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A. Expanded introduction

In this section we expand on some the points made in the Introduction:

• The family of VAR models is not closed under marginalization and temporal aggregation.

This result is discussed in Lütkepohl (1991). If a vector satisfies a VAR model, subvectors do

not typically satisfy VAR models (but VARMA models). Similarly, if the variables of a VAR

process are observed at a different frequency, the resulting process is not a VAR process. In

contrast, the class of VARMA models is closed under such operations.

• VARMA models can provide more accurate forecasts. There is no compelling reason for re-

stricting macroeconomic forecasting to VAR models: VARMA models can forecast macroe-

conomic variables more accurately than VARs; for further discussion, see Athanasopoulos

and Vahid (2008). Indeed, VARMA models can generate forecasts superior than those ob-

tained from Bayesian VARs and factor models; see Dias and Kapetanios (2018). Models in

macroeconomics often contain an MA component; for several examples, see Chen, Choi, and

Escanciano (2017).

• The asymptotic efficiency of the three-step estimator presented in Hannan and Rissanen

(1982) is proved by Zhao-Guo (1985). An extension of this innovation-substitution method

to VARMA models was also proposed by Hannan and Kavalieris (1984a) and Koreisha and

Pukkila (1989), under the assumption that the innovations constitute an m.d.s.

In this paper we extend these results by showing that linear regression-based estimators are

consistent under weaker hypotheses on the innovations and how filtering in a third step yields

estimators with the same asymptotic distribution as their nonlinear counterparts (maximum

likelihood when innovations are i.i.d. Gaussian, or nonlinear least squares if they are merely

uncorrelated). In the non i.i.d. case, we consider strong mixing conditions [Doukhan (1995),

Bosq (1998)], rather than the usual m.d.s. assumption. By using weaker assumptions on the

model innovations, we broaden the class of processes to which our method can be applied.

Recent work considering time series models with uncorrelated but dependent innovations in-

clude Boubacar Maïnassara and Saussereau (2018), Zhu and Li (2015), Boubacar Maïnassara

and Raïssi (2015), Chen, Choi, and Escanciano (2017), Boubacar Mainassara, Carbon, and

Francq (2012).

• The importance of nonlinear models has been growing in the time-series literature. Impor-

tant classes of nonlinear processes admit an ARMA representation [see Francq and Zakoïan

(1998), Francq, Roy, and Zakoïan (2005)]. However, the innovations in these ARMA repre-

sentations do not have the usual i.i.d. or m.d.s. (martingale difference sequence) property,

though they are uncorrelated. One must then be careful before applying usual results to the

estimation of ARMA models because they usually rely on the above strong assumptions [e.g.,

see Brockwell and Davis (1991) and Lütkepohl (1991)]. We refer to these as strong and

semi-strong ARMA models respectively, by opposition to weak ARMA models where the

innovations are only uncorrelated. The i.i.d. and m.d.s. properties are also not robust to

aggregation (the i.i.d. Gaussian case being an exception); see Francq and Zakoïan (1998),
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Francq, Roy, and Zakoïan (2005), Boubacar Mainassara, Carbon, and Francq (2012), Palm

and Nijman (1984), Nijman and Palm (1990), Drost (1993). In fact, the Wold decomposition

only guarantees that the innovations are uncorrelated.

B. Existing estimation methods for VARMA models

For the estimation of VARMA models the emphasis has been on maximizing the likelihood (min-

imizing by nonlinear least squares) quickly. There are two ways of doing this. The first is hav-

ing quick and efficient algorithm to evaluate the likelihood [e.g. Luceño (1994) and the reference

therein, Mauricio (2002), Shea (1989), Mélard, Roy, and Saidi (2006)]. The second is to find pre-

liminary consistent estimates that can be computed quickly to initialize the optimization algorithm.

We are not the first to present a generalization to VARMA models of the Hannan and Rissanen

(1982) estimation procedure for ARMA models [whose asymptotic properties are further studied in

Zhao-Guo (1985) and Saikkonen (1986)]; see also Durbin (1960), Hannan and Kavalieris (1984a),

Hannan, Kavalieris, and Mackisack (1986), Poskitt (1987), Koreisha and Pukkila (1990a, 1990b,

1995), Pukkila, Koreisha, and Kallinen (1990), Galbraith and Zinde-Walsh (1994, 1997), Dufour

and Jouini (2005). A similar method in three steps is also presented in Hannan and Kavalieris

(1984a) where the third step is presented as a correction to the second step estimates.

There are many variations around the innovation-substitution approach for the estimation of

VARMA models but with the exception of Hannan and Kavalieris (1984b),1 Dufour and Jouini

(2014), 2 and us, none use a third step to get efficient estimators, surely because these procedures are

often seen as a way to get initial values to start up a nonlinear optimization [e.g., see Poskitt (1992),

Koreisha and Pukkila (1989), Lütkepohl and Claessen (1997)]. In one of them, Koreisha and Pukkila

(1989), lagged and current innovations are replaced by the corresponding residuals and a regression

is performed. This is asymptotically the same as the first two steps of our method. Other variations

are described in Hannan and Kavalieris (1986), Hannan and Deistler (1988), Huang and Guo (1990),

Spliid (1983), Reinsel, Basu, and Yap (1992), Poskitt and Lütkepohl (1995), Lütkepohl and Poskitt

(1996) and Flores de Frutos and Serrano (2002). Another approach is to use the link that exist

between the VARMA parameters and the infinite VAR and VMA representations. See Galbraith,

Ullah, and Zinde-Walsh (2000) for the estimation of VMA models using a VAR. VARMA models

can also be estimated with subspace methods, which is based on multiple regressions and a weighted

singular value decomposition [see Bauer and Wagner (2002, 2009), Bauer (2005a, 2005b)]. More

recently, Dias and Kapetanios (2018) propose an Iterated OLS (IOLS) estimator where we iterate

the second of our estimator until the convergence.

