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ABSTRACT

In this paper, we develop practical methods for modelling weak VARMA processes. In a first
part, we propose new identified VARMA representations, thediagonal MA equation formand the
final MA equation form, where the MA operator is diagonal and scalar respectively.Both of these
representations have the important feature that they constitute relatively simple modifications of a
VAR model (in contrast with the echelon representation). Ina second part, we study the problem
of estimating VARMA models by relatively simple methods which only require linear regressions.
We consider a generalization of the regression-based estimation method proposed by Hannan and
Rissanen (1982). The asymptotic properties of the estimator are derived under weak hypotheses on
the innovations (uncorrelated and strong mixing) so as to broaden the class of models to which it
can be applied. In a third part, we present a modified information criterion which gives consistent
estimates of the orders under the proposed representations. To demonstrate the importance of using
VARMA models to study multivariate time series we compare the impulse-response functions and
the out-of-sample forecasts generated by VARMA and VAR models.

Key words: linear regression; VARMA; final equation form; informationcriterion; weak represen-
tation; strong mixing condition; impulse-response function.
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1. Introduction

In time series analysis and econometrics, VARMA models are scarcely used to represent multivari-
ate time series. VAR models are much more widely employed because they are easier to implement.
The latter models can be estimated by least squares methods,while VARMA models typically re-
quire nonlinear methods (such as maximum likelihood). Specification is also easier for VAR models
since only one lag order must be chosen.

VAR models, however, have important drawbacks. First, theyare typically less parsimonious
than VARMA models [e.g., see Lütkepohl and Poskitt (1996b)]. Second, the family of VAR models
is not closed under marginalization and temporal aggregation [see Lütkepohl (1991)]. The truth
cannot always be a VAR. If a vector satisfies a VAR model, subvectors do not typically satisfy
VAR models (but VARMA models). Similarly, if the variables of a VAR process are observed at a
different frequency, the resulting process is not a VAR process. In contrast, the class of VARMA
models is closed under such operations.

The importance of nonlinear models has been growing in the time series literature. These models
are interesting and useful but may be hard to use. Because of this and the fact that many important
classes of nonlinear processes admit an ARMA representation [e.g., see Francq and Zakoïan (1998),
Francq, Roy, and Zakoïan (2003)] many researchers and practitioners still have an interest in linear
ARMA models. However, the innovations in these ARMA representations do not have the usual
i.i.d. or m.d.s. property, although they are uncorrelated.One must then be careful before applying
usual results to the estimation of ARMA models because they usually rely on the above strong as-
sumptions [e.g., see Brockwell and Davis (1991) and Lütkepohl (1991)]. We refer to these as strong
and semi-strong ARMA models respectively, by opposition toweak ARMA models where the in-
novations are only uncorrelated. The i.i.d. and m.d.s. properties are also not robust to aggregation
(the i.i.d. Gaussian case being an exception); see Francq and Zakoïan (1998), Francq, Roy, and
Zakoïan (2003), Palm and Nijman (1984), Nijman and Palm (1990), Drost (1993). In fact, the Wold
decomposition only guarantees that the innovations are uncorrelated.

It follows that (weak) VARMA models appear to be preferable from a theoretical viewpoint, but
their adoption is complicated by identification and estimation difficulties. The direct multivariate
generalization of ARMA models does not give an identified representation [see Lütkepohl (1991,
Section 7.1.1)]. It follows that one has to decide on a set of constraints to impose so as to achieve
identification. Standard estimation methods for VARMA models (maximum likelihood, nonlin-
ear least squares) require nonlinear optimization which may not be feasible as soon as the model
involves a few time series, because the number of parameterscan increase quickly.

In this paper, we consider the problem of modeling weak VARMAprocesses. Our goal is to
develop a procedure which will ease the use of these models. It will cover three basic modelling
operations: identification, estimation and specification.

First, in order to avoid identification problems and to further ease the use of VARMA models,
we introduce three new identified VARMA representations, the diagonal MA equation form, the
final MA equation formand thediagonal AR equation form. Under the diagonal MA equation
form (diagonal AR equation form) representation, the MA (AR) operator is diagonal and each lag
operator may have a different order. Under the final MA equation form representation the MA
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operator is scalar,i.e. the operators are equal across equations. The diagonal and final MA equation
form representations can be interpreted as simple extensions of the VAR model, which should be
appealing to practitioners who prefer to employ VAR models due to their ease of use. The identified
VARMA representation which is the most widely employed in the literature is theechelon form.
Specification of VARMA models in echelon form does not amountto specifying the orderp and
q as with ARMA models. Under this representation, VARMA models are specified by as many
parameters, called Kronecker indices, as the number of timeseries studied. These indices determine
the order of the elements of the AR and MA operators in a non trivial way. The complicated nature of
the echelon form representation is a major reason why practitioners are not using VARMA models,
so the introduction of a simpler identified representation is interesting.

Second, we consider the problem of estimating VARMA models by relatively simple methods
which only require linear regressions. For that purpose, weconsider a multivariate generalization
of the regression-based estimation method proposed by Hannan and Rissanen (1982) for univariate
ARMA models. The method is performed in three steps. In a firststep, a long autoregression is
fitted to the data. In the second step, the lagged innovationsin the ARMA model are replaced
by the corresponding residuals from the long autoregression and a regression is performed. In a
third step, the data from the second step are filtered so as to give estimates that have the same
asymptotic covariance matrix than one would get with the maximum likelihood [claimed in Hannan
and Rissanen (1982), proven in Zhao-Guo (1985)]. Extensionof this innovation-substitution method
to VARMA models was also proposed by Hannan and Kavalieris (1984a) and Koreisha and Pukkila
(1989), under the assumption that the innovations are a m.d.s.

Here, we extend these results by showing that the linear regression-based estimators are consis-
tent under weak hypotheses on the innovations and how filtering in the third step gives estimators
that have the same asymptotic distribution as their nonlinear counterparts (maximum likelihood if
the innovations are i.i.d., or nonlinear least squares if they are merely uncorrelated). In the non i.i.d.
case, we consider strong mixing conditions [Doukhan (1995), Bosq (1998)], rather than the usual
m.d.s. assumption. By using weaker assumptions for the process of the innovations, we broaden the
class of processes to which our method can be applied.

Third, we suggest a modified information criterion to choosethe orders of VARMA models
under these representations. This criterion is to be minimized in the second step of the estima-
tion method over the orders of the AR and MA operators and gives consistent estimates of these
orders. Our criterion is a generalization of the information criterion proposed by Hannan and Rissa-
nen (1982), which was later corrected by Hannan and Rissanen(1983) and Hannan and Kavalieris
(1984b), for choosing the ordersp andq in ARMA models. The idea of generalizing this information
criterion is mentioned in Koreisha and Pukkila (1989) but a specific generalization and theoretical
properties are not presented.

Fourth, the method is applied to U.S. macroeconomic data previously studied by Bernanke and
Mihov (1998) and McMillin (2001). To illustrate the impact of using VARMA models instead of
VAR models to study multivariate time series we compare the impulse-response functions generated
by each model. We show that we can obtain much more precise estimates of the impulse-response
function by using VARMA models instead of VAR models.

The rest of the paper is organized as follows. Our framework and notation are described in
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section 2. The new identified representations are presentedin section 3. In section 4, we present
the estimation method. In section 5, we describe the information criterion used for choosing the
orders of VARMA models under the representation proposed inour work. Section 6 contains results
of Monte Carlo simulations which illustrate the propertiesof our method. Section 7 presents the
macroeconomic application where we compare the impulse-response functions from a VAR model
and VARMA models. Section 8 contains a few concluding remarks. Finally, proofs are in the
appendix.

2. Framework

Consider the followingK-variate zero mean VARMA(p,q) model in standard representation:

Yt =

p
∑

i=1

ΦiYt−i + Ut −
q
∑

j=1

ΘjUt−j , t ∈ Z, (2.1)

whereUt is a sequence of uncorrelated random variables with mean zero, defined on some prob-
ability space(Ω, A, P). The vectorsYt and Ut contain theK univariate time series:Yt =
[y1t, y2t, . . . , yKt]

′ andUt = [u1t, u2t, . . . , uKt]
′. We can also write the previous equation with

lag operators:
Φ(L)Yt = Θ(L)Ut (2.2)

where
Φ(L) = IK − Φ1L − · · · − ΦpL

p , Θ(L) = IK − Θ1L − · · · − ΘqL
q. (2.3)

Let Ht be the Hilbert space generated by(Ys, s < t). The processUt can be interpreted as the
linear innovation ofYt:

Ut = Yt − EL[Yt|Ht]. (2.4)

We assume thatYt is a strictly stationary and ergodic sequence and that the processUt has common
variance (V ar[Ut] = ΣU ) and finite fourth moment (E[|uit|4+2δ ] < ∞, for all i and t, where
δ > 0). We make the zero mean-mean hypothesis only to simplify notation.

Assuming that the processYt is stable,

det [Φ(z)] 6= 0 for all |z| ≤ 1 , (2.5)

and invertible,
det [Θ(z)] 6= 0 for all |z| ≤ 1 , (2.6)

it can be represented as an infinite VAR,

Π(L)Yt = Ut (2.7)

where

Π(L) = Θ(L)−1Φ(L) = IK −
∞∑

i=1

ΠiL
i, (2.8)
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or an infinite VMA,
Yt = Ψ(L)Ut (2.9)

where

Ψ(L) = Φ(L)−1Θ(L) = IK −
∞∑

j=1

ΨjL
j. (2.10)

We will denote byϕij(L) the polynomial in rowi and columnj of Φ(L), and the rowi or column
j of Φ(L) by

Φi•(L) = [ϕi1(L), . . . , ϕiK(L)], (2.11)

Φ•j(L) = [ϕ1j(L), . . . , ϕKj(L)]′. (2.12)

Thediag operator creates a diagonal matrix,

diag[ϕ11(L), . . . , ϕKK(L)] =






ϕ11(L) · · · 0
...

. . .
...

0 · · · ϕKK(L)




 (2.13)

where
ϕii(L) = 1 − ϕii,1L − · · · − ϕii,pL

p. (2.14)

The functiondeg[ϕ(L)] returns the degree of the polynomialϕ(L) and the functiondim(γ) gives
the dimension of the vectorγ.

We need to impose some structure on the processUt. The typical hypothesis which is imposed in
the time series literature is that theUt’s are either independent and identically distributed (i.i.d.) or
a martingale difference sequence (m.d.s.). In this work, wedo not impose such strong assumptions
because we want to broaden the class of models to which it can be applied. We only assume that it
satisfies a strong mixing condition [Doukhan (1995), Bosq (1998)]. LetUt be a strictly stationary
process, and

α(h) = sup
B∈σ(Us,s≤t)

C∈σ(Us,s≥t+h)

|Pr(B ∩ C) − Pr(B) Pr(C)| (2.15)

the α-mixing coefficient of orderh ≥ 1, whereσ(Us, s ≤ t) and σ(Us, s ≥ t + h) are theσ-
algebras associated with{Us : s ≤ t}andσ(Us : s ≥ t + h) respectively. We suppose thatUt is
strong mixing,i.e.

