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ABSTRACT

In this paper, we develop practical methods for modellingkv€ARMA processes. In a first
part, we propose new identified VARMA representations, diagjonal MA equation fornand the
final MA equation formwhere the MA operator is diagonal and scalar respectiv@bth of these
representations have the important feature that they itatestelatively simple modifications of a
VAR model (in contrast with the echelon representation)a kecond part, we study the problem
of estimating VARMA models by relatively simple methods walinionly require linear regressions.
We consider a generalization of the regression-based a&stimmethod proposed by Hannan and
Rissanen (1982). The asymptotic properties of the estinaaéoderived under weak hypotheses on
the innovations (uncorrelated and strong mixing) so as ¢adn the class of models to which it
can be applied. In a third part, we present a modified infolnatriterion which gives consistent
estimates of the orders under the proposed representaliomgemonstrate the importance of using
VARMA models to study multivariate time series we compam ithpulse-response functions and
the out-of-sample forecasts generated by VARMA and VAR nteode

Key words: linear regression; VARMA; final equation form; informatioriterion; weak represen-
tation; strong mixing condition; impulse-response fuoicti
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1. Introduction

In time series analysis and econometrics, VARMA models eaecely used to represent multivari-
ate time series. VAR models are much more widely employedimxthey are easier to implement.
The latter models can be estimated by least squares methbis,VARMA models typically re-
quire nonlinear methods (such as maximum likelihood). Bigaton is also easier for VAR models
since only one lag order must be chosen.

VAR models, however, have important drawbacks. First, #aeytypically less parsimonious
than VARMA models .9, see Litkepohl and Poskitt (1996b)]. Second, the familyARVnodels
is not closed under marginalization and temporal aggregdtee Litkepohl (1991)]. The truth
cannot always be a VAR. If a vector satisfies a VAR model, sctove do not typically satisfy
VAR models (but VARMA models). Similarly, if the variable$ a VAR process are observed at a
different frequency, the resulting process is not a VAR psesc In contrast, the class of VARMA
models is closed under such operations.

The importance of nonlinear models has been growing inthe sieries literature. These models
are interesting and useful but may be hard to use. Becaubésaind the fact that many important
classes of nonlinear processes admit an ARMA representi@ig, see Francq and Zakoian (1998),
Francq, Roy, and Zakoian (2003)] many researchers andtfmaets still have an interest in linear
ARMA models. However, the innovations in these ARMA reprgagons do not have the usual
i.i.d. or m.d.s. property, although they are uncorrelatede must then be careful before applying
usual results to the estimation of ARMA models because tiseally rely on the above strong as-
sumptions ¢.g, see Brockwell and Davis (1991) and Lutkepohl (1991)]. Wento these as strong
and semi-strong ARMA models respectively, by oppositionveak ARMA models where the in-
novations are only uncorrelated. The i.i.d. and m.d.s. gnigs are also not robust to aggregation
(the i.i.d. Gaussian case being an exception); see Frart@akoian (1998), Francqg, Roy, and
Zakoian (2003), Palm and Nijman (1984), Nijman and Palm@}99rost (1993). In fact, the Wold
decomposition only guarantees that the innovations arertglated.

It follows that (weak) VARMA models appear to be preferabstan a theoretical viewpoint, but
their adoption is complicated by identification and estioradifficulties. The direct multivariate
generalization of ARMA models does not give an identifiedrespntation [see Litkepohl (1991,
Section 7.1.1)]. It follows that one has to decide on a seboktraints to impose so as to achieve
identification. Standard estimation methods for VARMA migdgnaximum likelihood, nonlin-
ear least squares) require nonlinear optimization whick nt be feasible as soon as the model
involves a few time series, because the number of paramegerncrease quickly.

In this paper, we consider the problem of modeling weak VARPprAcesses. Our goal is to
develop a procedure which will ease the use of these modelgill cover three basic modelling
operations: identification, estimation and specification.

First, in order to avoid identification problems and to fertlease the use of VARMA models,
we introduce three new identified VARMA representationg diagonal MA equation formthe
final MA equation formand thediagonal AR equation form Under the diagonal MA equation
form (diagonal AR equation form) representation, the MA Afperator is diagonal and each lag
operator may have a different order. Under the final MA equaform representation the MA



operator is scalar,e. the operators are equal across equations. The diagonahahtf\ equation
form representations can be interpreted as simple extensibthe VAR model, which should be
appealing to practitioners who prefer to employ VAR models tb their ease of use. The identified
VARMA representation which is the most widely employed ie titerature is theechelon form
Specification of VARMA models in echelon form does not amawnspecifying the ordep and

g as with ARMA models. Under this representation, VARMA madate specified by as many
parameters, called Kronecker indices, as the number ofdéries studied. These indices determine
the order of the elements of the AR and MA operators in a neratiivay. The complicated nature of
the echelon form representation is a major reason why picagtrs are not using VARMA models,
so the introduction of a simpler identified representat®imieresting.

Second, we consider the problem of estimating VARMA modglsdbatively simple methods
which only require linear regressions. For that purposecaresider a multivariate generalization
of the regression-based estimation method proposed byatizanmd Rissanen (1982) for univariate
ARMA models. The method is performed in three steps. In a $itep, a long autoregression is
fitted to the data. In the second step, the lagged innovatiotise ARMA model are replaced
by the corresponding residuals from the long autoregresaiw a regression is performed. In a
third step, the data from the second step are filtered so awdoegtimates that have the same
asymptotic covariance matrix than one would get with theimam likelihood [claimed in Hannan
and Rissanen (1982), proven in Zhao-Guo (1985)]. Exterditins innovation-substitution method
to VARMA models was also proposed by Hannan and Kavalie8844) and Koreisha and Pukkila
(1989), under the assumption that the innovations are am.d.

Here, we extend these results by showing that the lineaessigm-based estimators are consis-
tent under weak hypotheses on the innovations and how idféni the third step gives estimators
that have the same asymptotic distribution as their noafimeunterparts (maximum likelihood if
the innovations are i.i.d., or nonlinear least squaresy #re merely uncorrelated). In the non i.i.d.
case, we consider strong mixing conditions [Doukhan (19B6yq (1998)], rather than the usual
m.d.s. assumption. By using weaker assumptions for theepsoaf the innovations, we broaden the
class of processes to which our method can be applied.

Third, we suggest a modified information criterion to chotse orders of VARMA models
under these representations. This criterion is to be maachin the second step of the estima-
tion method over the orders of the AR and MA operators andsgbamsistent estimates of these
orders. Our criterion is a generalization of the informativiterion proposed by Hannan and Rissa-
nen (1982), which was later corrected by Hannan and Rissd®83) and Hannan and Kavalieris
(1984b), for choosing the ordepsandq in ARMA models. The idea of generalizing this information
criterion is mentioned in Koreisha and Pukkila (1989) bupeci#fic generalization and theoretical
properties are not presented.

Fourth, the method is applied to U.S. macroeconomic dataquely studied by Bernanke and
Mihov (1998) and McMillin (2001). To illustrate the impact osing VARMA models instead of
VAR models to study multivariate time series we compareigulse-response functions generated
by each model. We show that we can obtain much more preciseadss of the impulse-response
function by using VARMA models instead of VAR models.

The rest of the paper is organized as follows. Our framewaork rotation are described in



section 2. The new identified representations are presémtgection 3. In section 4, we present
the estimation method. In section 5, we describe the infoomariterion used for choosing the
orders of VARMA models under the representation proposediirwork. Section 6 contains results
of Monte Carlo simulations which illustrate the propert@sour method. Section 7 presents the
macroeconomic application where we compare the impulsgerese functions from a VAR model
and VARMA models. Section 8 contains a few concluding rersarkinally, proofs are in the
appendix.

2. Framework

Consider the followings -variate zero mean VARMA{¢) model in standard representation:
p q
V=) &Y, i+ Ui—)» O;U;, te, (2.1)
i=1 j=1

whereU, is a sequence of uncorrelated random variables with mean defined on some prob-
ability space({2, A, P). The vectorsY; and U; contain theK univariate time seriesly; =
[Yit, Yot - - 5 yxe) @andU; = [uqg, uae, - .. , uxe). We can also write the previous equation with
lag operators:

O(L)Y; = O(L)U; (2.2)

where
@(L):IK_@IL_..._@I)LP, @(L):IK—@lL—"'—@qu- (23)

Let H, be the Hilbert space generated (3%, s < ). The proces#/; can be interpreted as the
linear innovation ofY;:
Uy =Y, — EL[YiIH). (2.4)

We assume that; is a strictly stationary and ergodic sequence and that theepd/; has common
variance Var[U;] = Xy) and finite fourth moment&[|u;|*+t?°] < oo, for all  andt, where
0 > 0). We make the zero mean-mean hypothesis only to simplifgtizot.

Assuming that the process is stable,

det [@(z)] #Oforall [z| <1, (2.5)

and invertible,
det [©(z)] #0forall [z] <1, (2.6)

it can be represented as an infinite VAR,
(L)Y, = Uy 2.7)

where -
(L) =O(L) '®(L) = Ix - ILL, (2.8)
i=1



or an infinite VMA,
Y, =¥ (L)U; (2.9)

where -
U(L)=®(L) 'O(L) =Ix — > WL/, (2.10)
j=1

We will denote by, ;(L) the polynomial in rowi and columnyj of ¢(L), and the row; or column
jof &(L) by

Die(L) = [pia(L), ..., pir(L)], (2.11)
@-j(L) = [901j(L)a R QOKj(L)],' (2.12)

Thediag operator creates a diagonal matrix,

en(L) -+ 0

diag[pqy (L), ..., orr(L)] = (2.13)

0 o pgi(L)
where
(L) =1— ;1L —- = LP. (2.14)

The functiondeg[¢(L)] returns the degree of the polynomia{L) and the functioniim(v) gives
the dimension of the vector.

We need to impose some structure on the protigs$he typical hypothesis which is imposed in
the time series literature is that thg’s are either independent and identically distributedd()ior
a martingale difference sequence (m.d.s.). In this workdavaot impose such strong assumptions
because we want to broaden the class of models to which iteaplied. We only assume that it
satisfies a strong mixing condition [Doukhan (1995), Bos2P@)]. LetU, be a strictly stationary
process, and

a(h) = sup |Pr(BNC) — Pr(B)Pr(C)| (2.15)

Beo(Us,s<t)
C€o(Us,s>t+h)

the a-mixing coefficient of orderh > 1, whereo(Us,s <t) ando(Us,s >t + h) are theo-
algebras associated witfU; : s < t}ando(Us : s > t + h) respectively. We suppose thét is

strong mixing,i.e.
[e.e]

> a(h)/CT) < oo for some 4> 0. (2.16)
h=1

This is a fairly minimal condition that will be satisfied by maprocesses of interest.



