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SHORT RUN AND LONG RUN CAUSALITY IN TIME
SERIES: THEORY

By JEAN-MARIE DUFOUR AND ERIC RENAULT!

Causality in the sense of Granger is typically defined in terms of predictibility of a
vector of variables one period ahead. Recently, Liitkepohl (1993) proposed to define
noncausality between two variables in terms of nonpredictibility at any number of periods
ahead. When more than two vectors are considered (i.e., when the information set
contains auxiliary variables), these two notions are not equivalent. In this paper, we first
generalize the notion of causality by considering causality at a given (arbitrary) horizon A.
Then we derive necessary and sufficient conditions for noncausality between vectors of
variables (inside a larger vector) up to any given horizon 4, where A can be infinite. In
particular, for general possibly nonstationary processes with finite second moments,
relatively simple exhaustivity and separation conditions, which are sufficient for noncausal-
ity at all horizons, are provided. To deal with cases where such conditions do not apply, we
consider a more specific, although still very wide, class of vector autoregressive processes
(possibly of infinite order, stationary or nonstationary), which include multivariate ARIMA
processes, and we derive general parametric characterizations of noncausality at various
horizons for this class (including a causality chain characterization). We also observe that
the coefficients of lagged variables in forecasts at various horizons 4 > 1 can be inter-
preted as generalized impulse response coefficients which yield a complete picture of linear
causality properties, in contrast with usual responsé coefficients which can be quite
misleading in this respect.

KeywoRDs: Causality, time series, long run, causality chain, vector autoregression,
VAR, VARMA, impulse response, prediction.

1. INTRODUCTION

THE CONCEPT OF CAUSALITY INTRODUCED by Wiener (1956) and Granger (1969)
is now a basic notion for studying dynamic relationships between time series.
The literature on this topic is considerable; see, for example, the reviews of
Pierce and Haugh (1977), Newbold (1982), Geweke (1984), Gouriéroux and
Monfort (1990, Chapter X), and Liitkepohl (1991). The original definition of
Granger (1969), which is used or adapted by most authors on this topic, refers to
the predictibility of a variable X(¢), where ¢ is an integer, from its own past, the
one of another variable Y(¢), and possibly a vector Z(¢) of auxiliary variables,
one period ahead: more precisely, we say that Y causes X in the sense of
Granger if the observation of Y up to time ¢ (Y(7): 7<¢) can help one to
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Ghysels, Helmut Liitkepohl, Michael Mouchart, Said Nsiri, Franz Palm, Pierre Perron, Roch Roy,
Peter Schotmann, Lanh Tran, David Tessier, two anonymous referees, and a co-editor for several
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predict X(z + 1) when the corresponding observations on X and Z are available
(X(7), Z(7): 7<t); a more formal definition will be given below.

Recently, however, Liitkepohl (1993) has noted that, for multivariate models
where a vector of auxiliary variables Z is used in addition to the variables of
interest X and Y, it is possible that Y does not cause X in this sense, but can
still help to predict X several periods ahead; on this, see also Sims (1980) and
Renault and Szafarz (1991). For example, the values Y(7) up to time ¢ may help
to predict X(z + 2), even though they are useless to predict X(z + 1), because Y
may help to predict Z one period ahead, which in turn influences X at a
subsequent period. It is clear that studying such indirect effects can have a great
interest for analyzing the relationships between time series. In particular, one
can distinguish in this way properties of “short-run (non)causality” and “long-run
(non)causality.”

To the best of our knowledge, these indirect effects and associated noncausal-
ity properties have not yet been extensively studied in the literature. On one
hand, causality at a given horizon 4 involves forecasts at horizon # which may
depend in a complex way on autoregressive coefficients: for # > 2, the absence
of lagged values of a variable from these forecasts does not generally reduce to
zero restrictions on these coefficients. In this respect, so-called impulse response
coefficients may be better descriptions of lagged causality relationships, but
again causality studies “a la Sims” based on innovation accounting are not
sufficient to capture all (linear) indirect effects of ¥ on X. Hsiao (1982) was
perhaps the first author to address formally this issue by introducing indirect
causality relationships, spurious causality concepts,.... In this respect, the
present paper is a continuation of Hsiao’s research agenda since we will propose
a systematic study and characterization of indirect effects and associated lagged
causality relationships. We will observe in particular that Hsiao’s definitions do
not capture all the effects of interest in the general case where more than one
auxiliary variable Z appear in the system.

The paper is organized as follows. In Section 2, we define more general
notions of causality that will allow us to study the issues of interest: causality at
a given horizon h, where h is a positive integer, and causality up to any given
horizon h, where h can be infinite (1 </ < «). These definitions are based on
the concept of projection (linear causality), do not require stationarity of the
processes considered, and for the horizon one (A = 1) include as a special case
the usual definition of causality in the sense of Granger (1969). We can study in
this way “short-run causality” (4 small) and “long-run causality” (4 large)
properties. Note “short-run” and “long-run” refer to forecast horizons defined
with respect to a given point in time, not the role played by past observations
which may be more or less close to that point. Then we present several general
results on causality up to any given horizon. In particular, we give a component-
wise characterization of causality properties, which allows a reduction of causality
between random vectors to causality between scalar random variables (the
components of those vectors), and general sufficient conditions under which
noncausality at horizon one is equivalent to noncausality at all horizons. We
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show this equivalence obtains in two important cases: first when the vectors X
and Y contain all the variables considered in the analysis (exhaustivity condition),
and secondly when all the system variables can be “separated” in two subvectors
which do not cause each other at horizon one (separation condition). This
separation condition is equivalent to a definition of noncausality proposed by
Hsiao (1982) for systems with more than three variables; Hsiao’s condition,
however, is not generally necessary for noncausality at all horizons (as defined
here). All these results are derived for general processes in L* (i.e., processes
with finite second moments), without any assumption on stationarity or specific
parametric forms (such as autoregressive or ARMA models).

One should note that the notion of noncausality at all horizons (& = )
studied here is not generally equivalent to the one considered by Liitkepohl
(1993). The latter, indeed, is not a generalization of the usual concept of
noncausality in the sense of Granger (1969), for it is based on whether the
innovations of a variable have an effect on the other variable (i.e., whether the
corresponding coefficients in the moving average (MA) representation are zero),
not on whether a given variable can help to predict another one. In multivariate
models where auxiliary variables are used to predict, these two notions are not
equivalent even for the horizon one; see Dufour and Tessier (1993). Since one
of the main characteristics of the Wiener-Granger notion of causality is the
emphasis on prediction, we extend it to longer horizons by retaining prediction
from observable variables as the central concept.

In Section 3, we study the case where the process considered has an autore-
gressive representation possibly of infinite order. These conditions include as
special cases autoregressive processes of finite order (VAR), stationary or
nonstationary, a wide class of second-order stationary processes (including
long-memory processes, such as fractional processes), and invertible ARMA
processes. In particular, we allow for processes with initial conditions (i.e.,
conditioning on the history of the process up to a given date), so that autore-
gressive processes with unit or explosive root(s) are included in our setup. It is
not required that the covariance matrices of the innovations be constant (i.c.,
heteroskedastic innovations are allowed). The results presented considerably
generalize several results presented by Boudjellaba, Dufour, and Roy (1992,
1994) for the horizon one, and by Renault and Szafarz (1991) for autoregressive
processes of order one. We give several characterizations of noncausality at
different horizons: for regular processes (i.e., processes with nonsingular innova-
tion covariance matrices), we give necessary and sufficient conditions, while for
nonregular processes we show that the same conditions are sufficient. In
particular, we give a characterization of noncausality in terms of “causality
chains,” a formulation which throws considerable light on the relationship
between causality at horizons greater than one and the presence of “indirect
causal effects.” From the causal chain characterization of noncausality, we also
derive (as a corollary) necessary conditions for noncausality at all horizons which
involve coefficients of the moving average representation of the process, illus-
trating the link between our definition of noncausality and the one considered
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by Liitkepohl (1993). When the vector of auxiliary variables Z(¢) is univariate
(hence in particular for trivariate processes), it is also observed that these
conditions are sufficient as well as necessary. We are then able to show that the
separation condition, which was shown to be sufficient under very general
assumptions (Section 2) is also necessary for noncausality at all horizons for the
special case of systems which include only one auxiliary variable. In other words,
if the auxiliary variable vector Z has only one component, there are only two
cases that can make Y not cause X at all horizons: the one where Y does not
cause (X', Z) at horizon 1, and the one where (Y', Z) does not cause X at
horizon 1 (X and Y can be vectors). This separation criterion, when Z is
univariate, coincides with the definition of noncausality proposed by Hsiao
(1982). Finally, we observe that the coefficients of lagged variables in forecasts
at different horizons 4 > 1 can be interpreted as generalized impulse response
coefficients which provide a complete picture of linear causality properties at
different horizons. By contrast, usual impulse response coefficients only consti-
tute a small subset of those and can easily give a misleading picture of the
causality structure of a vector time series.

