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bCIRANO, CIREQ, Université de Montréal, and Department of Economics, North Carolina

State University, Campus Box 8110, Raleigh, NC 27695-8110, USA
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Abstract

We propose methods for testing hypothesis of non-causality at various horizons, as defined

in Dufour and Renault (Econometrica 66, (1998) 1099–1125). We study in detail the case of

VAR models and we propose linear methods based on running vector autoregressions at

different horizons. While the hypotheses considered are nonlinear, the proposed methods only

require linear regression techniques as well as standard Gaussian asymptotic distributional

theory. Bootstrap procedures are also considered. For the case of integrated processes, we

propose extended regression methods that avoid nonstandard asymptotics. The methods are

applied to a VAR model of the US economy.
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1. Introduction

The concept of causality introduced by (Wiener, 1956) and (Granger, 1969)
is now a basic notion for studying dynamic relationships between time series. The
literature on this topic is considerable; see, for example, the reviews of Pierce and
Haugh (1977), Newbold (1982), Geweke (1984), Lütkepohl (1991) and Gouriéroux
and Monfort (1997, Chapter 10). The original definition of Granger (1969), which is
used or adapted by most authors on this topic, refers to the predictability of a
variable X ðtÞ; where t is an integer, from its own past, the one of another variable
Y ðtÞ and possibly a vector ZðtÞ of auxiliary variables, one period ahead: more
precisely, we say that Y causes X in the sense of Granger if the observation of Y up
to time t ðY ðtÞ : tptÞ can help one to predict X ðtþ 1Þ when the corresponding
observations on X and Z are available ðX ðtÞ; ZðtÞ : tptÞ; a more formal definition
will be given below.

Recently, however (Lütkepohl, 1993; Dufour and Renault, 1998) have noted that,
for multivariate models where a vector of auxiliary variables Z is used in addition to
the variables of interest X and Y ; it is possible that Y does not cause X in this sense,
but can still help to predict X several periods ahead; on this issue, see also Sims
(1980), Renault et al. (1998), Giles (2002). For example, the values Y ðtÞ up to time t

may help to predict X ðtþ 2Þ; even though they are useless to predict X ðtþ 1Þ: This is
due to the fact that Y may help to predict Z one period ahead, which in turn has an
effect on X at a subsequent period. It is clear that studying such indirect effects can
have a great interest for analyzing the relationships between time series. In
particular, one can distinguish in this way properties of ‘‘short-run (non-) causality’’
and ‘‘long-run (non-)causality’’.

In this paper, we study the problem of testing non-causality at various horizons as
defined in Dufour and Renault (1998) for finite-order vector autoregressive (VAR)
models. In such models, the non-causality restriction at horizon one takes the form
of relatively simple zero restrictions on the coefficients of the VAR [see Boudjellaba
et al. (1992), Dufour and Renault (1998)]. However non-causality restrictions at
higher horizons (greater than or equal to 2) are generally nonlinear, taking the form
of zero restrictions on multilinear forms in the coefficients of the VAR. When
applying standard test statistics such as Wald-type test criteria, such forms can easily
lead to asymptotically singular covariance matrices, so that standard asymptotic
theory would not apply to such statistics. Further, calculation of the relevant
covariance matrices—which involve the derivatives of potentially large numbers of
restrictions—can become quite awkward.

Consequently, we propose simple tests for non-causality restrictions at various
horizons [as defined in Dufour and Renault (1998)] which can be implemented only
through linear regression methods and do not involve the use of artificial simulations
[e.g., as in Lütkepohl and Burda (1997)]. This will be done, in particular, by
considering multiple horizon vector autoregressions [called ðp; hÞ-autoregressions]
where the parameters of interest can be estimated by linear methods. Restrictions of
non-causality at different horizons may then be tested through simple Wald-type (or
Fisher-type) criteria after taking into account the fact that such autoregressions
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involve autocorrelated errors [following simple moving average processes] which
are orthogonal to the regressors. The correction for the presence of autocorrelation
in the errors may then be performed by using an autocorrelation consistent
[or heteroskedasticity-autocorrelation-consistent (HAC)] covariance matrix
estimator. Further, we distinguish between the case where the VAR process
considered is stable (i.e., the roots of the determinant of the associated AR
polynomial are all outside the unit circle) and the one where the process
may be integrated of an unknown order (although not explosive). In the first
case, the test statistics follow standard chi-square distributions while, in the
second case, they may follow nonstandard asymptotic distributions
involving nuisance parameters, as already observed by several authors for the
case of causality tests at horizon one [see Sims et al. (1990), Toda and Phillips
(1993, 1994), Toda and Yamamoto (1995), Dolado and Lütkepohl (1996), Yamada
and Toda (1998)]. To meet the objective of producing simple procedures that can be
implemented by least squares methods, we propose to deal with such problems by
using an extension to the case of multiple horizon autoregressions of the lag
extension technique suggested by Choi (1993) for inference on univariate
autoregressive models and by Toda and Yamamoto (1995) and Dolado and
Lütkepohl (1996) for inference on standard VAR models. This extension will allow
us to use standard asymptotic theory in order to test non-causality at different
horizons without making assumption on the presence of unit roots and cointegrating
relations. Finally, to alleviate the problems of finite-sample unreliability of
asymptotic approximations in VAR models (on both stationary and nonstationary
series), we propose the use of bootstrap methods to implement the proposed test
statistics.

In Section 2, we describe the model considered and introduce the notion of
autoregression at horizon h [or ðp; hÞ-autoregression] which will be the basis of our
method. In Section 3, we study the estimation of ðp; hÞ-autoregressions and the
asymptotic distribution of the relevant estimators for stable VAR processes. In
Section 4, we study the testing of non-causality at various horizons for stationary
processes, while in Section 5, we consider the case of processes that may be
integrated. In Section 6, we illustrate the procedures on a monthly VAR model of the
U.S. economy involving a monetary variable (nonborrowed reserves), an interest
rate (federal funds rate), prices (GDP deflator) and real GDP, over the period
1965–1996. We conclude in Section 7.
2. Multiple horizon autoregressions

In this section, we develop the notion of ‘‘autoregression at horizon h’’ and the
relevant notations. Consider a VARðpÞ process of the form:

