistic. Letg(0) = 610-. If either 6;
or 8, is non-zero the limiting distribution ix%. When6,=06,=0,

R R ZZzZ
Wi (Br; g, Vr) £ 12 (2.6)

©72+275°
In the latter case, the limit distribution here is not chi-square [Andrews7)19But is given by
the %Xf distribution [Glonek (1993), Drton and Xiao (2016), Pillai and Meng @01 Thus the
limit distribution is not pivotalfor the null hypothesi®; 0, = 0, but thex? distribution provides a
uniformly valid boundasymptotically.

Example 2.3 Five asymptotic distributions. Letg(8) = 816,03andVy =V, whereV = JJ =
[G.J].J 123 is a general positive definite matriX, = JZ, andZ ~ N[O, I3]. Under.7%, we have

0 = (61, 62, 63) where at least on8; is equal to zero. Then, the asymptotic distributiomder
%) depends on the number of zero coefficients:

W (B71:9,Vr) — X2/0i ~x2 if 6, =0andd; £0for | #i

LW if 6; £ 0and8; = Ofor j #i, 1<i<3 2.7)
Wb if 61— 6, — 0340
where XZX2 XZX2 XZX2 XZX2X2
W= =00 We=—rR, We= T, Mp= SR, (2.8)
Dy = 02X5 + 033X + 203X X3, Ap = 011X5 + 035XF + 2013%1 Xa, (2.9)
D3 = 011X+ 02 X2 +201%1 %2, Do=GoV Gy, Go=[XoXa, X1 Xa, X1 Xo] . (2.10)

In this case, five different asymptotic distributions are possible. This eeshpws that the asymp-
totic distribution depends owi. Further, ifV = I3, we still have three different asymptotic distribu-
tions.

Example 2.4 Oversized test. Considerg(8) = 65+ -+ 63. Then the limit distribution is
X3 If pis large enoughy? critical values lead to overrejections.

Example 2.5 Asymptotic non-equivalence of Wald and LR tests Con5|derg(9) 9 + 93
63. If 6 =0, theng(8) = 0 and the limit distribution of th&\s (6+; g, Vr) statistic isx3. On
the other hand, the asymptotic distribution of the LR statistic is given by the digtribaf the
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minimum of two independerﬁ; see Drton (2009, Example 1.1). Thus the two limit distributions
are different.

Example 2.6 Divergence undet. Suppose thag = 2 andg(8) = [6%, 6163] . Then,

A2 A2
A N 40,+6
Wi (073 g, V) =T——*. (2.11)
(i) If 81 = 6, = 0, the asymptotic distribution i§Z? + 1.73. This is a linear combination of two
independeny%, bounded by}lxg. (i) However, if 8, = 0 and 8, # 0, the null hypothesis also
holds, but the Wald-type statistic diverges#t® asT — « .2 In Section 3, we show thalivergence

cannot happen in the case of one restriction.

3. The case of a single restriction

In this section, we focus on the case where only one restriction is tégtedl). Then, 6 is a
singular point if and only if

whereG(é) is a 1x p row vector. It will be useful to reexpress the polynongél) in terms of the
differencef — 0:

99 @) -0 (3.1)

%g —6;i,6 (3.2)

where

gxi, 6= 5  c(ji---s ip 6 HX X=(Xg,..., Xp) € RP. (3.3)
oo

By convention, we set®= 1.
When 6 satisfies the null hypothesig4p), we must have:

g[x; 0, 8] = cp(0,...,0;0) =0. (3.4)

Of course, other coefficients could be zero, and in fact it is possibleathdhe coefficients

c(jt, - ip 6) with ji+---+ jp < i be zero for some If this happens for > 1, then(m,(e) =0
and@is a singular point 0§(0). Let us denote by(@) the integer that satisfies
_ _ p
s(6) =min{i:c(j1,..., jp; 6) # O for some(js,..., jp) with > k= i} (3.5)
K=1

In other words, under?p, the lowest degree term in the centered forng(@) [in (3.2)] has degree

2The polynomials in the restrictions of this example form a Grobner basiedaflgebraic variety. This demonstrates
that rewriting restrictions in the Grobner basis form does not solve th#eroof divergence.
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S(0). Note also that

s(8) = min{i: g[6 — 0;i, 6] # 0 for somef} > 1 (3.6)

where the inequality is entailed by the full-rank Assumption 2.&(6}) =1,0is aregular point
if s(8) > 1, 8 is asingular point Consequently, we call

y(8):=s(6)—1 (3.7)

the singularity orderat 6. We focus here on cases where the singularity order is larger than zero
[y(8) > 0]: O is a singular point if and only if(8) > 0.
Let us gather all the polynomials corresponding to this lowest degreeledimz

_ _ _ _ b _ .
g6-6):=g6-6;56),6]= 5 (it ip; ) [ (6k—6k)™. (3.8)

jit+ip=(6) k=1

s(6) andg(8) depend on the value o and may not be the same for different valuesdoeven
when the latter satisfiegs. The functiong[6 — 6; s(8), 6] is homogeneous of degre@) in 6 — 6.
Wheng(6) = 0, we can write:

9(6) = (6 —6) +7(6-6), (3.9)
F6—0)= g gl6—6;i, 6]. (3.10)
i=s(0)+1
Set = =
G(x) = o"'g[x,as)((/e),e]’ x € RP. (3.11)

Using the Euler formula for homogeneous polynomials of deg(ééez 1, we get the following
identity:

g(x) = —G(X)x (3.12)
wh_ere@(x) is a 1x p row vector. Each element @f(x) is a homogenous polynomial of degree
s(0) — 1 [including possibly zeros]. Note the zero constant function is interpretea polynomial
of degree zero (like any other constant function) and it is homoger#carsy degree. The main
result of this section is the following theorem, whéird|® represents the Euclidean norm (5d|?
= xX whenx s a row vector).

Theorem 3.1 ASYMPTOTIC DISTRIBUTION OFWALD STATISTICS: ONE RESTRICTION  Sup-
pose the Assumptions 2.1, 2.2 and 2.3 hold. (#)ds a polynomial function oB as given in
(1.1) - (1.2) with g= 1, and if the true unknown valu@ satisfies g6) = 0, then the Student-type
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statistic t (67; g, Vr) defined in(2.4) converges in probability to

1 G*(2)z 1 Gz

t§;g,J = — — (3.13)
9.9 = 1+y(6) [G+(2)G*(2)]"* 1+ (6) |G (2)|
and the Wald-type statisticWéT; g, \7T) in (2.3) converges in probability to
5. 1 [6@)z7?
W(0; t(6; g, 3.14
(6:9.9) =1(8;9,9)* = 1y OF |62 (3.14)

whereG*(Z) = G(JZ)J, with y(8) and G(-) defined in(3.7) and (3.11).

From Theorem 3.1, it is clear that the asymptotic distributionstﬂf@T;g,VT) and
W (B7; g,\7_T) depend on nuisance parameters: the scaling marihe unknown value oB
[throughs(8) and the coefficients(ji,..., jp; 6)] and the distribution of (if it is not specified).
These limit distributions are identical to those of the “pseudo test statistics”

TY24(67 —0)

tr(brig V)= —- 73 (3.15)

[G(8r — B)VG(Br — 6)]

Wr(Br:GV) = Ta(br—6) [G(Br—B)VG(Br —6)] "g(br—6)
0. 0\2
_ o7 966" (3.16)
G(Br — B)VG(Br — 8)’
where V = JJ, for testing the “pseudo hypothesis”

H:9(0—6)=0 (3.17)

instead of/% : g(6@) = 0. Of coursetr andW; cannot be computed in practice, becaésis
typically unknown. However, the latter interpretation underscores thendigmce of the null dis-
tributions on the unknown true parameter vallie Note also that the components @fx) and
G*(x) are homogeneous of degrg@). In regular cases, we hay¢d) = 0, soG*(Z) is a non-zero
constant vector. Further,#~ N (0, I,), we havet(e g,V)~N(0, 1) andW(8; g,V) ~ x3.

_If the distribution ofZ is symmetric with respect to zerd [~ —Z] ands(8) is an odd integer
[s(6) = 1,3, 5,...], the distribution oft(0; g, V) is symmetric around zero. Further, whens
Gaussian, or more generallyAfhas a spherically symmetric distribution, it is possible to represent
t(6;9,V) andW(6; g, V) as products of independent variables.

Theorem 3.2 FACTORIZATION OF WALD-TYPE STATISTICS ONE RESTRICTION Under the
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conditions of Theorem 3.1,
— B 1 G*( J
1+y(8) |GV

12l (3.18)

o 1 [G'U)UP
W(8: g, J) = _
GG (e

where U=2Z/||Z|| . If Z follows a spherically symmetric distribution, then U &fi€l| are indepen-
dent, and U follows a uniform distribution on the unit spher&h

[rd (3.19)

The factorization result in Theorem 3.2 shows that the limtlype and Wald-type statistics can
be represented as a product of three factors: the first one is a furdtihe singularity order at
6, the second on&*(U)U / HG* )|| represents the orientation of the random ve@pand the
third one given by the normZ|| (or its square). If the distribution & is spherically symmetric,
the factors are independent ddds uniformly distributed on the unit sphere®?. If Z ~ N (0, 1)
then||Z||* ~ x%, but for non-Gaussia# the distribution of||Z||* could be fat-tailed (or thin-tailed).
This representation may be convenient for simulating the distribution of the limigtgtaln regular

casesy(é) — 0 andG*(Z) = ¢ is a non-zero row vector of constants,G_’o(U) =c and

GUuU _°Z/|Zll . _ €2 3.20
i o

if Z~ N(0,1p), we havet(6; g,V) ~ N(0, 1) andW(6; g,V) ~ x2, as expected.