3. Identification and diagonal VARMA representations

It is important to note that we cannot work with the standagkesentation (2.1) because it is not
identified. To help gain intuition on the identification of ®MA models, we can consider a more
general representation whebg and©, are not identity matrices:

D0y =Y 14+ DY, + 60Uy — O1U—1 + - - + OyUs_y. (3.1)
By this specification, we mean the well-defined process
Y = (®g— P1L — - — ®p,LP) " H(Op + O1L + - + O, L) Uy. (3.2)

But we can see this such process has a standard repregeiftétjcand©@, are nonsingular. To
see this, we premultiply (3.1) by, ' and defind/, =&, 6,U;:

YV, = &5+ -+ 8,0,
+U; — 80,1610, 00U,y — -+ — D,10,60, DU, (3.3)

Redefining the matrices, we get a representation of typé (Rsllong asbh, and®, are nonsingular,
we can transform a non-standard VARMA into a standard one.

We say that two VARMA representations are equivalesi(if,) ' ©(L) results in the same op-
erator?(L). Thus, to ensure uniqueness of a VARMA representation, w& impose restrictions
on the AR and MA operators such that for a give(L) there is one and only one set of operators
&(L) andO(L) that can generate this infinite MA representation.

A first restriction that we impose is a multivariate equivalef the coprime property in the
univariate case. We do not want factorsdfL) and ©(L) to “cancel out” whend(L) *O(L)
is computed. This feature is called thadt-coprimeproperty [see Hannan (1969) and Litkepohl
(1993)]: the matrix operato? [®(L),O(L)] = ¢(L)~'O(L) is left-coprimeif, for any operators
D(L), ®(L), andO(L), the identity

D(L)¥[@(L),0(L)] = ¥[®(L),O(L)] (3.4)

implies thatD(L) is unimodular[i.e., det D(L) is a nonzero constant]. To obtain uniqueness of
left-coprime operators we have to impose restrictions @mguthat the only feasible unimodular
operatorD(L) in (3.4) is D(L) = Ix. There is no unique way of doing this. The dominant
representation in the literature is teehelon formsee Deistler and Hannan (1981), Hannan and
Kavalieris (1984b), Lutkepohl (1993), Lutkepohl and PtsKi996a)].

Definition 3.1 (Echelon form) The VARMA representation {2.1) is said to be in echelon form if
the AR and MA operator$(L) = [QDZ'J'(L)]Z‘J:L_",K andO(L) = [0;;(L)]; j=1,..., k satisfy the
following conditions: all operators,;;(L) and;;(L) in thei-th row of &(L) and ©(L) have the



same degreg; with the form

Pi
v (L) = 1-— Z Yuml™, fori=1,..., K,
m=1
Dpi
i (L) = - Z iimL™,  forj#i,
m=p;—pi;+1
pi
HZJ(L) = Z 91‘]’7mLm fori,j=1,..., K, with®y=&,.
m=0

Further, in the VAR operatop, ; (L),

- { min(p; + 1,p;) fori>j,
1) —

min(p;, p;) fori < j,
i,j =1,..., K, i.e. p;; specifies the number of free coefficients in the operajefL) for j # i.
The row orders(py, ..., px) are the Kronecker indices and their suEfilpi is the McMillan
degree. For the VARMA orders we have in gengral ¢ = max(py, ... , px).

We see that dealing with VARMA models in echelon form is noeasy as dealing with uni-
variate ARMA models where everything is specified by chogsire value o andg. The number
of Kronecker indices is larger than two (i is larger than two) and, when choosipg, we have to
consider if we are above or below the diagonal. Having a sulomaubscript in the operatar; ;,
m = p; — pi; + 1, different across rows and columns also complicates thefubgs representation.
The task is far from being impossible but it is more compécathan for ARMA models. Specifica-
tion of VARMA models in echelon form is discussed in Hannad &avalieris (1984b), Litkepohl
and Claessen (1997), Poskitt (1992), Nsiri and Roy (19926),9 ltkepohl and Poskitt (1996b),
Bartel and Lutkepohl (1998). This might be a reason why fifagers are reluctant to employ
VARMA models. Who could blame them for sticking with VAR mdsl@vhen they probably need
to refer to a textbook to simply write down an identified VARM@presentation?

In this work, to ease the use of VARMA models we present new MiRepresentations which
can be seen as a simple extensions of the VAR model. To inteothem, we first review another
identified representation, thimal equation formwhich will refer to as thdinal AR equation form
under which the AR operator is scalar [see Zellner and Pa®W4)l Hannan (1976), Wallis (1977),
Litkepohl (1993)].

Definition 3.2 (Final AR equation form) The VARMA representatior2.Ql) is said to be in final
AR equation form (L) = p(L)Ix, wherep(L) = 1 — ¢ L —--- — ¢, L is a scalar polynomial
with ¢,, # 0.

To see how we can obtain a VARMA model with a final AR equationmfoepresentation, we



can proceed as follows. By standard linear algebra, we have
P(L)*®(L) = P(L)P(L)* = det [®(L)] Ik (3.5)
whered(L)* is the adjoint matrix ofp(L). On multiplying both sides of (2.2) by(L)*, we get:
det [#(L)]Y; = &(L)*O(L)U;. (3.6)

This representation is not attractive for several reaséfiist, it is quite far from usual VAR
models by excluding lagged values of other variables in eaphation €.g, the AR part of the
first equation includes lagged values:gf but no lagged values afy, ... , yx:). Further, the
AR coefficients are the same in all the equations, which wijuire a polynomial of higher order
pK. Second, the interaction between the different variablesadeled through the MA part of the
model, which may have to be quite complex.

However, we can derive alternative representations whriglbath more intuitive and practical.
First, upon multiplying both sides of (2.2) k&y(L)*, we get:

O(L)*®(L)Y; = det [0(L)] U, 3.7)

where®(L)* is the adjoint matrix of9(L). We refer to VARMA models in (3.7) as being fimal
MA equation form

Definition 3.3 (Final MA equation form) The VARMA representatiof?.1) is said to be in final
MA equation form if
O(L) =0(L)Ik (3.8)

wheref(L) =1—-6,L —--- — §,L7 is a scalar operator witlt, # 0.

By (3.7), it is clear that any VARMA process satisfying (2-13.6) can be written in final MA
form. This form is much closer to the usual finite-order VARdabthan the echelon representation
or the final AR equation form, because the AR part is a finitleo AR while the MA part of each
equation is ainivariate MA which only involves a single innovation process. The mdiawback
comes from the fact that the MA operator is the same in all tigagons, which can lead to a
high-order MA.. It is however possible to get a more parsiroagsirepresentation by allowing for
different MA polynomials in different equations.

Suppose there are common roots across rows for some colunghd.g, so that starting from
(2.1) we can write:

O(L)Y; = O(L)D(L)U;, (3.9)

O(L)*®(L)Y; = det [O(L)] D(L)U, (3.10)

where D(L) = diag[di(L), ..., drx(L)] andd;(L) is a polynomial common t@;;(L), Vi =
1, ..., K. We see that allowing for diagonal polynomials in the movingrage as in equation

(3.10) may yield a more parsimonious representation thaf).(3NVe will call the representation
(3.10)diagonal MA equation formepresentation.



Definition 3.4 (Diagonal MA equation form) The VARMA representatiof.1) is said to be in
diagonal MA equation form i® (L) = diag[f;;(L)] = Ix — ©1L — --- — O4L% whereb;(L) =
1-— 9,‘1‘71[/ — e — HiiyqiLqi, Hii,qi 75 0 andq = maxlSiSK(qi).

The latter representation is interesting because continethye echelon form it is relatively easy
to specify. We do not have to deal with rules for the ordershef aff-diagonal elements in the
AR and MA operators. The fact that it can be seen as a simpdmsixin of the VAR model is also
appealing. Practitioners are comfortable using VAR madsisimply adding lags af;; to equation
1 is a natural extension of the VAR model which could give a nmaesimonious representation.
It also has the advantage of putting the simple structuréherMA polynomials, the part which
complicates the estimation, rather than the AR part as irfitiad AR equation form. Notice that
in VARMA models, it is not necessary to include lags of all theovationsuy¢, - - - , ux in every
equation. This could entice practitioners to consider VARModels if it is combined with a simple
regression-based estimation method.

From (3.7). it is clear that any process that satisfies ({2}) also possesses a diagonal MA
representation (because the latter includes the final MAteou form as a special case). We will
now give conditions ensuring that a diagonal MA repres@mais unique. For that purpose, we
consider the following assumptions and use the followingrinéemma (which may be of separate
interest).

Assumption 3.5 The matricesb(z) and©(z) have the following form:
D(z)=Ig — D1z — - — PP, Oz) =Ig — 12— — g2
Assumption 3.6 ©(z) is diagonal:
O(z) = diag [011(2), ... , Ok K(2)]
whereb;;j(z) =1 — 60,12 — -+ — 04 g,2% andby; 4, #0,i =1, ..., K.

Assumption 3.7 For eachi = 1, ..., K, there are no roots common t®;,,(z) and 6;;(z), i.e.
there is no value* such that®;,(z*) = 0 andf;;(z*) = 0.

Lemma 3.8 Let [&(z), O(z)] and [®(z), O(z)] be two pairs of polynomial matrices which satisfy
the Assumption8.5t0 3.7. If

@(2)_1@(2') = @(Z)_lé(z), for 0 < |z| < py, (3.11)
wherep, is a positive constant, then
D(2) = &(z) andO(z) = O(z), Vz. (3.12)

The proof of this lemma as well as other propositions appetird Appendix. It entails that the
matrix &(z)~1O(z) has a unique factorization in terms of polynomial matrié¢s) andO(z), i.e.



the operatorsp(L) and©(L) are uniquely defined b$(L)~'O(L). It is also easy to see that the
condition
D(2)71O(2) = D(2)71O(2) (3.13)

could be replaced by
O(2)td(2) = O(2)1d(2) (3.14)

since by assumption the inverses@fz) and©(z) exist. Note that AssumptioB.5is equivalent
to (2.3). Itis interesting to note that the conditions of lreaB.8allow det[®(z)] anddet[O(z)] to
have roots on or inside the unit cirglg = 1. Further, Assumptio.7is weaker than the hypothesis
thatdet[®(L)] anddet[©(L)] have no common roots, which would be a generalization of shialu
identification condition for ARMA models. We can now showttBaVARMA model in diagonal
MA form has a unique representation.

Theorem 3.9 (Identification of diagonal MA equation form representation) Let{Y; : ¢t € Z}
be a VARMA process satisfying the conditigld ) - (2.6). If the assumption8.6 and 3.7 hold,
then the polynomial operatorB(L) and©(L) are uniquely defined.