In Section 4, we consider the important case of finite order VAR processes,
stationary or nonstationary, and show that the characterizations of noncausality
obtained for infinite order autoregressive processes reduce in such cases to finite
sets of restrictions. These restrictions may then be used for implementing tests.
In Section 5 finally, we make a number of concluding remarks and mention
briefly the inference problems associated with the causality concepts discussed
above.

2. LINEAR CAUSALITY AT DIFFERENT HORIZONS

The concepts of causality studied here are extensions of the original defini-
tions of Wiener (1956) and Granger (1969) in a linear framework similar to the
one considered by Hosoya (1977) and Florens and Mouchart (1985). More
precisely, noncausality is defined in terms of orthogonality conditions between
subspaces of a Hilbert space of random variables with finite second moments.
We denote by L?>=1%(0N, %, Q) this Hilbert space of real random variables
defined on a common probability space (2,2, Q), with covariance as inner
product.

In this context, the “information available at time #” is defined by a closed
subspace I(¢) of L? (Hilbert subspace), where t €7 and Z is the set of the
integers. We consider a nondecreasing sequence I of such subspaces, i.e.,

2.1 I={I(t):t€Z,t> w0}, and t<t'=1(t)cI(t)
forall > w,

where we Z U{—o}. We will call I(¢) the “reference information set.”” This
means in particular that memory is unbounded and information is not lost as ¢
increases. In addition, we consider an m, X 1 vector process of interest X in L?,
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i.e., we have

2.2) X={X@):teZ,t>w},
X(t)=(xl(t),...,xml(t))', x, () el? (i=1,...,m)),

and we suppose that the information sequence [ is conformable with X
according to the following definition.

DEFINITION 2.1 (Conformable Information Sequence): Under the assumptions
(2.1) and (2.2), we say that the information sequence I is conformable with X if
X(w,t]cI(¢) for every integer > w, where X(w,t] is the Hilbert space
spanned by the components x,(7), i =1,...,m, of X(1), o <7<t

In other words, the past and present of X(r) belong to the information set
I(¢). At this stage, the “starting point” w is not specified: in particular,  may
equal — or 0 depending on whether we consider a stationary process on the
integers (¢ € Z) or a process {X(¢): t > 1} on the positive integers given initial
values preceding date 1. The set I(w)= N,. ,[(¢) represents information
available at any date ¢ > w, such as constants, deterministic variables, or initial
conditions (on X(¢) or other variables).

In general, knowing I(¢) does not allow one to predict perfectly a future value
X(t + h), where h €N is the prediction horizon; N ={1,2,...} represents the
positive integers while N, ={0,1,2,...} is the set of the nonnegative integers.
We denote P[X(¢ + h)|1(¢)] the best linear forecast of X(¢ + /) based on the
information I(¢): i.e., each component Plx,(t + WII(1)], 1 <i<m,, of P[X(¢+
MII(#)] is the linear projection of x,(t+#h) on the Hilbert subspace I(t)
(orthogonal projections with respect to the inner product of L?). If the minimal
information set I(w) contains a nonzero constant variable, P[X(¢z + A)II(2)] is
the affine regression of X(¢ +h) on I(¢), which in turn coincides, for Gaussian
processes, with the conditional expectation of X(¢+ &) given I(¢). The concept
of (linear) causality in the sense of Wiener-Granger from a process Y to a
process X is based on studying whether we can improve the forecast of X(¢z + 1)
by using, in addition to I(¢), information about the past and present values Y(7),
w < T1<t,of Y. Here we suppose that

(2.3) Y() = (y, (.9, (D), y () €L,

for 1<j<m,, te’Z,

and we denote I(¢) + Y(e,¢] the Hilbert space of L? generated by I(¢) and the
components y/(7), j=1,...,m,, o <7<t (More generally, for any two sub-
spaces E and F of L?, we will denote E + F the Hilbert subspace generated by
the elements of E and F.) We now give a general definition of noncausality at
various horizons, with respect to a “universe” I(¢).
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DEerINITION 2.2 (Noncausality at Different Horizons): Let the assumptions
(2.1) to (2.3) hold and suppose that I is conformable with X. Then, for & € N,
we say that: (1) Y does not cause X at horizon h given I (denoted Y -+ X |I) if

h

PIXG+MWI)]=P[X(t+M()+Y(w,t]], V> w;

(i) Y does not cause X up to horizon h given I (denoted Y » X|I) if Y 7/‘? X|I for
(h)
k=1,2,...,h; (iii) Y does not cause X at any horizon given I (denoted Y -+ X |I) if

()
Y—/;XII for all ke N.

We shall make four comments to clarify the latter definition. First, it is a
natural extension of the usual definition of noncausality proposed by Wiener
(1956) and Granger (1969) in terms of predictibility, where the role of the
forecast horizon h is emphasized. In the same vein, for cases where no set of
auxiliary variables is used (the information set I), related notions (“noncausality
of order /#” and “global noncausality”) cast in terms of independence (vs. the L?
framework used here) were introduced by Bouissou, Laffont, and Vuong (1986),
Florens and Mouchart (1982), and Kohn (1981). However, with auxiliary vari-
ables (as noted by Liitkepohl (1993) and Renault and Szafarz (1991)), non-
causality at horizon 4 =1 is neither a necessary nor a sufficient condition for
Y(w,t] to be useless in predicting X at longer horizons (4 >2). Second,
although close in spirit to the notion of “noncausality” (at all horizons) in
Liitkepohl (1993), the latter differs from ours because it is based on the absence
of effect from the innovations of a variable to another variable (zero coefficients
in the MA representation of the process) rather than the absence of the past
values of a variable in the optimal forecasts of another variable; for further
discussion of this point, see Dufour and Tessier (1993). We think Definition 2.2
provides a more natural extension of the usual definition of Granger causality.
Third, Definition 2.2 allows for nonstationary processes. Fourth, as fundamen-
tally a time domain concept, it does not appear to have a simple frequency
domain interpretation, e.g., along the lines followed by Hosoya (1991) and
Granger and Lin (1995). Finally, the “universe” or “reference information set”
I(t) considered to study causality properties contains at every date ¢, beyond the
variable of interest X up to date ¢, an information I(w) = N,. ,I(?) available
at every date ¢ > w (e.g., initial conditions, constants, deterministic variables)
and information accumulated between dates w and ¢ (difference between I(t)
and I(w)) about both X and auxiliary variables Z.

It is precisely the presence of auxiliary variables not contained in X or Y that
can lead to a situation where Y does not cause X up to horizon 4, but causes it
at horizon 4 + 1. Without giving further details on the variables contained by
the information set I, it is already possible to derive some results on causality at
different horizons. The first one generalizes a result given in Boudjellaba,
Dufour, and Roy (1992) under more restrictive assumptions and for the horizon
one only.
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PrOPOSITION 2.1 (Componentwise Characterization of Noncausality between
Vectors): Let the assumptions (2.1) to (2.3) hold, and suppose I is conformable
with X. Then the following properties are equivalent for any h € N: () Y » X |I; (ii)

h
Y+>x|[ for i=1,...,m; (i) yj—;»XII, for j=1,...,m,; (iv) yj-;->x,-|1, for
l—]. ., My andj—l ., My 1 7

The proofs of the propositions are given in the Appendix. The above proposi-
tion shows that causality between vectors can be studied by considering causality
between corresponding components of Y and X. This can lead to important
simplifications because real variables are simpler to study than vectors. Note the
basic information set I must be the same in the four conditions (i)—(iv) and
should not depend on i or j; on this issue (for horizon 1), see Florens and
Mouchart (1985, Property 3.5, p. 164). About changing the information set, it is
however possible to prove the following proposition.

PROPOSITION 2.2: Let the assumptions of Proposition 2.1 hold, and define I ;(t)
as the Hilbert space generated by I(t) and the variables y (1), w<t<t, k=
1,...,m,, k+j. Then, forany h € N: (z)YﬂI»XII=>y] » X\, forj=1,...,my;

h

(i) the converse implication is not true in general.

The latter proposition means that, whenever Y -+ X|I, and starting from the

complete information set 1(¢) + Y(w, t], the forecasht accuracy of X(¢+ h) is not
reduced by dropping the information provided by any individual component y;
of Y (1 <j <m,). The converse however can hold only if the components of Y
satisfy conditions of linear independence (see next section). We now give a
proposition which shows clearly that the causality horizon matters only in
situations where the universe I involves processes other than X and Y.