W ðtÞ ¼ mðtÞ þ
Xp

k¼1

pkW ðt� kÞ þ aðtÞ; t ¼ 1; . . . ; T , (1)
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where W ðtÞ ¼ ðw1t; w2t; . . . ; wmtÞ
0 is an m� 1 random vector, mðtÞ is a deterministic

trend, and

E½aðsÞ aðtÞ0� ¼ O if s ¼ t,

¼ 0 if sat, ð2Þ

detðOÞa0. ð3Þ

The most common specification for mðtÞ consists in assuming that mðtÞ is a constant
vector, i.e.

mðtÞ ¼ m, (4)

although other deterministic trends could also be considered.
The VARðpÞ in Eq. (1) is an autoregression at horizon 1. We can then also write

for the observation at time tþ h:

W ðtþ hÞ ¼ mðhÞðtÞ þ
Xp

k¼1

pðhÞk W ðtþ 1� kÞ þ
Xh�1
j¼0

cjaðtþ h� jÞ,

t ¼ 0; . . . ; T � h ,

where c0 ¼ Im and hoT . The appropriate formulas for the coefficients pðhÞk , mðhÞðtÞ
and cj are given in Dufour and Renault (1998), namely

pðhþ1Þk ¼ pkþh þ
Xh

l¼1

ph�lþ1p
ðlÞ
k ¼ pðhÞkþ1 þ pðhÞ1 pk; pð0Þ1 ¼ Im ; pð1Þk ¼ pk, ð5Þ

mðhÞðtÞ ¼
Xh�1
k¼0

pðkÞ1 mðtþ h� kÞ; ch ¼ pðhÞ1 ; 8hX0. ð6Þ

The ch matrices are the impulse response coefficients of the process, which can also
be obtained from the formal series:

cðzÞ ¼ pðzÞ�1 ¼ Im þ
X1
k¼1

ckzk; pðzÞ ¼ Im �
X1
k¼1

pkzk. (7)

Equivalently, the above equation for W ðtþ hÞ can be written in the following way:

W ðtþ hÞ0 ¼ mðhÞðtÞ
0

þ
Xp

k¼1

W ðtþ 1� kÞ0pðhÞ0k þ uðhÞðtþ hÞ0

¼ mðhÞðtÞ
0

þW ðt; pÞ0pðhÞ þ uðhÞðtþ hÞ0; t ¼ 0; . . . ;T � h, ð8Þ

where W ðt; pÞ0 ¼ ½W ðtÞ0; W ðt� 1Þ0; . . . ; W ðt� pþ 1Þ0� ; pðhÞ ¼ ½pðhÞ1 ; . . . ; p
ðhÞ
p �
0 and

uðhÞðtþ hÞ0 ¼ ½u
ðhÞ
1 ðtþ hÞ; . . . ; uðhÞm ðtþ hÞ� ¼

Xh�1
j¼0

aðtþ h� jÞ0c
0

j .

It is straightforward to see that uðhÞðtþ hÞ has a non-singular covariance matrix.
We call (8) an ‘‘autoregression of order p at horizon h’’ or a ‘‘ðp; hÞ-

autoregression’’. In the sequel, we will assume that the deterministic part of each
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autoregression is a linear function of a finite-dimensional parameter vector, i.e.

mðhÞðtÞ ¼ gðhÞDðhÞðtÞ, (9)

where gðhÞ is a m� n coefficient vector and DðhÞðtÞ is a n� 1 vector of deterministic
regressors. If mðtÞ is a constant vector, i.e. mðtÞ ¼ m, then mðhÞðtÞ is simply a constant
vector (which may depend on h):

mðhÞðtÞ ¼ mh. (10)

To derive inference procedures, it will be useful to put (8) in matrix form, which
yields

whðhÞ ¼W pðhÞPðhÞ þUhðhÞ; h ¼ 1; . . . ;H, (11)

where whðkÞ and UhðkÞ are ðT � k þ 1Þ �m matrices and W pðkÞ is a ðT � k þ 1Þ �
ðnþmpÞ matrix defined as

whðkÞ ¼

W ð0þ hÞ0

W ð1þ hÞ0

..

.

W ðT � k þ hÞ0

26666664

37777775 ¼ ½w1ðh; kÞ; . . . ; wmðh; kÞ�, ð12Þ

W pðkÞ ¼

W pð0Þ
0

W pð1Þ
0

..

.

W pðT � kÞ0

26666664

37777775; W pðtÞ ¼
DðhÞðtÞ

0

W ðt; pÞ

" #
, ð13Þ

PðhÞ ¼
gðhÞ

0

pðhÞ

" #
¼ b1ðhÞ; b2ðhÞ; . . . ;bmðhÞ
� �

, ð14Þ

UhðkÞ ¼

uðhÞð0þ hÞ0

uðhÞð1þ hÞ0

..

.

uðhÞðT � k þ hÞ0

26666664

37777775 ¼ ½u1ðh; kÞ; . . . ; umðh; kÞ�, ð15Þ

uiðh; kÞ ¼ ½u
ðhÞ
i ð0þ hÞ; uðhÞi ð1þ hÞ; . . . ; uðhÞi ðT � k þ hÞ�0. ð16Þ

We shall call the formulation (11) a ‘‘ðp; hÞ-autoregression in matrix form’’.
We shall call the formulation (11) a ‘‘ðp; hÞ-autoregression in matrix form’’. Other

formulations could also be written by stacking autoregressions at different horizons;
see the discussion paper version of this article (Dufour et al., 2003).
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3. Estimation of ðp; hÞ autoregressions

Let us now consider each autoregression of order p at horizon h as given by (11)

whðhÞ ¼W pðhÞPðhÞ þUhðhÞ; h ¼ 1; . . . ;H. (17)

We can estimate (17) by ordinary least squares (OLS), which yields the estimator

P̂
ðhÞ
¼ ½W pðhÞ

0W pðhÞ�
�1W pðhÞ

0whðhÞ ¼ PðhÞ þ ½W pðhÞ
0W pðhÞ�

�1W pðhÞ
0UhðhÞ,

hence

ffiffiffiffi
T
p
½P̂
ðhÞ
�PðhÞ� ¼

1

T
W pðhÞ

0W pðhÞ

� ��1
1ffiffiffiffi
T
p W pðhÞ

0UhðhÞ,

where

1

T
W pðhÞ

0W pðhÞ ¼
1

T

XT�h

t¼0

W pðtÞW pðtÞ
0,

1ffiffiffiffi
T
p W pðhÞ

0UhðhÞ ¼
1ffiffiffiffi
T
p

XT�h

t¼0

W pðtÞu
ðhÞðtþ hÞ0.