Similarly, we can demonstrate that the final MA equation foepresentation is identified under
the following assumption.

Assumption 3.10 There are no roots common @ z) andf(z), i.e. there is no value* such that
&(z*) =0andf(z*) = 0.

Theorem 3.11 (Identification of final MA equation form representation) Let{Y; : ¢t € Z} be a
VARMA process satisfying the conditiqasl ) - (2.6). If the model is in final MA equation form and
Assumptior8.7 holds, then the polynomial operatof$ L) and©(L) are uniquely defined.

From equation (3.7), we see that it is always possible toimlaliagonal MA equation form
representation starting from any VARMA representatione©ase where we would obtain a diag-
onal and not final MA representation is when there are comractoffs across rows of columns of
O(L) asin (3.10).

A strong appeal of the diagonal and final MA equation form espntations is that it is easy
to get the equivalent (in term of autocovariances) invertMA representation of a non-invertible
representation. With ARMA models, we simply have to invém toots of the MA polynomial
which are inside the unit circle and adjust the standardadievi of the innovations (divide it by the
square of these roots): see Hamilton (1994, Section 3.79.s8@ime procedure could be applied to
VARMA models in diagonal or final MA equation form.

For VARMA representations where no particular simple gtreesis imposed on the MA part, at
the moment we are not aware of an algorithm to go from the neeriible to the invertible represen-
tation tough theoretically this invertible representatéxist and is unique as long ast[©(z)] # 0
for |z| = 1; see Hannan and Deistler (1988, chapter 1, section 3). Sigfittrine troublesome to use
a nonlinear optimization with these VARMA representatisirtece we don't know how to go from
the non-invertible to the invertible representation.



We can also consider the following natural generalizatibthe final AR equation form, where
we simply replace the scalar AR operator by a diagonal operat

Definition 3.12 (Diagonal AR equation form) The VARMA modg2.1) is said to be in diagonal
AR equation form i®(L) = diag|p;;,(L)] = Ix — &1L —--- — &, LP wherep;; (L) = 1 — ;1 L —
= Py p, LP andp = maxi <i< i (ps)-

Assumption 3.13 For each:i = 1, ... , K, there are no roots common tg,;(z) and ©;.(z), i.e.
there is no value* such thatp,;(z*) = 0 and©;4(z*) = 0.

Theorem 3.14 (Identification of diagonal AR equation form representation) Let{Y; : t € Z}
be a VARMA process satisfying the conditi¢2d ) - (2.6). If the model is in diagonal AR equa-
tion form and AssumptioB.13holds, then the polynomial operatofg L) and ©(L) are uniquely
defined.

From TheorenB.9, we can see that one way to ensure identification is to impossti@ints
on the MA operator. This is an alternative approach to thes @eweloped for example in Hannan
(1971, 1976) where the identification is obtained by refitigcthe autoregressive part to be lower
triangular withdeg[p,;(L)] <deg[p;;(L)] for j > 4, or in the final AR equation form wherg(L)
is scalar. It may be more interesting to impose constraintshe moving average part instead
because it is this part which causes problems in the estmafiVARMA models. Other identified
representations which do not have a simple MA operator delilne reversed echelon canonical
form [see Poskitt (1992)] where we the rows of the VARMA moitteéchelon form are permuted
so that the Kronecker indices are ordered from smallestgesd, and the scalar component model
[see Tiao and Tsay (1989)] where contemporaneous lingasftnanations of the vector process are
considered. A general treatment of algebraic and topabgitucture underlying VARMA models
is given in Hannan and Kavalieris (1984b).

4. Estimation

We next introduce elements of notation for the parametersuoimodel. First, irrespective of the
VARMA representation employed, we split the whole vectopafametersy in two partsy, (the
parameters for the AR part) and (MA part):

v =[r,72] - (4.1)

For a VARMA model in diagonal MA equation form, and-~, are

71 = [@10717 R Qolo,p7 R @K.,lu R ()OKQ,p] ) (42)
Yo = [91171, ey 9117(11, ey HKK,lu ey HKK,QK]a (43)

while for a VARMA model in final MA equation fornry, is

W2:[91,...79q].
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For VARMA models in diagonal AR equation form, we simply inve, and-~,:

Y1 = [(7011,17 ey @11,})17 e PKK s SOKK,pK] ) (44)
’)/2 = [91.,1, ey 91.,(1, ceey (9}(.71, ey 0Ko,q]> (45)

while for a VARMA model in final AR equation form,

v = [gol, ey cpp] . (4.6)

The estimation method involves three steps.
Step 1.Estimate a VAR{r) to approximate the VARMA{,q) and recuperate the residuals that we
will call U;:

np
0=~ 3 Yy @.7)
=1
withT > 2 K nr.
Step 2. With the residuals from step 1, compute an estimate of tharévce matrix of/;, Ly =
1> i1 UeUf and estimate by GLS the multivariate regression

B(L)Y; = [O(L) — Ix|U; + et (4.8)

to get estimatesl (L) and©(L) of (L) andO(L). The estimator is

-1

T T
=D 225" 2 >zl 55y, (4.9)
t=1 t=1
wherel = np + max(p, q) + 1. Setting
thl(p) [yl,t—h e YK -1y - 5 Ylt—py -+ yK,t*p] ’ (410)
Uit = [U1g—1, -5 UK =1y -+ 5 Ulj—gy -+ 5 UK t—q] (4.11)
Yit-1 = [Ukt—1r - Yk t—ppls (4.12)
g1 = [Ukt—1, - s Ukt—qp) (4.13)
the matrixZ,_, for the various representations is:
i Y, 1(p) -- 0 g - 0
ZP = A P |, (4.14)
I 0 ) 0 e g
[ Yia(p) - 0 U1
ZE = L S (4.15)
|0 - Yeoi(p) Gri—n
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Vii1 - 0 U, - 0

ZPR = A A (4.16)
| 0 o yrt-1 0 0 Uiy
[ yie1r Uig o0 0

Z{a" = : N (4.17)
| Yxi-1 O 0 U,y

whereDM A, FM A, DAR and F' AR respectively stands for Diagonal MA, Final MA, Diagonal
AR and Final AR equation form.
Step 3.Using the second step estimates, we first form new residuals

Uy =Yy =Y &Yii+» 6,01 (4.18)

Xy = Y 6;Xy;+Y,, (4.19)
j=1
q ~ ~

Wy = Y OWi i+, (4.20)
j=1

initiating with X; = Wi=0 for t < max(p,q). We also compute a new estimate ¥f, Ly =
T LT max(pq)+1 U,U]. Then we regress by GLS; + X; — W; on V;_; with

q
V, = Z OiVij + Z (4.21)
j=1

where Z, is just like Z; from step 2 except that it is computed with instead ofl/; to obtain
regression coefficients that we call) and@

1

T - T
4= R AP >/ VY S VLENO A+ X - W | (4.22)
t=max(p,q)+1 t=max(p,q)+1

The properties of the above estimates are summarized ioltbe/ing three theorems. Theorem
4.1is a generalization of results from Lewis and Reinsel (198%@re convergence is demonstrated
for mixing rather than i.i.d. innovations. We denote the liél&an norm byj| B||?> = tr(B’'B).

Theorem 4.1 (VARMA first step estimates) Let (i) the VARMA model be defined by equations
(2.1)-(2.6); (i) the strong mixing conditiond.16) hold; (iii) assume thatF[|u;|*t?°] < oo, Vi
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and for somé > 0. If n7 grows at a rate faster thalwg 7" with n% /T — 0, then for the first stage
estimates

nr
ST - )| = Oy(nrT~Y2). (4.23)
=1

Theorem 4.2 (VARMA second step estimates) et (i) the VARMA model be defined by equations
(2.D-(2.6) and be identified; (ii) let the strong mixing conditio&.16 hold; (iii) assume that
Ef|ui|*?9] < oo, Vi and for some > 0. If n grows at a rate faster thalog 7' with ny? /T — 0,
then the second stage estimates converge in quadratic roghait true value and

VT (5 —7) - N (o, j—lij—l)

where
I=> E [{Zg,lzg,lUt} {Zg,l,ng,lUt_j}] o T=E[ZL50 2]
j=—00

and Z,_ is equal to the matrixZ,_, whereU, is replaced byU;. Further, if m#./T — 0 with
mrp — oo then the matrix and.J can be consistently estimated in probability respectibgly

8 1 & . S c—1r7 1!

Ir = T'Z w(j, mr) Z {ZL1EU1Ut} {ZéflijUlUt—j}v (4.24)
Jj=—mr t=Il+]j]

3 1<

Jr = " Z 725522, (4.25)

t=l
with w(j,mz) = 1 — |j|/(mg + 1).

Theorem 4.3 (VARMA third step estimates) Let (i) the VARMA model be defined by equations
(2.1)-(2.6) and be identified; (ii) let the strong mixing conditio@.16) hold; (iii) assume that
E|ui|*T?°] < 00, Vi and for somé > 0. If ny grows at a rate faster thalwg 7' with ny? /T — 0,
then the third stage estimates converge in quadratic me#meiotrue value, and

VT (5 —~) -5 N (0, jflfjfl) (4.26)
with

I= > [V Z U (Vim0 Uy T =V e (4.27)

j=—o0

and V;_, is equal to the matri¥/;_; whereU, is replaced byU;. Further, if m4./T — 0 with
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mp — oo then the matrix and.J can be consistently estimated in probability respectibgly

. mT T 5 5 _ 5 B _ ’

o= 2 Y wGm) Y VLSO LS00 @)
j=—mr =011

. 1 T o

Jro= =Y, Vi (4.29)
t=max(p,q)+1

with I’ = max(p, q¢) + 1 and U; are the filtered residuals computed with

Notice the simplicity of this estimation method. Only thregressions are needed so we can
avoid all the caveats associated with nonlinear optinomati This is an important problem with
VARMA models where one typically deals with a high number afgmeters and numerical con-
vergence may be hard to obtain. This is especially impomdrgn we consider the fact that the
asymptotic distribution of our estimators, on which we wbbhse our inference, may be a bad
approximation to the finite-sample distribution in highpdinsional dynamic models. Because of
this, an estimation procedure which only requires lineathoas is interesting since it suggests that
simulation-based procedures — bootstrap techniques &mpbe — should be used, something that
would be impractical if the estimation is based on non-lireggatimizations.

Itis also important to mention that this procedure is not#jeto the representations considered
in this work. The expressions can be easily adapted to otlestified representatiore.g. the
echelon form. Since our estimation method is only based gressions we can afford to use a less
parsimonious representation whereas for nonlinear metfetighly important to keep the number
of parameters to a minimum.