It is important to note tha® may not represent all the parameters of the model, only those
involved in the restrictions of interest or (regular) transformations ofeth&sr example, suppose
the original parameter vector of the model ip@x 1 vectorf3, with parameter estimaf@; such
that

T2(Br —B) = Zo~ N[0, 5], detlZp) £0, (3.21)

T—oo

and@ = CB whereC is a full-rankp x pg fixed matrix with 1< p < po; Ti> means convergence in
distribution asT — . We can then také1 = C[?T, 0= CE, and

T2(6r—0) -2 - CZo ~ N[0, V] whereV = C2C" (3.22)

Clearly, p can be much smaller tham, andp is the relevant degree-of-freedom number to be used
in the boundx3/[1+ y(6 0)2.
Similarly, suppos«g(e) has the form

9(0) = 01(C10) (3.23)

whereC; is a p; x p full-rank matrix (1< p; < p), e.g. the subvectoB; = C;6 of 8 = (67, 65)’.
In other words, the restrictions can be expressed in terms of the linemmnetar transformation
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:C]_el
Ay qu(65) = 0. (3.24)

On settingy; = C161 and 6; = C;6, thet and Wald-type statistics for testings;; are then
tr (037; 91, CiVrCy) andWr (857; g1, CiVrCy). Theorem 3.1 entails that this Wald-type statistic
converges in probability (undeiyp) to

t(61; 01, C1J) ) (3.25)
' [1+y, (6! HG Z)
W(63;01,Cd) = t(65; 91,013) : (3.26)

where y;(87) is the singularity order ofg; at 6; [which only depends orBj], Gi(Z) =
Gl(ClJZ)ClJ, and

— dg1[x1: S(67), 6;
Gi(x1) = o] 10)((/ 1), 61
1

, X1 € RPr. (3.27)

Here the distribution of the test statistic only dependggnhep; x 1 Baramete@’{, and thep; x 1
random vecto€,JZ, rather than the higher-dimensionak 1 vectorsg andJZ.
Another important invariance case is the one wig@) can be represented as the product of
polynomials:
9(6) =1 (8)h2(0) (3.28)

whereh, (8) andh; (8) are polynomials. Suppoﬁ@(é) =C#0,i.e. the centered polynomiab (8)
expressed as a function 6t 6 [as in (3.2)] has a non-zero constant tesf®]) = 0]. Consequently,
the coefficients oh, (8) only contribute to higher-order terms of the polynong@fl? ) [in (3.8)],
so the asymptotic null distributions of the(87; g, Vr) and W (B7; g, Vi) statistics only depend
onhy: _ _ _ _

t(6:9,J) =t(8;hy,J), W(6;0,J) =W(6;hy,J). (3-29)

If furthermoreh; (8) only depends 0] = C; 0 as in (3.23)j.e.
hy (8) = h; (C16) , (3.30)

(3.26) entalils that

t(6;9,J) =t(61; hi,C1d), W(8;g,J) =W(By; hi, C1J). (3.31)

4. Bounds for Wald tests of a single restriction

Despite the fact that the asymptotic null distributionMﬁ@T; g, Vr) andvvr(éT; g, Vr) generally
depend on several nuisance parameters, it is of interest to note thatiibibutions are bounded
by nuisance-parameter-free distributions. In this section, we giveréusal bounds” which hold
for general polynomials irrespective of the singularity order. We alsonéixe cases where the
restriction function involves a product of differentiable functions or polyials. In such cases, the
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universal bound can be tightened.

4.1. Universal bounds

We first give general bounds applicable to general polynomials of edgr.o

Theorem 4.1 BOUNDS FOR SINGLERESTRICTIONWALD STATISTICS. Under the conditions of
Theorem 3.1, the following properties hold.

(i) If y(8) =0[i.e., @ is not a singularity point of (8)],
t(8:9,v)| < |1(@)Z| <2, W(Bg.V)=[1(8)Z1 < 2], (4.1)

wheret(8) = G* () / ||G* (2)|| is a px 1 unit-norm fixed vector; if furthermore 2 N (0, I ),
we haver(6)Z ~N(0, 1) and W(6; g, V) ~ 3.

(it) 1f y(6) =1,
= 1 1
6:9.V)| < 1zl <=1zl <z, 4.2
t(6; 9 )‘<1+V(9)H <3zl <zl (4.2)
Y 1 2_1,52 2
W (8;9,V) < 11 y6)2 12]1° = Z 1[I < |Z[|*- (4.3)

(ii) 1fZ ~N(0,1p), we have: for all y> 0,
P([t(6; 9, V)| > ¥] < max{P[|Zo| > Y], P[xp/2> Y]}, (4.4)

PIW (8;9,V) >y < max{P[x3 >y], P[x3/4 > Y]}, (4.5)
where 2 ~ N (0, 1) and x, ~ (x3)¥/2.

In all cases wheré’A%(@T = 5) is asymptotically Gaussian, the asymptotic distribution of the
Wald-type statistioM (61; g, Vr) is dominated bw(%/[l+ y(6)]? distribution. In Example 2.4

with y(6) = 1, this bound is sharp. In singular casg&) > 1], the bound)(%/4 is thus applicable

irrespective off and y(é). When 6 may or may not be regulgr, valid (possibly conservative)
asymptoticp-values can be obtained by computingagWr (67; g, Vr)] with

Pmady] = max{P[x3 > ], P[x5/4>V]}, yER. (4.6)

The critical region p,axjy\/r(éT; g, Vr)] < a has levela (or lower) asymptotically, irrespective of
the singularity order 06 (0 < o < 1).

Theorem 4.1 shows that, for a given level, standard (regular) crittdabg can be conservative
in non-standard cases, for dominance by the standard distribution isa@quly in the tail and not
everywhere. The following proposition shows that there exisssich thatr < o and pnax|y] < a
entails[P[x% >vy] < a, for ally. In other words, the(f critical value leads to a conservative test
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Table 1
Maximum number of parametepaxin g(6)
for which x? critical values are conservative for scalar Wald statistics

Test level 0L 005 0025 Q01 0001
X2 critical value 2706 3841 5024 6635 10828
Pmax fOr conservative test 6 7 9 12 18

at levela. The proposition is somewhat more general in that it derives tail dominamczéled
x? distributions for various degrees of freedom: in addition to examining critigkies for Wald
tests of one restriction, it can also be applied to Wald statistics for testingaessirictions. We
can compare the critical values fxﬁ/Zq and for)(,%/ZIO with g < pand{, > {,. Without loss of
generality, we takezé’q =1 ande =(>1.

Proposition 4.2 TAIL CROSSING OF DIFFERENT CHSQUARE DISTRIBUTIONS Let p and g be
two positive integers{ > 1, and0 < a < 1. If a is small enough, there always exigts- 0 such
that P[x3/{ >y] = a and

PIXg>VYl > P[X5/{ >y fory>y. (4.7)

The latter proposition entails that, wheneger 1, thex3/{ distribution is dominated by theg
distribution in the upper tail, irrespective of the valuepandq (even ifq < p). Consequently, for
y>V, P[x5 >yl < aimpliesP[x3/{ >y] < a. When the test statistic follows)g/{ distribution,
critical values based on a non-scabeézldistribution can be conservative.

Table 1 shows whepﬁ critical values are conservative at different levels. For exampleyel le
0.05, the usuak? critical value is conservative as long as the number of parameters doeeceed
7. In Table 2, we provide critical values for<l p < 20 at standard significance levets € 0.1,
0.05, 0025, 001, Q001). We see from the latter table that the bound grows slowly with the number
of parameters.

As observedin (3.21) - (3.26§,may represent all the parameters in a model, only those involved
in the restriction tested. If the latter can be formulated in terms of a relatively smalber of
parameter transforms, tighter bounds can be achieved. For similar atiseswon testing nonlinear
hypotheses in regression models, see Dufour (1989).

We can also achieve better bounds by taking into account the form ofdtrectieng(6) =0
or by considering special matrices or V. For example, this happensgf) is the product of two
polynomials, involving different coefficients. We will now discuss sucbesa

4.2. Diagonal Wald statistics and product restrictions

We will now examine cases wheggb) is a product of differentiable functions,

9(8) = h1(61) 2 (82 -+~ hn (65 (4.8)
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Table 2
Universal bound critical values for testing a single restrictigfl)
Based on the uniform bound mgxd, x3/4}

Testlevel .1 .05 025 .01 .001
p<6 2706 3841 5024 6635 10828
p=7 3004 3841 5024 6635 10828
p=8 3341 3877 5.024 6635 10828
p=9 3671 4230 5024 6635 10828
p=10 3997 4577 5121 6.635 10828
p=11 4319 4919 5480 6.635 10828
p=12 4637 5256 5834 6554 10.828
p=13 4953 5591 6184 6992 10.828
p=14 5266 5921 6530 7285 10.828
p=15 5577 6249 6872 7645 10.828
p=16 5886 6574 7211 8000 10.828
p=17 6.192 6897 7548 8352 10.828
p=18 6.497 7217 7882 8701 10.828
p=19 6.801 7536 8213 9048 10955
p=20 7.103 7852 8543 9392 11329

with 8 = (6%, 85,...,8,) and@ = (8., 65.,..., 8,,)', where8;. and ;. arep; x 1 vectors, and
p1+ p2+---+ pn = p. Clearly,g(6) =0 if and only if at least one of the functions satisfies
hi(6.) = 0. We have the estimatdir = (8.1, 851...., 8,.1)", wherefi1 is api x 1 random
vector, and a “covariance matrix estimatds} for 0. Further we focus on Wald-type statistics
where 37 is restricted to be block diagonal. This fits naturally the case WBQI‘[& GnT are
asymptotically uncorrelated. However, we will observe below that the aisympﬂlstrlbution of
the Wald-type statistic can be bounded eve@\llf én.T are asymptotically correlated, possibly
with unknown covariances acroésT, .. QnT
We consider Wald-type statistics of the form

A

W (Br; 9, 51) = T g(Br)' [G(B1)57G(Br)] "g(Br) = TW(Br: 9, 51) (4.9)
wherebr = (831, 851,...,8),), 8.1 is ap; x 1 random vector,

99

G(6) = g7 = [G1(8), Ga(8), ... Ga(0)], Gi(6) = 5 pr i=1,....m, (4.10)
. S\ — g(x)z p
W(x; g, 57) = o0 5 603 , XERP, (4.11)

ST = diag[ilT, 22T7 ceey SnT] (4.12)
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is a block-diagonal matrix, and eadh is a (possibly randomy; x p; positive semldeflnlte matrix.
For example,Z.T may be a consistent estimator of the asymptotic covariance matfix (cﬂ. T—
Bi). We call Wald statistics based on such block diagonal covariance estintidg®nial Wald
statistics”.