PROPOSITION 2.3 (Exhaustivity Condition for Noncausality at all Horizons):
Under the assumptions (2.1) to (2.3), suppose I(t) = H + X(w, t], for t > w, where
H is a (possibly empty) Hilbert subspace of L*. Then the three following properties
are equivalent:

() Y» X|I; (ii) Y» X|I, VheN; (iii) Y » X|I.
1 (h) ()

Proposition 2.3 gives a case where the usual notion of causality in the sense of
Granger (Y » X|I) implies that Y cannot help to predict X at every horizon:
1

this case is the one where the only information that gets added to I(¢), as ¢
increases, is contained in X(¢) and Y(¢). For example, any bivariate model
satisfies this condition. Note H may contain any variable in L? which does not
depend on ¢ (e.g., known at every date ¢ > w). This result may be viewed as an
extension of earlier results due to Bouissou, Laffont, and Vuong (1986, Lemma
1) and Florens and Mouchart (1982, p. 590).
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Let us now consider a universe I(¢) richer than the one of Proposition 2.3,
because it contains past and present observations about another vector Z(¢)
from the process:

2.4) Z(t) = (zl(t),...,zm}(t))', z, (1) eL?,

for k=1,...,m; and t>w,te”.
The reference information set at date ¢ is then
.35 I(t) =1y,(t) =H+X(w,t]+ Z(w,t],

where H is defined as in Proposition 2.3. In this case, the latter cannot be
applied directly to show that Y » X|I,,. However, an important case where the
)

latter property holds is the one where a separation condition is satisfied. Suppose
indeed we can find two processes {Z,(¢): t € Z, t > w} and {Z,(¢): t € Z, t > w} of
dimensions m,, and m;, respectively such that

(2.6) Iz (1) =Iy7 () + Z,(w,1], Iy, () =H+X(w,t]+Z(w,t],

V> w.
This will hold, in particular, if (Z,(t), Z,(¢)) is an invertible linear transforma-
tion of Z(¢), e.g., when Z(t) =(Z(t), Z,(t)')Y. We shall admit here that m5, or
m4, can be zero, corresponding to cases where either Z =2, or Z = Z,. Then
we have the following property.

PROPOSITION 2.4 (Separation Condition for Noncausality at all Horizons): Let
H be a Hilbert subspace of L*, and suppose the assumptions (2.1) to (2.6) hold.
Then the separation condition (Y", Z})' » (Y', Z}) Iy, is sufficient for Y + X |I,.

()

Intuitively, Proposition 2.4 means that whenever the separation condition
holds, not only do we have Y - X|I,, but also Y -+ X|I,. This comes from the

(e
fact that no “causality chain from Y to X (see Renault and Szafarz (1991)) can
operate by going through Z (indirect causality), because the linear transforma-
tions of Z that can be “caused by Y” (the components of Z,) do not cause X.

3. CAUSALITY IN LINEAR INVERTIBLE PROCESSES

We now consider the more specific case of “linear invertible processes,” a
setup which remains quite general since it includes as special cases both finite
order VAR models (stationary or nonstationary) and invertible ARIMA pro-
cesses. This will allow us to obtain explicit parametric formulations of the
noncausality conditions at various horizons. The characterizations so obtained
will provide both more insight into the nature of the restrictions (e.g., causality
chain characterizations) and a basis for developing tests.

We consider here an m X 1 discrete-time process {W(¢): t € Z} in L? with an
autoregressive representation (possibly of infinite order):

3.1 W) =w@) + Y mW(t—j) +alt), Vi>o,
j=1
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where u(t) belongs to some Hilbert subspace H of L? (w(t) € H, VYt > w), {a(t):
te7Z} is a sequence of random vectors in L? with mean zero, mutually
uncorrelated and such that a(¢) is orthogonal to the Hilbert space H + W(—oo, ¢];
we also assume that the series X7_,7W(¢ —j) converges in quadratic mean
(q.m.) for any ¢ > w. Note the vectors u(#) may be nonrandom or equal to zero
for all ¢. It is not required that the covariance matrix of a(#) be constant or
nonsingular. Thus a(¢) might not be a white noise process. Further, the vector

W(t) is partitioned into three subvectors,

(3.2) W) =(x@),Yt),z@@)), te’z,

where X(¢), Y(¢), and Z(¢) have dimensions m,, m,, and m, respectively
(my=1,m,>1, my; >0, m +m, +m; =m), and the reference information set
is defined by observing at each date ¢ the past and present of X(¢) and Z(z),
plus the information contained in H:

(33) IW)=L,(t)=H+X(—o,t]+Z(—0,t].

In the special case where the vectors a(f) have nonsingular covariance
matrices, i.e.,

(3.4) det(E[a(t)a(t)]) #0, Vt> o,

we will say that the process W(¢) is regular. However, several of the results given
below hold without this assumption. Even though the process W(t) is defined for
all t € Z, the representation (3.1) need only hold for ¢ > w. When w > —o the
values of W(¢) for ¢ < w (i.e., the initial values of the process) may be set at any
appropriate values which ensure the convergence of the series in (3.1); for
example, this will occur if W(#) =0 for ¢ < ' < w. This formalism will allow us
to study simultaneously stationary processes on the integers (in which case
w = —) and nonstationary autoregressive processes with initial conditions. In
the case of second-order stationary processes, a sufficient condition for the
series (3.1) to converge in g.m. is Z‘}Llllell < oo, where l|77-j||2 = tr(ijjf). Note
also that model (3.1) includes as a special case the model

B3 XO-wn=Y mlXt—-j)-nt-Nl+al®), >0,
j=1

0

where each component of %(¢) belongs to H and the series L7_,m;u(t — )
converges in q.m. In (3.5), the function 7(#) may be interpreted as a centering
(or detrending) function. Another important case where model (3.1) applies is
the one of invertible ARIMA processes.

The autoregressive form (3.1) naturally yields forecasts at any horizon 4, given
the information H + W(—,¢] available at time ¢. The latter may be computed
easily from the formula

(3.6)  PIW(G+h|H+W(—o,1]]
h—1 o
=Y 7Put+h—-k)+ Y Wj(h)W(t+ 1—j), Vi>w,VheN,
k=0 j=1
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where we set w{(”’ =1, and, for each j&€N, the sequence of matrices 7",
h €N, is defined recursively by
h
3.7) )=, aM D =g+ Y (h=1,2,...).
=1
Furthermore, it will be useful to observe that any sequence of matrices wj(h),
where j €N and 4 € N, that satisfies (3.7) also satisfies the recursion

(3.8) =, 7D =g+ 7, (h=1,2,...).

For an explicit derivation of (3.6)—(3.8) in the context of model (3.1), the reader
may consult Dufour and Renault (1994). We shall now characterize the non-
causality Y » X|I,, from natural partitions of the matrices 7rj(h) conformable

with X, Y, and Z:

(h) (h)
Txxj Txy; Txzj

/ A A
3.9 77'}"’ = W%’l)}j Wg/})’j 71'g’Z)j
(h) (h) (h)

Tzxj Tzyj Tzzj

Our basic result on this issue is given in the following theorem, which is a
generalization of Proposition 1 in Boudjellaba, Dufour, and Roy (1992).

THEOREM 3.1 (Projection Coefficient Characterization of Noncausality at
Horizon h): Under the assumptions (3.1) to (3.3), the condition
(3.10) =¥y, =0, VjeN,
is sufficient for Y—;?X |Iy,, where h € N. If, furthermore, the process W(t) is
regular (assumption (3.4)) then Y » Xy, = 7{);=0,VjeN.

The latter theorem jointly with (3.8) allows one to understand why in the
presence of an auxiliary variable vector Z(¢), Y can cause X at horizon A + 1
even though it does not at horizon 4. By the recursion (3.8), we have

A
(3.1D 77(h+1) = 77(1) w1t 7TXX17TXY/ + 7TXY17TYY] + 7TX217TZY]
which upon using Theorem 3.1 entails the following result.

COROLLARY 3.1: Under the assumptions (3.1) to (3.4),

Y$X|1X2=Wf¥h;;l)=wf\fglwzyj, VjeN.

In other words, when there is no causality from Y to X up to horizon 4,
causality can still appear at horizon 4 + 1 if the auxiliary variable(s) Z can cause
X at horizon & (7{), # 0) and Y can cause Z at horizon 1 (m2y, # 0). Thus the
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presence of Z can introduce indirect causality from Y to X going through Z.
This leads to sufficient conditions for noncausality from Y to X which gives a
more explicit form to Proposition 2.4. For example, if Z(¢) =(Z,(¢t), Z,(¢)'), we

A+l _ . (h l ; ;
see that Y(—;;XIIXZ = 7y D =) 7,y + T 174,y hence sufficient condi-
tions like Y » (X', Z}Y|Iy, and Z, » X|Iyy, =Y +» X|Iy,, which can be

1 (h) (h+1)

verified easily. Theorem 3.2 below gives a complete characterization of non-

causality from Y to X in terms of “causality chains.” To prove it, we will need
two lemmas (of separate interest) on the properties of matrix sequence wj(”)
that satisfy recursion (3.8).