Suppose now that

1

T

XT�h

t¼0

W pðtÞW pðtÞ
0
�!
p

T!1
Gp with detðGpÞa0. (18)

In particular, this will be the case if the process W ðtÞ is second-order stationary,
strictly indeterministic and regular, in which case

E½W pðtÞW pðtÞ
0
� ¼ Gp; 8t. (19)

Cases where the process does not satisfy these conditions are covered in Section 5.
Further, since

uðhÞðtþ hÞ ¼ aðtþ hÞ þ
Xh�1
k¼1

ckaðtþ h� kÞ,

(where, by convention, any sum of the form
Ph�1

k¼1 with ho2 is zero), we have

E½W pðtÞu
ðhÞðtþ hÞ0� ¼ 0 for h ¼ 1; 2; . . . ,

Vfvec½W pðtÞu
ðhÞðtþ hÞ0�g ¼ DpðhÞ.

If the process W ðtÞ is strictly stationary with i.i.d. innovations aðtÞ and finite fourth
moments, we can write

E½W pðsÞu
ðhÞ
i ðsþ hÞu

ðhÞ
j ðtþ hÞW pðtÞ

0
� ¼ Gijðp; h; t� sÞ ¼ Gijðp; h; s� tÞ, (20)
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where 1pipm; 1pjpm; with

Gijðp; h; 0Þ ¼ E½W pðtÞu
ðhÞ
i ðtþ hÞu

ðhÞ
j ðtþ hÞW pðtÞ

0
�

¼ sijðhÞE½W pðtÞW pðtÞ
0
� ¼ sijðhÞGp, ð21Þ

Gijðp; h; t� sÞ ¼ 0 if t� sj jXh. (22)

In this case,1

DpðhÞ ¼ ½sijðhÞGp�i;j¼1;...;m ¼ SðhÞ � Gp, (23)

where SðhÞ is nonsingular, and thus DpðhÞ is also nonsingular. The nonsingularity of
SðhÞ follows from the identity

uðhÞðtþ hÞ ¼ ½ch�1;ch�2; . . . ;c1; Im�½aðtþ 1Þ0; aðtþ 2Þ0; . . . ; aðtþ hÞ0�0.

Under usual regularity conditions,

1ffiffiffiffi
T
p

XT�h

t¼0

vec½W pðtÞu
ðhÞðtþ hÞ0� �!

L

T!1
N½0; D̄pðhÞ�, (24)

where D̄pðhÞ is a nonsingular covariance matrix which involves the variance and the
autocovariances of W pðtÞu

ðhÞðtþ hÞ0 [and possibly other parameters, if the process
W ðtÞ is not linear]. Then,

ffiffiffiffi
T
p

vec½P̂
ðhÞ
�PðhÞ� ¼ Im �

1

T
W pðhÞ

0W pðhÞ

� ��1( )
vec

1ffiffiffiffi
T
p W pðhÞ

0UhðhÞ

� �

¼ Im �
1

T
W pðhÞ

0W pðhÞ

� ��1( )
1ffiffiffiffi
T
p

�
XT�h

t¼0

vec½W pðtÞu
ðhÞðtþ hÞ0�

�!
L

T!1
N½0; ðIm � G�1p ÞD̄pðhÞðIm � G�1p Þ�. ð25Þ

For convenience, we shall summarize the above observations in the following
proposition.

Proposition 1. ASYMPTOTIC NORMALITY OF LS IN A ðp; hÞ STATIONARY VAR. Under the

assumptions (1), (18), and (24), the asymptotic distribution of
ffiffiffiffi
T
p

vec½P̂
ðhÞ
�PðhÞ� is

N½0;SðP̂
ðhÞ
Þ�, where SðP̂

ðhÞ
Þ ¼ ðIm � G�1p ÞD̄pðhÞðIm � G�1p Þ.
1Note that (21) holds under the assumption of martingale difference sequence on aðtÞ. But to get (22)

and allow the use of simpler central limit theorems, we maintain the stronger assumption that the

innovations aðtÞ are i.i.d. according to some distribution with finite fourth moments (not necessarily

Gaussian).
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4. Causality tests based on stationary ðp; hÞ-autoregressions

Consider the ith equation ð1pipmÞ in system (11):

w̄iðhÞ ¼W pðhÞbiðhÞ þ uiðhÞ; 1pipm, (26)

where w̄iðhÞ ¼ wiðh; hÞ and uiðhÞ ¼ uiðh; hÞ; where wiðh; hÞ and uiðh; hÞ are defined in
(12) and (15). We wish to test

H0ðhÞ : RbiðhÞ ¼ r, (27)

where R is a q� ðnþmpÞ matrix of rank q. In particular, if we wish to test the
hypothesis that wjt does not cause wit at horizon h [i.e., using the notation of Dufour
and Renault (1998), wj Q

h
wi j I ðjÞ, where I ðjÞðtÞ is the Hilbert space generated by the

basic information set IðtÞ and the variables wkt;ootpt, kaj, o being an
appropriate starting time ðop� pþ 1Þ�, the restriction would take the form:

H
ðhÞ
jQi : p

ðhÞ
ijk ¼ 0; k ¼ 1; . . . ; p, (28)

where pðhÞk ¼ ½p
ðhÞ
ijk �i; j¼1;...;m; k ¼ 1; . . . ; p. In other words, the null hypothesis takes the

form of a set of zero restrictions on the coefficients of biðhÞ as defined in (14). The
matrix of restrictions R in this case takes the form R ¼ RðjÞ; where RðjÞ �

½d1ð jÞ; d2ð jÞ; . . . ; dpð jÞ�
0 is a p� ðnþmpÞ matrix, dkð jÞ is a ðnþ pmÞ � 1 vector whose

elements are all equal to zero except for a unit value at position nþ ðk � 1Þmþ j, i.e.
dkð jÞ ¼ ½dð1; nþ ðk � 1Þmþ jÞ; . . . ; dðnþ pm; nþ ðk � 1Þmþ jÞ�0, k ¼ 1; . . . ; p; with
dði; jÞ ¼ 1 if i ¼ j; and dði; jÞ ¼ 0 if iaj: Note also that the conjunction of the
hypothesis H

ðhÞ
jQi; h ¼ 1; . . . ; ðm� 2Þpþ 1; is sufficient to obtain noncausality at all

horizons [see (Dufour and Renault, 1998, Section 4)]. Non-causality up to horizon H

is the conjunction of the hypothesis H
ðhÞ
jQi, h ¼ 1; . . . ;H.