Set
oh - .
ijoq), Ai(%)=H () ST Hi(x), % €RPi=1,2,...,n. (4.13)

Hi(x) =
We can then show the following stochastic dominance property, which hottigbfinite samples

and asymptotically.

Proposition 4.3 DOMINANCE PROPERTY FOR PRODUCT RESTRICTIONSSuppose (@) satisfies
(4.8) along with Assumption 2.3, %= (Y1, Y,,...,Y;)  arandom vector where eachhas dimension
pi x 1, with G(-), Sit, W(x; g, 51) and A, ._A( Y;) defined as in4.9) - (4.13),i=1,...,n. Then:

(i) conditional on4; > 0,

W(Y; g, 51) <W(Y;; hi, 5ir) foranyie {1,...,n}; (4.14)

(i) conditional on gY) # Oand4; > Oforalli € {1,...,n},

W(Y; g, 31) < minW(Y; hi, 3i7), (4.15)
1<i<n

1 1/n
= minW(Y;h, Zir) < W(Y;g,5r) <

N 1<i<n

i“‘lw Yo hi, Sir)

n

1 1
S n ZW(Mv hl7 ZIT) <= maXW(YI! hla ZIT) (416)

i= N 1<i<n
where )
W(x; hy, Zit) = higxi) , % € RP. (4.17)
Hi (%) Zir Hi (%)’
From (4.14)-(4.17), it is clear that:
PIW(Y; g, 51) <W(Y hi, 5ir)[4i >0 =1, i=1,...,n. (4.18)
When

PA(Y) > 0] =1, (4.19)

we can replace the conditional probabilities in (4.18) by the correspondiognditional probabil-
ities:

PW(Y; g, 57) <W(Y: by, Sir)] =1, i=1,....n; (4.20)
this condition allowsP[A;(Yj) > 0] < 1 for somej #i. If P[Ai(Y;) >0 =1foralli=1,...,n, we
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also have N N
<i<n

which yields a tighter bound. (4.21) also underscores the fact that betieds can be achieved by
factoringh(0) into the largest possible number of factadrs, by lettingn be large. Similarly, if

Plg(Y) #0,A1>0,...,Ay> 0] =1, (4.22)

(4.16) holds with probability one.
When (4.19) holds, botW(Y) andW, (Y;) are well defined (finite) with probability one. The
test statistic .
hi(6i7)?

Hi (6i.1) it Hi(Bi.1)’
can be interpreted as a Wald-type statistic for tesmn(ﬁ.) = 0 using the parameter esti-
mates@. + and3t. So the distribution oWr(GT g, ZT) can be bounded by the distribution of
vvr(e. T hi, Z.T) under both the null and alternative hypotheses.

It is also remarkable that this dominance property holds without any assumugtithe distri-
bution of Y. In particular, the distribution o¥; for j # i is irrelevant. Undet’p, we may have
hi (8i.) = 0 along withh; (8;.) # 0O for j # i, without the bound being affected. Note also that none
of the functiond; (6;.) need be a polynomial.

Let us consider the case where at least one of the functiog@inis a polynomial, along with
conditions similar to those in AssumptioBdl - 2.3.

Wr (Bir;hi, Sir) =TW(Bit; hi, Sir) =T

(4.23)

Assumption 4.1 POLYNOMIAL FACTOR REGULARITY. Letl <i <n. The function (6;.) is a
polynomial, and the estimatd;.t in (4.8) - (4.9) satisfies Assumptions 2.1 - 2.3 upon replacing p
by p,J by J, Z by Z,V by\ = J3J, andVr byVir. Further, 5ir = Vit andy;(;.) is the singularity
order of h (6;.) at 6;. as defined in3.6) - (3.7).

We can then get the following asymptotic dorpinange result on the asymptotic wliiginitof
Wr (O7; g, 27) as characterized in Theorem 3.1 (Wth= 27).

Proposition 4.4 POLYNOMIAL FACTOR BOUNDS FORWALD STATISTICS OF SINGLE RESTRIE
TIONS. Under the conditions of Proposition 4.3, let¥ diagVs, Vo, ..., Vh] where each Mis a
pi x p; positive semidefinite matrix, and(\#; g, V) is defined as ir{3.14).

(1) If hio(§i0.) = 0 and Assumption 4.1 holds fori ig where j € {1, 2,..., n}, then conditionally
on4,(Yi,) > 0, B B
W(8;9,V) < 11Zis|1/ [V, (1) + 17 < |1Zi 1 (4.24)
whereyio(gio.) is the singularity order of (6;,.) at §i0., and when§io. is a singular point of
hio (6i5.),
W(8;g,V) < % 1Zio 1% (4.25)
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(2) If g(8) = 0 and Assumption 4.1 holds for ald {1, ..., n}, then conditionally om;(Y;) > 0
foralli € {1,...,n},

W(8:9,V) < |Z]°/(8.)+ 12 < | Z]° forsomeie {1,....n}  (4.26)

and, wherf is a singular point of ¢6),

W(6;g,V) < %1 1Z]|? forsomeic {1,...,n}. (4.27)

If Zi, ~ N[O, In,] andhi,(6i,.) = 0, (4.24) entails that

1

n-. 2
B AR ST

(4.28)

so the number of degrees of freedom in the bound can be substantialbetedith respect to the
x% distribution. Similarly, wherZ ~ N[O, Ip] andhy (61.) ,..., h,(8,.) are all polynomials, (4.26)
yields: _ _

W(6;9,V) < x5 /[vi(6:.) + 1> < x5, for somei € {1,2,...,n}.
If furthermore® is a singular point 0§(0), we can write:

_ 1 _
W(0;g) < fo’i for somei € {1,2,..., n}. (4.29)

Thus, whenZ ~ N[0, 1] andg(0) is a product of polypomials of the form (4.8), valid asymptotic
p-values can be obtained by computing.@gWr (61; g, Vr)] using

pmax[yv n] = maX{IP[XE > y]v pV[y, P1, yl(el')]7‘ t pV[y, Pn, yn(en)]}v ye IRa (430)

where
pvly; pi, vil = max{Px5 /[vi + 1>y}, i=1,...,n. (4.31)

If the singularity ordersy;(6;.) are unknown, we can replace [gvp;, y;] by the upper bound
pvly; pi, 1] = max{[P[)(%i /4 >y}, which holds whenevehm; (6;.) is singular atf;.: this yields the
p-value function upper boungt,,.\Wr (87; g)] where

Pradys N = max{P[x7 >y], pvly: p1, 1], -, PVY; Pn, 1]} > Pmaxy; N (4.32)
4.3. Monomials
An important special case of the above problem is the one wd{éeis a monomial:

9(8) =cOy--- 6y (4.33)
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wherevy,..., v, are positive integersy{ > 0, i = 1,...,n) andc is non-zero constant. In this
case,é‘l’1 5‘5" = 0 unders#. Clearly, 74 holds if and only if at least one of the parameters

01,..., 0, is equal to zero. Let =r(6) be the number of such zero parameters. Undgy 1 <
r < p. Without loss of generality, we can assume that O for 1 <i <r, and8; A0 if i >r. This
allows us to write:

r

— — — _ — P _ —

9(6)=[6+(0-06)]" - [6+(6-0)]"" = u(ei —6;)" '7|‘|1 [6i+(6i—61)]"  (4.34)

from which it is easy to see that

S(0)=1+y(0)=Vvi+---+V. (4.35)

In other wordss(0) is the sum of the exponents associated with the zero componeftsTie
larger the number of zero coefficients, the tighter the bounds givenégrém 4.1. IZ ~ N (O, Ip),
W(6;g,V) is bounded from above by thed/(vi + - 4 v)? distribution. For monomials, this
bound can however be improved.

Consider first the case of diagonal Wald statistics. Monomial functionseofoitm (4.33) cor-
respond to the case whene= p andh; = 8", i =1,..., p, in (4.8). We then get the following
stochastic dominance property.

Proposition 4.5 BOUND ON DIAGONAL WALD STATISTICS FOR MONOMIALS Let Y =
(Y1,...,Yp) be a px 1 real random vector. Then, for any monomial function of the f¢483),
we have:

PW(Y;q,57) >4 <P

1 /Y \?

, .

\;2(,> ZZ] ,fori=1,...,p, and ze R, (4.36)
i \0j

where WY; g, 57) is defined by4.11) and &1 = diagd%,53,..., 52].