∞∑

h=1

α(h)δ/(2+δ) < ∞ for some δ > 0. (2.16)

This is a fairly minimal condition that will be satisfied by many processes of interest.
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3. Identification and diagonal VARMA representations

It is important to note that we cannot work with the standard representation (2.1) because it is not
identified. To help gain intuition on the identification of VARMA models, we can consider a more
general representation whereΦ0 andΘ0 are not identity matrices:

Φ0Yt = Φ1Yt−1 + · · · + ΦpYt−p + Θ0Ut − Θ1Ut−1 + · · · + ΘqUt−q. (3.1)

By this specification, we mean the well-defined process

Yt = (Φ0 − Φ1L − · · · − ΦpL
p)−1(Θ0 + Θ1L + · · · + ΘqL

q)Ut. (3.2)

But we can see this such process has a standard representation if Φ0 andΘ0 are nonsingular. To
see this, we premultiply (3.1) byΦ−1

0 and defineŪt =Φ−1
0 Θ0Ut:

Yt = Φ−1
0 Φ1Yt−1 + · · · + Φ−1

0 ΦpYt−p

+Ūt − Φ−1
0 Θ1Θ

−1
0 Φ0Ūt−1 − · · · − Φ−1

0 ΘqΘ
−1
0 Φ0Ūt−q. (3.3)

Redefining the matrices, we get a representation of type (2.1). As long asΦ0 andΘ0 are nonsingular,
we can transform a non-standard VARMA into a standard one.

We say that two VARMA representations are equivalent ifΦ(L)−1Θ(L) results in the same op-
eratorΨ(L). Thus, to ensure uniqueness of a VARMA representation, we must impose restrictions
on the AR and MA operators such that for a givenΨ(L) there is one and only one set of operators
Φ(L) andΘ(L) that can generate this infinite MA representation.

A first restriction that we impose is a multivariate equivalent of the coprime property in the
univariate case. We do not want factors ofΦ(L) andΘ(L) to “cancel out” whenΦ(L)−1Θ(L)
is computed. This feature is called theleft-coprimeproperty [see Hannan (1969) and Lütkepohl
(1993)]: the matrix operatorΨ [Φ(L), Θ(L)] ≡ Φ(L)−1Θ(L) is left-coprimeif, for any operators
D(L), Φ̄(L), andΘ̄(L), the identity

D(L)Ψ [Φ̄(L), Θ̄(L)] = Ψ [Φ(L), Θ(L)] (3.4)

implies thatD(L) is unimodular [i.e., detD(L) is a nonzero constant]. To obtain uniqueness of
left-coprime operators we have to impose restrictions ensuring that the only feasible unimodular
operatorD(L) in (3.4) is D(L) = IK . There is no unique way of doing this. The dominant
representation in the literature is theechelon form[see Deistler and Hannan (1981), Hannan and
Kavalieris (1984b), Lütkepohl (1993), Lütkepohl and Poskitt (1996a)].

Definition 3.1 (Echelon form) The VARMA representation in(2.1) is said to be in echelon form if
the AR and MA operatorsΦ(L) = [ϕij(L)]i,j=1, ... , K and Θ(L) = [θij(L)]i,j=1, ... , K satisfy the
following conditions: all operatorsϕij(L) andθij(L) in the i-th row ofΦ(L) andΘ(L) have the
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same degreepi with the form

ϕii(L) = 1 −
pi∑

m=1

ϕii,mLm, for i = 1, . . . , K,

ϕij(L) = −
pi∑

m=pi−pij+1

ϕij,mLm, for j 6= i,

θij(L) =

pi∑

m=0

θij,mLm for i, j = 1, . . . , K, with Θ0 = Φ0.

Further, in the VAR operatorϕij(L),

pij =

{

min(pi + 1, pj) for i ≥ j,
min(pi, pj) for i < j,

i, j = 1, . . . , K, i.e. pij specifies the number of free coefficients in the operatorϕij(L) for j 6= i.

The row orders(p1, . . . , pK) are the Kronecker indices and their sum
∑K

i=1 pi is the McMillan
degree. For the VARMA orders we have in generalp = q = max(p1, . . . , pK).

We see that dealing with VARMA models in echelon form is not aseasy as dealing with uni-
variate ARMA models where everything is specified by choosing the value ofp andq. The number
of Kronecker indices is larger than two (ifK is larger than two) and, when choosingpij, we have to
consider if we are above or below the diagonal. Having a summation subscript in the operatorϕij,
m = pi −pij +1, different across rows and columns also complicates the useof this representation.
The task is far from being impossible but it is more complicated than for ARMA models. Specifica-
tion of VARMA models in echelon form is discussed in Hannan and Kavalieris (1984b), Lütkepohl
and Claessen (1997), Poskitt (1992), Nsiri and Roy (1992, 1996), Lütkepohl and Poskitt (1996b),
Bartel and Lütkepohl (1998). This might be a reason why practitioners are reluctant to employ
VARMA models. Who could blame them for sticking with VAR models when they probably need
to refer to a textbook to simply write down an identified VARMArepresentation?

In this work, to ease the use of VARMA models we present new VARMA representations which
can be seen as a simple extensions of the VAR model. To introduce them, we first review another
identified representation, thefinal equation form, which will refer to as thefinal AR equation form,
under which the AR operator is scalar [see Zellner and Palm (1974), Hannan (1976), Wallis (1977),
Lütkepohl (1993)].

Definition 3.2 (Final AR equation form) The VARMA representation (2.1) is said to be in final
AR equation form ifΦ(L) = ϕ(L)IK , whereϕ(L) = 1−ϕ1L− · · · −ϕpL

p is a scalar polynomial
with ϕp 6= 0.

To see how we can obtain a VARMA model with a final AR equation form representation, we
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can proceed as follows. By standard linear algebra, we have

Φ(L)∗Φ(L) = Φ(L)Φ(L)∗ = det [Φ(L)] IK (3.5)

whereΦ(L)∗ is the adjoint matrix ofΦ(L). On multiplying both sides of (2.2) byΦ(L)∗, we get:

det [Φ(L)]Yt = Φ(L)⋆Θ(L)Ut. (3.6)

This representation is not attractive for several reasons.First, it is quite far from usual VAR
models by excluding lagged values of other variables in eachequation (e.g., the AR part of the
first equation includes lagged values ofy1t but no lagged values ofy2t, . . . , yKt). Further, the
AR coefficients are the same in all the equations, which will require a polynomial of higher order
pK. Second, the interaction between the different variables ismodeled through the MA part of the
model, which may have to be quite complex.

However, we can derive alternative representations which are both more intuitive and practical.
First, upon multiplying both sides of (2.2) byΘ(L)⋆, we get:

Θ(L)⋆Φ(L)Yt = det [Θ(L)] Ut (3.7)

whereΘ(L)⋆ is the adjoint matrix ofΘ(L). We refer to VARMA models in (3.7) as being infinal
MA equation form.

Definition 3.3 (Final MA equation form) The VARMA representation(2.1) is said to be in final
MA equation form if

Θ(L) = θ(L)IK (3.8)

whereθ(L) = 1 − θ1L − · · · − θqL
q is a scalar operator withθq 6= 0.

By (3.7), it is clear that any VARMA process satisfying (2.1)- (2.6) can be written in final MA
form. This form is much closer to the usual finite-order VAR model than the echelon representation
or the final AR equation form, because the AR part is a finite-order VAR while the MA part of each
equation is aunivariateMA which only involves a single innovation process. The maindrawback
comes from the fact that the MA operator is the same in all the equations, which can lead to a
high-order MA. It is however possible to get a more parsimonious representation by allowing for
different MA polynomials in different equations.

Suppose there are common roots across rows for some columns of Θ(L), so that starting from
(2.1) we can write:

Φ(L)Yt = Θ̄(L)D(L)Ut, (3.9)

Θ̄(L)⋆Φ(L)Yt = det
[
Θ̄(L)

]
D(L)Ut, (3.10)

whereD(L) = diag[d1(L), . . . , dK(L)] and dj(L) is a polynomial common toθij(L), ∀i =
1, . . . , K. We see that allowing for diagonal polynomials in the moving average as in equation
(3.10) may yield a more parsimonious representation than (3.7). We will call the representation
(3.10)diagonal MA equation formrepresentation.
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Definition 3.4 (Diagonal MA equation form) The VARMA representation(2.1) is said to be in
diagonal MA equation form ifΘ(L) = diag[θii(L)] = IK − Θ1L − · · · − ΘqL

q whereθii(L) =
1 − θii,1L − · · · − θii,qi

Lqi , θii,qi
6= 0 andq = max1≤i≤K(qi).

The latter representation is interesting because contraryto the echelon form it is relatively easy
to specify. We do not have to deal with rules for the orders of the off-diagonal elements in the
AR and MA operators. The fact that it can be seen as a simple extension of the VAR model is also
appealing. Practitioners are comfortable using VAR models, so simply adding lags ofuit to equation
i is a natural extension of the VAR model which could give a moreparsimonious representation.
It also has the advantage of putting the simple structure on the MA polynomials, the part which
complicates the estimation, rather than the AR part as in thefinal AR equation form. Notice that
in VARMA models, it is not necessary to include lags of all theinnovationsu1t, · · · , uKt in every
equation. This could entice practitioners to consider VARMA models if it is combined with a simple
regression-based estimation method.

From (3.7). it is clear that any process that satisfies (2.1) -(2.6) also possesses a diagonal MA
representation (because the latter includes the final MA equation form as a special case). We will
now give conditions ensuring that a diagonal MA representation is unique. For that purpose, we
consider the following assumptions and use the following matrix lemma (which may be of separate
interest).

Assumption 3.5 The matricesΦ(z) andΘ(z) have the following form:

Φ(z) = IK − Φ1z − · · · − Φpz
p , Θ(z) = IK − Θ1z − · · · − Θqz

q.

Assumption 3.6 Θ(z) is diagonal:

Θ(z) = diag [θ11(z), . . . , θKK(z)]

whereθii(z) = 1 − θii,1z − · · · − θii,qi
zqi andθii,qi

6= 0, i = 1, . . . , K.

Assumption 3.7 For eachi = 1, . . . , K, there are no roots common toΦi•(z) and θii(z), i.e.
there is no valuez⋆ such thatΦi•(z

⋆) = 0 andθii(z
⋆) = 0.

Lemma 3.8 Let [Φ(z), Θ(z)] and
[
Φ̄(z), Θ̄(z)

]
be two pairs of polynomial matrices which satisfy

the Assumptions3.5 to 3.7. If

Φ(z)−1Θ(z) = Φ̄(z)−1Θ̄(z) , for 0 ≤ |z| < ρ0, (3.11)

whereρ0 is a positive constant, then

Φ(z) = Φ̄(z) andΘ(z) = Θ̄(z) , ∀z. (3.12)

The proof of this lemma as well as other propositions appear in the Appendix. It entails that the
matrix Φ(z)−1Θ(z) has a unique factorization in terms of polynomial matricesΦ(z) andΘ(z), i.e.
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the operatorsΦ(L) andΘ(L) are uniquely defined byΦ(L)−1Θ(L). It is also easy to see that the
condition

Φ(z)−1Θ(z) = Φ̄(z)−1Θ̄(z) (3.13)

could be replaced by
Θ(z)−1Φ(z) = Θ̄(z)−1Φ̄(z) (3.14)

since by assumption the inverses ofΘ(z) andΘ̄(z) exist. Note that Assumption3.5 is equivalent
to (2.3). It is interesting to note that the conditions of Lemma3.8allow det[Φ(z)] anddet[Θ(z)] to
have roots on or inside the unit circle|z| = 1. Further, Assumption3.7is weaker than the hypothesis
thatdet[Φ(L)] anddet[Θ(L)] have no common roots, which would be a generalization of the usual
identification condition for ARMA models. We can now show that a VARMA model in diagonal
MA form has a unique representation.