We have

b̂iðhÞ ¼ biðhÞ þ ½W pðhÞ
0W pðhÞ�

�1W pðhÞ
0ūiðhÞ,

hence

ffiffiffiffi
T
p
½b̂iðhÞ � biðhÞ� ¼

1

T
W pðhÞ

0W pðhÞ

� ��1
1ffiffiffiffi
T
p

XT�h

t¼0

W pðtÞu
ðhÞ
i ðtþ hÞ.

Under standard regularity conditions [see White, 1999, Chapter 5–6],ffiffiffiffi
T
p
½b̂iðhÞ � biðhÞ� �!

L

T!1
N½0; Vðb̂iÞ�

with det½Vðb̂iÞ�a0; where Vðb̂iÞ can be consistently estimated:

V̂T ðb̂iÞ �!
p

T!1
Vðb̂iÞ.

More explicit forms for V̂T ðb̂iÞ will be discussed below. Note also that

Gp ¼ plim
T!1

1

T
W pðhÞ

0W pðhÞ; detðGpÞa0.
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Let

V ipðTÞ ¼ Var
1ffiffiffiffi
T
p W pðhÞ

0ūiðhÞ

� �
¼

1

T
Var

XT�h

t¼0

W pðtÞu
ðhÞ
i ðtþ hÞ

" #

¼
1

T

XT�h

t¼0

E½W pðtÞu
ðhÞ
i ðtþ hÞu

ðhÞ
i ðtþ hÞW pðtÞ

0
�

(

þ
Xh�1
t¼1

XT�h

t¼tþ1

½E½W pðtÞu
ðhÞ
i ðtþ hÞu

ðhÞ
i ðt� tþ hÞW pðt� tÞ0�

þ E½W pðt� tÞuðhÞi ðt� tþ hÞu
ðhÞ
i ðtþ hÞW pðtÞ

0
��

)
.

Let us assume that

VipðTÞ �!
T!1

Vip; detðVipÞa0, (29)

where V ip can be estimated by a computable consistent estimator V̂ ipðTÞ:

V̂ ipðTÞ �!
p

T!1
Vip. (30)

Then, ffiffiffiffi
T
p
½b̂iðhÞ � biðhÞ� �!

p

T!1
N½0; G�1p VipG�1p �,

so that Vðb̂iÞ ¼ G�1p VipG�1p : Further, in this case,

V̂ T ðb̂iÞ ¼ Ĝ
�1

p V̂ ipðTÞĜ
�1

p �!
p

T!1
Vðb̂iÞ,

Ĝp ¼
1

T

XT�h

t¼0

W pðtÞW pðtÞ
0
¼

1

T
W pðhÞ

0W pðhÞ �!
p

T!1
Gp.

We can thus state the following proposition.

Proposition 2. ASYMPTOTIC DISTRIBUTION OF TEST CRITERION FOR NON-CAUSALITY AT

HORIZON h IN A STATIONARY VAR. Suppose the assumptions of Proposition 1 hold

jointly with (29)–(30). Then, under any hypothesis of the form H0ðhÞ in (27), the

asymptotic distribution of

W½H0ðhÞ� ¼ T ½Rb̂iðhÞ � r�0½RV̂ T ðb̂iÞR
0��1½Rb̂iðhÞ � r� (31)

is w2ðqÞ. In particular, under the hypothesis H
ðhÞ
jQi of non-causality at horizon h from wjt

to wit ðwj Q
h

wi j I ðjÞÞ; the asymptotic distribution of the corresponding statistic

W½H0ðhÞ� is w2ðpÞ.

The problem now consists in estimating Vip: Let b̄uiðhÞ ¼ ½û
ðhÞ
i ðtþ hÞ : t ¼

0; . . . ;T � h�0 be the vector of OLS residuals from the regression (26),
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ĝ
ðhÞ
i ðtþ hÞ ¼W pðtÞû

ðhÞ
i ðtþ hÞ, and set

R
ðhÞ
i ðtÞ ¼

1

T � h

XT�h

t¼t

ĝ
ðhÞ
i ðtþ hÞĝ

ðhÞ
i ðtþ h� tÞ0; t ¼ 0; 1; 2; . . . .

If the innovations are i.i.d. or, more generally, if (22) holds, a natural estimator of
V ip, which would take into account the fact that the prediction errors uðhÞðtþ hÞ

follow an MAðh� 1Þ process, is given by

V̂
ðW Þ

ip ðTÞ ¼ R
ðhÞ
i ð0Þ þ

Xh�1
t¼1

½R
ðhÞ
i ðtÞ þ R

ðhÞ
i ðtÞ

0
�.

Under regularity conditions studied by White (1999, Section 6.3),

V̂
ðW Þ

ip ðTÞ � Vip �!
p

T!1
0.

A problem with V̂
ðW Þ

ip ðTÞ is that it is not necessarily positive-definite.
An alternative estimator which is automatically positive-semidefinite is the one

suggested by Doan and Litterman (1983), Gallant (1987) and Newey and West
(1987):

V̂
ðNWÞ

ip ðTÞ ¼ R
ðhÞ
i ð0Þ þ

XmðTÞ�1

t¼1

kðt; mðTÞÞ ½R
ðhÞ
i ðtÞ þ R

ðhÞ
i ðtÞ

0
�, (32)

where kðt;mÞ ¼ 1� ½t=ðmþ 1Þ�; limT!1mðTÞ ¼ 1; and limT!1½mðTÞ=T1=4� ¼ 0.
Under the regularity conditions given by Newey and West (1987),

V̂
ðNWÞ

ip ðTÞ � V ip !
T�!1

0.

Other estimators that could be used here includes various HAC estimators; see
Andrews (1991), Andrews and Monahan (1992), Cribari-Neto et al. (2000), Cushing
and McGarvey (1999), Den Haan and Levin (1997), Hansen (1992), Newey and
McFadden (1994), Wooldridge (1989).