C. Existing methods to specify VARMA models

The identification of the orders of VARMA models depends on the representation used. Although it

was one of the first representation studied, not much work has been done with the final AR equation

1They use a similar third step that is presented as a correction to the second step estimator but suggest that the third

step should be iterated. They assume that Ut is a m.d.s.
2They use a similar third step for VARMA models in echelon form. They assume that Ut is i.i.d.
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form. People felt that this representation gives VARMA models with too many parameters. A com-

plete procedure to fit VARMA models under this representation is given in Lütkepohl (1993): one

would first fit an ARMA(pi, qi) model to every univariate time series, using maybe the procedure

of Hannan and Rissanen (1982). To build the VARMA representation in final AR equation form,

knowing that the VAR operator is the same for every equation we would take it to be the product of

all the univariate AR polynomials. This would give a VAR operator of order p =
∑K

i=1 pi. Accord-

ingly, for the VMA part we would take q = maxk[qk +
∑K

i=1,i 6=k pi]. It is no wonder that people

feel that the final equation form uses to many parameters.

For VARMA models in echelon form, there has been a lot more work done on the identification

of Kronecker indices. The problem has been studied by, among others, Hannan and Kavalieris

(1984b), Poskitt (1992) and Lütkepohl and Poskitt (1996). Non-stationary or cointegrated systems

are considered by Huang and Guo (1990), Bartel and Lütkepohl (1998), and Lütkepohl and Claessen

(1997). Additional references are given in Lütkepohl (1993, Chapter 8).

As for weak VARMA models estimated by QMLE, Boubacar Maïnassara (2012) propose a

modified Akaike’s information criteria for selecting the orders p and q.

A complementing approach to specify VARMA models, which is based on Cooper and Wood

(1982), aims at finding simplifying structures via some combinations of the different series to obtain

more parsimonious models. It includes Tiao and Tsay (1989), Tsay (1989a, 1989b, 1991) and Nsiri

and Roy (1992, 1996).

The final stage of ARMA model specification usually involve analyzing the residuals, i.e. check-

ing if they are uncorrelated. Popular tools include portmanteau tests such as Box-Pierce [Box

and Pierce (1970)] and Ljung-Box [Ljung and Box (1978)] tests, and their multivariate generaliza-

tion [Lütkepohl (1993, Section 5.2.9)]. Those tests are not directly applicable in our case because

they are derived under strong assumptions for the innovations (independence or martingale differ-

ence). But recent developments for weak ARMA and VARMA models are applicable. They include

Francq, Roy, and Zakoïan (2005), Shao (2011) and Zhu and Li (2015) (weak ARMA), Francq and

Raïssi (2007) (weak VAR), Boubacar Maïnassara (2011), Katayama (2012) and Boubacar Maïnas-

sara and Saussereau (2018) (weak VARMA).

D. Lemmas and proofs

Lemma D.1 Let U and V be random variables measurable with respect to F0−∞ and F∞n , respec-

tively where Fba is the σ-algebra of events generated by sets of the form {(Xi1 , Xi2 , . . . , Xin) ∈
En} with a ≤ i1 < i2 < · · · < in ≤ b, and En is some n-dimensional Borel set. Let r1, r2, r3
be positive numbers. Assume that ‖U‖r1 < ∞ and ‖V ‖r2 < ∞ where ‖U‖r = (E[|U |]r)1/r. If

r−11 + r−12 + r−13 = 1, then there exists a positive constant c0 independent of U , V and n, such that

|E[UV ]− E[U ]E[V ]| ≤ c0‖U‖r1‖V ‖r2α(n)1/r3 (D.1)

where α(n) is the α-mixing coefficient of order h.

Proof. See Davydov (1968).
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Lemma D.2 If the random process {yt} is stationary and with α-mixing coefficients α(j), with

E[|yt|2+ζ1 ] <∞ for some ζ1 > 0, and if
∑∞

j=1 α(j)ζ1/(2+ζ1) <∞, then

σ2 ≡ lim
T→∞

V ar[y1 + · · ·+ yT ]

= E
[
(yt − E[yt])

2
]

+ 2
∞∑
j=1

E [(yt − E[yt])(yt+j − E[yt+j ])] . (D.2)

Moreover, if σ 6= 0 and E[yt] = 0, then

Pr

[
y1 + · · ·+ yT

σ
√
T

< z

]
−→
T→∞

1√
2π

∫ z

−∞
e−u

2/2du. (D.3)

Proof. See Ibragimov (1962).

Proof of Lemma 3.7. Clearly, Φ(0) = Θ(0) = IK and det[Φ(0)] = det[Θ(0)] = 1 6= 0. The

polynomials det[Φ(z)] and det[Θ(z)] are different from zero in a neighborhood of zero. So we can

choose R0 > 0 such that det[Φ(z)] 6= 0 and det[Θ(z)] 6= 0 for 0 ≤ |z| < R0. It follows that the

matrices Φ(z) and Θ(z) are invertible for 0 ≤ |z| < R0. Note also that the adjoint matrices Φ?(z)
and Θ?(z) are matrices of polynomials.