LEMMA 3.1: Let 71-].(”), jEN, h €N, be any sequence of m X m matrices, which
are partitioned as in (3.9) and satisfy the recursion (3.8). If (), =0, Vj €N,
k=1,...,h, then for any integer p such that 2 <p < h, we have

=1 I(p-nli=1

p—1
(3.12) 775(’2)17721’] Z Ty PH){ > [l_.[ Wf‘zi]}”’zyy VjieN,

where J(1) ={(n,,n,,...,n): Xi_jin;=1and n,eNy, i=1,.... 1}, T1F-[m}, =
TR Thyy - oy Ng=10,1,2,...}, with the convention ZJ(O)[I_IWZZ,] L.

LEMMA 3.2: Under the assumptions of Lemma.3.1, the three following conditions
are equivalent for h > 2:

(3.13) wy;=0, VjeN, (k=1,...,h);
(3.14) mxy;=0, VjEN, and

7Ty =0,  VjeN (k=1,...,h = 1);
(3.15) myy;=0, VjeEN, and

R§)m,y=0, VjeN (k=1,...,h— 1),

k) _ vk k-1
where fo'% = ZI=17TXZI{ZJ(k—l)[Hi= 17221

THEOREM 3.2 (Causality Chain Characterization of Noncausality at Horizon
h): Under the assumptions (3.1) to (3.3), each one of the three equivalent conditions
(3.13), (3.14), and (3.15) is sufficient for Y—HX |Iy,. If furthermore the process

W(t) is regular (assumption (3.4)), then each one of the conditions (3 13), (3.14),
and (3.15) is necessary and sufficient for Y +> X\Iy,.

The interest of the criteria (3.14) and (3.15) of noncausality Y » X|I,,, as

opposed to (3.13) (derived in Theorem 3.1), comes from the fact that they are

more clearly linked to the fundamental autoregressive coefficients ; of the

representation (3.1). Criterion (3.14) shows that noncausality at horizon A occurs
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when two conditions hold: (i) there is noncausality at horizon 1 (7yy,; =0, Vj),
and (ii) the composed effects 7,7y, that run first from Y to Z at horlzon 1
(74y;) and then from Z to X at horizons less than A (w{9;, k=1,...,h — 1) are
zero. Criterion (3.14) gives an explicit expression for these composed effects by
relating them to all possible “causality chains” that run from Y to Z, from
components of Z to other components of Z, and then from Z to X (see the
expression (3.15)).

Criterion (3.14) also provides a link between our concept of “noncausality at
all horizons” and the coefficients of the moving average (MA) representation of
the process (“impulse response coefficients;” see Sims (1980)). To do this,
consider the formal series:

(3.16) w(2)=I,—- Y mz, Y2)=m()"=I,+ ¥ ¢z

j=1 j-1

These formal series, when applied to lag operators, characterize the autoregres-
sive representation (3.1), w(BYW(¢) = u(¢) +a(¢), and eventually the moving
average representation, W(¢) = ¢(B)u(t) + ¢(B)a(t), provided the series in-
volved converge in q.m. It will be useful to notice here another algebraic
property of the matrices (. Since 7(2)¢(z) = I,, and using (3.7), it is easy to
see that

@17 wP=y,, Vh=0.

In other words, the coefficient matrix ¢, of the MA representation of W(¢) is
simply the coefficient matrix of W(¢) in the best forecast of W(¢ + h) as defined
in (3.6). By the definition of 7{"), the impulse response coefficient c//]k,, can thus
be interpreted (and indeed could be defined) as giving the corrections to be
made on P[W(t + h)II(t)] when the component number k of W(¢) is modified
by one unit, while the other variables in I(t) are kept unchanged (1 <j <m,
1 <k <m). Let us now partition each matrix ¢, conformably with X, Y, and Z:

Uxxn  Yxvn  Yxzn
(B18) Y= ¥vxn Yyvi vz | h=0,
lt[’ZXh l»l,ZYh l»l,ZZh

and similarly for ¢(z) in (3.16). By combining (3.17) with Theorem 3.1, it is then
easy to see that noncausality at horizon # entails zero restrictions on the
impulse response coefficients of a regular process.

COROLLARY 3.2 (Necessary Conditions for Noncausality at Horizon 4): Under
the assumptions (3.1) to (3.4), the condition

(3.19) 7TXYj = 0, VJ € N’ and l)l/XYh = 0

is necessary for Y » X|Iy, (where 1 <h < ).
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It is important to note that condition (3.19) is only necessary for Y + X|I,:
1
the necessary and sufficient condition given by Theorem 3.1 requires w;‘(”}j =0

for all j > 1. If we now combine (3.17) with Theorem 3.2, we can get conditions
for Y » X|I,, that involve both impulse responses and autoregressive parame-
ters. ()

CoROLLARY 3.3 (Impulse Response Characterization of Noncausality up to
Horizon h): Under the assumptions (3.1) to (3.3), the condition

(3.20) Tyxy; =0, VieN, and
xzimzy; =0, VjieN (k=1,...,h =1,
is sufficient for Y + X|Iy,. If furthermore the process W(t) is regular (assumption
()

3.4)), condition (3.20) is necessary and sufficient for Y + X|I,.
()

For noncausality at all horizons, it is possible to derive more compact
characterizations given in the following corollary (where C is the set of complex
numbers).

COROLLARY 3.4 (Necessary Conditions for Noncausality at All Horizons): Let
the assumptions (3.1) to (3.4) hold, and suppose_the power series w(z) converges
when z € C and |z| < p, for some p>0. Then the three following conditions are
equivalent and each one of them yields a necessary condition for Y (—H) X|Iy,:

(B21)  wyy(2)=0  and  wy(D)my,(2) 'w,,(2) =0,

(322) wyy(2)=0 and  Yyy(2) =0,

(323)  yy(2)=0  and Yy, (D, () iy (2) =0,

where yi(z) is defined by (3.16) and (3.18), and the symbol = means that the two
formal series (in z) considered are identical (i.e., the coefficients of the correspond-
ing powers of z are equal on both sides of =).

The assumption that 7(z) =1, — Z°j°=17rjzf converges for |z| < p will be met
in almost all cases of practical interest, since it is satisfied whenever the
sequence ||77j||, j =1, is bounded and even if |I7rj|| grows at an exponential rate as
J increases (e.g., if |l7;|l= Cp{, with p, >1 and p=p;"). Note condition (3.23)
is formally identical with (3.21) on permuting 7 and , which is possible
because 7 and ¢ play symmetric roles in (3.22). Note also condition (3.22) was
stated by Bruneau and Nicolai (1992) for the special case of stationary finite-
order VAR processes. These (necessary) conditions eliminate both the direct
effect of Y on X (by canceling the autoregressive operator (L)) and various
indirect effects of Y on X (by cancelling the coefficients of the innovations of Y
in the MA representation of X). Although it might appear at first sight that
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these conditions should also be sufficient for Y not to cause X at all horizons,
we can see from Theorems 3.2 that they are not when Z is multivariate. Indeed,
since Ry,(z) = —my,(2)m,,(2)7"! (see Lemma A.3 in the Appendix), condition
(3.21) can be written:

(324)  myy;=0, Vj=1, and Z RS Pmyy;=0,  Vk>1.

j=1
On the other hand, the necessary and sufficient condition (3.15) from Theorem
321is

(325) myy;=0, Vj=1, and R m,, =0, Vk=>1, Vj>1,
XYj X j

which is not equivalent to (3.24). The comparison of (3.24) and (3.25) shows in
particular that the condition 7y, (z) = xy(2) =0 is generally insufficient for
Y » X\l

(=)

There is, however, an interesting special case where the conditions of Corol-
lary 3.4 are also sufficient for Y not to cause X at all horizons, namely when Z
is a univariate process. This result is reported in the following corollary.

CoROLLARY 3.5 (Characterizations of Noncausality at All Horizons for Z
Univariate): Under the assumptions of Corollary 3.4, suppose the process Z(t) is
univariate (my = 1). Then the property Y + X|1, is equivalent to each one of the

(
three conditions (3.21), (3.22), and (3.23).

The case where Z is multivariate is more complicated because causality
relations internal to Z must be taken into account. This is the reason why a
separation criterion is available only when Z is univariate, as given in the
following corollary.

COROLLARY 3.6 (Separation Criterion when Z is Univariate): Under the
assumptions (3.1) to (3.4) with Z(t) univariate (m;=1), Y » XIIXZ if and only if
at least one of the two following conditions is satisfied: )

(A4) Y?(X’,Z)llxz,
B (V,2) > XIy.