The cost of having a simple procedure that sidestep all the nonlinearities
associated with the non-causality hypothesis is a loss of efficiency. There are two
places where we are not using all information. The constraints on the pðhÞk ’s are giving
information on the cj’s and we are not using it. We are also estimating the VAR by
OLS and correcting the variance–covariance matrix instead of doing a GLS-type
estimation. These two sources of inefficiencies could potentially be overcome but it
would lead to less user-friendly procedures.

The asymptotic distribution provided by Proposition 2, may not be very reliable
in finite samples, especially if we consider a VAR system with a large number
of variables and/or lags. Due to autocorrelation, a larger horizon may also
affect the size and power of the test. So an alternative to using the asymptotic
distribution chi-square of W½H0ðhÞ�; consists in using Monte Carlo test techniques
[see (Dufour, 2002)] or bootstrap methods [see, for example, Paparoditis
(1996), Paparoditis and Streitberg (1991), Kilian (1998a, b)]. In view of
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the fact that the asymptotic distribution of W½H0ðhÞ� is nuisance-parameter-free,
such methods yield asymptotically valid tests when applied to W½H0ðhÞ� and
typically provide a much better control of test level in finite samples. It is also
possible that using better estimates would improve size control, although this is not
clear, for important size distortions can occur in multivariate regressions even when
unbiased efficient estimators are available [see, for example, Dufour and Khalaf
(2002)].
5. Causality tests based on nonstationary ðp; hÞ-autoregressions

In this section, we study how the tests described in the previous section can be
adjusted in order to allow for non-stationary possibly integrated processes. In
particular, let us assume that

W ðtÞ ¼ mðtÞ þ ZðtÞ, ð33Þ

mðtÞ ¼ d0 þ d1tþ � � � þ dqtq; ZðtÞ ¼
Xp

k¼1

pkZðt� kÞ þ aðtÞ, ð34Þ

t ¼ 1; . . . ;T ; where d0; d1; . . . ; dq are m� 1 fixed vectors, and the process ZðtÞ is at
most IðdÞ where d is an integer greater than or equal to zero. Typical values for d are
0; 1 or 2: Note that these assumptions allow for the presence (or the absence) of
cointegration relationships.

Under the above assumptions, we can also write

W ðtÞ ¼ g0 þ g1tþ � � � þ gqtq þ
Xp

k¼1

pkW ðt� kÞ þ aðtÞ; t ¼ 1; . . . ;T , (35)

where g0; g1; . . . ; gq are m� 1 fixed vectors (which depend on d0; d1; . . . ; dq, and
p1; . . . ;ppÞ; see Toda and Yamamoto (1995). Under the specification (35), we have

W ðtþ hÞ ¼ mðhÞðtÞ þ
Xp

k¼1

pðhÞk W ðtþ 1� kÞ þ uðhÞðtþ hÞ; t ¼ 0; . . . ;T � h,

(36)

where mðhÞðtÞ ¼ gðhÞ0 þ gðhÞ1 tþ � � � þ gðhÞq tq and gðhÞ0 ; g
ðhÞ
1 ; . . . ; g

ðhÞ
q are m� 1 fixed vectors.

For h ¼ 1; this equation is identical with (35). For hX2; the errors uðhÞðtþ hÞ follow a
MAðh� 1Þ process as opposed to being i.i.d. . For any integer j; we have:

W ðtþ hÞ ¼ mðhÞðtÞ þ
Xp

k¼1
kaj

pðhÞk ½W ðtþ 1� kÞ �W ðtþ 1� jÞ�

þ
Xp

k¼1

pðhÞk

 !
W ðtþ 1� jÞ þ uðhÞðtþ hÞ, ð37Þ
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W ðtþ hÞ �W ðtþ 1� jÞ ¼ mðhÞðtÞ þ
Xp

k¼1
kaj

pðhÞk ½W ðtþ 1� kÞ �W ðtþ 1� jÞ�

� Im �
Xp

k¼1

pðhÞk

 !
W ðtþ 1� jÞ þ uðhÞðtþ hÞ ð38Þ

for t ¼ 0; . . . ;T � h: The two latter expressions can be viewed as extensions to ðp; hÞ-
autoregressions of the representations used by Dolado and Lütkepohl (1996, pp.
372–373) for VARðpÞ processes. Further, on taking j ¼ pþ 1 in (38), we see that

W ðtþ hÞ �W ðt� pÞ ¼ mðhÞðtÞ þ
Xp

k¼1

A
ðhÞ
k DW ðtþ 1� kÞ

þ BðhÞp W ðt� pÞ þ uðhÞðtþ hÞ, ð39Þ

where DW ðtÞ ¼W ðtÞ �W ðt� 1Þ; A
ðhÞ
k ¼

Pk
j¼1p

ðhÞ
k ; and B

ðhÞ
k ¼ A

ðhÞ
k � Im: Eq. (39)

may be interpreted as an error-correction form at the horizon h; with base W ðt� pÞ.
Let us now consider the extended autoregression

W ðtþ hÞ ¼ mðhÞðtÞ þ
Xp

k¼1

pðhÞk W ðtþ 1� kÞ

þ
Xpþd

k¼pþ1

pðhÞk W ðtþ 1� kÞ þ uðhÞðtþ hÞ, ð40Þ

t ¼ d; . . . ;T � h: Under model (35), the actual values of the coefficient matrices
pðhÞpþ1; . . . ;p

ðhÞ
pþd are equal to zero ðpðhÞpþ1 ¼ � � � ¼ pðhÞpþd ¼ 0Þ; but we shall estimate the

ðp; hÞ-autoregressions without imposing any restriction on pðhÞpþ1; . . . ;p
ðhÞ
pþd .