For the estimation of VARMA models the emphasis has been aximizing the likelihood
(minimizing by nonlinear least squares) quickly. Theretare ways of doing this. The first is hav-
ing quick and efficient algorithm to evaluate the likeliho@dg. Lucefio (1994) and the reference
therein, Mauricio (2002), Shea (1989)]. The second is to flirdiminary consistent estimates that
can be computed quickly to initialize the optimization algon. We are not the first to present
a generalization to VARMA models of the Hannan and Rissad®82) estimation procedure for
ARMA models [whose asymptotic properties are further gtddi Zhao-Guo (1985) and Saikkonen
(1986)]; see also Durbin (1960), Hannan and Kavalieris 4898Hannan, Kavalieris, and Mack-
isack (1986), Poskitt (1987), Koreisha and Pukkila (199®80b, 1995), Pukkila, Koreisha, and
Kallinen (1990), Galbraith and Zinde-Walsh (1994, 1997)sidilar method in three steps is also
presented in Hannan and Kavalieris (1984a) where the tteqlis presented as a correction to the
second step estimates.

There are many variations around the innovation-substitudpproach for the estimation of
VARMA models but with the exception of Hannan and Kavali€fi984b) and us, none use a third
step to improve the efficiency of the estimators, surely beeahese procedures are often seen as
a way to get initial values to start up a nonlinear optimatje.g, see Poskitt (1992), Koreisha
and Pukkila (1989), Lutkepohl and Claessen (1997)]. In driheam, Koreisha and Pukkila (1989),
lagged and current innovations are replaced by the comelapg residuals and a regression is per-
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formed. This is asymptotically the same as the first two stémsir method. Other variations are
described in Hannan and Kavalieris (1986), Hannan and IBe{§t988), Huang and Guo (1990),
Spliid (1983), Reinsel, Basu, and Yap (1992), Poskitt antkéjiohl (1995), Litkepohl and Poskitt
(1996b) and Flores de Frutos and Serrano (2002). Anotheoagp is to use the link that exist
between the VARMA parameters and the infinite VAR and VMA emamtations. See Galbraith,
Ullah, and Zinde-Walsh (2000) for the estimation of VMA mtxesing a VAR.

Here, however, we supply a distributional theory which Baldder much weaker assumptions.
In the articles cited above, the data generating processessdered have innovations that are either
i.i.d. or at a minimum form a martingale difference sequeridds allow us to study a broader class
of models,e.g. temporally aggregated processes, marginalized processe& representation of
nonlinear models.

We can ask ourselves what is the cost of not doing the nomlgstamation. For a given sample
size we will certainly lose some efficiency because of the $ikep estimation. We can nonetheless
compare the asymptotic variance matrix of our estimateh thi¢ corresponding nonlinear esti-
mates. We first can see that if the innovations are a m.dem, tthe asymptotic variance of our
linear estimates is the same as the variance of maximunihigdad estimates under Gaussianity.
The variance of maximum likelihood estimates for i.i.d. &sian innovations is given in Lutkepohl
(1993):

I = plim [ Z 8Ut -1 aUt (4.30)

We can transform this expression so as to obtaln an equatioa ctosely related to our previous re-
sults. First, we splity in the same two vectorg, (the AR parameters) ang, (the MA parameters),
then we comput®U, /9~ anddU, /dv,. We know that

Uy =Y, =D, 1 —- =D, + 601U + -+ +60,U;,. (4.31)

So taking the derivative with respect6:

OUt aUt 1 8Utfq
= Z e 4.32
87/1 ol:dim(vy,),t—1 + @1 6’)/1 + + @q a’)/,l s ( )
oU,
@(L) 87’t = Zol:dim(wl),t—l s (4.33)
1
oU, _
/t = @(L) IZOI:dim('yl),t—l ) (434)
974

WhereZe:.dim(y,),t—1 is the firstdim(v;) columns ofZ,_,. Similarly the derivative with respect to
.
7218

oU; oU;_q oU;_
87/2 = Zodzm('yl)Jrl :dim(y),t—1 + @1 a , +-+ @q 87,2(1
= O(L) " Zedim(y,)+1:dim(y) -1 (4.35)
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Combining the two expressions we see that

o Vi1 (4.36)
so the variance matrix for maximum likelihood estimatés equal to the matrix —! from the third
step estimation. Moreover i, is a m.d.s. we see that we have the equality= [ so that the
asymptotic variance matrix that we get in the third step afroethod is the same as one would get
by doing the maximum likelihood.

If the innovations are merely uncorrelated, then we can rgdime the results of Francq and
Zakoian (1998) who proved the consistency of nonlineatt lisqgares for univariate weak ARMA
models. The authors show that the asymptotic distributfidheestimates are

VT (3 = 79) 2 N (0,071 1Y) (4.37)
wherey = {gol, cees P b1y Gq},
ad ou Ouy—_p Ouy Ou
t t— . ¢ Ouy
I1=1 Z Cov |:Uta—’y ;s Up—k 67 :| y J =2F |:a—’y 8—7/:| . (438)

k=—o0

Without formally proving it we can generalize these expassfor the multivariate case. Writ-
ing the multivariate nonlinear least squares problem andgda first order expansion of the first
order condition we find that the expression for the asymptobivariance matrix of the estimates
would again be/~'1.J~! with

o0 /
I=4 )" Cov [Ut >! g—gf s U 271 @gfy/"} ., J=2E [%Zt r1 ?fﬂ (4.39)
k=—o0

In our previous results we saw that/; /0y’ = V;_;. From this we see that = 2J, I = 41
and our third-step estimator have the same asymptoticn@riaovariance matrix as maximum
likelihood or non-linear least squares estimators depgndn the properties of the innovations. To
get a feel for the loss of efficiency in finite samples due téa@pg the true innovations by residuals
from a long VAR we performed Monte Carlo simulations and régiee results in section 6.

5. Order selection

We still have unknowns in our model, the orders of the AR and dfp&rators. If no theory specifies
these parameters, we have to use a statistical procedunedse them. We propose the following
information criterion method to choose the orders for VARNM®dels in the different identified

representations proposed in Section 3. In the second st afstimation, we compute for all
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p; < P andg; < @ the following information criterion:

(log T)'+9

log(det ) + dim(y) T

, 6>0. (5.1)
We then choos@; andg; as the set which minimizes the information criterion. Weuass that the
upper boundP and@ on the order of the AR and MA part are bigger than the true wahie; and
g; (or that they slowly grow with the sample size). The progsrdfp;, andg; are summarized in
the following theorem.

Theorem 5.1 (Estimation of the orderp and ¢ in VARMA models) Let (i) the VARMA model be
defined by equation2(1)-(2.6) and be identified; (ii) let the strong mixing conditio®.16 hold;
(i) assume that??[|u;|*+2°] < co, Vi and for some > 0. If n grows at a rate faster thatog 7'
with np2/T — 0 and the orders are chosen according (1), thenp; andg;, i = 1, ... , K,
converge in probability to their true value.

In practice, this procedure can lead to a search over too maualels for the diagonal represen-
tations. A valid alternative is to search for the true ordsrproceeding equation by equation. In the
second step of the estimation, instead of doing a simultestimation, just perform univariate
regressions. For a VARMA model in diagonal MA equation foregress

pe K qr
Ykt = Z Z Phj,iYit—i = Z Okk,jlk,t—j + €kt (5.2)
i=1 j=1 j=1
fork=1, ..., K, while fora VARMA models in diagonal AR equation form we regs
Pk qg. K
Ykt = Z Pk, iYk,t—i — Z Z Oj,ithjt—i + €kt. (5.3)
i=1 i=1 j=1

We then chosg;. andg, as the orders which minimize the following information erion:

(log T)1+6

- (5.4)

log(o%) + 9P ar.)
whered > 0 andg(pk, qx) = pr K + qx Or g(pr,qr) = pr + qi K for the diagonal MA or AR
equation form representation respectively. The globatofdr the autoregressive operator is then
p = max(p1, ..., px) for the diagonal MA representation and, similarly for thagbnal AR
representationy = max(qy, .. , k). We see that this equation by equation selection procedure
is not only easier to apply, it can lead to more parsimoniegsasentations by identifying rows of
zeros coefficients ib; or ©;.

Theorem 5.2 (Estimation of the orderp and ¢ in diagonal VARMA models) Let (i) the VARMA
model be defined by equatiors 1)-(2.6) and be in either the diagonal MA or AR equation form;
(ii) let the strong mixing condition2(16) hold; (iii) assume thatF[|u;|**?’] < oo, Vi and for
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somes > 0. If ny grows at a rate faster thatog 7' with ny-2 /T — 0 and the orders are chosen
according to(5.4), thenp; andg;, i = 1, ... , K, converge in probability to their true value.

The criterion in equation (5.1) is a generalization of tHelimation criterion proposed by Han-
nan and Rissanen (1982) which the authors acknowledged thast in fact be modified to provide
consistent estimates of the ordeandq. The original criterion was

(log T)°

1 ~2
0gd” + (p+q) T

(5.5)
with § > 0. But in Hannan and Rissanen (1983) they acknowledgedthato? is O(ny7 1) and
not O(T~1) so the penaltylog T)°/T is not strong enough. The authors proposed two possible
modifications to their procedure. The simpler is to téke 7)'*? instead of(log 7')° in the infor-
mation criterion so that the penalty pr-¢ will dominatelog 2 in the criterion. The second, which
they favored and was used in later work [see Hannan and Kaga(iL984b)], is to modify the first
step of the procedure. Instead of taking = O(log T') they used another information criterion to
choose the order of the long autoregression and they itetgewhole procedure picking a poten-
tially different p andq at every iteration. A similar approach is also proposed iskitt(1987). In
this work we prefer the first solution so as to keep the proeeds simple as possible.

For the identification of the order of VARMA models, it all dapds on the representation used.
Although it was one of the first representation studied, natimwork has been done with the
final AR equation form. People felt that this representatioes VARMA models with too many
parameters. A complete procedure to fit VARMA models undé tbpresentation is given in
Lutkepohl (1993): One would first fit an ARM@&;, ¢;) model to every univariate time series, using
maybe the procedure of Hannan and Rissanen (1982). To heildARMA representation in final
AR equation form, knowing that the VAR operator is the sanresfeery equation we would take it
to be the product of all the univariate AR polynomials. Thisuld give a VAR operator of order
p= Zfil p;. Accordingly, for the VMA part we would take = maxy[qx + Zf;#k p;]. Itis no
wonder that people feel that the final equation form uses toyrparameters.

For VARMA models in echelon form, there has been a lot morekvdane on the identification
of Kronecker indices. The problem has been studied by, anotimeys, Hannan and Kavalieris
(1984b), Poskitt (1992) and Lutkepohl and Poskitt (1996lmn-stationary or cointegrated systems
are considered by Huang and Guo (1990), Bartel and Lutkef88B), and Liutkepohl and Claessen
(1997). Additional references are given in Litkepohl (1,99Bapter 8).