From Proposition 2.4, we know conditions (A) and (B) above are each
sufficient for Y » X|I,,, irrespective of the dimension of Z(z). When Z(¢) is
()

univariate, at least one of these two conditions must be satisfied to have
Y » X|1I,,, because in this case causality chains from Y to X via Z cannot be

compensated by causality chains in opposite directions, internal to Z. More
precisely, the necessary condition (3.21), for the special case of systems which
include only one auxiliary variable Z, can be split into two (nonexclusive)
alternatives: my,(2)7,,(2) "7, (2) =0 7,,(2) =0 or 7y,(z) =0, the first
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one (respectively, the second one) corresponding to (A) (respectively, to (B)).
Note also that verifying (A) or (B) corresponds to the definition of “noncausal-
ity” proposed by Hsiao (1982, p. 247, Definition 3) for the case where X, Y, and
Z are univariate. A general study of possible compensation schemes shows that
Hsiao’s definition is not generally equivalent to noncausality at all horizons
(except precisely for a trivariate process); see Dufour and Renault (1994).

To summarize, our definition of noncausality at all horizons (Y (—/—)) X|Iy,)

appears to be in the general case a linear predictability property which is strictly
included between two better known properties: (i) a definition “a la Sims” in
terms of innovations which can be characterized as in Liitkepohl (1993) by
various restrictions on impulse response coefficients (see (3.23)), but appears to
be too weak since it does not capture some indirect effects of Y on X (see the
comparison between (3.24) and (3.25)); (ii) a definition “a la Hsiao” in terms of
“separation” ((A) or (B) in Corollary 3.6) which is too restrictive since it
precludes some causality relationships from Y to Z and from Z to X which are
not necessarily responsible for some causal chain from Y to X. These three
definitions are not generally equivalent.

In general, the informational content of the double array («{y), h=
1,2,...,j=1,2,..., is much richer than the one of the two sequences (waj),
j=12,..., and (Yiyy,), h=1,2.... In particular, the array ={y;, h=1,2,...,
j =1, yields generalized impulse response coefficients (corresponding to different
delays) which provide a complete picture of linear causality properties at
different horizons, while usual impulse response coefficients (which correspond
to the array #{),, & =1,2,...) can be very misleading in this respect. To see
this better, consider the case where X and Y are scalar processes and the
(infinite dimensional) matrix [{);] has rows indexed by / > 1 and columns by
j=1. On one hand, the first row characterizes causality links from Y to X at
horizon 1. Even if there is no causality at horizon 1, causal effects from Y to X
may occur at greater horizons due to indirect causality chains. For instance, by
Corollary 3.1, if the first row is zero, the second one provides the values of the
products my 7y, j=1,2..., which can be different from zero. On the other
hand, the first column gives impulse response coefficients iy, = 7, (before
orthogonalization). Following a practice popularized by Sims (1980), it is usual to
characterize causality links from Y to X at various horizons by the pattern of
this column, i.e., the graph of ¢, as a function of A. A current belief in
applied macroeconomics is to consider that this graph summarizes causal links
that may appear, directly or indirectly, at various lags # =1,2,... . But we wish
to stress here that, irrespective of whether the first impulse response coefficient
Yyy1 = Tyy; Is zero or not, the rest of the first column (¢, & > 2) may be
zero until a large horizon H, leading one to believe that there are no lagged
direct or indirect causal links, while the corresponding part of the second
column [7{),, h =2,3,..., H]is nonzero. This is shown clearly by the following
theorem.
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THEOREM 3.3: Let the assumptions (3.1) and (3.2) hold with the notations:

Txx;j Txyj Txzj Tx j
W= Tyx; Tyy; Tyzj|=| Ty, =[7T.Xj’77"yp77.2j]-
Tzxj Tzyj Tzzj Ty j

Then, for any given values of 15 Ty js Tz.js Txjs Tzps J =2, and for any given

integer H greater than 1, the matrices Txyj ] = 2,3,..., H, can be chosen so that
70, =0, for h=2,3,..., H. Moreover, we have in that case

h
(3.26) 7T§(h1)/2 == 7TX 17Ty1 Z q)7TY1

for h=1,2,...,H—-1.

In other words, each column j=>1, i.e., each impulse response function of
order j (w}}’,lj, h=1,2,...), is important for characterizing causality properties
at different horizons, while the current practice, which considers only the first
column (j = 1), may be very misleading (it is easy to build numerical examples
illustrating this fact). In particular, the second identity in (3.26) shows why 7{3.,
will be nonzero in general, even if {3, = ¢yy, =0 for h=1,2,..., H, because
the impulse response matrices 7, 7(?,..., 7"~V remain largely unconstrained
(except for the matrices (), [ =1, 2,...,H ). This shows that standard (order
one) impulse response analysis should be completed by considering higher-order
impulse response functions: 77)((’1,),], h=1,23,... where j>1. It is only by
looking at these that one can get a complete picture of long horizon (indirect)
linear causality properties. Furthermore, in the same way that the coefficients
Yxy; = m§y; tell one how the forecast P[X(z + h)|1(1)] should be modified when
Y(¢) is modified by one unit (keeping the other variables in I(¢) unchanged),
higher order impulse responses provide answers to more complex experiments
such as how P[X(¢ 4+ h)|1(#)] should be corrected when Y(¢ — 1) is changed by
one unit. Similar interpretations and generalizations can be given to the impulse
responses associated with “orthogonalized” innovations, but this would go
beyond the scope of the present paper.

4. NONCAUSALITY AT ALL HORIZONS IN VAR PROCESSES

The main problem associated with the results of Theorems 3.1 and 3.2 is that
they generally yield an infinite number of restrictions, and so they may not be
easy to test from a finite sample. This is due, of course, to the fact that model
(3.1) involves an infinite number of parameters. To get empirically testable
restrictions, we need to consider a finitely parameterized model. In this section,
we consider the case of a vector autoregressive process of order p. For this case,
we have the following proposition.
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PROPOSITION 4.5 (Truncation Rule for Noncausality at All Horizons in VAR
Processes): If the process (W(t): t € 7} satisfies the assumptions (3.1) to (3.3) and
7, =0 for k>p, then w3, =0, VJEN, for h=1,...,m;p+1=Y »X|I,.

()

If, furthermore, the process W(t) is regular (assumption (3.4)), then Y -+ X |1, <
()

Y » Xlly,.
(msp+1)

In other words, for autoregressive processes of order p, it is sufficient to have
noncausality up to horizon m,p + 1 for noncausality at all horizons to hold. It is
interesting to note that a similar result holds almost trivially for a moving
average process of order g[y; =0 for j> g, where ¢(z) = w(2)7']: for h >gq,
W(t+h) is orthogonal to I,(¢) and thus noncausality up to horizon g is
sufficient to have noncausality at all horizons. A truncation result similar to the
one of Proposition 3.4 also holds for the necessary condition of Corollary 3.4.

PrOPOSITION 4.6 (Necessary Condition for Noncausality at All Horizons in
VAR Processes): Under the assumptions (3.1) to (3.4) with @, =0 for k> p, the
necessary condition (3.21) for Y + X |1, is equivalent to the following finite set of

conditions: (i) mwyy; =0, for j =°01,..., p; (i) the coefficients of z* in the formal
series 1y ,(2)mw,,(2) " '7,,(2) are equal to zero for k =1,2,..., p(my + 1).

This truncation result is similar to the one of Liitkepohl (1993) for the
coefficients of the MA representation of a VAR process. Thus, to check
empirically the necessary condition of Corollary 3.4, one needs to only consider
pmm, + p(my + Dmym, = pm;m,(m, + 2) restrictions on the coefficients of
the autoregressive representation. On the other hand, Proposition 4.5 entails
that testing Y(-H)XIIXZ requires one to test pm,m,+ (mypX pm;m,)=

pm;my(m4p + 1) restrictions, because testing causality up to horizon m,p + 1
leads one to check that the m, pp matrices R%‘%ﬂ'zyj, k=1,....msp,j=1,...,p
are all zero.

As expected, the necessary and sufficient conditions for noncausality at all
horizons involve strictly more restrictions than the necessary conditions implied
by Corollary 3.4. The only exceptions are the special cases p=1or(p=2,m; =
1), where the two sets of conditions are the same. For p =1, the latter
equivalence is not surprising because we then have 7{®" = 7/ =, for all h > 1,
so that the constraints 7y, (z) =0 and #,(z) =0 given by Corollary 3.4 are
indeed sufficient to characterize noncausality at all horizons. Further, it is
important to note that pm,m,(m,p +1) is an upper bound on the effective
number of restrictions which characterize noncausality at all horizons. For
example, when m, =1, we get from Corollary 3.5 and Proposition 4.6 that
Y (—H) X|Iy, is ensured by 3pm,m, restrictions, instead of (p + 1) pm,m, restric-

tions.
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Concerning the practical applications of the above results, we wish to stress
the following point. While the need of a multivariate analysis (m;#0) to
characterize causality between two variables (m; =m, =1) is now well docu-
mented, the consequences of a multivariate environment (m;> 1), and in
particular the difference between the conditions of Propositions 4.5 and 4.6 in
VAR systems, is often forgotten. Besides the aforementioned misinterpretation
of standard impulse response coefficients in macroeconometrics, it is of interest
to look at two other fields of econometrics where our warning should be
relevant: financial econometrics and the econometrics of marketing.