Let

C0 = {z | 0 ≤ |z| < R0} (D.4)

and

Ψ(z) = Φ(z)−1Θ(z) , z ∈ C0 . (D.5)

for z ∈ C0. Since

Φ(z)−1 =
1

det[Φ(z)]
Φ?(z) , Θ(z)−1 =

1

det[Θ(z)]
Θ?(z) , for z ∈ C0, (D.6)

each element of Φ(z)−1 andΘ(z)−1 is a rational function whose denominator is different from zero

on C0. Thus, for z ∈ C0, Φ(z)−1 and Θ(z)−1 are matrices of analytic functions, and the function

Ψ(z) = Φ(z)−1Θ(z) (D.7)

is analytic in the circle 0 ≤ |z| < R0. Hence, it has a unique representation of the form

Ψ(z) =

∞∑
k=0

Ψkz
k, z ∈ C0 . (D.8)

By assumption,

Ψ(z) = Φ(z)−1Θ(z) = Φ̄(z)−1Θ̄(z) , z ∈ C0 , (D.9)
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hence, for z ∈ C0,

Φ̄(z)Φ(z)−1Θ(z) = Θ̄(z),

Φ̄(z)Φ(z)−1 = Θ̄(z)Θ(z)−1 ≡ ∆(z), (D.10)

where ∆(z) is a diagonal matrix because Θ(z) and Θ̄(z) are both diagonal,

∆(z) = diag [δii(z)] , (D.11)

where

δii(z) =
θ̄ii(z)

θii(z)
, θii(0) = 1, δii(0) = θ̄ii(0), i = 1, . . . , K. (D.12)

From (D.12), it follows that each δii(z) is rational with no pole in C0 such that δii(0) = 1, so it can

be written in the form

δii(z) =
ei(z)

fi(z)
(D.13)

where ei(z) and fi(z) have no common roots, fi(z) 6= 0 for z ∈ C0 and δii(0) = ei(0) = 1. From

(D.10), it follows that for z ∈ C0

θ̄ii(z) = δii(z)θii(z), ϕ̄ij(z) = δii(z)ϕij(z), i, j = 1, . . . , K. (D.14)

We first show that δii(z) must be a polynomial. If fi(z) 6= 1, then its order cannot be greater than

the order qi ≡ deg[θii(z)] for otherwise θ̄ii(z) would not be a polynomial. Similarly, if fi(z) 6= 1
and is a polynomial of order less or equal to qi, then all its roots must be roots of θii(z) and ϕij(z),

for otherwise θ̄ii(z) or ϕ̄ij(z) would be a rational function. If qi ≥ 1, these roots are then common

to θii(z) and ϕij(z), j = 1, . . . , K, which is in contradiction with Assumption 3.6. Thus the

degree of fi(z) must be zero, and δii(z) is a polynomial.

If δii(z) is a polynomial of degree greater than zero, this would entail that θ̄ii(z) and ϕ̄ij(z) have

roots in common, in contradiction with Assumption 3.6. Thus δii(z) must be a constant. Further,

δii(0) = 1 so that for i = 1, . . . , K,

θ̄ii(z) = θii(z), ϕ̄ij(z) = ϕij(z), j = 1 . . . ,K. (D.15)

Proof of Theorem 3.8. Under the assumption that the VARMA process is invertible, we can write

Θ(L)−1Φ(L)Yt = Ut. (D.16)

Now suppose by contradiction that there exist operators Φ̄(L) and Θ̄(L), with Θ̄(L) diagonal and

invertible, and Φ̄(L) 6= Φ(L) or Θ̄(L) 6= Θ(L), such that

Θ̄(L)−1Φ̄(L) = Θ(L)−1Φ(L), (D.17)
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If the above equality hold, then it must also be the case that

Θ̄(z)−1Φ̄(z) = Θ(z)−1Φ(z), ∀z ∈ C0, (D.18)

where C0 = {z ∈ C | 0 ≤ |z| < R0} and R0 > 0. By Lemma 3.7, it follows that

Φ̄(z) = Φ(z), Θ̄(z) = Θ(z) ∀z. (D.19)

Hence, the representation is unique.

Proof of Theorem 3.10. The proof can be easily adapted from the proof of Theorem 3.8 once we

replace Assumption 3.6 by Assumption 3.9.

Lemma D.3 (Infinite VAR convergence) If the VARMA model is invertible and if nT / log(T ) →
∞ as T →∞, then

K∑
k=1

∞∑
j=nT+1

|πik,j | = o(T−1) for i = 1, . . . , K, (D.20)

where πik,j represent the parameters in Π(L) = Θ(L)−1Φ(L) .

Proof of Lemma D.3. The matrix Θ(L)−1 can be seen has its adjoint matrix divided by its deter-

minant. Since Yt is invertible, the roots of detΘ(L) are outside the unit circle and so the elements

of Π(L) = Θ(L)−1Φ(L) decrease exponentially:

|πik,j | ≤ cρj , ∀i,m, (D.21)

with c > 0 and 0 < ρ < 1. From this,

T

K∑
k=1

T∑
j=nT+1

|πik,j | ≤ T
K∑
k=1

T∑
j=nT+1

cρj ≤ cK T
ρnT+1

1− ρ → 0 (D.22)

as T →∞ if nT / log(T )→∞ because |ρ| < 1.

From the proof of Lemma D.3, we see that the condition nT / log T →∞ could be replaced by

a weaker condition like nT = κ log(T ) with κ > 1/ log(ρ) where ρ is the value given the upper

bound at which the parameters πik,j are declining to zero. A drawback if this assumption is that it

would depend on the persistence of the process.

Lemma D.4 (Covariance estimation) If the process {Yt} is a strictly stationary VARMA process

with {Ut} uncorrelated, E[|uit|4+2ζ ] <∞ for some ζ > 0, α-mixing with
∑∞

h=1 α(h)ε/(2+ε) <∞
for some ε > 0, then

1

T

T∑
t=1

yi,t−ryi′,t−s − E[yi,t−ryi′,t−s] = Oms(T
−1/2) ∀i, i′, r, s, (D.23)
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where ms refers to mean square convergence.