Now, suppose the process ZðtÞ is either Ið0Þ or Ið1Þ; and we take d ¼ 1 in (40).
Then, on replacing p by pþ 1 and setting j ¼ p in the representation (38), we see that

W ðtþ hÞ �W ðt� p� 1Þ ¼ mðhÞðtÞ þ
Xp

k¼1

pðhÞk ½W ðtþ 1� kÞ �W ðt� p� 1Þ�

� B
ðhÞ
pþ1W ðt� p� 1Þ þ uðhÞðtþ hÞ, ð41Þ

where B
ðhÞ
pþ1 ¼ ðIm �

Ppþ1
k¼1p

ðhÞ
k Þ: In the latter equation, pðhÞ1 ; . . . ;p

ðhÞ
p all affect trend-

stationary variables (in an equation where a trend is included along with the other
coefficients). Using arguments similar to those of Sims et al. (1990), Park and Phillips
(1989) and Dolado and Lütkepohl (1996), it follows that the estimates of pðhÞ1 ; . . . ; p

ðhÞ
p

based on estimating (41) by ordinary least squares (without restricting B
ðhÞ
pþ1 ) _ or,

equivalently, those obtained from (40) without restricting pðhÞpþ1 _ are asymptotically
normal with the same asymptotic covariance matrix as the one obtained for a
stationary process of the type studied in Section 4.2 Consequently, the asymptotic
distribution of the statistic W½H

ðhÞ
jQi� for testing the null hypothesis H

ðhÞ
jQi of
2For related results, see also Choi (1993), Toda and Yamamoto (1995), Yamamoto (1996), Yamada and

Toda (1998), Kurozumi and Yamamoto (2000).
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non-causality at horizon h from wj to wiðwj Q
h

wi j I ðjÞÞ; based on estimating (40), is

w2ðpÞ: When computing H
ðhÞ
jQi as defined in (28), it is important that only the

coefficients of pðhÞ1 ; . . . ;p
ðhÞ
p are restricted (but not pðhÞpþ1Þ.

If the process ZðtÞ is integrated up to order d, where dX0; we can proceed similarly
and add d extra lags to the VAR process studied. Again, the null hypothesis is tested
by considering the restrictions entailed on pðhÞ1 ; . . . ; p

ðhÞ
p : Further, in view of the fact

the test statistics are asymptotically pivotal under the null hypothesis, it is
straightforward to apply bootstrap methods to such statistics. Note finally that
the precision of the VAR estimates in such augmented regressions may eventually be
improved with respect to the OLS estimates considered here by applying bias
corrections such as those proposed by Kurozumi and Yamamoto (2000). Adapting
and applying such corrections to ðp; hÞ-autoregressions would go beyond the scope of
the present paper.

6. Empirical illustration

In this section, we present an application of these causality tests at various
horizons to macroeconomic time series. The data set considered is the one used by
Bernanke and Mihov (1998) in order to study United States monetary policy. The
data set considered consists of monthly observations on nonborrowed reserves
(NBR, also denoted w1), the federal funds rate ðr;w2Þ; the GDP deflator ðP;w3Þ and
real GDP ðGDP;w4Þ: The monthly data on GDP and GDP deflator were constructed
by state space methods from quarterly observations [see (Bernanke and Mihov,
1998) for more details]. The sample goes from January 1965 to December 1996 for a
total of 384 observations. In what follows, all the variables were first transformed by
a logarithmic transformation.

Before performing the causality tests, we must specify the order of the VAR
model. First, in order to get apparently stationary time series, all variables were
transformed by taking first differences of their logarithms. In particular, for the
federal funds rate, this helped to mitigate the effects of a possible break in the series
in the years 1979–1981.3 Starting with 30 lags, we then tested the hypothesis of K lags
versus K þ 1 lags using the LR test presented in Tiao and Box (1981). This led to a
VAR(16) model. Tests of a VAR(16) against a VAR(K) for K ¼ 17; . . . ; 30 also
failed to reject the VAR(16) specification, and the AIC information criterion [see
McQuarrie and Tsai, 1998, Chapter 5)] is minimized as well by this choice.
Calculations were performed using the Ox program (version 3.00) working on Linux
[see (Doornik, 1999)].

Vector autoregressions of order p at horizon h were estimated as described in

Section 4 and the matrix V̂
ðNWÞ

ip , required to obtain covariance matrices, were
3Bernanke and Mihov (1998) performed tests for arbitrary break points, as in Andrews (1993), and did

not find significant evidence of a break point. They considered a VAR(13) with two additional variables

(total bank reserves and Dow–Jones index of spot commodity prices and they normalize both reserves by a

36-month moving average of total reserves.)
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Table 1

Rejection frequencies using the asymptotic distribution and the bootstrap procedure

h ¼ 1 2 3 4 5 6 7 8 9 10 11 12

(a) i.i.d.Gaussian sequence

Asymptotic

5% level 27.0 27.8 32.4 36.1 35.7 42.6 47.9 48.5 51.0 55.7 59.7 63.6

10% level 37.4 39.4 42.2 46.5 47.8 52.0 58.1 59.3 60.3 66.3 69.2 72.5

Bootstrap

5% level 5.5 5.7 4.7 6.5 4.0 5.1 5.5 3.9 4.7 6.1 5.2 3.8

10% level 10.0 9.1 10.1 10.9 9.6 10.6 10.2 9.4 9.5 10.9 10.3 8.9

(b) VAR(16) without causality up to horizon h

Asymptotic

5% level 24.1 27.9 35.8 37.5 55.9 44.3 52.3 55.9 54.1 60.1 62.6 72.0

10% level 35.5 38.3 46.6 47.2 65.1 55.0 64.7 64.6 64.8 69.8 72.0 79.0

Bootstrap

5% level 6.0 5.1 3.8 6.1 4.6 4.7 4.4 4.5 4.3 6.3 4.9 5.8

10% level 9.8 8.8 8.7 10.4 10.3 9.9 8.7 7.4 10.3 11.1 9.3 9.7

J.-M. Dufour et al. / Journal of Econometrics 132 (2006) 337–362350
computed using formula (32) with mðTÞ � 1 ¼ h� 1.4 On looking at the values of
the test statistics and their corresponding p-values at various horizons it quickly

becomes evident that the w2ðqÞ asymptotic approximation of the statistic W in Eq.
(31) is very poor. As a simple Monte Carlo experiment, we replaced the data by a
383� 4 matrix of random draw from an Nð0; 1Þ, ran the same tests and looked at the
rejection frequencies over 1000 replications using the asymptotic critical value. The
results are in Table 1a. We see important size distortions even for the tests at horizon
1 where there is no moving average part.