The above result holds without any assumption on the distributidh B6r exampleYs, ..., Y,
need not be Gaussian or independent. However, if one of the compaientsayY;, follows a
N(0, 02) distribution, the distribution of\iy(Y) is bounded by thg?/v? distribution:

PW(Y;g,57) >4 <P [vlzX% > z] ,forallze R. (4.37)
1

If Y; ~ N(O, 012) distribution andﬁj2 = 012 for at least one of the variabl&s, ..., Yy, but we do not
know which one, we can write:

~ 1<i<p

~ 1 1
PIW(Y; g, 57) > 2 < maxP [VIZX% > z] =P ! p— szi > z] ,forall ze R. (4.38)

The result given by Proposition 4.5 is in fact a finite-sample one. It shibatsthe distribution of
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a Wald-type statistic can be bounded (under appropriate conditionsydemthe distribution of
some component of is unknown. IfY; ~ N(0, 0?) distribution andg$ = 0% forall j =1,..., p,
we have:

2 2

L g . X1 X1
PW(Y;g,21)>Z < mnP|5= >z =P >z| ,forallze R. 4.39
[ ( g T) ] 1<i<p |:V|2 :| |:lrg.ngi2 ] ( )

<i<p

This result complements earlier ones obtained under more restrictive cosditibe bounds in
(4.38) - (4.39) apply to a relatively specific type of restriction (monomialg) hold under weaker
distributional assumptions than the universal bound given in Section 4ete, Hll cases where
the null hypothesig(0) = 0 holds are covered, not only the one whére- 0. Sincelip%wiz <

(§ Vj)z, we have:
is1

p
2 2 2 2 2 i 2
N>zl < £>z| < £ >
P [Xl/(glvj) > z] <P [xl/lrgi%v, > z] <P [Xl/lrggpv, > z] ,forallze R. (4.40)

Proposition 4.5 has the following analogue for the asymptotic distributindQ@T; g, fT)
wheng is a monomial function.

Corollary 4.6 BOUNDS FOR MONOMIAL WALD STATISTICS. Under the conditions of Proposi-
tion 4.3, suppose Assumption 4.1 also holds. Then, for any monomial fuastitefined ir4.33),
we have:

1

PW(O;9,V)>2 <P [vz (Z'> > z] ,fori=1,...,p, and ze R, (4.412)
i \Oj

where W6; g, V) is defined by3.14) and V = diag0?,02,..., o).

Finally, we will give a result applicable to non-diagonal Wald-type statistics.

Proposition 4.7 BOUNDS FOR NONDIAGONAL MONOMIAL WALD STATISTICS. Under the as-
sumptions of Theorem 3.1, suppog@)gis a monomial function 08 as defined in4.33), with

6 = [9[1,r];9[r+1,p]] and 9[17,—] = (04,..., Br). If 6 =0forl1<i<r,and6; #0ifi >r,

then the Student-type statistic{ 7; g, V) defined in(2.4) converges in probability to(B; hy, J)

and the Wald-type statisticj/(/@T; g,Vr) in (2.3) converges in probability to \\8; hy, J), with

hy(8) = 6;* --- 6/, where {6; hy, J) and W(6; hy, J) are defined as i13.13) - (3.14). If further-

more Z~ N (O, Ip),

W(6; hy,J) ~ — = x2 (4.42)

and the distribution o(x§/1r3i<n v?) provides a uniform upper bound regardless .of r
<i<p
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The distributional result (4.42) can be viewed as an asymptotic extensibe dhite-sample
results given by Pillai and Meng (2016), applied to the subve8ipy, and functionhy (8(,).
Related finite-sample results on monomial restrictions are also given by Drtlaxiao (2016), and
(for p=2) Shepp (1962, 1964), Cohen (1981), Reid (1987), Glonek (1998 Quine (1994); see
also DasGupta and Shepp (2004). These however hold provitied mean zero, while the results
presented in this section allow for cases where only a subset of the eleofightsiay be zero.
When we do not know how many and which element@ afe zero, several asymptotic distributions
(generally up to 2— 1) are possible. Thus, whéh~ N (0, 1), the boundy /( mlan ) provides a

uniform upper bound on the asymptotic distribution of the Wald-type statistic.

5. Several restrictions
In this section, we consider the general problem of tesiirgstrictions whem > 1:

g|(6):Oa |:17"'7q7 (51)

where eacly () is a polynomial function of degrem . (3.2) - (3.4 ) then hold witlg(0), g(x, i, 9)

andc(j1,..., jp; 9) subscripted by. We maintain the assumption that the true unknown vélue
fulfills the null hypothesisd; (6 ) 0,1=1,...,q]. For each, we denote by (5) the order
s(8) =min{i:c(ju,..., jp; 8) # O for some(ju,..., jp) with = jx =i} (5.2)

and byg, (8) the polynomial that gathers the monomials of lowest degreg in

_ b .
G(0-0):=al0-6:5(0).0]= 5 alin....0p0)[](O-8)" 1<I<q (53)
= ies(0) k=1

We callg(6) = [01(0),...,0q(0)] thevector of lowest degree polynomiassociated witlgy(6).
Note that the situation wheg(x) = 0 for all x [and thusg(x) = 0] is precluded by the assumption
thatG(x) has full ranka.e. _

As in the one restriction case, each polynomial depend8 tmough its order and its coeffi-
cients. The Jacobian matrix gf 0) is then

G1(¥)
=0 99 G2(x)
Gq(x)

where each rov@, (x) satisfies (3.11) - (3.12) with replaced byg,~ G(x) will be called thematrix
of lowest degree polynomiafsr the Jacobian matrix of(6). The elements of the row vector
G (x) are homogeneous polynomials of degsﬁ(ea) 1, for 1< | < q. Further, from the Euler
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homogeneous-function theorem, we have:

§(6—6)=A(8)G(6—0)(0—8), A(B):=diag !

1
], 5.5
s1(6) sl )] e

whereA (5) is theq x q diagonal matrix. We study again the Wald-type statMﬁf(éT; g, \7T) and
the “pseudo-statistic”

Wr (811G V) = T§(Br — 6) [G(Br — B)V G(br — 8)] 6T - 6) (5.6)

for testings# : g(6 — 0) = 0.

We will now see that there is a fundamental difference between congidiem restrictions
in (5.1) individually and jointly. The key issue is the rank of the Jacobian métfiky. While we
know from Assumption 2.3 that the matrix of polynomi@¢6) has full row rankg, this does not
necessarily hold for the matri@(6 — 8) which only contains the lowest-degree terms. This feature
has a strong impact on the distribution of the Wald-type test statistic in large sgraplé may
jeopardize the existence of an asymptotic distribution.

5.1. Full rank reached at lowest degrees

We will now show that the asymptotic distribution of the Wald-type statisticgfpolynomial re-
strictions is fully determined by the lowest-degree polynonigé),| =1,..., q, whenG(8 — 6)
has full row rankqg (a.e.in RP), as expressed by the following assumption.

Assumption 5.1 FULL RANK AT LOWEST DEGREE (FRALD). The gx p matrixG(x) of lowest
degree polynomials for the Jacobian matrix ¢y has full rank g(a.e).

When the above condition holds, we say tlgat) satisfies hadull rank at lower degree
(FRALD) property. We can then formulate the following theorem.

Theorem 5.1 ASYMPTOTIC DISTRIBUTION OFWALD STATISTIC: FRALD RESTRICTIONS
Suppose the Assumptions 2.1, 2.2, 2.3 and 5.1 hold8Ifig a polynomial function 0 as given
in (L1)-(1.2), and if the true unknown valu@ satisfies g8) = 0, then the Wald-type statistics
Wi (B7; 9, V) andWx (B7; §, V) [in (2.3) and (5.6)] both converge in probability to

W(8;g,J) = Z'G*(2)'A(8) [G*(2)G*(2)'] ' A(8)G*(Z)Z (5.7)

where G(Z) = G(J2)J.
Since the FRALD condition holds trivially with only one restrictiagp-€ 1), Theorem 5.1 is a
generalization of Theorem 3.1. Indeed, when all the singularity om@ﬁs are the sama,e.

s(0)=s(0), 1=1,...,q, (5.8)
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we haveA (8) = s(6) 1lq, and Theorem 5.1 provides a limit distribution quite similar to the one of
Theorem 3.1, except for the fact that several restrictions are noweadi@g > 1). However, when
(5.8) does not hold, the weighting matiX 6) can substantially modify the result.

Theorem 5.1 warrants the same kind of comments as Theorem 3.1. The limitufistribf
the Wald-type statistic undei? is also the limit distribution oWr(QT g,V). In other words, this
asymptotic distribution again coincides with the asymptotic distribution of the Walelstgistic for
testing the null hypothesigg" : g(8 — 6) = 0. As in the case of a single restriction, this pseudo-null
hypothesis and the corresponding asymptotic distribution depend on th@mkreown) parameter
value6. _

To allow for more than one restriction, the additional FRALD condition on tihé cf G(0) is
required. This condition may be violated. To make things more complicated, the-Bondition
may indeed hold at some value &fthat satisfies the null, but not at another one. We demonstrate
this by reconsidering Example 2.6.

Example 5.1 FRALD failure for some 6 [Example 2.6 continued]. Let g(8) = [62,6163]'

andV = 1. Then
] 20, 0
G(e)_{ 65 29192}

As already noted, the null hypothesis clearly holds wlgr= 8, = 0. In this caseG(6 — 6) is the
same a5 (0) and has full rank: the FRALD condition is satisfied, and Theorem 5.1 ikcabe.
The null hypothesis also holds férwith 6, = 0 and, = a=# 0. In this case,

(5.9)

~ ~ [ 261 O
G(O-0)= [ 2 0 } (5.10)
does not have full rank, even though the rowé()k) are linearly independent polynomial vectors:
a constant and a linear function. The FRALD condition used by Theor&mdes not hold.

In the above example, the Wald-type statistic diverges at points where #eDFBondition
fails. We shall now address the question whether this is always the case.