Proof of Lemma D.4. In a preliminary step, let us prove that the following result holds (assuming

that s > r without loss of generality):

1

T 2

T∑
t=1

T∑
t′=1

Cov
[
ui,t−rui′,t−s ; ui,t′−rui′,t′−s

]
= O(1/T ). (D.24)

We start by breaking this sum in the following parts:

1

T 2

T∑
t=1

T∑
t′=1

Cov
[
ui,t−rui′,t−s ; ui,t′−rui′,t′−s

]
=

1

T 2

T−(s−r)−1∑
t=1

T∑
t′=t+1+(s−r)

Cov
[
ui,t−rui′,t−s ; ui,t′−rui′,t′−s

]

+
1

T 2

T−(s−r)−1∑
t′=1

T∑
t=t′+1+(s−r)

Cov
[
ui,t−rui′,t−s ; ui,t′−rui′,t′−s

]

+
1

T 2

T−(s−r)∑
t=1+(s−r)

t+(s−r)∑
t′=t−(s−r)

Cov
[
ui,t−rui′,t−s ; ui,t′−rui′,t′−s

]

+
1

T 2

1+(s−r)∑
t=1

t+(s−r)∑
t′=1

Cov
[
ui,t−rui′,t−s ; ui,t′−rui′,t′−s

]
+

1

T 2

T∑
t′=T−(s−r)

T∑
t=T−(s−r)−(T−t′)

Cov
[
ui,t−rui′,t−s ; ui,t′−rui′,t′−s

]
. (D.25)

The last three double sums are O(1/T ) since the covariances are finite and the number of terms

is of order T . For the first two double sums, using Davydov’s inequality (lemma D.1), the strong

mixing hypothesis and the finite fourth moment we know that

lim
T→∞

T∑
t′=t+1+(s−r)

∣∣Cov [ui,t−rui′,t−s ; ui,t′−rui′,t′−s
] ∣∣

≤ lim
T→∞

T∑
t′=t+1+(s−r)

c0 ‖ui,t−rui′,t−s‖2+ε‖ui,t′−rui′,t′−s‖2+ε α(t′ − t− (s− r))ε/(2+ε)

< ∞ , (D.26)

from which we conclude that the first two terms converge to zero at rate 1/T .
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Now that have the result in Equation (D.24), we first notice that by stationarity of the process,

E

[
1

T

T∑
t=1

yi,t−ryi′,t−s

]
− E[yi,t−ryi′,t−s] = 0. (D.27)

Now taking the variance and writing the covariances in terms of the innovations Ut:

V ar

[
1

T

T∑
t=1

yi,t−ryi′,t−s

]
=

1

T 2

T∑
t=1

T∑
t′=1

Cov
[
yi,t−ryi′,t−s ; yi,t′−ryi′,t′−s

]

≤
∞∑
j1=0

∞∑
j′1=0

∞∑
j2=0

∞∑
j′2=0

K∑
k1=1

K∑
k′1

K∑
k2=1

K∑
k′2=1

|ψik1,j1 | |ψi′k′1,j′1 | |ψik2,j2 | |ψi′k′2,j′2 |

1

T 2

T∑
t=1

T∑
t′=1

|Cov
[
uk1,t−r−j1uk′1,t−s−j′1 ; uk2,t′−r−j2uk′2,t′−s−j′2

]
|. (D.28)

From the assumption of stationarity we know that the ψ’s are decreasing exponentially, and from

Equation (D.24) we get that the right-hand side of Equation (D.28) is O(1/T ). Hence,

1

T

T∑
t=1

yi,t−ryi′,t−s − E[yi,t−ryi′,t−s] = Oms(T
−1/2) ∀i, i′, r, s. (D.29)

Corollary D.5 (Moment estimation) Under the assumption of Lemma D.4,

1

T

T∑
t=1

yi,t−rui′,t−s − E[yi,t−rui′,t−s] = Oms(T
−1/2) ∀i, i′, r, s. (D.30)

Proof of Lemma D.5. The proof is very similar to the proof of Lemma D.4 where in Equation

(D.28) some of the ψ’s would be zero.

Proof of Theorem 4.1. We first introduce some additional matrix norms:

‖B‖22 = sup
l 6=0

l′B′Bl

l′l
, (D.31)

‖B‖1 = max
i≤j≤n

n∑
i=1

|bij |, (D.32)

‖B‖∞ = max
1≤i≤n

n∑
j=1

|bij |, (D.33)

where (D.31) is the largest eigenvalue of B′B. Useful inequalities relating these norms are given in
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Horn and Johnson (1985, p. 313):

‖AB‖2 ≤ ‖A‖22‖B‖2 , ‖AB‖2 ≤ ‖A‖2‖B‖22 , ‖B‖22 ≤ ‖B‖1‖B‖∞. (D.34)

In the first step estimation, we regress

yit =

nT∑
j=1

K∑
k=1

πik,jyk,t−j + eit , (D.35)

when in fact

yit =

∞∑
j=1

K∑
k=1

πik,jyk,t−j + uit . (D.36)

On setting

B̂(nT ) =
T∑

t=nT+1

Y′t−1(nT )Yt−1(nT )

T − nT
, (D.37)

OLS applied to (D.35) yields:

Π̂
(nT )
i• = [π̂i•,1, . . . , π̂i•,nT ]′

= B̂(nT )−1
T∑

t=nT+1

Y
(nT )

′

t−1 yit

T − nT

= B̂(nT )−1
T∑

t=nT+1

Y
(nT )

′

t−1
T − nT


∞∑
j=1

πi•,jYt−j + uit


= Π

(nT )
i• + B̂(nT )−1

T∑
t=nT+1

Y
(nT )

′

t−1
T − nT


∞∑

j=nT+1

πi•,jYt−j + uit

 . (D.38)

Rearranging the elements,

Π̂
(nT )
i• −Π(nT )

i• = B̂(nT )−1
T∑

t=nT+1

Y
(nT )

′

t−1
T − nT


∞∑

j=nT+1

πi•,jYt−j

+ B̂(nT )−1
T∑

t=nT+1

Y
(nT )

′

t−1 uit

T − nT
.