In debates about market efficiency in financial econometrics, several authors
(e.g., Fama and French (1988), Campbell and Shiller (1988), Poterba and
Summers (1988), Bekaert and Hodrick (1992)) have stressed the importance of
long-horizon predictability (or causality) for asset returns. In particular, Bekaert
and Hodrick (1992; BH) note that “vector autogressions (...) facilitate calcula-
tions of implied long-horizon statistics, such as variance ratios” and help to
answer questions like “Does a forward premium in the foreign currency predict
appreciation of the domestic currency at all horizons?” They consider a six-
variable VAR system involving for a given pair of countries (U.S. and either
Japan, U.K,, or Germany) the U.S. equity market excess return, the companion
country equity excess return, the relevant foreign exchange excess return,
dividend yields, and the forward premium, estimated over the period
1981:1-1989:12 (monthly data). Since this VAR system incorporates not only the
variables of interest for causality but also four “environmental” variables (m, =
4), the tools developed in this’ paper are needed in general to analyze the
long-run causality relationship from the forward premium to foreign exchange
market excess return. In this respect, BH are lucky to find that the minimized
value of a Schwartz criterion is associated with a one-lag VAR system (p = 1),
which allows them to perform their long-run causality analysis through variance
ratios which aggregate only standard impulse response coefficients.

This is not the case for other data sets such as, in marketing research, the one
considered by Cordier and Indjehagopian (1986; CI) to analyze the French hog
market in Brittany. They fit a VAR(7) model on five price series relevant to this
market (carcass, loin, ham, belly, and European carcass index), which “fluctuate
simultaneously with complex links of causality and feedbacks,” using 349 weekly
observations (week 8 in 1975 to week 44 in 1981). Once the parameters of a
VAR model have been estimated within the sample period (z = 1,...,349), CI
compute a sequence of forecasts at time n = 349 for horizons 7 =1,2,...,7. The
post-sample prediction performance is measured by the root mean square error
RMSE = (X'_ (A4, .. —%,(c)?*/h)"/?, where A, is the actual value at time ¢ and
x,(c) the c-step ahead forecast made at time n. CI conclude that a multivariate
analysis provides a better forecast performance than a univariate ARMA model
and that “the improvement in the forecast is smaller for leading variables such
as carcass than for caused variables such as index.” In view of our results, the
index RMSE is a rather confusing causality measure which mixes different
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horizons and the analysis should be made clearer by looking at the generalized
impulse responses in the 5 X 5 matrices 7", j>1, h > 1.

5. CONCLUDING REMARKS

An obvious application of the above results is the development of tests for
hypotheses of the form Y - X or Y » X. Provided the number of parameters in

the model is finite (as foglzaxample (ir; finite order VAR models) and standard
regularity conditions hold, it is clear that Wald-type or likelihood-ratio-type tests
may be applied here. Note however that the conditions given by Theorems 3.1
and 3.2 are generally nonlinear. In some cases, like the one where a separation
condition holds (e.g., when Z is univariate), it is possible to reduce these
nonlinear conditions to combinations of linear conditions which can be tested by
testing separately causality hypotheses at the horizon one (with appropriate level
adjustments to control the overall level of the procedure). But more generally
we need to test zero restrictions on multilinear functions of the coefficients of
the matrices #; in (3.1). Such restrictions can lead to Jacobian matrices of the
restrictions having less than full rank under the null hypothesis (for some
illustrations, see Boudjellaba, Dufour, and Roy (1992, 1994)) and thus produce
test statistics with nonstandard asymptotic distributions (see Andrews (1987)).
Special methods are required to deal with such problems. Since those require
lengthy developments, the appropriate statistical methodology and various appli-
cations are described in a separate paper (Dufour and Renault (1995)).
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APPENDIX: PROOFs

PROOF OF PROPOSITION 2.1: The equivalence between (i) and (ii) is obvious from the definitions
of P[X(¢+h)II(1)] and P[X(¢+h)I(t) + Y(w,¢]] as the vectors of the forecasts P[x,(¢ + ) I(2)]
and Plx;(¢t + WII(¢) + Y(w, t]] respectively, i = 1,...,m;. Consider now the equivalence between (i)
and (iii). If Y:» X|I, we have by definition

(A1) PIX(t+ M) +Y(w,t]]=PLX(t+h)II()], Vi> w.

Thus each component of P[X(¢+ h)|I(¢) + Y(w,t]] is an element of I(¢) CI(¢) +yj(w,t] cI(t)+
Y(w, t], where yj(w,t] is the Hilbert space generated by the variables yj(fr), o <7<t Using the
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properties of iterated projections, we then see that
PLX(t+ M) +y;(w, ] = PLPLX(t + WD) + Y(w, ]11() +y;(w,1]]
=P[PIX(t + WD) +y(w,1]]
=P[X(t+MWI()], for t>w and j=1,...,m,,
which means that y; ;:X |1 for j=1,...,m,. Thus (i) = (iii). Conversely, (iii) entails
PIX(t+ W) +y(w,01=P[Xu+DIID)], V> o,
for j=1,...,m,,

so that each component of X(¢ 4+ 4) — P[X(¢ + h)|1(¢)] must be orthogonal to the Hilbert subspace
1(t) +y]-(w,t], j=1,...,m,, hence also to the Hilbert subspace I(¢) + Y(w, t] which is generated by
the latter subspaces. Thus we have P[X(¢ + )| I(¢)] = P[ X(t + W|I(t) + Y(w,¢]], i.e., Y - X|I. Thus

H
(iii) « (i). Finally, the equivalence between (iii) and (iv) follows from the definitions (I)f PLX(t +
WII(#)] and P[X(¢ + WII(t) +y(w,t]] as the vectors of the forecasts P[x,(¢+ WII(£)] and Plx,(z +
M) +yj( o, t]] respectively, i = 1,...,m;. Q.E.D.

PROOF OF ProposITION 2.2: If Y -+ X|I, the identity (A.1) holds, and each component of

/.
PIX(t+M)I(t) + Y(w,t]] is an elementlof 1(t) glm(t) CI(#) + Y(w, t]. Thus, by using the proper-
ties of iterated projections, we have for each j=1,...,m,:

PLX(t + WL (D] = PLPIX (£ + W) + Y (o, 11 ()]
=P[P[X(t + WO (O]
=P[X@+MII()], for t>w,

which means that v X {1( iy On the other hand, we can have
h
(A2) PIX(+ MO =PIX@+DID)], Vi>o, for j=1,...,m,,

without (A.1) holding, if m, > 1 and the m, components of Y(¢) are identical, a situation where it is
clear that Y -+ X|I may not hold. Q.E.D.
h

PROOF OF PROPOSITION 2.3: Since (ii) = (i) by definition, we need to show first the converse
implication, i.e., Y+>X [I=Y» X|I, for any h>1. The proof is done by induction. Suppose
1)

(#
Y -+ X|I. Then, by the properties of iterated projections and since Yﬂ» X1,
(h)

PIX(t+h+ D) +Y(w0,1]
=P[P[X(t+h+ DIt +h)+Y(w,t+h]() + Y(w,]]
=P[P[X(t+h+ DIt +h)]IE) + Y(w,t]], V> w.
P[X(¢t+h + DII(¢+ k)] is an m X 1 vector whose elements belong to
It+h)=H+X(w,t+hl=H+X(w,t]+ X[t +1,t+h]
=1(t)+X[t+1,t+h]

where X[¢+1,¢+h] is the Hilbert subspace generated by the components x,(7), i=1,...,m,
t+1<7<t+h, and thus we can write P[X(t +h + DIt + 1)) = a,(s) + b,(¢), where a,(¢) € 1(z)

and b,(¢) € X[t + 1,¢ + h]. Further, since Y + X|I, each component x,(7), i=1,...,m, t+1<71<
(h)
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t + h, satisfies Plx,(m)I(¢) + Y(w, t]] = Plx,(7)|I(£)], Vi > w, which implies P[b,()I(t) + Y(w,t]]=
P[b,(OII(2)], V> w. We thus have:

PIX(t+h+ D) + Y(w,]]
= Play(OII(®) + Y(w, 1] + PO + Y(w, 1]
=a,(t) + P[b,(DII@)], Vi>ow,

so that each component of P[ X (¢ + A + DII(¢) + Y(w, ¢]] belongs to I(¢). Consequently, P[ X (¢ + h
+ D) + Y(w,t]l=P[X(t + h + D|I(t)], Vt> w, which means Y - X|I. Thus (i) < (ii). The

h+1
equivalence between (ii) and (iii) follows trivially from Definition 2.2. i Q.E.D.