Theorem 3.9 (Identification of diagonal MA equation form representation) Let {Yt : t ∈ Z}
be a VARMA process satisfying the conditions(2.1) - (2.6). If the assumptions3.6 and 3.7 hold,
then the polynomial operatorsΦ(L) andΘ(L) are uniquely defined.

Similarly, we can demonstrate that the final MA equation formrepresentation is identified under
the following assumption.

Assumption 3.10 There are no roots common toΦ(z) andθ(z), i.e. there is no valuez⋆ such that
Φ(z⋆) = 0 andθ(z⋆) = 0.

Theorem 3.11 (Identification of final MA equation form representation) Let {Yt : t ∈ Z} be a
VARMA process satisfying the conditions(2.1) - (2.6). If the model is in final MA equation form and
Assumption3.7holds, then the polynomial operatorsΦ(L) andΘ(L) are uniquely defined.

From equation (3.7), we see that it is always possible to obtain a diagonal MA equation form
representation starting from any VARMA representation. One case where we would obtain a diag-
onal and not final MA representation is when there are common factors across rows of columns of
Θ(L) as in (3.10).

A strong appeal of the diagonal and final MA equation form representations is that it is easy
to get the equivalent (in term of autocovariances) invertible MA representation of a non-invertible
representation. With ARMA models, we simply have to invert the roots of the MA polynomial
which are inside the unit circle and adjust the standard deviation of the innovations (divide it by the
square of these roots): see Hamilton (1994, Section 3.7). The same procedure could be applied to
VARMA models in diagonal or final MA equation form.

For VARMA representations where no particular simple structure is imposed on the MA part, at
the moment we are not aware of an algorithm to go from the non-invertible to the invertible represen-
tation tough theoretically this invertible representation exist and is unique as long asdet[Θ(z)] 6= 0
for |z| = 1; see Hannan and Deistler (1988, chapter 1, section 3). So it might be troublesome to use
a nonlinear optimization with these VARMA representationssince we don’t know how to go from
the non-invertible to the invertible representation.
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We can also consider the following natural generalization of the final AR equation form, where
we simply replace the scalar AR operator by a diagonal operator.

Definition 3.12 (Diagonal AR equation form) The VARMA model(2.1) is said to be in diagonal
AR equation form ifΦ(L) = diag[ϕii(L)] = IK −Φ1L− · · ·−ΦpL

p whereϕii(L) = 1−ϕii,1L−
· · · − ϕii,pi

Lpi andp = max1≤i≤K(pi).

Assumption 3.13 For eachi = 1, . . . , K, there are no roots common toϕii(z) andΘi•(z), i.e.
there is no valuez⋆ such thatϕii(z

⋆) = 0 andΘi•(z
⋆) = 0.

Theorem 3.14 (Identification of diagonal AR equation form representation) Let {Yt : t ∈ Z}
be a VARMA process satisfying the conditions(2.1) - (2.6). If the model is in diagonal AR equa-
tion form and Assumption3.13holds, then the polynomial operatorsΦ(L) andΘ(L) are uniquely
defined.

From Theorem3.9, we can see that one way to ensure identification is to impose constraints
on the MA operator. This is an alternative approach to the ones developed for example in Hannan
(1971, 1976) where the identification is obtained by restricting the autoregressive part to be lower
triangular withdeg[ϕij(L)] ≤deg[ϕii(L)] for j > i, or in the final AR equation form whereΦ(L)
is scalar. It may be more interesting to impose constraints on the moving average part instead
because it is this part which causes problems in the estimation of VARMA models. Other identified
representations which do not have a simple MA operator include the reversed echelon canonical
form [see Poskitt (1992)] where we the rows of the VARMA modelin echelon form are permuted
so that the Kronecker indices are ordered from smallest to largest, and the scalar component model
[see Tiao and Tsay (1989)] where contemporaneous linear transformations of the vector process are
considered. A general treatment of algebraic and topological structure underlying VARMA models
is given in Hannan and Kavalieris (1984b).

4. Estimation

We next introduce elements of notation for the parameters ofour model. First, irrespective of the
VARMA representation employed, we split the whole vector ofparametersγ in two partsγ1 (the
parameters for the AR part) andγ2 (MA part):

γ = [γ1, γ2]
′ . (4.1)

For a VARMA model in diagonal MA equation form,γ1 andγ2 are

γ1 =
[
ϕ1•,1, . . . , ϕ1•,p, . . . , ϕK•,1, . . . , ϕK•,p

]
, (4.2)

γ2 = [θ11,1, . . . , θ11,q1, . . . , θKK,1, . . . , θKK,qK
] , (4.3)

while for a VARMA model in final MA equation form,γ2 is

γ2 = [θ1, . . . , θq] .
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For VARMA models in diagonal AR equation form, we simply invert γ1 andγ2:

γ1 =
[
ϕ11,1, . . . , ϕ11,p1

, . . . , ϕKK,1, . . . , ϕKK,pK

]
, (4.4)

γ2 = [θ1•,1, . . . , θ1•,q, . . . , θK•,1, . . . , θK•,q] , (4.5)

while for a VARMA model in final AR equation form,

γ1 =
[
ϕ1, . . . , ϕp

]
. (4.6)

The estimation method involves three steps.
Step 1.Estimate a VAR(nT ) to approximate the VARMA(p,q) and recuperate the residuals that we
will call Ût:

Ût = Yt −
nT∑

l=1

Π̂nT

l Yt−l (4.7)

with T > 2K nT .
Step 2.With the residuals from step 1, compute an estimate of the covariance matrix ofUt, Σ̂U =
1
T

∑T
t=nT +1 ÛtÛ

′
t and estimate by GLS the multivariate regression

Φ(L)Yt = [Θ(L) − IK ]Ût + et , (4.8)

to get estimates̃A(L) andΘ̃(L) of Φ(L) andΘ(L). The estimator is

γ̃ =

[
T∑

t=l

Ẑ ′
t−1Σ̂

−1
U Ẑt−1

]−1 [ T∑

t=l

Ẑ ′
t−1Σ̂

−1
U Yt

]

(4.9)

wherel = nT + max(p, q) + 1. Setting

Yt−1(p) = [y1,t−1, . . . , yK,t−1, . . . , y1,t−p, . . . , yK,t−p] , (4.10)

Ût−1 = [û1,t−1, . . . , ûK,t−1, . . . , û1,t−q, . . . , ûK,t−q] , (4.11)

yk,t−1 = [yk,t−1, . . . , yk,t−pk
] , (4.12)

ûk,t−1 = [ûk,t−1, . . . , ûk,t−qk
] , (4.13)

the matrixẐt−1 for the various representations is:

ẐDMA
t−1 =






Yt−1(p) · · · 0 û1,t−1 · · · 0
...

. ..
...

...
. . .

...
0 · · · Yt−1(p) 0 · · · ûK,t−1




 , (4.14)

ẐFMA
t−1 =






Yt−1(p) · · · 0 û1,t−1
...

. ..
...

...
0 · · · Yt−1(p) ûK,t−1




 , (4.15)
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ẐDAR
t−1 =






y1,t−1 · · · 0 Ût−1 · · · 0
...

. . .
...

...
.. .

...
0 · · · yK,t−1 0 0 Ût−1




 , (4.16)

ẐFAR
t−1 =






y1,t−1 Ût−1 · · · 0
...

...
.. .

...
yK,t−1 0 0 Ût−1




 , (4.17)

whereDMA, FMA, DAR andFAR respectively stands for Diagonal MA, Final MA, Diagonal
AR and Final AR equation form.
Step 3.Using the second step estimates, we first form new residuals

Ũt = Yt −
p
∑

i=1

Φ̃iYt−i +

q
∑

j=1

Θ̃jŨt−j (4.18)

initiating with Ũt = 0, t ≤ max(p, q), and we define

Xt =

q
∑

j=1

Θ̃jXt−j + Yt, (4.19)

Wt =

q
∑

j=1

Θ̃jWt−j + Ũt, (4.20)

initiating with Xt = Wt = 0 for t ≤ max(p, q). We also compute a new estimate ofΣU , Σ̃U =
1
T

∑T
t=max(p,q)+1 ŨtŨ

′
t. Then we regress by GLS̃Ut + Xt − Wt on Ṽt−1 with

Ṽt =

q
∑

j=1

Θ̃j Ṽt−j + Z̃t (4.21)

whereZ̃t is just like Ẑt from step 2 except that it is computed with̃Ut instead ofÛt to obtain
regression coefficients that we callÂi andΘ̂j :

γ̂ =





T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U Ṽt−1





−1 



T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U [Ũt + Xt − Wt]



 . (4.22)

The properties of the above estimates are summarized in the following three theorems. Theorem
4.1 is a generalization of results from Lewis and Reinsel (1985)where convergence is demonstrated
for mixing rather than i.i.d. innovations. We denote the Euclidean norm by‖B‖2 = tr(B′B).

Theorem 4.1 (VARMA first step estimates) Let (i) the VARMA model be defined by equations
(2.1)-(2.6); (ii) the strong mixing condition (2.16) hold; (iii) assume thatE[|uit|4+2δ ] < ∞, ∀i
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and for someδ > 0. If nT grows at a rate faster thanlog T with nT
2/T → 0, then for the first stage

estimates
nT∑

l=1

‖Π̂nT

l − Πl‖ = Op(nT T−1/2). (4.23)

Theorem 4.2 (VARMA second step estimates)Let (i) the VARMA model be defined by equations
(2.1)-(2.6) and be identified; (ii) let the strong mixing condition (2.16) hold; (iii) assume that
E[|uit|4+2δ] < ∞, ∀i and for someδ > 0. If nT grows at a rate faster thanlog T with nT

2/T → 0,
then the second stage estimates converge in quadratic mean to their true value and

√
T (γ̃ − γ)

d−→ N
(

0, J̃−1Ĩ J̃−1
)

where

Ĩ =

∞∑

j=−∞

E

[{
Z ′

t−1Σ
−1
U Ut

}{
Z ′

t−1−jΣ
−1
U Ut−j

}′
]

, J̃ = E
[
Z ′

t−1Σ
−1
U Zt−1

]
,

and Zt−1 is equal to the matrixẐt−1 whereÛt is replaced byUt. Further, if m4
T /T → 0 with

mT → ∞ then the matrix̃I and J̃ can be consistently estimated in probability respectivelyby

ĨT =
1

T

mT∑

j=−mT

ω(j,mT )

T∑

t=l+|j|

{

Ẑ ′
t−1Σ̂

−1
U Ũt

}{

Ẑ ′
t−1−jΣ̂

−1
U Ũt−j

}′
, (4.24)

J̃T =
1

T

T∑

t=l

Ẑ ′
t−1Σ̂

−1
U Ẑt−1, (4.25)

with ω(j,mT ) = 1 − |j|/(mT + 1).

Theorem 4.3 (VARMA third step estimates) Let (i) the VARMA model be defined by equations
(2.1)-(2.6) and be identified; (ii) let the strong mixing condition (2.16) hold; (iii) assume that
E[|uit|4+2δ] < ∞, ∀i and for someδ > 0. If nT grows at a rate faster thanlog T with nT

2/T → 0,
then the third stage estimates converge in quadratic mean totheir true value, and

√
T (γ̂ − γ)

d−→ N
(

0, Ĵ−1Î Ĵ−1
)

(4.26)

with

Î =

∞∑

j=−∞

E

[{
V ′

t−1Σ
−1
U Ut

}{
V ′

t−1−jΣ
−1
U Ut−j

}′
]

, Ĵ = E
[
V ′

t−1Σ
−1
U Vt−1

]
(4.27)

and Vt−1 is equal to the matrix̃Vt−1 whereŨt is replaced byUt. Further, if m4
T /T → 0 with
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mT → ∞ then the matrix̂I and Ĵ can be consistently estimated in probability respectivelyby

ÎT =
1

T

mT∑

j=−mT

ω(j,mT )

T∑

t=l′+|j|

{

Ṽ ′
t−1Σ̃

−1
U Ūt

}{

Ṽ ′
t−1−jΣ̃

−1
U Ūt−j

}′
(4.28)

ĴT =
1

T

T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U Ṽt−1 (4.29)

with l′ = max(p, q) + 1 andŪt are the filtered residuals computed withγ̂.