(D.39)

Using inequalities (D.34) and the fact that B̂(nT ) is symmetric,

‖Π̂(nT )
i• −Π(nT )

i• ‖ ≤ ‖B̂(nT )−1‖2‖V1T ‖+ ‖B̂(nT )−1‖2‖V2T ‖ , (D.40)

where

V1T =
1

T − nT

T∑
t=nT+1

Y
(nT )′
t−1

∞∑
j=nT+1

πi•,jYt−j , (D.41)
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V2T =
1

T − nT

T∑
t=nT+1

Y
(nT )′
t−1 uit . (D.42)

First, ‖V2T ‖2 can be expanded into

‖V2T ‖2 = tr
(
V ′2TV2T

)
=

K∑
k=1

nT∑
j=1

(∑T
t=nT+1

yk,t−juit

T − nT

)2

=
K∑
k=1

nT∑
j=1

E[yk,t−juit]︸ ︷︷ ︸
=0

+Op(T
−1/2)

2 . (D.43)

It follows that ‖V2T ‖2 = Op(
√
nT /T ). Similarly, for ‖V1T ‖2

‖V1T ‖2 = tr
(
V ′1TV1T

)
=

K∑
k=1

nT∑
j=1

(∑T
t=nT+1

yk,t−j [
∑∞

j′=nT+1

∑K
k′=1 πik′,j′yk′,t−j′ ]

T − nT

)2

=
K∑
k=1

nT∑
j=1

 K∑
k′=1

∞∑
j′=nT+1

πik′,j′
1

T − nT

T∑
t=nT+1

yk,t−jyk′,t−j′

2

=
K∑
k=1

nT∑
j=1

 K∑
k′=1

∞∑
j′=nT+1

πik′,j′
[
Cov[yk,t−j ; yk′,t−j′ ] +Op(T

−1/2)
]2 . (D.44)

From Lemma D.3, we know that
∑∞

j=nT+1
|πik,j | = o(T−1) and it follows that∑∞

j′=nT+1
πik′,j′Cov[yk,t−j ; yk′,t−j′ ] = o(T−1). Hence, ‖V1T ‖2 = op(nTT

−1).

For ‖B̂(nT )−1‖1, the existence of B̂(nT )−1 is guaranteed by a lemma that can be found in Tiao

and Tsay (1983). The argument is the following. It is clear that B̂(nT ) is a symmetric non-negative

definite matrix. To show that it is positive definite take any arbitrary vector c = [c1, . . . cKnT ]′ and

consider

c′B̂(nT )c =
1

(T − nT )2

T∑
t=nT+1

 nT∑
j=1

K∑
k=1

c(j−1)K+kyk,t−j

2 . (D.45)

If c′B̂(nT )c = 0, then

nT∑
j=1

K∑
k=1

c(j−1)K+kyk,t−j = 0 for t = nT + 1, . . . , T, (D.46)

which, since T > (K + 1)nT , is a system of linear equations of K nT unknowns and more than

K nT equations. Since Yt is real-valued and non deterministic, this implies that c = 0 (except for a

set with measure zero). This proves that B̂(nT ) is positive definite.
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The final step is to show that ‖B̂(nT )−1‖2 is bounded. We first see that

‖B̂(nT )−1‖2 ≤ ‖B(nT )−1‖2 + ‖B̂(nT )−1 −B(nT )−1‖2 (D.47)

where B(nT ) denotes the (K nT ×K nT ) matrix of the corresponding covariances instead of the

empirical covariances. As in the univariate case Berk (1974, p. 491), ‖B(nT )−1‖2 is uniformly

bounded above by a positive constant F for all nT since Yt is stationary and invertible. Next,

using a similar argument as in the proof of Theorem 1 in Lewis and Reinsel (1985), we show that

‖B̂(nT )−1 −B(nT )−1‖2
p→

T→∞
0. From previous results,

E[‖B̂(nT )−B(nT )‖22] ≤ E[‖B̂(nT )−B(nT )‖2] ≤ c0
n2T
T
→

T→∞
0 (D.48)

for some positive constant c0. Since

‖B̂(nT )−1 −B(nT )−1‖2 = ‖B̂(nT )−1[B̂(nT )−B(nT )]B(nT )−1‖2
≤ F (‖B̂(nT )−1 −B(nT )−1‖2 + F )‖B̂(nT )−B(nT )‖2 ,(D.49)

we have

0 ≤ ΞnT =
‖B̂(nT )−1 −B(nT )−1‖2

F (‖B̂(nT )−1 −B(nT )−1‖1 + F )
≤ ‖B̂(nT )−B(nT )‖2 (D.50)

so that

ΞnT
p→

T→∞
0 , ‖B̂(nT )−1 −B(nT )−1‖2 = F 2ΞnT /(1− FΞnT )

p→
T→∞

0 (D.51)

hence

‖Π̂(nT )
i• −Π(nT )

i• ‖ = Op(
√
nT /T ). (D.52)

Proof of Theorem 4.2. If we denote by Zt−1 the equivalent of Ẑt−1 which contains the true inno-

vations ukt instead of the residuals ûkt,

γ̂ =

[
T∑
t=l

Ẑ ′t−1Σ̂
−1
U Ẑt−1

]−1 [ T∑
t=l

Ẑt−1Σ̂
−1
U (Zt−1γ + Ut)

]

=

[
T∑
t=l

Ẑ ′t−1Σ̂
−1
U Ẑt−1

]−1 [ T∑
t=l

Ẑ ′t−1Σ̂
−1
U Zt−1

]
γ +

[
T∑
t=l

Ẑ ′t−1Σ̂
−1
U Ẑt−1

]−1 [ T∑
t=l

Ẑt−1Σ̂
−1
U Ut

]
. (D.53)
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First, we show that Σ̂U
p→ ΣU . We can write the residual Ût as

Ût = Π̂nT (L)Yt = Π̂nT (L)Ψ(L)Ut

= [IK + (Π̂nT (L)Ψ(L)− IK)]Ut

= [IK + (Π̂nT (L)−Π(L))Ψ(L)]Ut

= Ut + (Π̂nT (L)−Π(L))Yt . (D.54)