PROOF OF PROPOSITION 2.4: Using Proposition 2.3, we can infer from the separation condition
that (Y’, Z5) » (X', Z{)Y Iy, hence by Proposition 2.1, (Y', Z5Y + X|Iy, . Then, since Iy, () C
()

()
Iy, (), we have Y » X|Iy,. Q.E.D.
(=)

PROOF OF THEOREM 3.1: Let t € Z, t > w, and 1(¢t) = Ix,(t). We deduce from (3.6)-(3.9):

PIX(t+RII(t) +Y(—o,1]]

= pxn O+ Y X+ 1= + 7Y +1-j) + 7 Z(t+1-))]
Jj=1

where p;(1) = TRZom{Oule + b — k) = [y (o), pyy (6, pzy ()Y and gy, (¢) has dimension my X 1.
Condition (3.10) then implies that .

PIX(t+MII(t) + Y (—o,¢]]

= X [m@xGH 1=+ m Bz + =] + w0,
j=1

and the components of P[ X (¢ + h)|I(¢) + Y(—oo,¢]] thus all belong to the Hilbert space I(t) = H +
X(—=o,t]+ Z(—,t]. In other words, P[X(¢ + WII(¢) + Y(—oo,t]] = P[ X (¢ + h)|1(¢)]. Consequently,
condition (3.10) is sufficient for Y » X|I.
&
Suppose now the matrices E[a(¢)a(¢) ] are nonsingular for ¢ > w. If Y - X1, all the components
§

of P[X(¢t+ WII(t) + Y(—co,t]], belong to the Hilbert space I(¢), for ¢ > wl Thus P[X (¢t + R)I(t) +
Y(—o0,¢]], which can be written PLX(t + WII(t) + Y(—oo,t]] = T7_ {) Wt + 1 —)) where w{") =
(7R, m™ v, m¥);], can also be expressed as the limit in quadratic mean (q.m.) of a sequence
Up=%I_,¢"" W(t+1-)), TEN, where the components of Uy all belong to I(t): Up=
I [o8PX (e +1 =) + ¢50Z(t + 1 = ). Consequently, defining ¢{" = 0 for j > T, and

Up(6) =PLX(t + W) + Y(— o0, ]| = Up = ), [7) — DIVt +1-),
j=1

we see Uy(t) converges in q.m. to 0, hence E[TUr()a(t)]=[7{) — ¢{D1E[a(t)alt)] — 0, because

T—-
E[W()a(t)Y]=Ela()a(t)] and E[W(t+1—j)a(¢tY]1=0 for j = 2. Since the matrix E[a(t)a(¢)] is
nonsingular, we must have 7{] — ${7’ — 0. And, since ¢{7) =[p{),0, 5], this implies that
T x
7, = 0. We thus see that T7_,[m{") — {7 IW(¢+ 1 —j) converges in g.m. to zero and a similar
argument (with ¢—1> o) yields 7{3,=0. Proceeding analogously for increasing j, we get:

iy =0forj=1,2,.... Q.E.D.



1120 J.-M. DUFOUR AND E. RENAULT

PROOF OF LEMMA 3.1: We shall prove (3.12) in two steps: first, for p = 2 (for any 4 > 2), and then
by recurrence on h for 2 <p <h. Let p =2 <h. From (3.8), it follows that

@ = @) ;
TXY; = Txx1Txy;j T Txy1Tyy; t Txz17zy; t Txvy j+ 1 Vix=1,
and

)y _ —(h—1) (h=1) (h=1) (h=1)
Txz1 = Txx1 Txz1t Txy1 Tyzi T Txz1 Tzz1+ Txza -

From the assumption that wi); = 0,Vj €N, for k =1,...,h, we then have myy; = w¢}; = 7wy, V=0
for all j, so that 77\,,,! =myz17zy; =0, and

(h — (h=1), h—1), (h—1)
7TX£17TZYj =[nls\Dmyg + 7l Vg + wsn I72y

=[m{s Vm g + w5 N7 gy VieN,

which is identical with (3.12) with p = 2.

Let us now call P(h) the property obtained when (3.12) holds for all integers p such that
2 <p <h. From the first step above, it is clear that P(h) holds for 4 = 2 (since then we must have
p=2). Take now h >3 (otherwise, the proof is complete), and suppose that P(k) holds for
k=2,...,h—1. We need to show that P(h) then also holds, i.e., we need to prove (3.12) for all
integers p such that 2 <p <h. From the first step, we know that (3.12) holds for p = 2. By the
mathematical induction principle, it will suffice to show that (3.12) must hold for p =p + 1 whenever
it does for p=1,..., p (where p <h). If we assume (3.12) for p=2,..., p <h and take p to be any
integer such that 2 <p <p, we have

-

77'\'21772)’] {Zﬂ'(h pH)[ Z HWZZI]}TI-ZY)" VjieN,
=1

J(p-D !

where we write (to simplify the notation) ¥;,,IT;7};

= T,[ITi- s, ). But, by (3.8), we have
aftmPED = g (=P, (1P hence

ZZi

(h=p+1)y _ _(h=p) (h—p), (h=p) (h=p)
7Pt = a{yPry gy Py g+ wiP szz+7sz I+1-

Since 77)(("}3]. =0,Vj €N, for k=1,...,h, we have 7w{;”’ =0, so that

p
wy | Tt >[ 3 Hw;gi] -

Hp-D 1

)4
=7T.§(hX_lp) ZWXZI[ }: 1_[772’2,} Tzyj
=1

J(p-D 1
+
!

M~

(h—p)
(n¢s P+ 78 m] l_l Ty | Tzvj-
1 J(p-D !

I
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We will now show that the first term of the latter sum is zero. Since p <k — 1, we know that P(p)
must hold, i.e., w{&) m,y; = [T 7w 9V, Imp Yy, for 2<q <p (by the recurrence
assumption). In particular, by taking g=p, we get ) 7y, = [z’ 1TxziZi - Lim gy gy e
Since w}kx}j =0,VjeN, for k=1,...,p+1(for p+1<h), we must have 72 m,y; =0 (see (3.11),
which implies that the first term of (A.3) is zero. Consequently,

P
) _ (h— h— )
7’ 'ZIWZY/—{Z[”xz,flﬁ”x'z]p)ﬂzm] Y Iy mzy
=1 p-n i

p+1
Zgﬂg'z_/”)[ X Hﬂﬁ’z,} Tzyi

Jp+1-1) ¢

p
(h—p) ;
+ Txz1 Z"ZZ![ b nﬂgz,'] Tzyj:
=1

Kp-D

But it is clear from the definition of J(p) that Z,pzlwzz,[Z](V,)l_[,nr;iZi] =YLy,
hence w{) m,y; = {Z,”=+117T§(”Z‘,P)[Z](p+1_,)1_[,-772"2,,]}772},}-, which means that (3.12) holds
with p replaced by p + 1. We can take p =p, so that (3.12) holds for p =2,3,..., p + 1, hence (by
recurrence) for p = 2,..., h. Property P(h) is thus established. Q.E.D

PrOOF OF LEMMA 3.2: We need to show that the equivalence between (3.13), (3.14), and (3.15)
holds for any 4 > 2. Again we shall proceed by recurrence considering first the equivalence between
(3.13) and (3.14), and then the one between (3.13) and (3.15).

The equivalence between (3.13) and (3.14) follows by applying the recursion (3.11), which is
implied by (3.8). For A = 2, the result clearly holds since wf\,l’yj = 7yy;, and myy; = 0 for all j entails
(on applying (3.11)): 7T§(2{,j = 77'5(1%177'2}/}', Vj € N. Suppose now that the equivalence holds for some
h =>2. Then, given that wf\,k}),j=0, VjeN, for k=1,...,h, it follows from (3.11) that wf\f’;;“=
w}}%lwzyj, Vj €N, and the equivalence holds for /4 + 1. The equivalence between (3.13) and (3.14)
for any 4 > 2 follows by recurrence.

The equivalence between (3.13) and (3.15) holds for & = 2 because the criteria (3.14) and (3.15)
are then identical. Suppose now that the equivalence between (3.13) and (3.15) holds for some /4 > 2.
Then given that 7§y, =0, Vj €N, k=1,...,h, we see from (3.11) and Lemma 3.1 that 7{y;" =
Ty = Ry sy, Vi €N, and the equivalence between (3.13) and (3.15) also holds for 4 + 1.
Conditions (3.13) and (3.15) are thus equivalent, VA > 2. Q.E.D.

PROOF OF THEOREM 3.2: Under the assumptions (3.1) to (3.3), it follows from Theorem 3.1 that
condition (3.13) is sufficient for Y + X|Iy,. Further, under these conditions, the recursion (3.8)

(h)
applies so that (3.14) and (3.15) are each equivalent to (3.13) by Lemma 3.1. When W(¢) is a regular
process, Theorem 3.1 also entails that (3.13), hence also (3.14) and (3.15), is necessary and sufficient

for Y » X|Iy,. Q.E.D.
(h)

ProOF OF COROLLARY 3.3: To prove this corollary we shall need the following lemma relating the
matrix R%) to the formal series 7y ,(2) and ,,(2).