A complementing approach to specify VARMA models, which é&séd on Cooper and Wood
(1982), aims at finding simplifying structures via some camations of the different series to obtain
more parsimonious models. It includes Tiao and Tsay (19889y (1989a, 1989b, 1991) and Nsiri
and Roy (1992, 1996).

The final stage of ARMA model specification usually involvebzing the residuals.e. check-
ing if they are uncorrelated. Popular tools include porttean tests such as Box-Pierce [Box and
Pierce (1970)] and Ljung-Box [Ljung and Box (1978)] testsd dheir multivariate generalization
[Litkepohl (1993, Section 5.2.9)]. Those tests are notctliyeapplicable in our case because they
are derived under strong assumptions for the innovatiordefiendence or martingale difference).
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Fortunately, we could extend to multivariate ARMA models theory for BP and LB tests devel-
oped by Francq, Roy, and Zakoian (2003) for weak ARMA mod&lsh extension is left as future
work.

6. Monte Carlo simulations

To illustrate the performance of our estimation method wetrveo types of simulations. For the
first type, weak VARMA models were simulated where the intioves are not independent nor a
m.d.s. but merely uncorrelated. The second type of sinmmatinvolves strong VARMA models
(VARMA models with i.i.d. Gaussian innovations). All thensillated models are bivariate so the
results are easier to analyze. The results are generategl@ziversion 3.30 on Linux [see Doornik
(1999)]. We performed 1000 simulations for each model. Bseailts with strong VARMA models
being comparable to those for weak VARMA models, we only repasults for the latter.

We simulate weak VARMA processes by directly simulating kvemovations, from which we
build the simulated series. From the results in Drost anthhiij (1993), we know that the temporal
aggregation of a strong GARCH process (where the standatdimovations are i.i.d.) will give a
weak process Supposé’; is given by the following bivariate ARCH model:

U, = H'%,, H =0+aU,_U_, (6.1)

wheree; is i.i.d. N(0,I2), Htl/2 is the Cholesky decomposition éf; and« is a scalar. If we
considerU; as a stock variable, then temporal aggregatioti;adver two periodsi.e.

U; = Uy (6.2)

will give a weak process. The seri&s will be uncorrelated but not a m.d.s., its mean will be zero
and the variance will b&2(1 — o?) /(1 — «).

In these examples, because the innovations are not a nivd.sannot do maximum likelihood.
We instead employ nonlinear generalized least-squareS)&e. we minimize the nonlinear least
squares, compute an estimate of the variance matrix of titwvations and then do nonlinear GLS.
We did not apply this procedure, partly to reduce the estonaime in our Monte Carlo study,
partly because there is no asymptotic gain in iterating.

In these simulations the sample size is 250 observationghwkpresent about 20 years of
monthly data, a reasonable sample size for macroeconontéc deables 1 gives results for a
VARMA model in final MA equation form [VARMA(1, 1)], while results for VARMA models
in diagonal MA equation form are given in Tables 2 and 3 [VARMAL) with ¢ = (1,1) and
VARMA(2,1) with ¢ = (1, 1) respectively]. We present the results (mean, standaratiens, root
mean square error, 5% quantile, 95% quantile and mediarthéosecond (when the number of
parameters does not exceed five) and third step estimatkshamonlinear GLS estimates (using

1Another way of simulating a weak VARMA process is to time-gagte a strong VARMA process with innovations
that have skewed marginal distributioresg, a mixture of two Gaussian distributions with different med&gut mean zero
unconditionally). We can appeal to the results of Francqzakbian (1998, Section 2.2.1) to claim that the resulting
VARMA is only weak.
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the true value of the parameters as initial values). Sanfipteghich the optimization algorithm did
not converge were dropped (this happened for less than 1Beaitulations). In our simulations,
we took

0.7 1.0

From looking at the RMSE, a first thing to notice is that theaea be sizable improvement in
doing the third step. Some of the third step RMSEs in Tablexi®?aare more than 50% smaller than
for the second step. This is an interesting observationiderisg that the third step basically involve
only one extra regression. Comparing the third step RMSHgl@RMSESs for the nonlinear GLS
estimates, we see that the former are usually no more thanbidggér. This is also an interesting
observation. The cost of avoiding a numerical optimizatishich can become quite challenging as
the number of time series studied or order of the operatere@ses, appears to be small.

In the top part of these tables we also present the resulthdoselection of the order of the
operators using our proposed information criterion. Fodel®in final MA equation form, we have
to select the orders andg, and for models in diagonal MA equation, the selection isrgvey;
andgs. In Table 1, we see that for VARMA models in final MA equatiomrfothe most frequently
chosen orders are the true ones, and the criterion will teruick a higher value fog than forp.
This result might partially be skewed by the fact that thewsated models have a highly persistent
moving averaged; = 0.9). For VARMA models in diagonal equation form (Tables 2 andv@
get similar results. The orders which are selected with tgkdst frequency are the true ones, but
for some models we pick the wrong orders more than 50% of the. ti

These results for the information criterion are fairly séws to the value ot andcy, more so
for the model with a diagonal representation. This can bepeoed to non-parametric regressions
and the selection of the bandwidth parameter. The perfaceahnthe information criterion with
respect to these two parameters should be investigatdufurt

0= [ L0 0.7 } C a=03 6.3)

7. Application to a macroeconomics model of the U.S. monetgipolicy

To illustrate our estimation method and the gains that cantiteined from using a more parsi-
monious representation, we fit VARMA and VAR models to six msaconomic time series and
compute the impulse-response functions generated by eadelmWhat people typically do to
get the impulse-response functions is first fit a VAR to theirtiple time series and then get the
implied infinite VMA representation. The order of the VAR uaeed for macro series is usually
high. For example, Bernanke and Mihov (1998) use a VAR(13htwolel six monthly macroeco-
nomic time series when about 30 years of data are availaltle.r@sulting standard errors for the
impulse-response functions are very large, like in mostroemonomic study. We can ask ourselves
how much of this is due to the fact that so many parametersstimaded. To try to answer this
we will study the impulse-response functions generated ARMA models estimated on the same
data. We will concentrate on VARMA models in final MA equatifamm.
Our example is based on McMillin (2001) who compare numeidastification restrictions
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Table 1. Estimation of a weak final MA equation form VARNIA1).
Weak final MA equation form VARMAL, 1).

The simulated model is a weak VARMA, 1) in final MA equation form withp,; ; = 0.5, 0191 =
—0.6, 9911 = 0.7, 9991 = 0.3 and@; = 0.9. The variance of the innovations is 1.3 and the
covariance is 0.91. Sample size is 250, the length of the BRdgs ny = 20, the number of
repetition is 1000. The parameter in the criteriod is 0.3.

p\q| O 1 2 3 4 5
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.736 0.101 0.024 0.007 0.003
0.000 0.002 0.107 0.013 0.003 0.003
0.000 0.000 0.000 0.001 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000

Value Average Std.dev. RMSE 5% 95%  Median
Second step
ai(1,1) 0.5 0.4255 0.0629  0.0975 0.3243 0.5307 0.4281
a1(1,2) -0.6 -0.6390 0.0515 0.0646 -0.7239 -0.5541 -0.6401
a1(2,1) 0.7 0.6682 0.0586  0.0666 0.5677 0.7599 0.6686
a1(2,2) 0.3 0.2117 0.0551  0.1041 0.1195 0.3043 0.2129
by 0.9 0.8128 0.0593  0.1054 0.7148 0.9079 0.8139
Third step
a1(1,1) 0.5 0.5001 0.0505 0.0505 0.4174 0.5857 0.5006
a1(1,2) -0.6 -0.5896 0.0469  0.0481 -0.6685 -0.5154 -0.5899
a1(2,1) 0.7 0.6859 0.0524  0.0543 0.6018 0.7682 0.6852

)

a b wWwNPF Ol—

ay(2,2 0.3 0.3111 0.0494 0.0507 0.2341 0.3911 0.3101
b1 0.9 0.8978 0.0348 0.0349 0.8368 0.9494 0.9000

NLLS

ar(1,1 0.5 0.4952 0.0504 0.0507 0.4120 0.5789 0.4962

)
ai1(1,2) -0.6 -0.6089 0.0432 0.0441 -0.6813 -0.5402 -0.6094
a1(2,1) 0.7 07017 0.0494 0.0494 0.6209 0.7810 0.7023
a1(2,2) 0.3 02875 0.0460 0.0476 0.2138 0.3660 0.2868
by 0.0 0.8866 00282 0.0312 0.8378 0.9294 0.8884
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Table 2. Estimation of a weak diagonal MA equation form VARMAL)
Weak diagonal MA equation form VARMA, 1)

The simulated model is a weak VARMA, 1) in diagonal MA equation form withp,; ; = 0.5,
©121 = —0.6, 0911 = 0.7, 090 ; = 0.3, 011 = 0.9 andd; ; = 0.7. The variance of the innovations
is 1.3 and the covariance is 0.91. Sample size is 250, thehl@ighe long AR isnp = 20, the
number of repetition is 1000. The parameter in the criteisan= 0.3.

(p.q1,q2) | Frequency|| (p,q1,¢2) | Frequency

111 0.588 1,13 0.026
12,1 0.123 2,11 0.014
11,2 0.062 14,1 0.014
131 0.045 151 0.012
2,2,2 0.043 115 0.010

Value Average Std.dev. RMSE 5% 95%  Median
Second step
a1(1,1) 0.5 0.4277 0.0601  0.0940 0.3284 0.5233 0.4303
a1(1,2) -0.6 -0.6439 0.0507 0.0671 -0.7291 -0.5594 -0.6444
a1(2,1) 0.7 0.6732 0.0514 0.0579 0.5863 0.7550 0.6729
a1(2,2) 0.3 0.2314 0.0526  0.0865 0.1446 0.3193 0.2309
b1(1) 0.9 0.8130 0.0707 0.1122 0.6976 0.9266 0.8150
b1(2) 0.7 0.6364 0.0708 0.0952 0.5185 0.7476 0.6393
Third step
a1(1,1) 0.5 0.5064 0.0469  0.0473 0.4324 0.5845 0.5062

a1(1,2) -0.6  -0.5960 0.0552 0.0554 -0.6762 -0.5183 -0.5969
a1(2,1) 0.7 0.6988 0.0418 0.0418 0.6314 0.7659 0.6997
a1(2,2) 0.3 0.3021 0.0469 0.0469 0.2272 0.3830 0.3032
b1(1) 0.9 0.8885 0.0442 0.0456 0.8100 0.9531 0.8910
b1(2) 0.7 0.6967 0.0522 0.0523 0.6092 0.7843 0.6969
NLLS
ai(1,1) 0.5 0.4973 0.0453 0.0453 0.4222 0.5703 0.4972
a1(1,2) -0.6  -0.6116 0.0443 0.0458 -0.6864 -0.5371 -0.6114
a1(2,1) 0.7 0.7009 0.0411 0.0411 0.6334 0.7683 0.7006
a1(2,2) 0.3 0.2897 0.0441 0.0453 0.2185 0.3645 0.2893
b1(1) 0.9 0.8874 0.0349 0.0371 0.8260 0.9385 0.8894
b1(2) 0.7 0.6950 0.0446 0.0449 0.6198 0.7673 0.6955
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Table 3. Estimation of a weak diagonal MA equation form VAR2AL)
Weak diagonal MA equation form weak VARMA(2,1).