Using the results from Lemma D.4, Theorem 4.1 where we showed that
∑nT

l=1 ‖Π̂
(nT )
l − Πl‖ =

Op(
√
nT /T ), combined with

∑∞
l=nT+1

‖Πl‖ = o(T−1) if log(T )/nT → 0 as T → ∞, we can

conclude that

Σ̂U =
1

T − nT

T∑
t=nT+1

ÛtÛ
′
t =

1

T − nT

T∑
t=nT+1

UtU
′
t + op(T

−1/2)
p→ ΣU . (D.55)

To show that 1T
∑T

t=l Ẑ
′
t−1Σ̂

−1
U Ẑt−1 converge to J̃ = E[Z ′t−1Σ

−1
U Zt−1] in probability, since Σ̂U

p→
ΣU we only have to show:

• 1
T

∑T
t=l yi,t−jyk,t−j′

p→ E[yi,t−jyk,t−j′ ],

• 1
T

∑T
t=l yi,t−j ûk,t−j′

p→ E[yi,t−juk,t−j′ ],

• 1
T

∑T
t=l ûi,t−j ûk,t−j′

p→ E[ui,t−juk,t−j′ ].

The first is proved in Lemma D.4. The second can be proved in a similar manner. Start by

writing

1

T

T∑
t=l

yi,t−j ûk,t−j′ =
1

T

T∑
t=l

yi,t−juk,t−j′ +
1

T

T∑
t=l

yi,t−j(ûk,t−j′ − uk,t−j′)

=
1

T

T∑
t=l

yi,t−juk,t−j′ +
1

T

T∑
t=l

nT∑
m=1

K∑
k′=1

(πkk′,m − π̂kk′,m)yi,t−jyk′,t−m

+
1

T

T∑
t=l

∞∑
m=nT+1

K∑
k′=1

πkk′,myi,t−jyk′,t−m (D.56)

Proving that the first term in (D.56), 1
T

∑T
t=l yi,t−juk,t−j′ , converges in quadratic mean to

E[yi,t−juk,t−j′ ] is very similar to the proof in Lemma D.4 where we express yi,t−j as an infi-

nite MA so we omit the details to shorten the exposition. Proving that the second and third term

converge to zero in probability is also similar; combine the results of Lemma D.4 and Theorem 4.1

for the second, Lemmas D.3 and D.4 for the third. Combining all these results we can conclude that

γ̃
ms→ γ.

For the asymptotic distribution, since Σ̂U
p→ ΣU , the limit distribution of 1√

T

∑T
t=l Ẑ

′
t−1Σ̂

−1
U Ut

will be the same as that of 1√
T

∑T
t=l Ẑ

′
t−1Σ

−1
U Ut. For the latter, we can prove the asymptotic
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normality using an argument similar to the one used in Francq and Zakoïan (1998, Lemma 4).

The argument is the following. Neglecting the constants in Σ−1U , 1√
T

∑T
t=l Ẑ

′
t−1Σ

−1
U Ut contains

terms such 1√
T

∑T
t=l ui,tyk,t−j with i, k = 1, . . . ,K and j = 1, . . . ,max(p, q). Using the MA(∞)

representation of Yt,

1√
T

T∑
t=l

ui,tyk,t−j =
1√
T

T∑
t=l

ui,t

 K∑
k′=1

∞∑
j′=0

ψkk′,j′uk′,t−j−j′


=

1√
T

T∑
t=l

A
(1)
r,t +

1√
T

T∑
t=l

A
(2)
r,t (D.57)

where for any positive integer r,

A
(1)
r,t =

r∑
j′=0

K∑
k′=1

ψkk′,j′ui,tuk′,t−j−j′ , (D.58)

A
(2)
r,t =

∞∑
j′=r+1

K∑
k′=1

ψkk′,j′ui,tuk′,t−j−j′ . (D.59)

First note that A
(1)
r,t is a function of a finite number of values from the process {Ut}. Therefore, the

stationary process {A(1)r,t } satisfies a mixing property of the form (2.3). Lemma D.2 implies that

1√
T

∑T
t=lA

(1)
r,t has a limiting distribution N (0, ı̃r) and as r →∞, ı̃r → ı̃.

Now we will show that E[ 1T (
∑T

t=lA
(2)
r,t )2] converges to 0 uniformly in T as r → ∞. It will

follow that the limiting distribution of 1√
T

∑T
t=l ui,tyk,t−j is the same as the limiting distribution

of 1√
T

∑T
t=lA

(1)
r,t from a straightforward adaptation of a result given in Anderson (1971, Corollary

7.1.1, p. 426). We have

V ar

[
1√
T

T∑
t=l

A
(2)
r,t

]
= V ar

 1√
T

T∑
t=l

∞∑
j′=r+1

K∑
k′=1

ψkk′,j′ui,tuk′,t−j−j′


≤

∞∑
j1=r+1

∞∑
j2=r+1

K∑
k1=1

K∑
k2=1

|ψkk1,j1 ||ψkk2,j2 |
1

T

T∑
t=l

T∑
t′=l

|cov(ui,tuk1,t−j−j1 ;ui,t′uk2,t′−j−j2)|

≤
∞∑

j1=r+1

∞∑
j2=r+1

K∑
k1=1

K∑
k2=1

|ψkk1,j1 ||ψkk2,j2 |
1

T

T∑
t=l

∞∑
t′=l

|cov(ui,tuk1,t−j−j1 ;ui,t′uk2,t′−j−j2)|

≤ C
∞∑

j1=r+1

∞∑
j2=r+1

K∑
k1=1

K∑
k2=1

|ψkk1,j1 ||ψkk2,j2 | (D.60)
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for some positive constant C following a similar argument as in the proof of Lemma D.4. Thus,

sup
T
V ar

[
1√
T

T∑
t=l

A
(2)
r,t

]
→ 0 (D.61)

as r →∞.