We next illustrate that the quality of the asymptotic approximation is even worse
when we move away from an i.i.d. Gaussian setup to a more realistic case. We now
take as the DGP the VAR(16) estimated with our data in first difference but we
impose that some coefficients are zero such that the federal funds rate does not cause
GDP up to horizon h and then we test the rQ

h
GDP hypothesis. The constraints of
4The covariance estimator used here is relatively simple and exploits the truncation property (21). In

view of the vast literature on HAC estimators [see Den Haan and Levin (1997), Cushing and McGarvey

(1999)], several alternative estimators for Vip could have been considered (possibly allowing for alternative

assumptions on the innovation distribution). It would certainly be of interest to compare the performances

of alternative covariance estimators, but this would lead to a lengthy study, beyond the scope of the

present paper.
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non-causality from j to i up to horizon h that we impose are

p̂ijl ¼ 0 for 1plpp, ð42Þ

p̂ikl ¼ 0 for 1plph; 1pkpm. ð43Þ

Rejection frequencies for this case are given in Table 1b.
In light of these results we computed the p-values by doing a parametric boot-

strap, i.e. doing an asymptotic Monte Carlo test based on a consistent point estimate
[see (Dufour, 2002)]. The procedure to test the hypothesis wj Q

h
wi j I ðjÞ is the

following:
1.
 An unrestricted VAR(p) model is fitted for the horizon one, yielding the estimates

P̂
ð1Þ

and Ô for Pð1Þ and O.

2.
 An unrestricted ðp; hÞ-autoregression is fitted by least squares, yielding the

estimate P̂
ðhÞ

of PðhÞ.

3.
 The test statistic W for testing noncausality at the horizon h from wj to wi

½H
ðhÞ
jQi : wj Q

h
wi j I ðjÞ� is computed. We denote by W

ðhÞ
jQið0Þ the test statistic based

on the actual data.

4.
 N simulated samples from (8) are drawn by Monte Carlo methods, using PðhÞ ¼

P̂
ðhÞ

and O ¼ Ô [and the hypothesis that aðtÞ is Gaussian].We impose the

constraints of non-causality, p̂ðhÞijk ¼ 0; k ¼ 1; . . . ; p: Estimates of the impulse

response coefficients are obtained from P̂
ð1Þ

through the relations described in Eq.

(5). We denote by W
ðhÞ
jQiðnÞ the test statistic for H

ðhÞ
jQi based on the nth simulated

sample ð1pnpNÞ:

5.
 The simulated p-value p̂N ½W

ðhÞ
jQið0Þ� is obtained, where

p̂N ½x� ¼ 1þ
XN

n¼1

I ½W
ðhÞ
jQi ðnÞ � x�

( ),
ðN þ 1Þ,

I ½z� ¼ 1 if zX0 and I ½z� ¼ 0 if zo0.

6.
 The null hypothesis H

ðhÞ
jQi is rejected at level a if p̂N ½W

ð0Þ
jQiðhÞ�pa:

From looking at the results in Table 1, we see that we get a much better size control
by using this bootstrap procedure. The rejection frequencies over 1000 replications
(with N ¼ 999) are very close to the nominal size. Although the coefficients cj’s are
functions of the pi’s we do not constrain them in the bootstrap procedure because there
is no direct mapping from pðhÞk to pk and cj. This certainly produces a power loss but
the procedure remains valid because the ĉj’s are computed with the p̂k, which are
consistent estimates of the true pk both under the null and alternative hypothesis. To
illustrate that our procedure has power for detecting departure from the null hypothesis
of non-causality at a given horizon we ran the following Monte Carlo experiment. We
again took a VAR(16) fitted on our data in first differences and we imposed the



ARTICLE IN PRESS

0.0 0.5 1.0

50

100 horizon 1 

0.0 0.5 1.0

50

100 horizon 2 

0.0 0.5 1.0

50

100 horizon 3 

0.0 0.5 1.0

50

100 horizon 4 

0.0 0.5 1.0

50

100 horizon 5 

0.0 0.5 1.0

50

100 horizon 6 

0.0 0.5 1.0

50

100 horizon 7 

0.0 0.5 1.0

50

100 horizon 8 

0.0 0.5 1.0

50

100 horizon 9 

0.0 0.5 1.0

50

100 horizon 10 

0.0 0.5 1.0

50

100 horizon 11 

0.0 0.5 1.0

50

100 horizon 12 

Fig. 1. Power of the test at the 5% level for given horizons. The abscissa (x-axis) represents the values of y.
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constraints (42)–(43) so that there was no causality from r to GDP up to horizon 12
(DGP under the null hypothesis). Next the value of one coefficient previously set to
zero was changed to induce causality from r to GDP at horizons 4 and higher:
p3ð1; 3Þ ¼ y. As y increases from zero to one the strength of the causality from r to
GDP is higher. Under this setup, we could compute the power of our simulated test
procedure to reject the null hypothesis of non-causality at a given horizon. In Fig. 1, the
power curves are plotted as a function of y for the various horizons. The level of the
tests was controlled through the bootstrap procedure. In this experiment we took again
N ¼ 999 and we did 1000 simulations. As expected, the power curves are flat at around
5% for horizons one to three since the null is true for these horizons. For horizons four
and up we get the expectedresult that power goes up as y moves from zero to one, and
the power curves gets flatter as we increase the horizon.
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Table 4

Summary of causality relations at various horizons for series in first difference

h 1 2 3 4 5 6 7 8 9 10 11 12

NBRQr %%

rQNBR

NBRQP %% %% %% %

PQNBR

NBRQGDP

GDPQNBR %

rQP

PQr

rQGDP % % % % %% %% %% %% %% %%

GDPQr %% %% %% %% %%

PQGDP

GDPQP % % %

h 13 14 15 16 17 18 19 20 21 22 23 24

NBRQr

rQNBR

NBRQP

PQNBR

NBRQGDP

GDPQNBR %

rQP

PQr

rQGDP %% %% %% %% %% %% % %

GDPQr

PQGDP

GDPQP

Note: The symbols % and %% indicate rejection of the non-causality hypothesis at the 10% and 5% levels,

respectively.

J.-M. Dufour et al. / Journal of Econometrics 132 (2006) 337–362 355
Now that we have shown that our procedure does have power we present causality
tests at horizon one to 24 for every pair of variables in Tables 2 and 3. For every
horizon we have 12 causality tests and we group them by pairs. When we say that a
given variable cause or does not cause another, it should be understood that we
mean the growth rate of the variables. The p-values are computed by taking
N ¼ 999. Table 4 summarize the results by presenting the significant results at the
5% and 10% levels.

The first thing to notice is that we have significant causality results at short
horizons for some pairs of variables while we have it at longer horizons for other
pairs. This is an interesting illustration of the concept of causality at horizon h of
Dufour and Renault (1998).