The simulated model is a weak VARMA(2,1) in diagonal MA egortform with ¢, ; = 0.9,
12,1 = —0.5, 9911 = 0.3, 0901 = 0.1, 0112 = =0.1, 0195 = =0.2, 31 5 = 0.1, 9 = —0.15,
11 = 0.9, andp,; = 0.7. The variance of the innovations is 1.3 and the covariance9s.
Sample size is 250, the length of the long ARnwis = 20, the number of repetition is 1000. The
parameter in the criterion is= 0.2.

(p,q1,42) | Frequency|| (p,q1,42) | Frequency

2,1,1 | 0.267 2,1,0 | 0.047
1,21 | 0.204 2,2,1 | 0.031
2,3,0 | 0.057 2,40 | 0.029
1,3,1 | 0.051 2,2,2 | 0.020
2,3,1 | 0.050 0,3,1 | 0.020
Value Average Std.dev. RMSE 5% 95%  Median

third step

ai(1,1) 090 0.9205 0.1016 0.1036 0.7554 1.0882 0.9204
) -0.50 -0.5137 0.0922 0.0932 -0.6643 -0.3620 -0.5142
) 030 0.3036 0.0802 0.0802 0.1737 0.4326 0.3020
) 010 0.1071 0.1666 0.1668 -0.1533 0.3802 0.1037
) -0.10 -0.0716 0.0937 0.0979 -0.2302 0.0781 -0.0715
) -0.20 -0.1976 0.1262 0.1262 -0.3995 0.0159 -0.1995
) 010 0.1014 0.1127 0.1127 -0.0969 0.2749 0.1111
) -0.15 -0.1326 0.1363 0.1374 -0.3462 0.1156 -0.1440

bi(1 0.90 0.8917 0.0774 0.0778 0.7654 1.0079 0.8973
by (2 0.70  0.7084 0.1423 0.1426 0.4724 0.9397 0.7112
NLLS
ai(1,1) 090 0.8787 0.0914 0.0939 0.7254 1.0347 0.8799
a1(1,2) -0.50 -0.5015 0.0918 0.0918 -0.6523 -0.3517 -0.5008
a1(2,1) 030 0.2957 0.0801 0.0802 0.1665 0.4244 0.2927
a1(2,2) 010 0.0715 0.1252 0.1284 -0.1412 0.2643 0.0748
az(1,1) -0.10 -0.0815 0.0887 0.0906 -0.2250 0.0622 -0.0814
az(1,2) -0.20 -0.2328 0.1144 0.1190 -0.4268 -0.0491 -0.2332
az(2,1) 0.10 0.1243 0.0901 0.0933 -0.0216 0.2639 0.1278
az(2,2) -0.15 -0.1831 0.1074 0.1124 -0.3522 -0.0050 -0.1826
b1(1) 0.90 0.8861 0.0404 0.0427 0.8133 0.9448 0.8892
b1(2) 0.70  0.6789 0.0883 0.0908 0.5215 0.8065 0.6889
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for the structural effects of monetary policy shocks usimgdame dataset as Bernanke and Mihov
(1998)? The series are plotted in Figure 1. One of the model studied\#&R applied to the
first difference of the series, in ordggdpm (psscorpgdpn), fyff, nbrec] trl, psscom With an
argument based on Keating (2002), the author state thag tisis ordering of the variables the
Cholesky decomposition, based on long-run macroeconagsicictions, which are described in an
appendix, of the variance matrix of the innovations willntéy the structural effects of the policy
variable nbreclwithout imposing any contemporaneous restrictions ambegariables. Since the
model is in first difference, the impulse-response at a goreer is the cumulative shocks up to that
order.

By fitting a VAR(12) to these series we get basically the samguise-response functions and
confidence bands as in McMillin (2001) They are plotted inufég2. The impulse-response func-
tion for the output and federal funds rate tends to zero a®iter increases which is consistent
with the notion that a monetary variable does not have a leng impact on real variables. The
impulse response of the price level increases as we let tlex grow and does not revert to zero.

We next estimate VARMA models for the four representatiorgppsed in this work. The in-
formation criterion picked a VARMA(3,10) for the final MA regsentation. The impulse-response
functions for this model are plotted in Figure 3. The behawvitthe impulse-response function for
GDP, the federal funds rate and the price level from the VARM@Adels are similar to what we
obtained with a VAR. The most notable differences are thairihial decrease in the federal funds
rate is smaller (0.20 versus 0.32 percentage point) andEi&peaking earlier with the VARMA.

Itis not surprising that VAR and VARMA models are giving slariimpulse-response functions
since they both are a way of getting an infinite MA represématWhat is more interesting is the
comparison of the width of the confidence bands for the VAR YARMA'S impulse-response
functions® For GDP and the federal funds rate, we see that the bands aiie smaller for the
VARMA model and they shrink more quickly as the horizon irages. The confidence bands for
these two variables should be collapsing around their IR€esihere should be no long-term effect
of the policy variable so the uncertainty should decreagbéaborizon increases. The situation is
different for the price level. For this variable the confiderband grows with the order. Again this
iS not so surprising because we expect that a change in thbaroowed reserves should have a
long-term impact on the price level. With a non-dying impiag natural that the uncertainty about
this impact can grow as time passes.

The result that the confidence bands around IRFs can be shittiea VARMA than with a VAR
could be expected since these models are simple extenditimes\WAR approach. The introduction
of a simple MA operator allows the reduction of the require® érder so we can get more precise
estimates, which translate into more precise impulseerespfunctions.

Another way of comparing the performance of VAR and VARMA retgdis to compare their

2The dataset consist of the log of the real G, total bank reservesr(), nonborrowed reservesitfrec),
federal funds rateyff), log of the GDP deflatompgdpn), log of the Dow-Jones index of spot commaodity prigesacon).
These are monthly data and cover the period January 1962deniieer 1996. The monthly data for real GDP and the
GDP deflator were constructed by state space methods, ufistgphmonthly interpolator variables and assuming that
the interpolation error is describable as an AR(1) procBsgh total reserves and nonborrowed reserves are norrdalize
by a 36-month moving average of total reserves.

3The confidence bands are computed by performing a pararbettstrap using Gaussian innovations.
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Table 4. RMSE for VAR and VARMA models]RMSE for VAR and VARMA adlels

Stepahead VAR VARMA diag. MA VARMA final MA

1 0.0834 0.0764 0.0743
p=1 p=0 p=0
qg=(1,2,2,1,1,1) ¢g=12
3 0.0799 0.0788 0.0744
p=1 p=1 p=1
qg=(1,1,1,1,0,1) ¢=12
6 0.0826 0.0767 0.0790
p= p=3 p=1
q=(4,4,1,4,0,4) ¢=12
9 0.0871 0.0774 0.0829
p= p=4 p=0
q=(5,5,3,4,5,5) q=12
12 0.0819 0.0728 0.0803
p= p=4 p=1
q=(3,5,3,4,5,5) q=12

out-of-sample forecasts using a metecy, RMSE as in our example). Employing the same dataset
as above, we recursively estimated the models and computenlut-of-sample forecasts, starting
at observation 300 until the end of the sample. The orderbeoflifferent models are chosen by
minimizing the RMSE over the possible values (we impose greupound)j. The results for the
VAR, VARMA diagonal MA and VARMA final MA representations apesented in Table 4. We
see that reduction of up to 11% of the RMSE can be obtained ing asVARMA model instead of

a VAR.

8. Conclusion

In this paper, we proposed a modeling and estimation mettchvease the use of VARMA mod-
els. We first propose new identified VARMA representatiohs, final MA equation form and the
diagonal MA equation form. These two representations amglsi extensions of the class of VAR
models where we add a simple MA operator, either a scalar @godal operator. The addition of
a MA part can give more parsimonious representations, yesitnple form of the MA operators
does not introduce undue complications.
To ease the estimation we studied the problem of estimatxig\WA models by relatively sim-

ple methods which only require linear regressions. Forghgtose, we considered a generalization

“For the VARMA diagonal MA representation we don’t searchraaiéthe possible orders because it would involve
the estimation of too many models. We instead proceed in tejss We first impose that all thg orders are equal
which gives us an upper bound for the value of MA orders. Incaseé step, one equation after the other we check to see
if a lower order for the MA order of that equation would lowbetRMSE.
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Figure 2. Impulse-response functions for VAR model.

A VAR(12) is fitted to the first difference of the six time sexiél he confidence band represent a one standard deviatierstditdard
deviations are derived from a parametric bootstrap usings&an innovations.
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Figure 3. Impulse-response functions for VARMA model in fikBA equation form.

A VARMA(3,10) is fitted to the first difference of the six timeses. The confidence band represent a one standard deviatie
standard deviations are derived from a parametric boptsisang Gaussian innovations.
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of the regression-based estimation method proposed bydtaanmd Rissanen (1982) for univariate
ARMA models. Our method is in three steps. In afirst step a AR is fitted to the data. In the
second step, the lagged innovations in the VARMA model gotaoed by the corresponding lagged
residuals from the first step and a regression is perfornred.third step, the data from the second
step are filtered and another regression is performed. Weeshthat the third-step estimators have
the same asymptotic variance as their nonlinear countefaussian maximum likelihood if the
innovations are i.i.d., or generalized nonlinear leasaseg!if they are merely uncorrelated). In the
non i.i.d. case, we consider strong mixing conditions, @athan the usual martingale difference
sequence assumption. We make these minimal assumptiohs ambvations to broaden the class
of models to which this method can be applied.

We also proposed a modified information criterion that gisessistent estimates of the orders
of the AR and MA operators of the proposed VARMA represeateti This criterion is to be
minimized in the second step of the estimation method ovet afpossible values for the different
orders.