Notice the simplicity of this estimation method. Only threeregressions are needed so we can
avoid all the caveats associated with nonlinear optimizations. This is an important problem with
VARMA models where one typically deals with a high number of parameters and numerical con-
vergence may be hard to obtain. This is especially importantwhen we consider the fact that the
asymptotic distribution of our estimators, on which we would base our inference, may be a bad
approximation to the finite-sample distribution in high-dimensional dynamic models. Because of
this, an estimation procedure which only requires linear methods is interesting since it suggests that
simulation-based procedures – bootstrap techniques for example – should be used, something that
would be impractical if the estimation is based on non-linear optimizations.

It is also important to mention that this procedure is not specific to the representations considered
in this work. The expressions can be easily adapted to other identified representation,e.g. the
echelon form. Since our estimation method is only based on regressions we can afford to use a less
parsimonious representation whereas for nonlinear methodit is highly important to keep the number
of parameters to a minimum.

For the estimation of VARMA models the emphasis has been on maximizing the likelihood
(minimizing by nonlinear least squares) quickly. There aretwo ways of doing this. The first is hav-
ing quick and efficient algorithm to evaluate the likelihood[e.g. Luceño (1994) and the reference
therein, Mauricio (2002), Shea (1989)]. The second is to findpreliminary consistent estimates that
can be computed quickly to initialize the optimization algorithm. We are not the first to present
a generalization to VARMA models of the Hannan and Rissanen (1982) estimation procedure for
ARMA models [whose asymptotic properties are further studied in Zhao-Guo (1985) and Saikkonen
(1986)]; see also Durbin (1960), Hannan and Kavalieris (1984a), Hannan, Kavalieris, and Mack-
isack (1986), Poskitt (1987), Koreisha and Pukkila (1990a,1990b, 1995), Pukkila, Koreisha, and
Kallinen (1990), Galbraith and Zinde-Walsh (1994, 1997). Asimilar method in three steps is also
presented in Hannan and Kavalieris (1984a) where the third step is presented as a correction to the
second step estimates.

There are many variations around the innovation-substitution approach for the estimation of
VARMA models but with the exception of Hannan and Kavalieris(1984b) and us, none use a third
step to improve the efficiency of the estimators, surely because these procedures are often seen as
a way to get initial values to start up a nonlinear optimization [e.g., see Poskitt (1992), Koreisha
and Pukkila (1989), Lütkepohl and Claessen (1997)]. In one of them, Koreisha and Pukkila (1989),
lagged and current innovations are replaced by the corresponding residuals and a regression is per-
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formed. This is asymptotically the same as the first two stepsof our method. Other variations are
described in Hannan and Kavalieris (1986), Hannan and Deistler (1988), Huang and Guo (1990),
Spliid (1983), Reinsel, Basu, and Yap (1992), Poskitt and Lütkepohl (1995), Lütkepohl and Poskitt
(1996b) and Flores de Frutos and Serrano (2002). Another approach is to use the link that exist
between the VARMA parameters and the infinite VAR and VMA representations. See Galbraith,
Ullah, and Zinde-Walsh (2000) for the estimation of VMA models using a VAR.

Here, however, we supply a distributional theory which holds under much weaker assumptions.
In the articles cited above, the data generating processes considered have innovations that are either
i.i.d. or at a minimum form a martingale difference sequence. This allow us to study a broader class
of models,e.g. temporally aggregated processes, marginalized processes, weak representation of
nonlinear models.

We can ask ourselves what is the cost of not doing the nonlinear estimation. For a given sample
size we will certainly lose some efficiency because of the first step estimation. We can nonetheless
compare the asymptotic variance matrix of our estimates with the corresponding nonlinear esti-
mates. We first can see that if the innovations are a m.d.s., then the asymptotic variance of our
linear estimates is the same as the variance of maximum likelihood estimates under Gaussianity.
The variance of maximum likelihood estimates for i.i.d. Gaussian innovations is given in Lütkepohl
(1993):

I = plim

[

1

T

T∑

t=1

∂U ′
t

∂γ
Σ−1 ∂Ut

∂γ′

]−1

. (4.30)

We can transform this expression so as to obtain an equation more closely related to our previous re-
sults. First, we splitγ in the same two vectorsγ1 (the AR parameters) andγ2 (the MA parameters),
then we compute∂Ut/∂γ ′

1 and∂Ut/∂γ ′
2. We know that

Ut = Yt − Φ1Yt−1 − · · · − ΦpYt−p + Θ1Ut−1 + · · · + ΘqUt−q. (4.31)

So taking the derivative with respect toγ′
1:

∂Ut

∂γ ′
1

= Z•1:dim(γ1),t−1 + Θ1
∂Ut−1

∂γ ′
1

+ · · · + Θq
∂Ut−q

∂γ ′
1

, (4.32)

Θ(L)
∂Ut

∂γ ′
1

= Z•1:dim(γ1),t−1 , (4.33)

∂Ut

∂γ ′
1

= Θ(L)−1Z•1:dim(γ1),t−1 , (4.34)

whereZ•1:dim(γ1),t−1 is the firstdim(γ1) columns ofZt−1. Similarly the derivative with respect to
γ′

2 is

∂Ut

∂γ ′
2

= Z•dim(γ1)+1:dim(γ),t−1 + Θ1
∂Ut−1

∂γ ′
2

+ · · · + Θq
∂Ut−q

∂γ ′
2

= Θ(L)−1Z•dim(γ1)+1:dim(γ),t−1 (4.35)
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Combining the two expressions we see that

∂Ut

∂γ ′
= Vt−1 (4.36)

so the variance matrix for maximum likelihood estimatesI is equal to the matrixJ−1 from the third
step estimation. Moreover ifUt is a m.d.s. we see that we have the equalityJ = I so that the
asymptotic variance matrix that we get in the third step of our method is the same as one would get
by doing the maximum likelihood.

If the innovations are merely uncorrelated, then we can generalize the results of Francq and
Zakoïan (1998) who proved the consistency of nonlinear least squares for univariate weak ARMA
models. The authors show that the asymptotic distribution of the estimates are

√
T (γ̂ − γ0)

d−→ N
(
0, J−1IJ−1

)
(4.37)

whereγ =
{
ϕ1, . . . , ϕp, θ1, . . . , θq

}
,

I = 4
∞∑

k=−∞

Cov

[

ut
∂ut

∂γ
; ut−k

∂ut−k

∂γ

]

, J = 2E

[
∂ut

∂γ

∂ut

∂γ′

]

. (4.38)

Without formally proving it we can generalize these expressions for the multivariate case. Writ-
ing the multivariate nonlinear least squares problem and doing a first order expansion of the first
order condition we find that the expression for the asymptotic covariance matrix of the estimates
would again beJ−1IJ−1 with

I = 4

∞∑

k=−∞

Cov

[

Ut Σ−1 ∂Ut

∂γ ′
; Ut−k Σ−1 ∂Ut−k

∂γ′

]

, J = 2E

[
∂U ′

t

∂γ
Σ−1 ∂Ut

∂γ′

]

(4.39)

In our previous results we saw that∂Ut/∂γ ′ = Vt−1. From this we see thatJ = 2Ĵ , I = 4Î
and our third-step estimator have the same asymptotic variance-covariance matrix as maximum
likelihood or non-linear least squares estimators depending on the properties of the innovations. To
get a feel for the loss of efficiency in finite samples due to replacing the true innovations by residuals
from a long VAR we performed Monte Carlo simulations and report the results in section 6.

5. Order selection

We still have unknowns in our model, the orders of the AR and MAoperators. If no theory specifies
these parameters, we have to use a statistical procedure to choose them. We propose the following
information criterion method to choose the orders for VARMAmodels in the different identified
representations proposed in Section 3. In the second step ofthe estimation, we compute for all
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pi ≤ P andqi ≤ Q the following information criterion:

log(det Σ̃U ) + dim(γ)
(log T )1+δ

T
, δ > 0. (5.1)

We then choosêpi andq̂i as the set which minimizes the information criterion. We assume that the
upper boundP andQ on the order of the AR and MA part are bigger than the true values ofpi and
qi (or that they slowly grow with the sample size). The properties of p̂i and q̂i are summarized in
the following theorem.

Theorem 5.1 (Estimation of the orderp and q in VARMA models) Let (i) the VARMA model be
defined by equations (2.1)-(2.6) and be identified; (ii) let the strong mixing condition (2.16) hold;
(iii) assume thatE[|uit|4+2δ ] < ∞, ∀i and for someδ > 0. If nT grows at a rate faster thanlog T
with nT

2/T → 0 and the orders are chosen according to(5.1), then p̂i and q̂i, i = 1, . . . , K,
converge in probability to their true value.

In practice, this procedure can lead to a search over too manymodels for the diagonal represen-
tations. A valid alternative is to search for the true ordersby proceeding equation by equation. In the
second step of the estimation, instead of doing a simultaneous estimation, just perform univariate
regressions. For a VARMA model in diagonal MA equation form,regress

ykt =

pk∑

i=1

K∑

j=1

ϕkj,iyj,t−i −
qk∑

j=1

θkk,jûk,t−j + ekt, (5.2)

for k = 1, . . . , K, while for a VARMA models in diagonal AR equation form we regress

ykt =

pk∑

i=1

ϕkk,iyk,t−i −
qk∑

i=1

K∑

j=1

θkj,iûj,t−i + ekt. (5.3)

We then chosêpk andq̂k as the orders which minimize the following information criterion:

log(σ2
k) + g(pk, qk)

(log T )1+δ

T
(5.4)

whereδ > 0 andg(pk, qk) = pk K + qk or g(pk, qk) = pk + qk K for the diagonal MA or AR
equation form representation respectively. The global order for the autoregressive operator is then
p̂ = max(p̂1, . . . , p̂K) for the diagonal MA representation and, similarly for the diagonal AR
representation,̂q = max(q̂1, . . . , q̂K). We see that this equation by equation selection procedure
is not only easier to apply, it can lead to more parsimonious representations by identifying rows of
zeros coefficients inΦi or Θj .

Theorem 5.2 (Estimation of the orderp and q in diagonal VARMA models) Let (i) the VARMA
model be defined by equations (2.1)-(2.6) and be in either the diagonal MA or AR equation form;
(ii) let the strong mixing condition (2.16) hold; (iii) assume thatE[|uit|4+2δ] < ∞, ∀i and for
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someδ > 0. If nT grows at a rate faster thanlog T with nT
2/T → 0 and the orders are chosen

according to(5.4), thenp̂i and q̂i, i = 1, . . . , K, converge in probability to their true value.