The instrument of the central bank, the nonborrowed reserves, cause the federal
funds rate at horizon one, the prices at horizon 1, 2, 3 and 9 (10% level). It does not
cause the other two variables at any horizon and except the GDP at horizon 12 and
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16 (10% level) nothing is causing it. We see that the impact of variations in the
nonborrowed reserves is over a very short term. Another variable, the GDP, is also
causing the federal funds rates over short horizons (one to five months).

An interesting result is the causality from the federal funds rate to the GDP. Over
the first few months the funds rate does not cause GDP, but from horizon 3 (up to
20) we do find significant causality. This result can easily be explained by, e.g. the
theory of investment. Notice that we have the following indirect causality.
Nonborrowed reserves do not cause GDP directly over any horizon, but they cause
the federal funds rate which in turn causes GDP. Concerning the observation that
there are very few causality results for long horizons, this may reflect the fact that,
for stationary processes, the coefficients of prediction formulas converge to zero as
the forecast horizon increases.

Using the results of Proposition 4.5 in Dufour and Renault (1998), we know that
for this example the highest horizon that we have to consider is 33 since we have a
Table 7

Summary of causality relations at various horizons for series in first difference with extended

autoregressions

h 1 2 3 4 5 6 7 8 9 10 11 12

NBRQr %

rQNBR %

NBRQP %% %% %% %

PQNBR

NBRQGDP

GDPQNBR

rQP %

PQr

rQGDP % % %% %% %% %% %% %%

GDPQr %% %% %% %

PQGDP

GDPQP % %

h 13 14 15 16 17 18 19 20 21 22 23 24

NBRQr

rQNBR

NBRQP

PQNBR

NBRQGDP

GDPQNBR %

rQP

PQr

rQGDP %% %% %% %% %% % %%

GDPQr

PQGDP

GDPQP

Note: The symbols % and %% indicate rejection of the non-causality hypothesis at the 10% and 5% levels,

respectively.
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VAR(16) with four time series. Causality tests for the horizons 25 through 33 were
also computed but are not reported. Some p-values smaller or equal to 10% are
scattered over horizons 30–33 but no discernible pattern emerges.

We next consider extended autoregressions to illustrate the results of Section 5. To
cover the possibility that the first difference of the logarithm of the four series may
not be stationary, we ran extended autoregressions on the series analyzed. Since we
used a VAR(16) with non-zero mean for the first difference of the series a VAR(17),
i.e. d ¼ 1, with a non-zero mean was fitted. The Monte Carlo samples with N ¼ 999
are drawn in the same way as before except that the constraints on the VAR
parameters at horizon h is p̂ðhÞjik ¼ 0 for k ¼ 1; . . . ; p and not k ¼ 1; . . . ; pþ d.

Results of the extended autoregressions are presented in Table 5 (horizons 1–12)
and 6 (horizons 13–24). Table 7 summarize these results by presenting the significant
results at the 5% and 10% level. These results are very similar to the previous ones
over all the horizons and variable every pairs. A few causality tests are not significant
anymore (GDPQr at horizon 5, rQGDP at horizons 5 and 6) and some causality
relations are now significant (rQP at horizon one) but we broadly have the same
causality patterns.
7. Conclusion

In this paper, we have proposed a simple linear approach to the problem of testing
non-causality hypotheses at various horizons in finite-order vector autoregressive
models. The methods described allow for both stationary (or trend-stationary)
processes and possibly integrated processes (which may involve unspecified
cointegrating relationships), as long as an upper bound is set on the order of
integration. Further, we have shown that these can be easily implemented in the
context of a four-variable macroeconomic model of the US economy.

Several issues and extensions of interest warrant further study. The methods we
have proposed were, on purpose, designed to be relatively simple to implement. This
may, of course, involve efficiency losses and leave room for improvement. For
example, it seems quite plausible that more efficient tests may be obtained by testing
directly the nonlinear causality conditions described in Dufour and Renault (1998)
from the parameter estimates of the VAR model. However, such procedures will
involve difficult distributional problems and may not be as user-friendly as the
procedures described here. Similarly, in nonstationary time series, information about
integration order and the cointegrating relationships may yield more powerful
procedures, although at the cost of complexity. These issues are the topics of on-
going research.

Another limitation comes from the fact we consider VAR models with a known
finite order. We should however note that the asymptotic distributional results
established in this paper continue to hold as long as the order p of the model is
selected according to a consistent order selection rule [see Dufour et al. (1994),
Pötscher (1991)]. So this is not an important restriction. Other problems of interest
would consist in deriving similar tests applicable in the context of VARMA or
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VARIMA models, as well as more general infinite-order vector autoregressive
models, using finite-order VAR approximations based on data-dependent truncation
rules [such as those used by Lütkepohl and Poskitt (1996) and Lütkepohl and
Saikkonen (1997)]. These problems are also the topics of on-going research.
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Breitung, Helmut Lütkepohl, Peter Schotman, participants at the EC2 Meeting on
Casuality and Exogeneity in Louvain-la-Neuve (December 2001), two anonymous
referees, and the Editors Luc Bauwens, Peter Boswijk and Jean-Pierre Urbain for
several useful comments. This paper is a revised version of Dufour and Renault
(1995).
References

Andrews, D.W.K., 1991. Heteroskedasticity and autocorrelation consistent covariance matrix estimation.

Econometrica 59, 817–858.

Andrews, D.W.K., 1993. Tests for parameter instability and structural change with unknown change

point. Econometrica 61, 821–856.

Andrews, D.W.K., Monahan, J.C., 1992. An improved heteroskedasticity and autocorrelation consistent

covariance matrix estimator. Econometrica 60, 953–966.

Bernanke, B.S., Mihov, I., 1998. Measuring monetary policy. The Quarterly Journal of Economics 113 (3),

869–902.

Boudjellaba, H., Dufour, J.-M., Roy, R., 1992. Testing causality between two vectors in multivariate

ARMA models. Journal of the American Statistical Association 87, 1082–1090.

Choi, I., 1993. Asymptotic normality of the least-squares estimates for higher order autoregressive

integrated processes with some applications. Econometric Theory 9, 263–282.

Cribari-Neto, F., Ferrari, S.L.P., Cordeiro, G.M., 2000. Improved heteroskedasticity-consistent

covariance matrix estimators. Biometrika 87 (4), 907–918.

Cushing, M.J., McGarvey, M.G., 1999. Covariance matrix estimation. In: Mátyás, L. (Ed.), Generalized
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