5.2. Full rank reached at lowest degrees after linear trangfrmation (FRALD-T)

It is well known that the Wald-type test statistic is numerically invariant with eespo non-
degenerate linear transformations of the restriction vector. Howeveiniipigrtant to realize that
Theorem 5.1 is not invariant to linear transformations of the m&i(#): the rank assumption on

the matrle(G 6) and its conclusion may change on applying a linear transformation to the vector
functiong(6). The key reason for this feature is the followingSifs a nonsingular matrix of size

g, we may have

S[G(6—6)] #ASGOH-6). (5.11)

In particular, even thougB(6 — 5) andS[é(G_— 5)] do not have full rankj, the matrixSG(6 — 5)
of lowest degree polynomials insid®G(6 — 6)] can have rank. Example 5.2 below illustrates
such a case.
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Example 5.2 FRALD failure for some 6: FRALD holds for a linear transformation of g(0).
Considerg(8) = [61+ 63, 61+ 63]'. Clearly,6 = 0 andd = (—1, 1) both satisfyg(6) = 0. Then

1 363
G(6) = ( 1 292 > . (5.12)
For 6 =0, we haveG(6 — 5) = ( 1 8 ) and the FRALD condition is not satisfied fgf0);

however, forS= < 1 701 ),we have:
— 1 363
SG6-0) = SG(B)= ( 0 39%_2292 ) , (5.13)
- —_— — 1 0
SEHB) = SEH-0)= ( 0 26, > , (5.14)

so that the FRALD condition holds f@g(8) at@ = 0. For8 = (—1, 1)/, defG (8)] = —1#0, so
there is no singularity at this point.

We thus consider the following extension of the FRALD condition.

Assumption 5.2 FRALD-T. There exists a nonsingularqg matrix S such that the x| p matrix
SGEx) of lowest degree polynomials for the Jacobian matrix ofgsatisfies

rank{SGx)} =q for almost all xc RP. (5.15)

When the above condition is satisfied, we say thaRRALD-T propertyholds forg(8). This
leads to a straightforward but important extension of Theorem 5.1.

Theorem 5.2 ASYMPTOTIC DISTRIBUTION OFWALD STATISTIC: TRANSFORMEDFRALD RE-
STRICTIONS Suppose the Assumptions 2.1, 2.2 and 2.3 hold.8f & a polynomial function of
6 as given in(1.1) - (1.2), if the true unknown valu@ satisfies §0) = 0, and if Assumption 5.2 is
satisfied, then the Wald-type statistig Wt; g, Vr) in (2.3) converges in probability to

W(8;9,3,S) = ZGg(2)'As(B) [G&(2)G(Z)'] " As(8)Gy(2)Z (5.16)

where S is any matrix satisfyir(§.15) andG4(Z) = SG(JZ)J.

Under the null hypothesis, the limit distribution for the Wald-type statisticgi@) = O [in
(5.16)] is also the asymptotic distribution of the Wald-type statistic to#§1S) : h(6) = 0, with
h(6) = Sg0). Itis the same for any choice & compatible with the FRALD-T condition. In
Section 6, Lemma 6.2 provides a way to derive such a mé&trikhe asymptotic distribution given
by Theorem 5.2 is also the one applicable to the Wald-type statistigZgp(S) : h(8) = 0. The
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latter, however, may not be identical to the asymptotic distribution of the Walel4yattistic for
testing.7#; : 9(6) = 0.

6. Divergence

As observed in Example 2.6, the asymptotic distributioW@(éT; g, V1) may not exist undegz.

In Theorem 5.2, we showed that the FRALD-T condition is sufficient tauenthe existence of a
non-degenerate asymptotic distribution for the Wald-type statistic usfgekVe will now show the
condition is also necessary, so the FRALD-T condition is both necesgdrgdficient to have a
non-degenerate asymptotic distributiorW.f(éT; g, V1). When this condition fails, the Wald-type
statistic diverges towards infinity at the true unknown vaueven thoughyzg holds.

6.1. Characterization of the FRALD-T condition

We first establish auxiliary results on polynomial matrices which will help venfether the
FRALD-T condition holds. We denote by, the space of all nonsingulayx g matrices, and

by &7, the subspace af x g permutation matrices. The elements&}, are obtained by permut-
ing the rows of the identity matrilg, and these constitute orthogonal matrices; see Harville (1997,
section 8.4c). For a genemak p polynomial matrixF (x) = [Fq (x)] with

My

Fkl(X):Z){Hz+J Ickl(Jl, ) ern} (6.1)

denoteF. (X) = [Fa (X),..., Fp(X)] the k-th row of F (x), sq the lowest degree of the non-zero
terms inF (X) [settingsq = 0 if R (X) is a non-zero constant, asd = +oo if Fg (x) = 0 for all x],

and
& =min{sq:FRy(X)#0and 1< < p} if R (X)#0 (6.2)
= +oo if A (X) = '
the lowest degree among the polynomiald~f(x). Overbar on a polynomial matri (x) means

that each row of (x) only contains the terms with the lowest ordgon thek-th row of F (x), i.e.,
F (X) = [Fa (X)] where

S
a9 = ZJ{Jl+ Fip= |Ck| Ja:--- Tp) HXJH}

p

= z Ck|(j1,.-.,jp) HX%”, (63)

i+ Flp=5 n=1

k=1,...,q. Clearly, Fk|( ) = 0 if the orders of the terms d¥ (x) are all greater thas, [or if
Fa (X) = 0]. The zero constant function is interpreted as polynomial of degmee(lilee any other
constant function) and it is homogeneous of any degree clf%, it is useful to observe that

F (x) = PF (x) (6.4)
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sincePF (x) simply involves a permutation of the rowsBfx); see Harville (1997, section 8.4c).
The lemma below gives a linear independence property for transformafipos/nomial matri-
ces, while the following lemma provides a construction of an “echelon-tygrei for such matrices.

Lemma 6.1 SEPARATION OF LOWEST ORDER POLYNOMIAL ROWS Let F(x) be a gx p non-
zero matrix of polynomial functions where=xRP, and let § be the minimum degree over all the
non-zero polynomials &% (x). Then, there is a matrix 8§ .74 such that

= 5wl €

where[SF(x)]; is a matrix whose rows are linearly independent vectors of homogergayno-

mials all with degree s [SF(X)]2 is a matrix whose non-zero elements are polynomials with lowest

degree larger thanss row{[SF(x)]1} > 1, row{[SF(x)]2} > 0, androw{ - } denotes the number of
rows in a matrix.

T

Lemma 6.2 ECHELON POLYNOMIAL-DEGREE FORM Let F(x) be a gx p non-zero matrix of
polynomial functions where& RP. Then there is a matrix 8§ . such that

SF(x)]1
SF(x) = : (6.6)

where each submatri{SF(x)]; only contains homogeneous polynomials of degieefos i =
1L,...,v,with0<s <---<§<---<s, (Where § =+ if the corresponding rows are zero),
and the rows of the matri{SF(x)]3, ..., [ﬁz(x)](,fl]' are linearly independent functions. Further,
if F (X) has full ranka.e, all the rows ofSF(x) are linearly independent functions.

Using the above lemmas, we can now establish that full rank of the “echgbefi-form is a
necessary and sufficient condition for the FRALD-T property to hotcifpolynomial matrix.

Proposition 6.3 FRALD-T PROPERTY CHARACTERIZATION Let g 8) be a polynomial function
of @ as given in(1.1) - (1.2), suppose Assumption 2.3 holds, and let.%, be any matrix such that
SGx) has the forn{6.6) with F = G. Then, the FRALD-T property is satisfied if and only

ran{SGx)} =q for almost all xe RP. (6.7)

6.2. Characterization of convergence for Wald statistics

We now establish that failure of the FRALD-T condition entails that Wald-tytpéssics diverge
undersA.

Theorem 6.4 DIVERGENCE CONDITION Suppose the Assumptions 2.1, 2.2 and 2.3 hold, and
g(0) = 0for the true unknown valué. If g(0) is a polynomial function as given {i1.1) - (1.2) but



7. CONCLUSION 27

Assumption 5.2FRALD-T propertyis not satisfied for ¢8), then W (8+; g, V) in (2.3) diverges
in probability to+-co.

On combining Theorems 5.2 and 6.4, we finally see that the FRALD-T projsebiythneces-
sary and sufficienfor a limit distribution ofWr (67; g, V1) to exist under.

Corollary 6.5 NECESSARY AND SUFFICIENT CONDITION FORWALD STATISTIC CONVER-
GENCE Suppose the Assumptions 2.1, 2.2 and 2.3 hold(@f ¢ a polynomial function as given
in (1.1)-(1.2) and if the true unknown valu@ satisfies ¢6) = 0, then W (87; g, Vr) in (2.3)
converges if and only if Assumption 5.2 is satisfied.

7. Conclusion

This paper provides a complete characterization of the limit properties of #ig tatistic for
testing polynomial restrictions under assumptions that include the stangangtasic Gaussianity.
General distributional results in the case of one restriction demonstratenifi@m bounds on the
distribution and on critical values can provide tests with correct asymptotit |IBezivations for
some specific cases (such as product restrictions) show that thesamambe significantly tightened
in many cases. When there is more than one polynomial restriction divergéitize Wald statistic
under the null is possible, even with asymptotically Gaussian parameter estiaiesessary and
sufficient condition for convergence of the distribution of the statistic utite null hypothesis is
provided, and a construction that would verify whether the condition holdstised in the proofs
of Lemmas 6.1 and 6.2.

Thus only a full investigation of the restrictions at every point in the algelariety induced
by the null can indicate: (1) whether singular points exist, (2) whether (sé@tkeral restrictions)
there are any points at which divergence occurs, and (3) what forenmit distributions can
take on the algebraic variety studied. A practical implementation of such astig&ton would
require establishing minimal degrees of homogeneity of polynomial functiassdon estimated
polynomials. This could be implemented by using “superconsistent estimabotsinplementing
such methods goes beyond the scope of this paper.