We can extend this asymptotic normality to all the elements of 1√
T

∑T
t=l Ẑ

′
t−1Σ

−1
U Ut to con-

clude that

1√
T

T∑
t=l

Ẑ ′t−1Σ̂
−1
U Ut

d−→ N
[
0, Î

]
(D.62)

with Ĩ defined in Equation (4.22). From this,

√
T (γ̃ − γ)

d−→ N
(

0, J̃−1Ĩ J̃−1
)
. (D.63)

From the preceding results, it is obvious that J̃ can be consistently estimated by J̃T as defined

in Equation (4.24) and using Theorem 2 of Newey and West (1987) or more explicit results from

Francq and Zakoïan (2000) for weak ARMA models, we know that ĨT
p→ Ĩ if we take m4

T /T → 0
with mT →∞ as T →∞.

Proof of Theorem 4.3. First we can rewrite Xt, Wt and Ṽt as

Xt = Θ̂(L)−1Yt , Wt = Θ̂(L)−1Ũt , Ṽt = Θ̂(L)−1Z̃t. (D.64)

We can also rewrite Ũt +Xt −Wt as

Ũt +Xt −Wt = Θ̂(L)−1Yt + Ũt − Θ̂(L)−1Ũt

= Θ̂(L)−1 [Zt−1γ + Ut] + Ũt − Θ̂(L)−1Ũt

= Θ̂(L)−1Zt−1γ + Θ̂(L)−1Ut + Ũt − Θ̂(L)−1Ũt

= Vt−1γ + Ut + [(Ũt − Ut)− Θ̂(L)−1(Ũt − Ut)]
= Vt−1γ + Ut +Op(T

−1/2). (D.65)

With this, the regression becomes

γ̂ =

[
T∑
t=l′

Ṽ ′t−1Σ̃
−1
U Ṽt−1

]−1 [ T∑
t=l′

Ṽ ′t−1Σ̃
−1
U

(
Ũt +Xt −Wt

)]

=

[
T∑
t=l′

Ṽ ′t−1Σ̃
−1
U Ṽt−1

]−1 [ T∑
t=l′

Ṽ ′t−1Σ̃
−1
U Vt−1

]
γ +

[
T∑
t=l′

Ṽ ′t−1Σ̃
−1
U Ṽt−1

]−1 [ T∑
t=l′

Ṽ ′t−1Σ̃
−1
U Ut

]
+ op(T

−1/2). (D.66)
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Just like in the proof of theorem 4.2 we see that γ̂ − γ = Op(T
−1/2). With a similar application of

Ibragimov’s central limit theorem as in the proof of Theorem 4.2, we conclude that

√
T (γ̂ − γ)

d−→ N
(

0, Ĵ−1Î Ĵ
)

where Î and Ĵ are defined in Equation (4.26). As in the proof of theorem 4.2 the matrices Î and Ĵ
can be consistently estimated respectively by ÎT and ĴT as defined in Equations (4.27) and (4.28).

Proof of Theorem 4.4. The variance of MLE for i.i.d. Gaussian innovations is given in Lütkepohl

(1993):

I = plim

[
1

T

T∑
t=1

∂U ′t
∂γ

Σ−1
∂Ut
∂γ′

]−1
. (D.67)

We can transform this expression so as to obtain an equation more closely related to our previous re-

sults. First, we split γ in the same two vectors γ1 (the AR parameters) and γ2 (the MA parameters),

then we compute ∂Ut/∂γ
′
1 and ∂Ut/∂γ

′
2. We know that

Ut = Yt − Φ1Yt−1 − · · · − ΦpYt−p +Θ1Ut−1 + · · ·+ΘqUt−q. (D.68)

So taking the derivative with respect to γ′1:

∂Ut
∂γ′1

= −Z•1:dim(γ1),t−1 +Θ1
∂Ut−1
∂γ′1

+ · · ·+Θq
∂Ut−q
∂γ′1

, (D.69)

Θ(L)
∂Ut
∂γ′1

= −Z•1:dim(γ1),t−1 , (D.70)

∂Ut
∂γ′1

= −Θ(L)−1Z•1:dim(γ1),t−1 , (D.71)

where Z•1:dim(γ1),t−1 is the first dim(γ1) columns of Zt−1. Similarly, the derivative with respect to

γ′2 is

∂Ut
∂γ′2

= −Z• dim(γ1)+1:dim(γ),t−1 +Θ1
∂Ut−1
∂γ′2

+ · · ·+Θq
∂Ut−q
∂γ′2

= −Θ(L)−1Z• dim(γ1)+1:dim(γ),t−1 (D.72)

Combining the two expressions we see that

∂Ut
∂γ′

= −Vt−1 (D.73)

so the variance matrix for the maximum likelihood estimator I is equal to the matrix J−1(3) from the

third step estimation. Moreover if Ut is i.i.d. we see that we have the equality J(3) = I(3) so that

the asymptotic variance matrix that we get in the third step of our method is the same as one would

get by doing maximum likelihood.
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Proof of Theorem 4.5.

For the weak VARMA case, from the results in Boubacar Maïnassara and Francq (2011) we

know that the asymptotic covariance matrix of the QMLE estimator of γ is equal to J−1IJ−1 with

I = 4
∞∑

k=−∞
Cov

[
Ut Σ

−1 ∂Ut
∂γ′

; Ut−k Σ
−1 ∂Ut−k

∂γ′

]
, J = 2E

[
∂U ′t
∂γ

Σ−1
∂Ut
∂γ′

]
. (D.74)

In the proof of Theorem 4.4 we established that ∂Ut/∂γ
′ = Vt−1. From this we see that J = 2J(3),

I = 4I(3) and our third-step estimator has the same asymptotic variance-covariance matrix as the

non-linear least squares estimator if the innovations are only uncorrelated.