The criterion in equation (5.1) is a generalization of the information criterion proposed by Han-
nan and Rissanen (1982) which the authors acknowledged thatit must in fact be modified to provide
consistent estimates of the order,p andq. The original criterion was

log σ̃2 + (p + q)
(log T )δ

T
(5.5)

with δ > 0. But in Hannan and Rissanen (1983) they acknowledged thatσ̃2 − σ2 is O(nT T−1) and
not O(T−1) so the penalty(log T )δ/T is not strong enough. The authors proposed two possible
modifications to their procedure. The simpler is to take(log T )1+δ instead of(log T )δ in the infor-
mation criterion so that the penalty onp+q will dominatelog σ̂2 in the criterion. The second, which
they favored and was used in later work [see Hannan and Kavalieris (1984b)], is to modify the first
step of the procedure. Instead of takingnT = O(log T ) they used another information criterion to
choose the order of the long autoregression and they iterated the whole procedure picking a poten-
tially different p andq at every iteration. A similar approach is also proposed in Poskitt (1987). In
this work we prefer the first solution so as to keep the procedure as simple as possible.

For the identification of the order of VARMA models, it all depends on the representation used.
Although it was one of the first representation studied, not much work has been done with the
final AR equation form. People felt that this representationgives VARMA models with too many
parameters. A complete procedure to fit VARMA models under this representation is given in
Lütkepohl (1993): One would first fit an ARMA(pi, qi) model to every univariate time series, using
maybe the procedure of Hannan and Rissanen (1982). To build the VARMA representation in final
AR equation form, knowing that the VAR operator is the same for every equation we would take it
to be the product of all the univariate AR polynomials. This would give a VAR operator of order
p =

∑K
i=1 pi. Accordingly, for the VMA part we would takeq = maxk[qk +

∑K
i=1,i6=k pi]. It is no

wonder that people feel that the final equation form uses to many parameters.
For VARMA models in echelon form, there has been a lot more work done on the identification

of Kronecker indices. The problem has been studied by, amongothers, Hannan and Kavalieris
(1984b), Poskitt (1992) and Lütkepohl and Poskitt (1996b).Non-stationary or cointegrated systems
are considered by Huang and Guo (1990), Bartel and Lütkepohl(1998), and Lütkepohl and Claessen
(1997). Additional references are given in Lütkepohl (1993, Chapter 8).

A complementing approach to specify VARMA models, which is based on Cooper and Wood
(1982), aims at finding simplifying structures via some combinations of the different series to obtain
more parsimonious models. It includes Tiao and Tsay (1989),Tsay (1989a, 1989b, 1991) and Nsiri
and Roy (1992, 1996).

The final stage of ARMA model specification usually involve analyzing the residuals,i.e. check-
ing if they are uncorrelated. Popular tools include portmanteau tests such as Box-Pierce [Box and
Pierce (1970)] and Ljung-Box [Ljung and Box (1978)] tests, and their multivariate generalization
[Lütkepohl (1993, Section 5.2.9)]. Those tests are not directly applicable in our case because they
are derived under strong assumptions for the innovations (independence or martingale difference).
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Fortunately, we could extend to multivariate ARMA models the theory for BP and LB tests devel-
oped by Francq, Roy, and Zakoïan (2003) for weak ARMA models.Such extension is left as future
work.

6. Monte Carlo simulations

To illustrate the performance of our estimation method we ran two types of simulations. For the
first type, weak VARMA models were simulated where the innovations are not independent nor a
m.d.s. but merely uncorrelated. The second type of simulations involves strong VARMA models
(VARMA models with i.i.d. Gaussian innovations). All the simulated models are bivariate so the
results are easier to analyze. The results are generated using Ox version 3.30 on Linux [see Doornik
(1999)]. We performed 1000 simulations for each model. The results with strong VARMA models
being comparable to those for weak VARMA models, we only report results for the latter.

We simulate weak VARMA processes by directly simulating weak innovations, from which we
build the simulated series. From the results in Drost and Nijman (1993), we know that the temporal
aggregation of a strong GARCH process (where the standardized innovations are i.i.d.) will give a
weak process1. SupposẽUt is given by the following bivariate ARCH model:

Ũt = H
1/2
t εt , Ht = Ω + αŨt−1Ũ

′
t−1 (6.1)

whereεt is i.i.d. N(0, I2), H
1/2
t is the Cholesky decomposition ofHt andα is a scalar. If we

considerŨt as a stock variable, then temporal aggregation ofŨt over two periods,i.e.

Ut = Ũ2t (6.2)

will give a weak process. The seriesUt will be uncorrelated but not a m.d.s., its mean will be zero
and the variance will beΩ(1 − α2)/(1 − α).

In these examples, because the innovations are not a m.d.s.,we cannot do maximum likelihood.
We instead employ nonlinear generalized least-squares (GLS), i.e. we minimize the nonlinear least
squares, compute an estimate of the variance matrix of the innovations and then do nonlinear GLS.
We did not apply this procedure, partly to reduce the estimation time in our Monte Carlo study,
partly because there is no asymptotic gain in iterating.

In these simulations the sample size is 250 observations, which represent about 20 years of
monthly data, a reasonable sample size for macroeconomic data. Tables 1 gives results for a
VARMA model in final MA equation form [VARMA(1, 1)], while results for VARMA models
in diagonal MA equation form are given in Tables 2 and 3 [VARMA(1, 1) with q = (1, 1) and
VARMA(2,1) with q = (1, 1) respectively]. We present the results (mean, standard deviations, root
mean square error, 5% quantile, 95% quantile and median) forthe second (when the number of
parameters does not exceed five) and third step estimates, and the nonlinear GLS estimates (using

1Another way of simulating a weak VARMA process is to time-aggregate a strong VARMA process with innovations
that have skewed marginal distributions (e.g., a mixture of two Gaussian distributions with different means but mean zero
unconditionally). We can appeal to the results of Francq andZakoïan (1998, Section 2.2.1) to claim that the resulting
VARMA is only weak.
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the true value of the parameters as initial values). Samplesfor which the optimization algorithm did
not converge were dropped (this happened for less than 1% of the simulations). In our simulations,
we took

Ω =

[
1.0 0.7
0.7 1.0

]

, α = 0.3. (6.3)

From looking at the RMSE, a first thing to notice is that there can be sizable improvement in
doing the third step. Some of the third step RMSEs in Tables 1 and 2 are more than 50% smaller than
for the second step. This is an interesting observation considering that the third step basically involve
only one extra regression. Comparing the third step RMSEs and the RMSEs for the nonlinear GLS
estimates, we see that the former are usually no more than 15%bigger. This is also an interesting
observation. The cost of avoiding a numerical optimization, which can become quite challenging as
the number of time series studied or order of the operators increases, appears to be small.

In the top part of these tables we also present the results forthe selection of the order of the
operators using our proposed information criterion. For models in final MA equation form, we have
to select the ordersp andq, and for models in diagonal MA equation, the selection is over p, q1

andq2. In Table 1, we see that for VARMA models in final MA equation form the most frequently
chosen orders are the true ones, and the criterion will tend to pick a higher value forq than forp.
This result might partially be skewed by the fact that the simulated models have a highly persistent
moving average (θ1 = 0.9). For VARMA models in diagonal equation form (Tables 2 and 3), we
get similar results. The orders which are selected with the highest frequency are the true ones, but
for some models we pick the wrong orders more than 50% of the time.

These results for the information criterion are fairly sensitive to the value ofδ andc0, more so
for the model with a diagonal representation. This can be compared to non-parametric regressions
and the selection of the bandwidth parameter. The performance of the information criterion with
respect to these two parameters should be investigated further.

7. Application to a macroeconomics model of the U.S. monetary policy

To illustrate our estimation method and the gains that can beobtained from using a more parsi-
monious representation, we fit VARMA and VAR models to six macroeconomic time series and
compute the impulse-response functions generated by each model. What people typically do to
get the impulse-response functions is first fit a VAR to their multiple time series and then get the
implied infinite VMA representation. The order of the VAR required for macro series is usually
high. For example, Bernanke and Mihov (1998) use a VAR(13) tomodel six monthly macroeco-
nomic time series when about 30 years of data are available. The resulting standard errors for the
impulse-response functions are very large, like in most macroeconomic study. We can ask ourselves
how much of this is due to the fact that so many parameters are estimated. To try to answer this
we will study the impulse-response functions generated by VARMA models estimated on the same
data. We will concentrate on VARMA models in final MA equationform.

Our example is based on McMillin (2001) who compare numerousidentification restrictions
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Table 1. Estimation of a weak final MA equation form VARMA(1, 1).
Weak final MA equation form VARMA(1, 1).

The simulated model is a weak VARMA(1, 1) in final MA equation form withϕ11,1 = 0.5, ϕ12,1 =
−0.6, ϕ21,1 = 0.7, ϕ22,1 = 0.3 and θ1 = 0.9. The variance of the innovations is 1.3 and the
covariance is 0.91. Sample size is 250, the length of the longAR is nT = 20, the number of
repetition is 1000. The parameter in the criterion isδ = 0.3.

p \ q 0 1 2 3 4 5

0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.736 0.101 0.024 0.007 0.003
2 0.000 0.002 0.107 0.013 0.003 0.003
3 0.000 0.000 0.000 0.001 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000

Value Average Std. dev. RMSE 5% 95% Median
Second step
a1(1, 1) 0.5 0.4255 0.0629 0.0975 0.3243 0.5307 0.4281
a1(1, 2) -0.6 -0.6390 0.0515 0.0646 -0.7239 -0.5541 -0.6401
a1(2, 1) 0.7 0.6682 0.0586 0.0666 0.5677 0.7599 0.6686
a1(2, 2) 0.3 0.2117 0.0551 0.1041 0.1195 0.3043 0.2129

b1 0.9 0.8128 0.0593 0.1054 0.7148 0.9079 0.8139
Third step
a1(1, 1) 0.5 0.5001 0.0505 0.0505 0.4174 0.5857 0.5006
a1(1, 2) -0.6 -0.5896 0.0469 0.0481 -0.6685 -0.5154 -0.5899
a1(2, 1) 0.7 0.6859 0.0524 0.0543 0.6018 0.7682 0.6852
a1(2, 2) 0.3 0.3111 0.0494 0.0507 0.2341 0.3911 0.3101

b1 0.9 0.8978 0.0348 0.0349 0.8368 0.9494 0.9000
NLLS
a1(1, 1) 0.5 0.4952 0.0504 0.0507 0.4120 0.5789 0.4962
a1(1, 2) -0.6 -0.6089 0.0432 0.0441 -0.6813 -0.5402 -0.6094
a1(2, 1) 0.7 0.7017 0.0494 0.0494 0.6209 0.7810 0.7023
a1(2, 2) 0.3 0.2875 0.0460 0.0476 0.2138 0.3660 0.2868

b1 0.9 0.8866 0.0282 0.0312 0.8378 0.9294 0.8884
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Table 2. Estimation of a weak diagonal MA equation form VARMA(1, 1)
Weak diagonal MA equation form VARMA(1, 1)

The simulated model is a weak VARMA(1, 1) in diagonal MA equation form withϕ11,1 = 0.5,
ϕ12,1 = −0.6, ϕ21,1 = 0.7, ϕ22,1 = 0.3, θ1,1 = 0.9 andθ1,1 = 0.7. The variance of the innovations
is 1.3 and the covariance is 0.91. Sample size is 250, the length of the long AR isnT = 20, the
number of repetition is 1000. The parameter in the criterionis δ = 0.3.