Barring such a complete investigation, we note that, due to the possibility abdivee, em-
ploying the Wald statistic to test more than one restriction is risky as the test magiza\arbitrarily
close to one. There are various methods for combining several restsigtimone such as combin-
ing results from tests of individual restrictions or combining the multiple restristinto one that
defines the same algebraic variety.

Finally, for one restriction the results on the bounds on the distribution of thettistic and
on the critical values make it possible to implement conservative tests basieel \bfald statistic.
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Appendix

A. Underrejections and overrejections: examples

The derivations in the examples below assutne N (0,1) and (except for Example 2.3)=V =
Vr=1.

Example 2.1. (i) 61 = 0 is a regular linear hypothesis, so the asymptotic distribution upieis
x3. (ii) For g(8) = 62, we have:

éZ
Wi (B39, Vr) =T— =
1

. . 1, 1
TO = [Te(B1-0)P 2 272~ 7xk (A1)

T—ooo 4

N

The usual critical value is conservative in this case.
Example 2.2. Forg(8) = 0162, we haveG(0) = (62, 61) and

Wr(Brig,Vr) = Td(br)[G(Br)VrG(Br)] "g(br)
A2A2 A2A2
7 9% g Aglefz (A.2)
(62, 61)(62,61)  67+065
@) If 8, =0andf, # 0, then
8505
Wr(B739,Vr) =T 12, 5 Z8 o xd (A.3)
91+ 92 T—o
and similarly if 61 # 0 andf, = 0. These represent regular cases. (i§if= 6, =0,
R R 2222
Wi (B7; 9, V) 2 o122 (A.4)

T Z2472°
The above limit random variable does not follow a chi-square distributiorawener, it can
be bounded a chi-square distribution. The spherically distributed (sthr@aussian) vector

(Z1,Z,)" can be viewed in polar coordinatagsing, cosp)’, wherer = (Zf+Z§)l/2 and sinp =
Z1/r,cosp = Zy/r. @is distributed uniformly ovef0, 21 and independently af Then

4z _ fsin2 cog = rzlsinz(Z ) = 1262 (A.5)
22+73 r? peose=r7 P=3 ¢ '
where the distribution of sin@is the same as that of spnand thus the limit distribution is the same
as for
1
4
Example 2.3. The limit forms of the statistic in the non-standard cases when more tha§| me

. 1 1
r2sirf @ = ZZ% ~ fo. (A.6)



A. UNDERREJECTIONS AND OVERREJECTIONS: EXAMPLES 29

zero are obtained by substituting the limit variab¥etor 6+ and the limit elements of thé- matrix
into the expression for the Wald statistic. Convergence follows from Slgttkgorem and the fact
that4; # 0 with probability one foi =0, 1, 2, 3.

Example 2.4. Forg(8) = 62 4 --- + 82, we have:

W (B1; 9, V) = Td(Br) [G(BT)G(Br)'] "g(br)
(67 +---+82)°

1_ -2 ~2
:T — — :7T(6 +...+9 )
4@+ +02) 4 P
o 1 1
'SOZ(Z%+..'+ZS)NZX%' (A.7)

Example 2.5. Forg(6) = 62 + 63 — 03, we haveG = ( 367+20; —26, ). Then
(67+67-5)°

We=T AT 177%2)
907 + 1265 + 467 + 465

(A.8)

_ _ 2_52\2
At 81 = 6, = 0 we get thatWp Ti> Eézifzzg). As in Example 2.2, on substituting the same spherical
—00 1

coordinates (sing, cosy) for (Z3,2;), we get

(z-25)° 1, 1, 1,
VA—%) 2200200 272 =42, A9
422+22) 4 P~ e~ ke (A-9)

Example 2.6. Forq =2 andg(8) = [6%, 6163, we have:

[20, 0
G(B)—[ o2 29192}’ (A.10)
Wr (87; 9, V) = Td (B7) [G(Br)G(B7)] " a(br)
! ! 71
~2 A A 22 A2 a2
2 2
=T Aelz gl 0 A621 0 Aelz _ 740116, (A.11)
9192 92 26192 62 29192 9192 16
(i) If 61=6,=0,
40°4+ 85 5 1 1 1 1
A v VLY 1tY% p 1o, Lo Lo 10
Wr(Brig V) = T4 22 Py 2284 S 28~ Jd e 2oxi. (A.12)

The asymptotic distribution i%Zf + 1—162§, is a linear combination of two independe(ﬁc. Since
3224 L72 < 2(72+ 72), its distribution is bounded bjx?3 distribution. (ii) If 61 = 0 and6, # 0,
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the null hypothesis holds, and

497+ 85 ATE2+TO: 4721763
_ = '

16 16 16 (A-13)

Wr(B7;9,Vr) =T

AsT — oW (B7; g, Vr) diverges totco.

B. Proofs
PROOF OFTHEOREM 3.1  Using the representation given by (3.2) - (3.8), we can write:
9(6r) = g(br — 6) + (67— 6) (B.1)
where 0
gOr—0)=gbr—6;56]= 5 clin,.., ip: 0) [](Bur — 6™, (B.2)
j1t+-Fip=S k=1
— A - m ~ — —
r(6r—6)= > g[6r—6;i,6], (B.3)
i=sT1

with s= 5(5). On multiplying both sides of (B.1) by¥/2, we get:

T29(61) = T9%g(61 — 6) + T9%(67 - 6), (B.4)
o~ = . =P 1
TS2g(61 —0) = > clin-- ipm 0[] {Tl/Z(QkT - ek)} ‘. (B.5)
j1t- Fip=8 k=1
_ _
T927 (67 — TED ji,-5 Ip; O TY2(Byr — 6k)| . (B.6)
—;l J1+'“Z+Jp—' ﬂ[ }

By Assumption 2.1,\ﬁ(éT — 5) Ti> Y whereY =JZ = (Y1,...,Yp)’, hence

p . - o P
[ [T - ek)} i (B.7)
k=1 T=2K1

= _ o o

Ts/zg(GT—e)% > (s ip 0) |_|Yk‘k:g[Y; s, 0)=q(Y), (B.8)

T i Fip=s k=1
TY27 (67— 6) = 0p(1). (B.9)

The last equation follows from (B.7) and the fact tAiat /2 — 0 fori > §. Thus,
T%g(6r) £ G1Y) =g 2), (8.10)
T2[g(67) —§(B1 — 6)] = T2 (B — 6) = 0p(1). (B.11)
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By differentiation of the functions in (B.1), we can write:
G(B)=G(6—-0)+R(O-0), (B.12)

with
—  —  9g(6—6) 9g(e) . . = = .
G(6—-0)= = L = C(j1,---5 jp; O)MK[O — B j1,..., , (B.13

— —_— m — —
R(O6—0)= Z Z c(jt,---, Jp; O)MK[B —6; jl,...,jp]’, (B.14)
i=ST1j1+-"Fjp=i
whereM[X; j1,..., jp] = (M1[X; j1,---, jpls---» Mp[X; j1,..., Jp|)’ and

_ _ o [P T T
Mk[x;Jl,...,Jp]:M<|_|x#>:kall(k1 [ X", xeRP k=1,...,p (B.15)

Since the polynomials i(6 — 0) have degreg = s— 1, we have:

TV2G(61) = TY/?G(67 — 6) + TY/?R(67 — 6), (B.16)
TV2G(Br—6)= Y (it ip O) TY°Mc(B1 = 6; ju,...., jp)’
1+ Fip=5
LS v ip OMYi s ) =G(Y) = GE2),  (B.17)
]1++]p25—
— —_ A —_ m - . f— A f—
TVPROr—6) = 5 TUD2 S cfji,..., jp O)M(TY?(O1 = 6); ja,.-, p)’
i=st1 j1+-Tip=5

where agaift (V-1/2 - 0 fori > s Thus

TY2G(87) 2 G(Y) = G(32). (B.19)

T—oo

Now, the Student-type statistic can be rewritten as

T29(07)

tr(Br;gVr) = ———
[G(GT)VTG(QT)’}

(B.20)

12
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can be rewritten as

T 2%(6r)

tT(éT; g,\7T) = - - - ~ - 12 (B.21)
|(T7/2G(8r))Vr (T¥/2G(B1)) |
Using Assumptions 2.1 - 2.2 and the limits obtained above, we get
tr(BrigVr) - t(6:9,V), (B.22)
t(é; g,V):=— g(\_() 72 (B.23)
[G(Y)VG(Y)]
Further, sincg(x) is homogeneous of degregEuler’s theorem yields the identity:
_ 1\ <
oY) = <s_> GY)Y, (B.24)
hence
— 1 G(Y)Y 1 G(J2)Jz 1 G*(2)Z
t(G,g):§_ — — 1/2: <S—> — — 1/2: — 1/2° (B 25)
[GY)VG(Y)] (G(32)3XG(I2)] s/ [G*(2)G*(2)]

whereG*(Z) = G(JZ2)J. The result for the Wald-type statisti¢; (6; g, Vr) follows on observing
that

Wr(Br;0.Vr) = Tg(b7)[G(8r)VrG(Br)] "g(br)

_ (D N2
= TG(éT)VTG(éT), —tT(GT, gaVT> (826)
hence
2 ~% 2 2
B1:9.Vr) -2 1(6: 92 = <1> 1 6@zF _ <1> G'(2)2] B.27
Wr(61;9 T)THoo (6;9) 5) 260G @) HG* Z)HZ (B.27)
This concludes the proof. Ol

PROOF OFTHEOREM 3.2 _ Sinceg() := g[6 — 6; 5(6), 6] in (3.8) is homogeneous of degree
1+ y(6) with respect td — 8, the functions5(z) defined in (3.11) an&*(z) = G(J2)J are homo-
geneous of degreg 8). Thus