Proof of Theorem 5.1.

Let us denote by Σ̃U (p, q) the value taken by Σ̃U for given orders p and q. The true value of p
and q is denoted by p0 and q0. The difference between the information criterion for given values of

the orders p and q, and the true values p0, q0 is equal to

log
(

det Σ̃U (p, q)
)
−log

(
det Σ̃U (p0, q0)

)
+[dim γ(p, q)− dim γ(p0, q0)]

(log T )1+δ

T
. (D.75)

First, consider the case where p < p0 or q < q0. In this case, as T grows to infinity, uniformly across

the orders (p, q), eventually det Σ̃U (p, q) > det Σ̃U (p0, q0) because of the left-coprime property.

As argued for example in Hannan and Rissanen (1982, p.90) if this result does not hold, then it

would mean that a model with smaller orders would be giving the minimum prediction error. So

while the penalty is increasing with the sample size, (D.75) would become positive as T →∞. So

eventually we must have p̂ ≥ p0 and q̂ ≥ q0.
Next, to discuss the case where p ≥ p0 and q ≥ q0, we can start by writing the residuals of the

second step estimation as

Ũt = Φ̃(L)Yt −
(
Θ̃(L)− IK

)
Ût

= Φ̃(L)Yt −
(
Θ̃(L)− IK

)
Π̂(nT )(L)Yt

=
[
Φ̃(L)−

(
Θ̃(L)− IK

)
Π̂(nT )(L)

]
Yt

=
[
Φ̃(L)−

(
Θ̃(L)− IK

)
Π̂(nT )(L)

]
Ψ0(L)Ut

=
[
Φ̃(L)− Θ̃(L)Π̂(nT )(L) + Π̂(nT )(L)

]
Ψ0(L)Ut

=
[(
Φ̃(L)− Φ0(L)

)
+ Φ0(L)− Θ̃(L)Π̂(nT )(L) +

(
Π̂(nT )(L)−Π0(L)

)
+Π0(L)

]
Ψ0(L)Ut

=
[(
Φ̃(L)− Φ0(L)

)
+
(
Θ0(L)− Θ̃(L)

)
Π0(L)− Θ̃(L)

(
Π̂(nT )(L)−Π0(L)

)
+(

Π̂(nT )(L)−Π0(L)
)

+Π0(L)
]
Ψ0(L)Ut
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=
[(
Φ̃(L)− Φ0(L)

)
Ψ0(L) +

(
Θ0(L)− Θ̃(L)

)
− Θ̃(L)

(
Π̂(nT )(L)−Π0(L)

)
Ψ0(L)+(

Π̂(nT )(L)−Π0(L)
)
Ψ0(L) + IK

]
Ut

=
[(
Φ̃(L)− Φ0(L)

)
Ψ0(L) +

(
Θ0(L)− Θ̃(L)

)
− χ̃(L) + C(L) + IK

]
Ut , (D.76)

where

χ̃(L) = Θ̃(L)
(
Π̂(nT )(L)−Π0(L)

)
Ψ0(L) , (D.77)

C(L) =
(
Π̂(nT )(L)−Π0(L)

)
Ψ0(L). (D.78)

For the case where p = p0 and q = q0, from the results of Theorems 4.1 and 4.2, it follows that with

an obvious abuse of notation3

‖(Φ̃(L)− Φ0(L))Ψ0(L)‖ = Op(T
−1/2) , (D.79)

‖χ̃(L)‖ = Op(
√
nT /T ) , ‖C(L)‖ = Op(

√
nT /T ) . (D.80)

Using the above representation of the residuals Ũt, we get

Σ̃U (p0, q0) =
1

T

T∑
t=nT+1

UtU
′
t +Op(nTT

−1). (D.81)

Next, we discuss the case where p ≥ p0 and q ≥ q0 with p > p0 or q > q0. To put a lower bound

on det(Σ̃U (p, q)) across (p, q), we re-arrange equation D.76 as

Ũt =
[
Υ (L)Θ0(L)−1Ψ0(L)− χ(L) + C(L) + IK

]
Ut , (D.82)

where

Υ (L) = Φ(L)Θ0(L)−Θ(L)Φ0(L) , (D.83)

χ(L) = Θ(L)
(
Π̂(nT )(L)−Π0(L)

)
Ψ0(L) , (D.84)

with Φ(L) and Θ(L) of orders p and q respectively that would satisfy Assumption 2.1. We can first

point out that the term C(L) does not vary with the orders (p, q). Also, uniformly across the orders

‖χ(L)‖ = Op(
√
nT /T ). Now, We can minimize det Σ̃U (p, q) with respect to Υ freely and then

with respect to Θ. This will give a minimum no greater than the true minimum obtained from the

minimization over Φ and Θ. Through the minimization with respect to Υ we see that uniformly

across the orders

det(Σ̃U (p, q)) ≥ det

(
1

T

T∑
t=1

UtU
′
t

)
+Op(nT /T ) . (D.85)

3For example, by ‖(Θ(L)− Θ̃(L))‖2 we mean
∑K

i=1

∑K
k=1

∑q
j=1(θik,j − θ̃ik,j)

2.
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Thus eventually

log[det Σ̃U (p, q)]− log[det Σ̃U (p0, q0)] + [dim γ(p, q)− dim γ(p0, q0)]
(log T )1+δ

T

≥ [dim γ(p, q)− dim γ(p0, q0)]
(log T )1+δ

T
+Op(nT /T ) . (D.86)

If we choose nT = O((log T )1+δ1) with δ1 > 0 and δ1 < δ, the above lower bound is positive

unless p = p0 and q = q0. and the probability that p̂ = p0 and q̂ = q0 converges to one as T →∞.

Proof of Theorem 5.2. The proof is similar to the proof of Theorem 5.1.
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