(p, q1, q2) Frequency (p, q1, q2) Frequency

1,1,1 0.588 1,1,3 0.026
1,2,1 0.123 2,1,1 0.014
1,1,2 0.062 1,4,1 0.014
1,3,1 0.045 1,5,1 0.012
2,2,2 0.043 1,1,5 0.010

Value Average Std. dev. RMSE 5% 95% Median
Second step
a1(1, 1) 0.5 0.4277 0.0601 0.0940 0.3284 0.5233 0.4303
a1(1, 2) -0.6 -0.6439 0.0507 0.0671 -0.7291 -0.5594 -0.6444
a1(2, 1) 0.7 0.6732 0.0514 0.0579 0.5863 0.7550 0.6729
a1(2, 2) 0.3 0.2314 0.0526 0.0865 0.1446 0.3193 0.2309
b1(1) 0.9 0.8130 0.0707 0.1122 0.6976 0.9266 0.8150
b1(2) 0.7 0.6364 0.0708 0.0952 0.5185 0.7476 0.6393

Third step
a1(1, 1) 0.5 0.5064 0.0469 0.0473 0.4324 0.5845 0.5062
a1(1, 2) -0.6 -0.5960 0.0552 0.0554 -0.6762 -0.5183 -0.5969
a1(2, 1) 0.7 0.6988 0.0418 0.0418 0.6314 0.7659 0.6997
a1(2, 2) 0.3 0.3021 0.0469 0.0469 0.2272 0.3830 0.3032
b1(1) 0.9 0.8885 0.0442 0.0456 0.8100 0.9531 0.8910
b1(2) 0.7 0.6967 0.0522 0.0523 0.6092 0.7843 0.6969

NLLS
a1(1, 1) 0.5 0.4973 0.0453 0.0453 0.4222 0.5703 0.4972
a1(1, 2) -0.6 -0.6116 0.0443 0.0458 -0.6864 -0.5371 -0.6114
a1(2, 1) 0.7 0.7009 0.0411 0.0411 0.6334 0.7683 0.7006
a1(2, 2) 0.3 0.2897 0.0441 0.0453 0.2185 0.3645 0.2893
b1(1) 0.9 0.8874 0.0349 0.0371 0.8260 0.9385 0.8894
b1(2) 0.7 0.6950 0.0446 0.0449 0.6198 0.7673 0.6955
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Table 3. Estimation of a weak diagonal MA equation form VARMA(2,1)
Weak diagonal MA equation form weak VARMA(2,1).

The simulated model is a weak VARMA(2,1) in diagonal MA equation form with ϕ11,1 = 0.9,
ϕ12,1 = −0.5, ϕ21,1 = 0.3, ϕ22,1 = 0.1, ϕ11,2 = −0.1, ϕ12,2 = −0.2, ϕ21,2 = 0.1, ϕ22,2 = −0.15,
ϕ1,1 = 0.9, andϕ2,1 = 0.7. The variance of the innovations is 1.3 and the covariance is0.91.
Sample size is 250, the length of the long AR isnT = 20, the number of repetition is 1000. The
parameter in the criterion isδ = 0.2.

(p, q1, q2) Frequency (p, q1, q2) Frequency

2,1,1 0.267 2,1,0 0.047
1,2,1 0.204 2,2,1 0.031
2,3,0 0.057 2,4,0 0.029
1,3,1 0.051 2,2,2 0.020
2,3,1 0.050 0,3,1 0.020

Value Average Std. dev. RMSE 5% 95% Median
third step
a1(1, 1) 0.90 0.9205 0.1016 0.1036 0.7554 1.0882 0.9204
a1(1, 2) -0.50 -0.5137 0.0922 0.0932 -0.6643 -0.3620 -0.5142
a1(2, 1) 0.30 0.3036 0.0802 0.0802 0.1737 0.4326 0.3020
a1(2, 2) 0.10 0.1071 0.1666 0.1668 -0.1533 0.3802 0.1037
a2(1, 1) -0.10 -0.0716 0.0937 0.0979 -0.2302 0.0781 -0.0715
a2(1, 2) -0.20 -0.1976 0.1262 0.1262 -0.3995 0.0159 -0.1995
a2(2, 1) 0.10 0.1014 0.1127 0.1127 -0.0969 0.2749 0.1111
a2(2, 2) -0.15 -0.1326 0.1363 0.1374 -0.3462 0.1156 -0.1440
b1(1) 0.90 0.8917 0.0774 0.0778 0.7654 1.0079 0.8973
b1(2) 0.70 0.7084 0.1423 0.1426 0.4724 0.9397 0.7112

NLLS
a1(1, 1) 0.90 0.8787 0.0914 0.0939 0.7254 1.0347 0.8799
a1(1, 2) -0.50 -0.5015 0.0918 0.0918 -0.6523 -0.3517 -0.5008
a1(2, 1) 0.30 0.2957 0.0801 0.0802 0.1665 0.4244 0.2927
a1(2, 2) 0.10 0.0715 0.1252 0.1284 -0.1412 0.2643 0.0748
a2(1, 1) -0.10 -0.0815 0.0887 0.0906 -0.2250 0.0622 -0.0814
a2(1, 2) -0.20 -0.2328 0.1144 0.1190 -0.4268 -0.0491 -0.2332
a2(2, 1) 0.10 0.1243 0.0901 0.0933 -0.0216 0.2639 0.1278
a2(2, 2) -0.15 -0.1831 0.1074 0.1124 -0.3522 -0.0050 -0.1826
b1(1) 0.90 0.8861 0.0404 0.0427 0.8133 0.9448 0.8892
b1(2) 0.70 0.6789 0.0883 0.0908 0.5215 0.8065 0.6889
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for the structural effects of monetary policy shocks using the same dataset as Bernanke and Mihov
(1998).2 The series are plotted in Figure 1. One of the model studied isa VAR applied to the
first difference of the series, in order,gdpm, (psscom-pgdpm), fyff, nbrec1, tr1, psscom. With an
argument based on Keating (2002), the author state that using this ordering of the variables the
Cholesky decomposition, based on long-run macroeconomic restrictions, which are described in an
appendix, of the variance matrix of the innovations will identify the structural effects of the policy
variable nbrec1without imposing any contemporaneous restrictions among the variables. Since the
model is in first difference, the impulse-response at a givenorder is the cumulative shocks up to that
order.

By fitting a VAR(12) to these series we get basically the same impulse-response functions and
confidence bands as in McMillin (2001) They are plotted in Figure 2. The impulse-response func-
tion for the output and federal funds rate tends to zero as theorder increases which is consistent
with the notion that a monetary variable does not have a long term impact on real variables. The
impulse response of the price level increases as we let the order grow and does not revert to zero.

We next estimate VARMA models for the four representations proposed in this work. The in-
formation criterion picked a VARMA(3,10) for the final MA representation. The impulse-response
functions for this model are plotted in Figure 3. The behavior of the impulse-response function for
GDP, the federal funds rate and the price level from the VARMAmodels are similar to what we
obtained with a VAR. The most notable differences are that the initial decrease in the federal funds
rate is smaller (0.20 versus 0.32 percentage point) and the GDP is peaking earlier with the VARMA.

It is not surprising that VAR and VARMA models are giving similar impulse-response functions
since they both are a way of getting an infinite MA representation. What is more interesting is the
comparison of the width of the confidence bands for the VAR andVARMA’s impulse-response
functions.3 For GDP and the federal funds rate, we see that the bands are much smaller for the
VARMA model and they shrink more quickly as the horizon increases. The confidence bands for
these two variables should be collapsing around their IRF since there should be no long-term effect
of the policy variable so the uncertainty should decrease asthe horizon increases. The situation is
different for the price level. For this variable the confidence band grows with the order. Again this
is not so surprising because we expect that a change in the non-borrowed reserves should have a
long-term impact on the price level. With a non-dying impactit is natural that the uncertainty about
this impact can grow as time passes.

The result that the confidence bands around IRFs can be shorter with a VARMA than with a VAR
could be expected since these models are simple extensions of the VAR approach. The introduction
of a simple MA operator allows the reduction of the required AR order so we can get more precise
estimates, which translate into more precise impulse-response functions.

Another way of comparing the performance of VAR and VARMA models is to compare their

2The dataset consist of the log of the real GDP (gdpm), total bank reserves (tr1), nonborrowed reserves (nbrec1),
federal funds rate (fyff), log of the GDP deflator (pgdpm), log of the Dow-Jones index of spot commodity prices (psccom).
These are monthly data and cover the period January 1962 to December 1996. The monthly data for real GDP and the
GDP deflator were constructed by state space methods, using alist of monthly interpolator variables and assuming that
the interpolation error is describable as an AR(1) process.Both total reserves and nonborrowed reserves are normalized
by a 36-month moving average of total reserves.

3The confidence bands are computed by performing a parametricbootstrap using Gaussian innovations.
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Table 4. RMSE for VAR and VARMA models]RMSE for VAR and VARMA models

Step ahead VAR VARMA diag. MA VARMA final MA

1 0.0834 0.0764 0.0743
p = 1 p = 0 p = 0

q = (1, 2, 2, 1, 1, 1) q = 12

3 0.0799 0.0788 0.0744
p = 1 p = 1 p = 1

q = (1, 1, 1, 1, 0, 1) q = 12

6 0.0826 0.0767 0.0790
p = 7 p = 3 p = 1

q = (4, 4, 1, 4, 0, 4) q = 12

9 0.0871 0.0774 0.0829
p = 2 p = 4 p = 0

q = (5, 5, 3, 4, 5, 5) q = 12

12 0.0819 0.0728 0.0803
p = 4 p = 4 p = 1

q = (3, 5, 3, 4, 5, 5) q = 12

out-of-sample forecasts using a metric (e.g., RMSE as in our example). Employing the same dataset
as above, we recursively estimated the models and computed the out-of-sample forecasts, starting
at observation 300 until the end of the sample. The orders of the different models are chosen by
minimizing the RMSE over the possible values (we impose an upper bound)4. The results for the
VAR, VARMA diagonal MA and VARMA final MA representations arepresented in Table 4. We
see that reduction of up to 11% of the RMSE can be obtained by using a VARMA model instead of
a VAR.

8. Conclusion

In this paper, we proposed a modeling and estimation method which ease the use of VARMA mod-
els. We first propose new identified VARMA representations, the final MA equation form and the
diagonal MA equation form. These two representations are simple extensions of the class of VAR
models where we add a simple MA operator, either a scalar or a diagonal operator. The addition of
a MA part can give more parsimonious representations, yet the simple form of the MA operators
does not introduce undue complications.

To ease the estimation we studied the problem of estimating VARMA models by relatively sim-
ple methods which only require linear regressions. For thatpurpose, we considered a generalization

4For the VARMA diagonal MA representation we don’t search over all the possible orders because it would involve
the estimation of too many models. We instead proceed in two steps. We first impose that all theqi orders are equal
which gives us an upper bound for the value of MA orders. In a second step, one equation after the other we check to see
if a lower order for the MA order of that equation would lower the RMSE.

25



Figure 1. Macroeconomic series.
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Figure 2. Impulse-response functions for VAR model.

A VAR(12) is fitted to the first difference of the six time series. The confidence band represent a one standard deviation. The standard
deviations are derived from a parametric bootstrap using Gaussian innovations.
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Figure 3. Impulse-response functions for VARMA model in final MA equation form.