Monte Carlo simulation results indicates that the estiamathethod works well for small sample
sizes and the information criterion picks the true valuehefarderp andq most of the time. These
results holds for sample sizes commonly used in macroeciaspne. 20 years of monthly data or
250 sample points. To demonstrate the importance of usifgMWA models to study multivariate
time series we compare the impulse-response functionshendut-of-sample forecasts generated
by VARMA and VAR models when these models are applied to thas#d of macroeconomic time
series used by Bernanke and Mihov (1998).
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A. Proofs

LemmaA.1 LetU andV be random variables measurable with respecfth, and F2°, respec-
tively whereF? is theo-algebra of events generated by sets of the fo(ii;,, X;,, ..., X;,) €
E,} witha < i) < iy < -+ < i, < b, and E,, is somen-dimensional Borel set. Let, ry, 3
be positive numbers. Assume thak|,, < oo and ||V ||,, < oo where||U||, = (E[|JU[]")Y/". If
rit 47yt + 73t = 1, then there exists a positive constapindependent o/, V andn, such that

E[UV] = EUIEWV] < o0, IV lrace(m) /7.

wherea(n) is defined in equatior2(15).

Proof. See Davydov (1968).

Lemma A.2 If the random proces§y;) is strictly stationary and satisfies the strong mixing cendi
tion (2.19, with E|y,|*™? < oo for somes > 0, and if}-32 | a(j)*/ %) < oo, then

o> = E[(ye — Ewe)®] + 2> E[(ve — Elwe]) (wers — Elwnss))] -
j=1

Moreover, ifo # 0 andE[y,] = 0, then

1 z
Pr [u < z] —_— — e~V 2 .
oVt

Proof. See lbragimov (1962).
Proof of Lemma 3.8. Clearly,#(0) = ©(0) = Ix anddet[®(0)] = det[@(0)] = 1 # 0. The
polynomialsdet[®(z)] anddet[O(z)] are different from zero in a neighborhood of zero. So we can
choosep; > 0 such thatdet[®(z)] # 0 anddet[O(z)] # 0 for 0 < |z| < p;. It follows that the
matrices®(z) andO(z) are invertible fol0 < |z| < p,, wherep, = min[pg, p;].
Let
Co={2z€C|0<|z| <pg} -

Then the matrice®(z) and©(z) are invertible forz € Cj, and

B 1
= det[®(2)]

1

71 _
(=) = det[6(2)]

P*(z), O(2)7" 0(2),

where®*(z) and©*(z) are matrices of polynomials. Consequently, foe Cj, each element of

@(z)~! andO(z)~ ! is a rational function whose denominator is different froenaz Thus®(z)~!
and©(z)~! are matrices of analytic functions @, and the function

¥(z) = D(2)71O(2)
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is analytic in the circlé® < |z| < p,. Hence, it has a unique representation of the form
o
W(Z) = Zwkzk, z € Cy.
k=0

By assumption,

U(z) = d(2)7'0(2) = P(2)7'6(2)

b(2)0(2)"10(z) =
D(2)P(2)" = O(2)0(2)7! = A(2), (A.1)
whereA(z) is a diagonal matrix becaug») and©(z) are both diagonal,

where

DI
~—

ii(z
ii(z
From (A.2), it follows that eachi;;(z) is rational with no pole irC such thaty;;(0) = 1, so it can
be written in the form

ei(2)

E)
wheree;(z) and f;(z) have no common rootg;(z) # 0 for z € Cy andd;;(0) = e;;(0) = 1. From
(A.1), it follows that forz € Cy

522(2) = s 9“(0) = 1, 522(0) = 9,5(0), 1= 1, ey K. (A2)

)
~—

9”(2’) = (5“(2’)9“(2), @ij(z) = 51‘1‘(2)@“(2’), i,j = 1, e, K.

We first show thad;; (z) must be a polynomial. If;(z) # 1, then its order cannot be greater than
the orderg; = ded#;;(z)] for otherwisef;;(z) would not be a polynomial. Similarly, if;(z) # 1
and is a polynomial of order less or equaltothen all its roots must be roots @f;(2) andy;;(z),
for otherwised;; () or ¢,;(z) would be a rational function. if; > 1, these roots are then common
to 0;(z) andp;;(2), j = 1, ..., K, which is in contradiction with Assumptio8.7. Thus the
degree off;(z) must be zero, andl;(z) is a polynomial.

If 6;;(2) is a polynomial of degree greater than zero, this would Etfitai6;; (z) andg,;(z) have
roots in common, in contradiction with Assumpti8ri7. Thusd;;(z) must be a constant. Further,
0;:(0) =1sothatfori=1, ..., K,

0ii(2) = 0:i(2), @i5(2) = ¢3;(2), j=1...,K,

hence B
O(z) =0(z), PD(z)=2(2).
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Proof of Theorem 3.9.Under the assumption that the VARMA process is invertible,can write
o(L) 'e(L)Y; = U

Now suppose by contradiction that there exist operafgis) and©(L), with ©(L) diagonal and
invertible, andd(L) # (L) or ©(L) # O(L), such that

O(L)"'d(L) = O(L)"'d(L),
If the above equality hold, then it must also be the case that
O(2)1d(2) = O(2)1d(2), Vz e Oy,
whereCy = {z € C | 0 < |z| < py} andp, > 0. By Lemma3.8, it follows that
D(2) =d(2), O(2)=6(z) V=

Hence, the representation is unique.

Proof of Theorem 3.11.The proof can be easily adapted from the proof of TheoBe®ronce we
replace AssumptioB.7 by Assumption3.10

Lemma A.3 (Infinite VAR convergence) If the VARMA model is invertible andif; grows at a
rate faster therlog 7, thenS" 1 577 |mijm| = o(T ) fori=1,..., K.

Proof of Lemma A.3. The matrix©(L)~! can be seen has its adjoint matrix divided by its deter-
minant. SinceY; is invertible, the roots oflet ©(L) are outside the unit circle and so the elements
of I1(L) = ©(L)~'®(L) decrease exponentially:

|7Tz‘j,m| S Cpm, VZ,]
with ¢ > 0 and0 < p < 1. From this
K T K T
> 2 Imaml < 3 D "
Jj=1ll=np+1

7=1l=npr+1
np—+1

I
=
RS

I—p

If np grows at a rate faster thaog 7" thenT'p"7 will tend to zero sinceép| < 1.

Lemma A.4 (Covariance estimation) If the process[Y;} is a strictly stationary VARMA process
with {U; } uncorrelated E[|u;;|**?°] < oo for somed > 0, a-mixing with>"7° | a(h)% +9) < oo
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then

1 _
7 D Ukt—rUii—s — Elpi—stiri—s] = Op(T /%) kI
t=1

Proof of Lemma A.4. First notice that by stationarity,

1
T Z ykz,tryk/,ts] — E[Ykt—ryp t—s) = 0.
t=1

Now taking the variance,

Var

Zyt T yt s )]

1
’ﬂ|>~
Mﬂ

T
ZCO’U Yk, t—rYk' t—s 5 Yk,t'—r Yk’ t/fs]
t =1

= T2 Z Z Cov [ykt rYk! t—s 3 Yk t'—r Yk’ t/fs]
t=1 t/=t+s—r+1

1¢

S

T T

1

+ ﬁ Z Z Cov [yk‘,t—ryk’,t—s; yk‘,t’—ryk’,t’—s]
t'=1t=t'+s—r+1

1 T—(s—r) t+(s—r)
+ ﬁ Z Z Cov [yk,tfryk’,t—s§ yk‘,t’—ryk’,t’—s]
t'=14(s—r) t=t' —(s—r)
(s=r+1) t'+(s—r)

1
+ ﬁ Z Zl Cov [yk,t—ryk’,t—s; yk,t’—ryk’,t’—s]
t'=1 t=
1 T t+(s—r)
+ ﬁ Z Z Cov [yk,tfryk’,tfsS yk,t’fryk/,t/fs] . (A3)
t=T—(s—r) t'=t—(s—r)

For the first two terms of equation (A.3), Using Davydov'sqoality (lemmaA.1), the strong
mixing hypothesis and the finite fourth moment we know that

T
Z |COU [yk,t—ryk’,t—s; yk,t’—ryk’,t’—s] ‘
t'=t+s—r+1
T
Z (co ll(ukt—rvnr t—sll2vsllyme—ryr pr—sllovs a(t’ =t — s+ —
' =t+s—r+1
< o0

IN

1)%/(2+9))
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from which we conclude that the first two terms converge t@ zrratel /7. For the other three
terms, since these covariances are finite, the sums divigdd lwill also converge to zero at rate
1/T. Hence,

T

1 _

= D UkierUii—s — Elka—stiri—s] = Op(T /%) kI
t=1

Proof of Theorem 4.1.We first introduce some additional matrix norms:

I'B'BI
1Bz = swp—r—, (A.4)
140
1Bl = i@ﬁ;Z\biﬂ, (A.5)
T =1
|Blle = 1rgia<>§12|bij|, (A.6)
<i<n

where (A.4) is the largest eigenvalue BfB. Useful inequalities relating these norms are given in
Horn and Johnson (1985, p. 313):

IAB|* < |AIZIBI*,  [ABI* < [AIPIBI5 . 1BII3 < [Bl1]B]s- (A7)

In the first step estimation, we regress

ny K
it = )Y Tijayje-1 + e (A.8)
=1 j=1
when in fact
o K
Yit = Z Z Tij1Yjt—1 + Wit
=1 j=1
If we let -
~ Y/ (nT)Yt_l(TLT)
(nr) Z T—nr
t=np+1
then OLS applied to (A.8) yields:
ﬁi.(nT) = [7%1'0,17 ceey ﬁ-i’,"T],
T
5 _ Y. 1(nr) yi
= B ! /o
(nT) Z T— nr
t=np+1
T Y (n ), 0o
A _ t—1(nr
= Bnr)™' ) T np {ZWMYH +Uit}
t=nr+1 =1
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DoY) | &
A — —1 T
ia(nr) + Bnp) ™ Y. 5208 ST e Vi + wi

t=npr+1 T- nr l=nr+1
Rearranging the elements,
T 00
. A _ Y, {(nr)
Iie(n7) — His(ny) = Blnp)™' ) ﬁ > mieYiap A+
t=nr+1 T l=np+1
T
. Y, | (np)ug
B -1 t—1 7
(nT) Z T—nT
t=np+1

Using inequalities (A.7) and the fact thét(nT) is symmetric,

1B(nr) " ll2Var |l + | B(ng) =" 2l Ver |

| ie(nr) — Mia(ny)| <
< |B(np) MalVazll + |1 B(ne) "1 IVer ||

where

1
Vir = Ty Z Y, (nr) Z TielYi—1,

= nT+1 l=np+1
Vor = E Y, (nr)uit.
t np+1

Firstly, || Vor||? can be expanded into

Varl* = tr (VarVar)

_ ii (Zt nTHil/kt luzt>2

k=1 1=1 T —nr

K nr 2
= 3 | Elye—rui] +Op(T713)

==l \ T

=0
It follows that||Var|| = O,(nyT~1/2). Similarly, for ||Vir|?