LEMMA A.3: If we denote by Ry,(2) = Y;_ | R} 2" the formal series associated with the coefficients
RY) defined in Lemma 3.2, then Ry;(2) = — wy,(2)m,,(2)7".
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PROOF OF LEMMA A.3: From the definitions (3.16), we see that 7, ,(z) =1,

. — Y177z 2% and
o
Txz(2) = —E7_17xz;2’, hence

n3

) © ! k
[y (D] =1, + Y [ Yy WZZka] =Y { P [nﬁfki]}zk,
I=1Lk=1

k=0 \Jk) Li=1

where J(k), k € N, is defined as in Lemma 3.1, and

— g (D (D]7!

I
7[\18

{é mxz| 2 (ﬁwﬁz)]}z“

= Jk=n \i=1

I
Ing

R$)z¥ =Ry, (2). Q.E.D.
k

1

PROOF OF COROLLARY 3.4: By Theorem 3.2, the condition 7yy; =0, Vj>1, jointly with
R%‘}wzy!:O, Vj>1, Vk>1, is necessary and sufficient for Y » X|Iy,. This condition can be

()
written in terms of generating functions, as follows: myy(z) =0 and Ry (2)m;y; =0, Vj = 1. If we
multiply Ry,(2)7zy; by z/ and sum over j€N, we get the following necessary condition for
Y » X|Iy,: myy(z)=0and Ry,(2)m;y(2) =0. Using Lemma A.3, this can be written: 7y (2) =0

an(d)wxz(z)wzz(z)"lwxy(z) = (0, hence (3.21).

Let us now assume z € C and |z| < 8, so that 7(z) converges in C for |z| < §. To show (3.21) and
(3.22) are equivalent, it is then sufficient to use standard formulae for inverting partitioned matrices
(where we omit the symbol z to simplify the notation): Yryy = — 7y Zl7Txy — Txz T2 7y Vi3 Y,
where myy ;= Txy = Tx; 773 T1x,

- 1| Txy Txx Txz
Tyy= Tyy— LT Ty, 1A and A= .
YY YY Yx>Tyz Ty m Tyy

Since w(0)=1, (a nonsingular matrix), the inverses of the matrices m,;, A, mxy ,, and
7ryy all exist in a sufficiently small disk centered at zero, say for |z| < § (where 0 <8< 1); for a
similar argument, see Dufour and Tessier (1993, Proposition 1). For |z|<§, we see that:
Ty (Dm57(2) L\, (2) =0 and 7y (2) =0 Pyy(2) =0 and 7y, (z) =0, which shows (3.21)
and (3.22) are equivalent. The equivalence between (3.22) and (3.23) is deduced from the one
between (3.21) and (3.22) on permuting 7 and ¢, as these play symmetric roles in (3.22) Q.E.D.

PROOF OF COROLLARY 3.5: When Z(t) is univariate, Ry,(2) = —myz(2)mz,(2)" ! =
[R,,2(2),..., R, 7(2)]' is an m; X1 vector of scalar formal series R, (2) in z, while 7,y (z) =
[mzy(2),..., 7z, (2)]is a 1Xm, vector of scalar formal series WZyJ(Z) in z. Then the condition
mxz(2)7;7(2) " 72y (2) = 0 in Corollary 3.4 means that R, ;(z)m,,(2)=0, for i=1,...,m,; and
j=1,...,m,. If we now interpret z as a complex number (z€C), the assumption that 7(z)
converges for |z| < & implies that the series 7(z)~! must converge in a circle |z| < &, where &> 0
(because 7(0) =1, is nonsingular). Then the series R, ,(z) and 7, () represent functions which
are analytic in the circle |z] < §, and RXI_Z(Z)WZ},J,(Z)EO can hold only if either R, ;(z)=0 or
mzy(2)=0. Consequently, we must have: R&)a,, =0, VkEN, VjeN, for i=1,...,m; and
1=1,...,m,, or equivalently, R{) 7zy; =0, Vk €N, ¥j € N. Thus the condition (3.21) implies (3.13)
when Z(t) is univariate, and Corollary 3.5 follows from Theorem 3.2 and Corollary 3.4. Q.E.D.
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PROOF OF COROLLARY 3.6: The result follows from condition (3.21) as in the proof of Corollary
3.5. When Z(¢) is univariate, my;(2)m,,(2) 1y (2) =0 7y, (D7zy(2) =0 7y ,(2)=0 or
7,y(2) =0, where the last equivalence follows from the observation that the product of two analytic
functions is zero only if one of the functions is zero. Q.E.D.

PrROOF OF THEOREM 3.3: Let us call Q(H) the property obtained when 7}, =0, for h=
2,3,...,H, with H=H. By (3.7), Q(H) is equivalent to Q(H): myy, = =i lmy m¥ ), for
h=2,3,...,H. Thus Q(2) [or O(2)] holds by choosing 7y y, = — 7y 17y;. Then to prove that Q(H)
may hold (for a convenient choice of wyy;, j =2,3,..., H ) for all integers H > 2, it will be sufficient,
by mathematical induction, to show that Q(H) may hold for H=H + 1 (with an appropriate choice
of myy g+1), whenever it does for H=2,3,. .,H (where H>?2). But, assuming Q(H) for
H=2,3,. H is tantamount to assuming O(H ) i.e., a set of H equalities which involve only the
matrices 77-], =1,2,..., H. To see this, it is sufficient to show that 71-}” ) is a well-defined function of
Yy, Ty, -, Ty, fOr all positive integers /. But this last statement is a straightforward corollary of the
recursion (3.8): 7{M = 7{" =V + 7{"~Vr  Therefore we are able to ensure O(H + 1) by choosing
Txy.Ee1= —):fI’ 177qu§,1 9, since g, is not constrained by the H equalities O(H). The first
part of Theorem 3.3 is thus establlshed and the proof will be complete if we prove that Q(H) (or
O(H)) entails w4, Zhﬂﬂx.qﬂh_q)ﬂ.yn for h=1,2,..., H— 1. But, by the recursion (3.8),
a{), = aHD — 77-)(}’{77,,1 =—a{my, for h=1,2,...,H—1, if Q(H) holds. The proof is then
complete on noting that, by (3. 7), 7 =y + Th g {0, Q.E.D.

PROOF OF PROPOSITION 4.5: To prove this proposition we shall use the following lemma on power
series, which generalizes a property used by Liitkepohl (1993) for a similar problem; for a proof of
this lemma, see Dufour and Tessier (1996). N

LemMa Ad4: Let f(2) = 7_qa;2/ be a complex-valued power series in z € C (with a; € C for all j),
convergent for |z| <38, and such that T3_qa; 2l = (TP obp 2N oc12h) for |z1< 6 where &> 0,
0<p <, ¢y =1 and the power series Z°,°=Oc,z converges for |z| < 8. Then: a;=0,¥j =20 = a;=0 for
j = O’ 17 ety p

Given Theorem 3.2, we now prove Proposition 4.5 by showing that R%‘%wzyj =0, Vj>1, for
k=1,2,...,m3p, implies R%‘%ﬂ-zyj =0, Vj>1, Vk > 1, where the latter identity is equivalent to
Ry (2)my; =0, Vj = 1. From Lemma A3, we have

RXZ(Z)WZYJ' == WXZ(Z)WZZ(Z)~17TZY]'
= —{detlm, (DN Ty g (D TEL (D75

where 73 ,(z) is the transposed of the matrix of cofactors of m,,(z). Since 7,,(z) is an m; X m,
matrix whose elements are polynomials of degree not greater than p (by assumption), 73,(z) is a
matrix of polynomials of degree not greater than (mj; — 1)p. Let us now consider a given pair
(x(t), ()Y of components of X(¢)=[x(2),...,x,, ()] and Y(£) = [yl(t) Y, (O, where 1<i
<m; and 1 < I <m,. We have R, Z(Z)Wzy[] —{det[m, (D)} ,z(l)ﬂ’zz(l)ﬂzy,,, where
{det[m, (D)}~ = T7_c;2' is a formal series with ¢y =1 and , 22757 (2)mz,,; is a polynomial of
degree not greater than m; p. Using Lemma A.4, we can then state that R, 7(2)mz,,;=0,Vj=1,if
and only if, for j>1, the coefficients associated with powers of z not greater than mjp in
R, 7(2)m,; are equal to zero: RY)m,, =0, for k=1,2,...,m;p. The result then follows from
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Theorem 3.2. Q.E.D.
PROOF OF PROPOSITION 4.6: For each pair (x;(¢), y,(¢+)), 1 <i <m;, 1 <l <m,, we have
(D) m57(2) 'y, (2) = 0 & {detlm, (D]} 7, (D)5, (2) 75, (2) =0,

where m, ;(2)7%,(2)mz,(2) is a polynomial of degree not greater than (3 + 1)p. The result then
follows on applying Lemma A.4. Q.E.D.
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