A VARMA(3,10) is fitted to the first difference of the six time series. The confidence band represent a one standard deviation. The
standard deviations are derived from a parametric bootstrap using Gaussian innovations.
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of the regression-based estimation method proposed by Hannan and Rissanen (1982) for univariate
ARMA models. Our method is in three steps. In a first step a longVAR is fitted to the data. In the
second step, the lagged innovations in the VARMA model are replaced by the corresponding lagged
residuals from the first step and a regression is performed. In a third step, the data from the second
step are filtered and another regression is performed. We showed that the third-step estimators have
the same asymptotic variance as their nonlinear counterpart (Gaussian maximum likelihood if the
innovations are i.i.d., or generalized nonlinear least squares if they are merely uncorrelated). In the
non i.i.d. case, we consider strong mixing conditions, rather than the usual martingale difference
sequence assumption. We make these minimal assumptions on the innovations to broaden the class
of models to which this method can be applied.

We also proposed a modified information criterion that givesconsistent estimates of the orders
of the AR and MA operators of the proposed VARMA representations. This criterion is to be
minimized in the second step of the estimation method over a set of possible values for the different
orders.

Monte Carlo simulation results indicates that the estimation method works well for small sample
sizes and the information criterion picks the true value of the orderp andq most of the time. These
results holds for sample sizes commonly used in macroeconomics, i.e. 20 years of monthly data or
250 sample points. To demonstrate the importance of using VARMA models to study multivariate
time series we compare the impulse-response functions and the out-of-sample forecasts generated
by VARMA and VAR models when these models are applied to the dataset of macroeconomic time
series used by Bernanke and Mihov (1998).
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A. Proofs

Lemma A.1 LetU andV be random variables measurable with respect toF0
−∞ andF∞

n , respec-
tively whereFb

a is theσ-algebra of events generated by sets of the form{(Xi1 ,Xi2 , . . . , Xin) ∈
En} with a ≤ i1 < i2 < · · · < in ≤ b, andEn is somen-dimensional Borel set. Letr1, r2, r3

be positive numbers. Assume that‖U‖r1 < ∞ and ‖V ‖r2 < ∞ where‖U‖r = (E[|U |]r)1/r. If
r−1
1 + r−1

2 + r−1
3 = 1, then there exists a positive constantc0 independent ofU , V andn, such that

|E[UV ] − E[U ]E[V ]| ≤ c0‖U‖r1‖V ‖r2α(n)1/r3 .

whereα(n) is defined in equation (2.15).

Proof. See Davydov (1968).

Lemma A.2 If the random process(yt) is strictly stationary and satisfies the strong mixing condi-
tion (2.15), with E|yt|2+δ < ∞ for someδ > 0, and if

∑∞
j=1 α(j)δ/(2+δ) < ∞, then

σ2 = E
[
(yt − E[yt])

2
]
+ 2

∞∑

j=1

E [(yt − E[yt])(yt+j − E[yt+j ])] .

Moreover, ifσ 6= 0 andE[yt] = 0, then

Pr

[
y1 + · · · + yt

σ
√

t
< z

]

−→
T→∞

1√
2π

∫ z

−∞
e−u2/2du.

Proof. See Ibragimov (1962).
Proof of Lemma 3.8. Clearly,Φ(0) = Θ(0) = IK anddet[Φ(0)] = det[Θ(0)] = 1 6= 0. The
polynomialsdet[Φ(z)] anddet[Θ(z)] are different from zero in a neighborhood of zero. So we can
chooseρ1 > 0 such thatdet[Φ(z)] 6= 0 anddet[Θ(z)] 6= 0 for 0 ≤ |z| < ρ1. It follows that the
matricesΦ(z) andΘ(z) are invertible for0 ≤ |z| < ρ̄0, whereρ̄0 = min[ρ0, ρ1].

Let
C0 = {z ∈ C | 0 ≤ |z| < ρ̄0} .

Then the matricesΦ(z) andΘ(z) are invertible forz ∈ C0, and

Φ(z)−1 =
1

det[Φ(z)]
Φ⋆(z) , Θ(z)−1 =

1

det[Θ(z)]
Θ⋆(z),

whereΦ⋆(z) andΘ⋆(z) are matrices of polynomials. Consequently, forz ∈ C0, each element of
Φ(z)−1 andΘ(z)−1 is a rational function whose denominator is different from zero. Thus,Φ(z)−1

andΘ(z)−1 are matrices of analytic functions onC0, and the function

Ψ(z) = Φ(z)−1Θ(z)
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is analytic in the circle0 ≤ |z| < ρ̄0. Hence, it has a unique representation of the form

Ψ(z) =

∞∑

k=0

Ψkz
k, z ∈ C0.

By assumption,
Ψ(z) = Φ(z)−1Θ(z) = Φ̄(z)−1Θ̄(z)

for z ∈ C0. Hence, forz ∈ C0,

Φ̄(z)Φ(z)−1Θ(z) = Θ̄(z),

Φ̄(z)Φ(z)−1 = Θ̄(z)Θ(z)−1 ≡ ∆(z), (A.1)

where∆(z) is a diagonal matrix becauseΘ(z) andΘ̄(z) are both diagonal,

∆(z) = diag[δii(z)] ,

where

δii(z) =
θ̄ii(z)

θii(z)
, θii(0) = 1, δii(0) = θ̄ii(0), i = 1, . . . , K. (A.2)

From (A.2), it follows that eachδii(z) is rational with no pole inC0 such thatδii(0) = 1, so it can
be written in the form

δii(z) =
ei(z)

fi(z)

whereei(z) andfi(z) have no common roots,fi(z) 6= 0 for z ∈ C0 andδii(0) = eii(0) = 1. From
(A.1), it follows that forz ∈ C0

θ̄ii(z) = δii(z)θii(z), ϕ̄ij(z) = δii(z)ϕij(z), i, j = 1, . . . , K.

We first show thatδii(z) must be a polynomial. Iffi(z) 6= 1, then its order cannot be greater than
the orderqi ≡ deg[θii(z)] for otherwisēθii(z) would not be a polynomial. Similarly, iffi(z) 6= 1
and is a polynomial of order less or equal toqi, then all its roots must be roots ofθii(z) andϕij(z),
for otherwisēθii(z) or ϕ̄ij(z) would be a rational function. Ifqi ≥ 1, these roots are then common
to θii(z) andϕij(z), j = 1, . . . , K, which is in contradiction with Assumption3.7. Thus the
degree offi(z) must be zero, andδii(z) is a polynomial.

If δii(z) is a polynomial of degree greater than zero, this would entail that θ̄ii(z) andϕ̄ij(z) have
roots in common, in contradiction with Assumption3.7. Thusδii(z) must be a constant. Further,
δii(0) = 1 so that fori = 1, . . . , K,

θ̄ii(z) = θii(z), ϕ̄ij(z) = ϕij(z), j = 1 . . . ,K,

hence
Θ̄(z) = Θ(z), Φ̄(z) = Φ(z).
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Proof of Theorem 3.9.Under the assumption that the VARMA process is invertible, we can write

Θ(L)−1Φ(L)Yt = Ut.

Now suppose by contradiction that there exist operatorsΦ̄(L) andΘ̄(L), with Θ̄(L) diagonal and
invertible, andΦ̄(L) 6= Φ(L) or Θ̄(L) 6= Θ(L), such that

Θ̄(L)−1Φ̄(L) = Θ(L)−1Φ(L),

If the above equality hold, then it must also be the case that

Θ̄(z)−1Φ̄(z) = Θ(z)−1Φ(z), ∀z ∈ C0,

whereC0 = {z ∈ C | 0 ≤ |z| < ρ0} andρ0 > 0. By Lemma3.8, it follows that

Φ̄(z) = Φ(z), Θ̄(z) = Θ(z) ∀z.

Hence, the representation is unique.

Proof of Theorem 3.11.The proof can be easily adapted from the proof of Theorem3.9 once we
replace Assumption3.7by Assumption3.10.

Lemma A.3 (Infinite VAR convergence) If the VARMA model is invertible and ifnT grows at a
rate faster thenlog T , then

∑K
j=1

∑∞
m=nT +1 |πij,m| = o(T−1) for i = 1, . . . , K.

Proof of Lemma A.3. The matrixΘ(L)−1 can be seen has its adjoint matrix divided by its deter-
minant. SinceYt is invertible, the roots ofdetΘ(L) are outside the unit circle and so the elements
of Π(L) = Θ(L)−1Φ(L) decrease exponentially:

|πij,m| ≤ cρm, ∀i, j.

with c > 0 and0 < ρ < 1. From this

K∑

j=1

T∑

l=nT +1

|πij,m| ≤
K∑

j=1

T∑

l=nT +1

cρm

= cK
ρnT +1

1 − ρ
.

If nT grows at a rate faster thanlog T thenTρnT will tend to zero since|ρ| < 1.

Lemma A.4 (Covariance estimation) If the process{Yt} is a strictly stationary VARMA process
with {Ut} uncorrelated,E[|uit|4+2δ] < ∞ for someδ > 0, α-mixing with

∑∞
h=1 α(h)2/(2+δ) < ∞
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then
1

T

T∑

t=1

yk,t−ryk′,t−s − E[yk,t−ryk′,t−s] = Op(T
−1/2) ∀k, k′.

Proof of Lemma A.4. First notice that by stationarity,

E

[

1

T

T∑

t=1

yk,t−ryk′,t−s

]

− E[yk,t−ryk′,t−s] = 0.

Now taking the variance,

V ar

[

1

T

T∑

t=1

yt−r(k)yt−s(k
′)

]

=
1

T 2

T∑

t=1

T∑

t′=1

Cov
[
yk,t−ryk′,t−s ; yk,t′−ryk′,t′−s

]

=
1

T 2

T∑

t=1

T∑

t′=t+s−r+1

Cov
[
yk,t−ryk′,t−s ; yk,t′−ryk′,t′−s

]

+
1

T 2

T∑

t′=1

T∑

t=t′+s−r+1

Cov
[
yk,t−ryk′,t−s ; yk,t′−ryk′,t′−s

]

+
1

T 2

T−(s−r)
∑

t′=1+(s−r)

t′+(s−r)
∑

t=t′−(s−r)

Cov
[
yk,t−ryk′,t−s ; yk,t′−ryk′,t′−s

]

+
1

T 2

(s−r+1)
∑

t′=1

t′+(s−r)
∑

t=1

Cov
[
yk,t−ryk′,t−s ; yk,t′−ryk′,t′−s

]

+
1

T 2

T∑

t=T−(s−r)

t+(s−r)
∑

t′=t−(s−r)

Cov
[
yk,t−ryk′,t−s ; yk,t′−ryk′,t′−s

]
. (A.3)

For the first two terms of equation (A.3), Using Davydov’s inequality (lemmaA.1), the strong
mixing hypothesis and the finite fourth moment we know that

T∑

t′=t+s−r+1

∣
∣Cov

[
yk,t−ryk′,t−s ; yk,t′−ryk′,t′−s

] ∣
∣

≤
T∑

t′=t+s−r+1

(
c0 ‖(yk,t−ryk′,t−s‖2+δ‖yk,t′−ryk′,t′−s‖2+δ α(t′ − t − s + r − 1)δ/(2+δ)

)

< ∞
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from which we conclude that the first two terms converge to zero at rate1/T . For the other three
terms, since these covariances are finite, the sums divided by T 2 will also converge to zero at rate
1/T . Hence,

1

T

T∑

t=1

yk,t−ryk′,t−s − E[yk,t−ryk′,t−s] = Op(T
−1/2) ∀k, k′.