Vir|? = tr (VirWar)

" 2
_ ii (Zt np+1 Yk t— l[zm np+1 ZJ 1 TigmYs,t— m])

T—n
k=1 1=1 T
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2

K oo ) T
Z Z Wij,mm Z Yk,t—1Yj,t—m

j:1 m TLT-l—l t:nT-I—l

3
S

2

S
~

M= 1M
T

K 00
S mumlCovlis iy m) +Op(T )]

11=1 \j=1m=nr+1

M

SinceY; is invertible, [7;;,,| < cop™ and . |Tijm| < cop™ /(1 — p). It follows that
> i1 Tijm|Cov(Yk t—15 Yj.t—m) + Op(T~1/?)] = O,(T~1/?) sinceny/log(T) — 0 asT —
oco. Hence,|Vir|| = O, (nrT~1/2).

For||B(n7)~ |1, the existence aB(ny) ! is guaranteed by a lemma that can be found in Tiao
and Tsay (1983). The argument is the following. It is cleat f%t(nT) is a symmetric non-negative
definite matrix. To show that it is positive definite take= [c1, ... cx )’ be any arbitrary vector

and consider )
T ny K

c’B(nT)c = % Z Z Z C(j—1)K+kYk,t—j

t=np+1 \j=1 k=1
If ¢ B(ng)e =0, then

ny K

Z Zc(j—l)K—f—kyk,tfj =0 for t=np+1,...,T,
J=1 k=1

which sincel” > 2 : K :np, is a system of linear equations &f : ny unknowns and at lea#t :np
equations. Sincé&; is continuous and non deterministic, this implies that 0. This proves that
B(nr) is positive definite. Denoting bi(n7) the (K :ng x K :np) matrix of the corresponding
covariances instead of the empirical covariances, we caa g8nilar argument to show thB{(nr)

is also positive definite, where

(o) ra) oo T(np—1)

r(-1 o v T(np—2

Bng) = (: ) (0) ) (T: )
I'(-np+1) I'(-nr+2) ---  I'(0)

andI'(h) = Cov(Yy; Yiop).

We also know that sinc¥; is stationaryj.e. the roots ofdet(P (L)) are outside the unit circle,
> ono|Cov(yies yj—n)| < oo. It follows that the sum of the elements along a rowRfnr) is
uniformly bounded imr and the row number. This property must also holdsBonr)~!. If it
was not the case we would have

B(nr) 'B(ny) = I

B(nT)ilB(nT)inT = inT
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with i,, an (K nr x 1) vector of ones. Sincé(nr)i,, gives a vector of bounded elements,
B(n7)~! must have the sum of elements bounded along any row.
From lemmaA.4 we know that each element &f(n) — B(nr) is Op(T~1/2). It follows that

Knp Knr
Bin(nr) = > Ba(ng) + Op(npT™?).
h=1 h=1

Using a similar argument as above, the sum of the elementsy @orow oanT must also be
uniformly bounded im and the row number angl3 (nr) |1 < co + O,(nrT~/?). Hence,
[ Lse(n7) = ie(nr) || = Op(ngT—1/2).

Proof of Theorem 4.2.1f we denote byZ; ; the equivalent of/,_, which contains the true inno-
vationsu,; instead of the residuats,;,

T T 11
o= D 2S5 | D LSy iy + Uy
Lt=I J Lt=I
T T 1l
= D225 2 D28y Zea | v+
Lt=I J Lt=I
T T 1l

N 2N 2, > Zias;tu,
Lt=l . Lt=l

Firstly, we show that’;; 2 ;. We can write the residual; as

U, = I (L)Y,
= 11" (L)W L)¥(L)U,
= [Ix + (" (L)W (L) — Ix)]U;
= [Ix + (II""(L) —

= U+ (I1"7(L) = I(L))Y; .

Using the results from Theorerh1 where we showed that "%, || II;'" — IT}|| = Op(nyT—1/?)
combined with *2 . [[1T]] = o(T~ Ly if log(T) /nr — 0, we can conclude that

T
. 1 NN
Sy=mm— ), Ul = §j UU] + 0,(T~1/?)
Tt:nTJrl t np+1

LN 5

To show thaty"/_, Z,_,5;'Z,_1/T converge to] = E[Z,_, ;' Z, 1] in probability, since
Yy 2 3y we only have to show that
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o S YiirYiot/T 2 Elyiswyjiil,
T ~ p

® > o Uikl e—1/T = Elui—puji—il,

o Zthl Yit—kljt—1 2z, Elyi t—rwji—1].

The first is proved in lemma&.4 and the second can be proved in a similar manner. We
can easily prove the third by using results for the previows &and Theoremd.1 Similarly,
Zt 2l 12 'Z,1)T converge also toJ. Using similar calculus, we can also show that
ST, 2 135U T = O,(T~1/?). Combining all these results we can conclude that .

For the asymptotic distribution, using Ibragimov’s cehlirait theorem we can conclude that

T
1 e J .
—= 225U, S N (0]
T (0.7)
with
o0
Z {Zi 20U {250 Uiy}
From this,

VT (§—v) - N (0, jflijfl) :
From the preceding results, it is obvious thiatan be consistently estimated by
T
Y X5z
t=npr+1

and using theorem 2 of Newey and West (1987), we knowha® T if we takem./T — 0 with
mr — oo asT — oo.

Proof of Theorem 4.3.First we can rewriteX;, W; andV; as
X, =0(L)Y,, W,=06(L)'U,, Vi=06(L)"'Z.
We can also rewrit&/; + X; — W, as

U +X,—W, = 6L)" Y, +U, —6(L)~'T,
= L)V Ziiy+ U+ U, — O(L) T,
= OL)'Zi_iv+6(L) U, + U, — 6(L)"'T,
= Viey+ U+ (U, —U) — OL) U, — U,)]
= Vieiy + U+ O (T1/2).
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With this, the regression becomes

- __1 -

T T
5 = S VLS e S VLS (O X w)
| t=max(p,q)+1 ] | t=max(p,q)+1
_ . ) ) - -1 F T ) )
S D SRR 25— B D S 2% T
| t=max(p,q)+1 ] | t=max(p,q)+1
— - ) o S . ] ]
. VSt Y. VLEGU | A op(TTR).
| t=max(p,q)+1 i | t=max(p,q)+1

Just like in the proof of theorem.2 we see thaty — v = O,(T~'/?). Using lbragimov’s central
limit theorem we conclude that

V(5 =) -5 N (0,J711)
with

e}
= > E[{ViaZy' U} {Vir555 Uiy }]

j=—o00

J o= EVLAS5 Vi)

and just like in the proof of theoret2the matrix/ and.J can be consistently estimated respectively
by

. 1 27 . £l N .
o= 7 X wlmn) 3 {VaZ O {550
j=-mr t=max(p,q)+1+|j]
R 1 T o
o= >, VS
t=max(p,q)+1

Proof of Theorem 5.1. Take the difference between the information criterion fimeg values of
the orderg andgq, and its true value (for the true valugg qo and Xy)

(log T)1+6

log(det i’U) —log (det Xy) + [dim~(p, ¢) — dim y(po, q0)] T

First, consider the case where< py or g < qo. In this case, a% grows to infinity, eventually

log(det Xy) > log(det Xp) because of the left-coprime property. So eventually wetrhase
p > po andq > go because the difference of the two criteria will be positive.
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Before studying the cage> pg or ¢ > qo, let us write the residuals; for general lag operators
¢(L) and©(L) in the following way:

U, = &(L)Y:—(O(L) ~Ix)U;
= P(L)Y; — (O(L) — Ix)[I"" (L)Y,
= |2(D)— (6(L) - L) (L)] Vi
= [2() - ©(1) - 1K)60(L) " Oo(L) 1" (L)] Vi
= [x(L) = (B(L) = IK)Oo(L) ' C(L) + o (L) Po(L)] Vi (A.10)
whereC (L) = Oy(L)II" (L) — $o(L) andx (L) = ¢(L) — O(L)Oy (L) @y (L).
For the cas@ = py andq = ¢, using (A.10), it follows that
~ T
o= g 20
T
= inf Tt nszH (L) = Ik)Oo(L) ' C(L) + O(L) o (L)] VY] x
[(L) = (O(L) = I5)8 (L) C(L) + B (L)' Bo(L)]".
From previous calculus we know that
T
= 3 {OuD) a1V} {eu() BV
t=np+1
1 r
= - U:U;
Tt%ﬂ t
= Juy—+ Op(Tfl/Q).
For the cross-product involving(L) we see that
T
T
= inf T Z (L)Bo (L)~ Po(L)]Y:} {[&(L) — ©(L)Oo(L) ' Po(L)]V:}
T
- B T 21 L)"'€0(L) ~ OL)|U:} {[B(L)bo(L) " €0(L) ~ OL)U:)
= Op(T 1)
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becauseb(L)®(L) 1Oy (L) — O(L) is O,(T~1/2). We have similar results for all the remaining
cross-product except for

Z {(B(L) — Ix)Bo (L)' C(L)Y:} {(O(L) — Ix)Oo(L) ' C(L)Y,} .

t np+1

We saw prewously that_;'” ||Hl(nT) )| = O,(nrT~"/?) so we have the same result 16t L),
ie. SIS [Cijul = Op(ngT~Y/2). Combining this with the fact thap >, | VY —
E[Y;Y/] = O,(T~'/?) we can conclude that

Z {[6(L) — k|6 (L) C(L)Y;} {[O(L) — Ik]Oo(L) *C(L)Y;} = Op(nyT ™).

t np—+1

Combining these results we see that foe= py andg = ¢y, © = X + Op(nyT~1) and
equivalently )
det £ = det Xy + O, (nyT™ ).

For the case where > pg, ¢ > qo with eitherp or ¢ greater then their true value, even though
the model might not be identified in this case, for the minatian of det & we can not do any
worse than in the case whese= pg, ¢ = qo so the infimum will yield the same result than for the
casep = pg andq = ¢qg. So eventually

(log T)1+5

det Xy — det Zo + [dim y(p, ¢) — dim(po, q0)] 7

>0

because the penalty on the number of parameters will domifsat if to select the orderandq we
use an information criterion such as

(10g T)1+5

log(det X7) + (dim ) T

with § > 0, we will getp — pg, § — qo sincelog(det ﬁ'U) — log(det Xo) = Op(nyT™1).

Proof of Theorem 5.2. The proof is similar to the proof of Theorefl since we easily see that
6% =02+ Op(nyT7Y).
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