G'(U)=Gz/)z]) = Iz " G'(2), (B.28)
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GuUU  ZI"9G @z 1 G@zZ 1 (©.29)
G| 1z e @) 12l e @) 1217 |

and the identities (3.18)- (3.19) follow. Whéhis spherically symmetric, the fact thdtand||Z||

are independent is a consequence of the fact the denstysofonstant on spheres. Finally, when

Z ~N(0, Ip), ]|1Z||* is a sum ofp independeny? variables, sd|Z|* ~ x2. O

PrROOF OFTHEOREM4.1 By (3.13), we get on using the Cauchy-Schwarz inequality:

WEgv)| - 1G@2 1 @izl 1, (g g
1+y(6) |G (Z)|| ~ 1+v(6) ||G*(2)| 1+y(6)

If y(8) =0, G*(Z) is a non-zero fixed vector by the definition pf) [see (3.6)-(3.7)], and the
inequalities (4.1) follow on observing that(8; g,V) =t(8; g,V)2. WhenZ ~ N (0, Ip), we get

using (3.20) that(6)Z ~ N(0, 1) andW(8; g,V) ~ x3. If y(8) > 1, (4.2) and (4.3) also follow
from (B.30). Since|\Z||2 ~ X% whenZ ~ N (0, Ip), the global inequalities (4.4)-(4.5) follow by

combining (4.1), (4.2) and (4.3). O

PROOF OFPROPOSITION4.2  Ifg> p, the resultis trivial because tl;xé distribution dominates

the)(fJ distribution. So we considey< p. If yis large, the density functions gﬁ andxf)/Z random
variables are monotonically decreasing. Let us denotéxloy) the density function of a random
variableX. We will now establish that we can fing > 0 for which

fyz(¥) > fyz2)z(y) wheny>yo. (B.31)
The probability density functions of thej andx3/{ distributions are:

1

fxé (y) Wy(q/z)_l exp(—y/2), (B.32)
) = g o7 97 e =2y/2) (8.39

hence the ratio

fxg (Y)

ol (P/2) 1
fz/z(¥)

" T(0/2) ;2
el (p/2) 1
I (q/2) Z(P/Z)

Since({ —1) > 0 and(p—q) > 0, this ratio goes to zero as— +, so (B.31) holds foy large
enough, say foy > yp, hence

YR Zexpl(¢ — 1)y/2]

exp{[({ —1)y—(p—q)In(y)]/2} (B.34)

PIX5>Y > P[x5/{>y] fory>Yo. (B.35)
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If a = P[x3/{ > Y] for somey> yo, we have:

PIXg>Y>Plx5/{ >y fory>y. (B.36)
]

PrROOF OFPROPOSITION4.3  The proof of this dominance result is based on observing that

_99
= %0

= Hi(6 th , Hi(6i.) ggj (61.), (B.37)

j#i

Gi(0)

fori=1,...,n hence

9(y)? hy (y1)? -+ hn (Yn)? . (B.39)
G(y)ZrG(y)  Hi(y1)Zir Ha(ya)'hey) + -+ + Hn(yn)fnTHn(yn)’h(zn)

W(y; g, 51) =
Letl<i<n.lIf Hi(yi)iiT Hi(yi)’ > 0, we can consider two distinct casesh(h; =0, we have

VOC v, S B.39
Hi(yi) Sir Hi(yi)’ (s, 2m); (39

W(y; g, 51)=0<

if h¢) # O, we have

W(y;g,57) = . h*
M) 2 Hiy)'+ 3 1H) () ZjH;(y;)'hg;) /g ]
i (y1) )
< = =W(yi; hi, 2ir). B.40
= RSty o2 (849

ThusW(Y; g, 51) < W(Y;; hi, 5it) when4; > 0, and (4.14) is established. WhegtY) # 0 and
A1 >0,...,A,>0, (4.14) holds for all KXi < nand (4.15) follows. Further, in this case, we can
observe that

-1 -1
W(Y; g, 57) = {';[Hi(Yi)ziT Hi(Y))'/hy (Yi)z]} = {;M} (B.41)

sonW(Y; g, 57) is the harmonic mean &N(Yy; hy, $17),..., W(Ys; hn, £17). (4.16) follows on
applying classical inequalities between harmonic, geometric and arithmetic ;nseanslitrinovc
and Vast (1970, Section 2.1) or Cloud and Drachman (1998, Section 3.4). Ol

PROOF OF PROPOSITION 4.4 This result follows directly on applying Proposition 4.3 to
W(Y; g, 21), and Proposition 4.1 to the statisti®g(Y;; h;, Zit) associated with different fac-
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tors. O
PROOF OFPROPOSITION4.5  Ifg(y) = Y3 --- yp°, we see easily thad(y) = {5—)‘;’1,... ﬁ} with
ag vi-l B Vigly)
7:n'y'J yh: aJ:lv"'vpa (B42)
ay; hzllléj "
so that ) X
Vi
GG =gy (), 8.43)
=1 yJ
2 P run2lh sy 2 N
W(y; g) = 9y <J> < <’> = <y,) j=1...,p (B.44)
G(Y)G(y) [=\Yi Yi Vj
This entails (4.36). O

PROOF OFPROPOSITION4.7  Thisresultis a direct consequence of (3.31) along with Theorem
2.1 of Pillai and Meng (2016). Slnce mwg2 ( j)z for1<r <p, the boundx§/1r<n_i<n v?)
<I<p

dominates the expression in (4.1) for ansgl < p Ol

PROOF OFTHEOREM5.1  We want to show that the Wald-type statiSM—:(éT; g, \7T) has the
same asymptotic distribution as

Wr (7 0.V) = Tg(Br) [G(Br - B)V G(br — 6)] "g(br). (B.45)

By considering the components of the functiag(6), we can reproduce component by component
the proof of Theorem 3.1: fdr=1, ..., g, we get

T9/2g(81) 2 @ (Y), T%2[g(6r) - (8 —8)] = 0p(1), (B.46)

T—o
wheres '=5(8) = 1+, and

_ b

a(V)= > cly...,ipb |'| (B.47)
jitFlp=8 k=
TI/2G (B7) = Gi(Y),  T"/?[Gi(8r) —Gi(Br — )] = 0p(), (B.48)
=~ 0_gy . 99(68) _ 9a(6) . g g oy
G(6—-0)= = L = veovs jpi O)MKIO—B; j1,..., , (B.49
1(6-0)=— 3(6-8) ij Ci(j1,---s Jpi 6) M| j1.---, 0pl's (B.49)
GY)= 5 clit ip MY j1,... jp). (B.50)

i+ Fip=5



B. PROOFS 36

whereM,(+) is defined in (B.15). Settingr (8) := diagT"/2,..., TY/?], we then have:

TY2A1(0)g(67) =2 G(Y) . Ar(8)G(Br) == G(Y), (B.51)

TY2A1(0)g(67 — 6) == g(Y), Ar(6)G(6r—6) = G(Y). (B.52)

T—o00 T—o00

By Assumption 2.1 and 2.27,T Ti> V whereV = JJ is invertible, so that

[A7(8)G(87)Nr [A7(8)G(B7)) = G(Y)VG(Y)', (B.53)

T—o00

A7 (8)G(B1 — 6)IVr [A7(8)G(B1 — 6) = G(Y)VG(Y)' (B.54)

T—oo

Since the matrix of ponnomiaIé(B) has full rankq (as a matrix of polynomials) and the vector
Y is absolutely continuous, the random mat@x(Y)V G (Y)' is almost surely nonsingular. By
Slutsky’s theorem, we thus have

{[A7(8)G(B1)Vr (A1(8)G(B1)) 1L -2 {G(Y)VG(Y)} 7, (B.55)

T—o

{[41(6)G(B7 — 6)NVr [A7(6)G(B7 — 0))'} " = {G(V)VG(Y)'} Y, (B.56)

T—o

hence
Wr (B7;9,Vr) =T g(B7)
= [A1(6)TY2g(67)) {[47(8)G(B1)]Vr [AT(6)G(B7))'} (AT (6)T?g(6+)]
T%OW(& g,J), (B.57)

> —
G)
—~
D
i
$>
®
—
o)
_'

Wi (Br; G V) =T glbr - 6)' [G(Br —~ 6)V G(Br —6)] " G(Br ~0)

= [47(8)TY2g(81 — 0)'[Gr V &) AT (8)TY?g(81 — 6))]
- W(6;9,9), (B.58)

whereGr 1= Ar(8)G(87 — 6) and, using (5.5),

W(8;9,3) = GIY) [GIY)VG(Y)] 'qlY)
y -1

= Y'G(Y)A() [G(Y)VG(Y)] "A(B)G(Y)Y. (B.59)
Finally, by the definition off andG*, we haveG*(Z) = G(JZ)J and

W(8;9,3) =Z'G"(2)A(8) [G" (2)G* (2)] 'A(6)G*(2)Z. (B.60)
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O]

PROOF OFLEMMA 6.1  SinceF (x) is non-zero, it has at least one row containing a non-zero

homogeneous polynomial of degree and similarly forF (x). Further, we can write

F(X) =F(X)+R(X) (B.61)

whereR(x) := [Ryq (x)] and each rowRy. (x) = [Rk1 (X), ..., Rep(X)] of R(x) only contains polyno-
mials with lowest order larger thag (or zeros). The proof is split into three main steps.

(1) Letny > 1 be the number of non-zero rows Bfx) for which the minimum lowest degree of
any polynomial iss, andl (s1) = {i1, ..., in, } the indices of the corresponding rowsfofx). Then
there is aq x g permutation matri@; such that

PLF (x) = { :;Eg ] (B.62)

whereH;(x) := [PiF(X)]1 is ann; x p matrix containing all the rows with numbers liits; ) , and
Hz(x) := [P1F (X)]2 contains the other rows &f(x): each row oHj(x) contains at least one non-zero
homogenous polynomial of degrse (plus possibly higher-order homogeneous polynomials and
zeros) [.e., the rows with numbers ih(s;)], while the non-zero elements b(x) are polynomials
with lowest degree larger than. Then

PiF(x) = PLIF(X) + PLIR(X), PiF(X) = PiF (x) = [ ﬂ—;g; ] , (B.63)

whereH; (x) only contains homogeneous polynomials of degredd»(x) only contains zeros and
non-zero homogeneous polynomials of order greatershaandP;R(x) only contains polynomials
with lowest degree larger thaa (or zeros). _

(2) Letry be the number of linearly independent polynomial (row) vectordiifx). Clearly, 1<

ry < ng. If ry = ng, the rows ofH;(x) are linearly independent functions, and (6.5) holds on taking
S= Py, so thatH; (x) = [SF(x)]1 andHz(x) = [SF(X)]2.

(3) If ry < ng, Hi(Xx) containsr; linearly independent polynomial rows, while the remainkag=

ny —ry rows are linear combinations of the rows in the first group. Then we cahnafipx q
permutation matriX?, such that

— |‘T11(X)
Hi¥) | _ | 7
o[- | e e

vlherel—Tll(x_) is anry x p matrix obtained by taking; linearly independent polynomial rows of
H1(x), andH21(X) is aks x p matrix containing the other rows éf;(x). By the definition of linear
independence between polynomial vectors [see (2.5)], we can #(& ax g constant matrixCy;
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such thai—T21(x) = C21|‘T11(X). Set

Ifl 0 0 R11<X>

Q: |: —C21 |k1 0 ] ,S: szpl, SRX)I |: R21(X) ] s Rz(X) = |:
0 0 lgn R2()

R21(X) :|

B.65
Roa(x) | (B.65)
where the matriceR;1(X), Ro1(X) andRg2(x) have dimensions; x p, ki x pand[g—ny] x p respec-
tively, and only contain polynomial terms with order larger tearClearlyQ andSare nonsingular,

B Hi1(X) ~ Hu(x) Ha1(x) ]
SF(x) = Ho1(x) | = | Haa(X) —CxHua(x) | =| O : (B.66)

Hz( Hz(X) Hz(X) ]

H11(X) + Rya(x)
SF(X) = SF(x) + SRX) = { B Ezlgxgn ] = [ Haa( F){;( F;“( X | (B.67)
22(X
It is then easy to see that _ L
SE Hi1(x) [SF(X)]

S0 | & | = sroals | (5:69)

wherel—Tll(x) is a matrix whose rows are linearly independent vectors of homogenebummials
all with degrees;, andRx(x) is a matrix whose non-zero elements are polynomials with lowest
degree larger thas. Thus (6.5) holds on settif§ F(x)]1 := Hi1(X) and[SF(X)]2 := Ry(x). O

PROOF OFLEMMA 6.2  Letg > 0 be the lowest degree of any non-zero polynomid (r). By
Lemma 6.1, we can find a matr € .74 such that

== [SiF (x)]1
SR 0= [[&F(x)] ] (B.69)

where[S,F (x)]; is anry x g matrix whose rows are linearly independent vectors of homogeneous
polynomials all with degree;, 1 < r; < g, and[SF(x)]z is a matrix whose non-zero elements are
polynomials with lowest degree larger than If r; = q or [SF (x)]2 = 0, (6.6) is satisfied with
S=§;. Otherwise, let(x) = [SiF(X)]2, a (g—r1) x p matrix, ands, the lowest degree of any
non-zero polynomial i (X). Clearlys, > s, and we can apply Lemma 6.1 fg(x): we can find
amatrixQ; € .#q_r, such that

= _ | [QFR2(X)]1

0= (R ®70)
where[Q,F; (X)]1 is anr, x g matrix whose rows are linearly independent vectors of homogeneous
polynomials all with degres,, 1 <r, < q—r1, and[QzF; (X)]2 is @ matrix whose non-zero elements
are polynomials with lowest degree larger ttganThen, for

l, 0
S [o o }sl (B.71)
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we have:
_|n O [SFX) | _ | [SFX | _ | [SF(X):
0= |5 o )| SFn ) = | ot |~ | ot |+ ©
hence on settingSF (x)]1 = [SIF (X)]1, [SF (X)]2 = [Q2F2 (X)]1 and[SF (X)]3 = [Q2F2 (X)]2,
=F [SiF (¥)]1 [SF (X))
F00= | et | = | @Bl | - SE. ®73)
[Q2F2 (X)]2 [SF (¥)]3

where[S,F (x)]1 and[SF (x)]» only contain linearly independent vectors of homogeneous polyno-
mials all with degreey; ands;, and[S;F (x)]3 is @ matrix whose non-zero elements are polynomials
with lowest degree larger thas.

The same process is repeated as long as the last W(x)] either contains non-zero linearly
independent polynomial rows of degrgewith 0 <51 < 5 < ... < 5,1 < S, < o, Or contains only
zeros in which case the corresponding rowssjn;F (x) are zeros. (6.6) then follows on taking
S=S1.

Finally, if F (x) hasfull rank ga.e, SF(x) also has full ranlkg a.e, and the last blockS,_1F (X)],

has full row rank a.e.so all the rows of[S,_1F (x)], must be non-zero, and the lowest degree of
any non-zero polynomial is, < +oo. Further, all the rows ofS,_1F (x)], must be linearly inde-
pendent functions, for otherwi$s,_1F (x)], would not be the last block. Since the different blocks
must be linearly independent functions, it follows that all the rowS Bfx) all linearly independent
functions. O

PROOF OFPROPOSITION6.3 ~ When the FRALD-T condition does not hold, the raniS@(y)
constructed in Lemma 6.2 has to be less thaif the FRALD-T condition holds forG(y) with
some matrixS, then for anyS € .%, the FRALD-T property also holds f@ G(y) on selecting the
matrix Ssg:= SS*. Consider the matri¥s defined in the proof of Lemma 6.2. Th&G(y) =
SG(y) + R(y), where by constructio G(y) hasq linearly independent rows and, in each row of
R(y), the degree of the polynomials is higher than for the corresponding r&6§) . Multiplying
SG(y) by Ssg, we then see thdiscS G(y) = SscSG(y). By the FRALD-T property, the rank of
SseSG(y) is g. Multiplication by Sg& does not change the rank, so the rankSag(y) is q as
well. O

PROOF OFTHEOREM 6.4 By applying Lemma 6.2 to the Jacobian mat&ix6 — 6), we can
find a nonsingulag x g matrix Ssuch that

[SG(X)]1
SG(x) = : (B.74)

[SG(X)]v

where each submatr$ G(x)|x is annk x g matrix which only contains homogeneous polynomials



B. PROOFS 40

of degrees, with0<s; < --- < § < --- < s, and all the rows o8 G(x) are linearly independent
functions ofx. Since the Wald test statistic is invariant with respect to linear transformatiens,
can assume without loss of generality tisais the identity matrix:S= lg. This just means that
we have already applied a nonsingular linear transformation to the restsiatimter test [since
g(6) =0+ Sy 6) =

If the FRALD-T property does not hold, we have rdfx)} =r forr < q a.e. Write the Wald-type
test statistic as follows:

Tg(br)' [G (é — 6)VrG(br — 6)]"g(br)
det[G(8r — 6)VrG(87 — )]

Wi (B7:9,Vr) = (B.75)

whereA* stands for the adjoint matrix (transpose of the cofactor matrix) of a matridote that
the adjoint matrix and the cofactor matrix actually coincide (by symmetry) in theafd8e75).
Denote byAr the diagonal matrix of size with i-th diagonal termTS/2 when Z}(;fnj <i<

Zk .Nj, k=2,..., v. We can rewrite the Wald test statistic as follows:

(A1v/To(B1)) [(ArG(B1 — 0))Vr (G(B7 — 5)'AT)]#(ATﬁg(9T))

7R v Y s (B.76)
Ta det[G(GT — G)VTG(GT — 9)/]

Wr(67;9,Vr) =

wherea = 3V, njs. By a straightforward application of the derivation in the proof of Theobein
using (B.51) - (B.52)Vr Ti> V =JJ, and the continuity of the polynomial matrix functioh(x)]”,
we have

(AT\FTg(éT)) [(ATG éT ) ( 6T — G)IAT)]#(AT\EQ(QT))

g_ ) [GIYVG(Y)]*ary) (B.77)

and, by the definition of and@*, we get the limit for the numerator as

Z'G*(Z)A(8) [G"(2)G*(2)]" A (8)G' (2)Z. (B.78)

Note that this quadratic form is non-zero almost surely. Indeed by Agsamp.1, Z is abso-

lutely continuousZ is thus non-zero almost surely; by construction the rowS@¥) and thus of
A(6)G*(Z) are linearly independent as row vectors of polynomials and thus linearypémtient

almost surely and the polynomial matrﬁ@*(Z)G*(Z)’]# is non-zero almost surely. Thus the limit

of the numerator is almost surely non-zero.

By an argument similar to the one leading to (B.77), we get for the denominator:

T"det[G(éT — 5)\7TG(9T — 5)/] = det[(ATG(éT — §>>\7T (ATG(éT — 5))/}
2, det[G*(2)G*(2)] . (B.79)

T—oo
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SinceG* (Z) = G(JZ)J, the rank ofG* (Z) equals the rank dB (JZ) and is the same as raf®&(6 —
8)} =r* <gwhen FRALD-T does not hold.

Thus the limit matrix|G*(Z)G*(Z)’] does not have full rank, and the limit determinant has to
be zero almost everywhere. Then the denominator converges to zbtbeastatistic diverges to
—+00. ]
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