Proof of Theorem 4.1.We first introduce some additional matrix norms:

‖B‖2
2 = sup

l 6=0

l′B′Bl

l′l
, (A.4)

‖B‖1 = max
i≤j≤n

n∑

i=1

|bij |, (A.5)

‖B‖∞ = max
1≤i≤n

n∑

j=1

|bij |, (A.6)

where (A.4) is the largest eigenvalue ofB′B. Useful inequalities relating these norms are given in
Horn and Johnson (1985, p. 313):

‖AB‖2 ≤ ‖A‖2
2‖B‖2 , ‖AB‖2 ≤ ‖A‖2‖B‖2

2 , ‖B‖2
2 ≤ ‖B‖1‖B‖∞. (A.7)

In the first step estimation, we regress

yit =

nT∑

l=1

K∑

j=1

πij,lyj,t−l + eit (A.8)

when in fact

yit =

∞∑

l=1

K∑

j=1

πij,lyj,t−l + uit.

If we let

B̂(nT ) =

T∑

t=nT +1

Y′
t−1(nT )Yt−1(nT )

T − nT
,

then OLS applied to (A.8) yields:

Π̂i•(nT ) = [π̂i•,1, . . . , π̂i•,nT
]′

= B̂(nT )−1
T∑

t=nT +1

Yt−1(nT )′yit

T − nT

= B̂(nT )−1
T∑

t=nT +1

Yt−1(nT )′

T − nT

{
∞∑

l=1

πi•,lYt−l + uit

}
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= Πi•(nT ) + B̂(nT )−1
T∑

t=nT +1

Yt−1(nT )′

T − nT







∞∑

l=nT +1

πi•,lYt−l + uit






.

Rearranging the elements,

Π̂i•(nT ) − Πi•(nT ) = B̂(nT )−1
T∑

t=nT +1

Y′
t−1(nT )

T − nT







∞∑

l=nT +1

πi•,lYt−l






+

B̂(nT )−1
T∑

t=nT +1

Y′
t−1(nT )uit

T − nT

Using inequalities (A.7) and the fact thatB̂(nT ) is symmetric,

‖Π̂i•(nT ) − Πi•(nT )‖ ≤ ‖B̂(nT )−1‖2‖V1T ‖ + ‖B̂(nT )−1‖2‖V2T ‖
≤ ‖B̂(nT )−1‖1‖V1T ‖ + ‖B̂(nT )−1‖1‖V2T ‖ (A.9)

where

V1T =
1

T − nT

T∑

t=nT +1

Y′
t−1(nT )

∞∑

l=nT +1

πi•,lYt−l,

V2T =
1

T − nT

T∑

t=nT +1

Y′
t−1(nT )uit.

Firstly, ‖V2T ‖2 can be expanded into

‖V2T ‖2 = tr
(
V ′

2T V2T

)

=
K∑

k=1

nT∑

l=1

(∑T
t=nT +1 yk,t−luit

T − nT

)2

=

K∑

k=1

nT∑

l=1



E[yk,t−luit]
︸ ︷︷ ︸

=0

+Op(T
−1/2)





2

.

It follows that‖V2T ‖ = Op(nT T−1/2). Similarly, for‖V1T ‖2

‖V1T ‖2 = tr
(
V ′

1T V1T

)

=

K∑

k=1

nT∑

l=1

(∑T
t=nT +1 yk,t−l[

∑∞
m=nT +1

∑K
j=1 πij,myj,t−m]

T − nT

)2
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=

K∑

k=1

nT∑

l=1





K∑

j=1

∞∑

m=nT +1

πij,m
1

T − nT

T∑

t=nT +1

yk,t−lyj,t−m





2

=

K∑

k=1

nT∑

l=1





K∑

j=1

∞∑

m=nT +1

πij,m[Cov(yk,t−l; yj,t−m) + Op(T
−1/2)]





2

.

SinceYt is invertible, |πij,m| < c0ρ
m and

∑∞
m=nT +1 |πij,m| < c0ρ

nT /(1 − ρ). It follows that
∑∞

m=nT +1 πij,m[Cov(yk,t−l; yj,t−m) + OP (T−1/2)] = Op(T
−1/2) sincenT/ log(T ) → 0 asT →

∞. Hence,‖V1T ‖ = Op(nT T−1/2).
For‖B̂(nT )−1‖1, the existence of̂B(nT )−1 is guaranteed by a lemma that can be found in Tiao

and Tsay (1983). The argument is the following. It is clear that B̂(nT ) is a symmetric non-negative
definite matrix. To show that it is positive definite takec = [c1, . . . ck nT

]′ be any arbitrary vector
and consider

c′B̂(nT )c =
1

T 2

T∑

t=nT +1





nT∑

j=1

K∑

k=1

c(j−1)K+kyk,t−j





2

.

If c′B̂(nT )c = 0, then

nT∑

j=1

K∑

k=1

c(j−1)K+kyk,t−j = 0 for t = nT + 1, . . . , T,

which sinceT > 2 :K :nT , is a system of linear equations ofK :nT unknowns and at leastK :nT

equations. SinceYt is continuous and non deterministic, this implies thatc = 0. This proves that
B̂(nT ) is positive definite. Denoting byB(nT ) the(K :nT × K :nT ) matrix of the corresponding
covariances instead of the empirical covariances, we can use a similar argument to show thatB(nT )
is also positive definite, where

B(nT ) =








Γ (0) Γ (1) · · · Γ (nT − 1)
Γ (−1) Γ (0) · · · Γ (nT − 2)

...
. . .

...
Γ (−nT + 1) Γ (−nT + 2) · · · Γ (0)








andΓ (h) = Cov(Yt;Yt−h).
We also know that sinceYt is stationary,i.e. the roots ofdet(P (L)) are outside the unit circle,

∑∞
h=0 |Cov(yi,t; yj,t−h)| < ∞. It follows that the sum of the elements along a row ofB(nT ) is

uniformly bounded innT and the row number. This property must also holds forB(nT )−1. If it
was not the case we would have

B(nT )−1B(nT ) = InT

B(nT )−1B(nT )inT
= inT
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with inT
an (K nT × 1) vector of ones. SinceB(nT )inT

gives a vector of bounded elements,
B(nT )−1 must have the sum of elements bounded along any row.

From lemmaA.4 we know that each element of̂B(nT )−B(nT ) is OP (T−1/2). It follows that

KnT∑

h=1

B̂ih(nT ) =

KnT∑

h=1

Bih(nT ) + Op(nT T−1/2).

Using a similar argument as above, the sum of the elements along a row ofB̂nT
must also be

uniformly bounded innT and the row number and‖B̂(nT )−1‖1 < c0 + Op(nT T−1/2). Hence,
‖Π̂i•(nT ) − Πi•(nT )‖ = Op(nT T−1/2).

Proof of Theorem 4.2. If we denote byZt−1 the equivalent of̂Zt−1 which contains the true inno-
vationsukt instead of the residualŝukt,

γ̂ =

[
T∑

t=l

Ẑ ′
t−1Σ̂

−1
U Ẑt−1

]−1 [ T∑

t=l

Ẑt−1Σ̂
−1
U (Zt−1γ + Ut)

]

=

[
T∑

t=l

Ẑ ′
t−1Σ̂

−1
U Ẑt−1

]−1 [ T∑

t=l

Ẑ ′
t−1Σ̂

−1
U Zt−1

]

γ +

[
T∑

t=l

Ẑ ′
t−1Σ̂

−1
U Ẑt−1

]−1 [ T∑

t=l

Ẑt−1Σ̂
−1
U Ut

]

.

Firstly, we show that̂ΣU
p→ ΣU . We can write the residual̂Ut as

Ût = Π̂nT (L)Yt

= Π̂nT (L)Ψ(L)Ut

= [IK + (Π̂nT (L)Ψ(L) − IK)]Ut

= [IK + (Π̂nT (L) − Π(L))Ψ(L)]Ut

= Ut + (Π̂nT (L) − Π(L))Yt .

Using the results from Theorem4.1 where we showed that
∑nT

l=1 ‖Π̂
nT

l − Πl‖ = Op(nT T−1/2)
combined with

∑∞
l=nT +1 ‖Πl‖ = o(T−1) if log(T )/nT → 0, we can conclude that

Σ̂U =
1

T − nT

T∑

t=nT +1

ÛtÛ
′
t =

1

T − nT

T∑

t=nT +1

UtU
′
t + op(T

−1/2)

p→ ΣU .

To show that
∑T

t=l Ẑ
′
t−1Σ̂

−1
U Ẑt−1/T converge toJ̃ = E[Z ′

t−1Σ
−1
U Zt−1] in probability, since

Σ̂U
p→ ΣU we only have to show that
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• ∑T
t=l yi,t−kyj,t−l/T

p→ E[yi,t−kyj,t−l],

• ∑T
t=l ûi,t−kûj,t−l/T

p→ E[ui,t−kuj,t−l],

• ∑T
t=l yi,t−kûj,t−l

p→ E[yi,t−kuj,t−l].

The first is proved in lemmaA.4 and the second can be proved in a similar manner. We
can easily prove the third by using results for the previous two and Theorem4.1. Similarly,
∑T

t=l Ẑ
′
t−1Σ̂

−1
U Zt−1/T converge also toJ̃ . Using similar calculus, we can also show that

∑T
t=l Ẑt−1Σ̂

−1
U Ut/T = Op(T

−1/2). Combining all these results we can conclude thatγ̃
p→ γ.

For the asymptotic distribution, using Ibragimov’s central limit theorem we can conclude that

1√
T

T∑

t=l

Ẑ ′
t−1Σ̂

−1
U Ut

d−→ N
(

0, Î
)

with

Ĩ =
∞∑

j=−∞

E
[{

Z ′
t−1Σ

−1
U Ut

}{
Z ′

t−1−jΣ
−1
U Ut−j

}]
.

From this, √
T (γ̃ − γ)

d−→ N
(

0, J̃−1Ĩ J̃−1
)

.

From the preceding results, it is obvious thatJ̃ can be consistently estimated by

J̃T =
1

T

T∑

t=nT +1

Ẑ ′
t−1Σ̂

−1
U Ẑt−1

and using theorem 2 of Newey and West (1987), we know thatĨT
p→ Ĩ if we takem4

T /T → 0 with
mT → ∞ asT → ∞.

Proof of Theorem 4.3.First we can rewriteXt, Wt andṼt as

Xt = Θ̂(L)−1Yt , Wt = Θ̂(L)−1Ũt , Ṽt = Θ̂(L)−1Z̃t.

We can also rewritẽUt + Xt − Wt as

Ũt + Xt − Wt = Θ̂(L)−1Yt + Ũt − Θ̂(L)−1Ũt

= Θ̂(L)−1 [Zt−1γ + Ut] + Ũt − Θ̂(L)−1Ũt

= Θ̂(L)−1Zt−1γ + Θ̂(L)−1Ut + Ũt − Θ̂(L)−1Ũt

= Vt−1γ + Ut + [(Ũt − Ut) − Θ̂(L)−1(Ũt − Ut)]

= Vt−1γ + Ut + Op(T
−1/2).
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With this, the regression becomes

γ̂ =





T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U Ṽt−1





−1 



T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U

(

Ũt + Xt − Wt

)





=





T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U Ṽt−1





−1 



T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U Vt−1



 γ +





T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U Ṽt−1





−1 



T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U Ut



+ op(T
−1/2).

Just like in the proof of theorem4.2 we see that̂γ − γ = Op(T
−1/2). Using Ibragimov’s central

limit theorem we conclude that
√

T (γ̂ − γ)
d−→ N

(

0, Ĵ−1Î Ĵ
)

with

Î =
∞∑

j=−∞

E
[{

Vt−1Σ
−1
U Ut

}{
Vt−1−jΣ

−1
U Ut−j

}]
,

Ĵ = E
[
V ′

t−1Σ
−1
U Vt−1

]

and just like in the proof of theorem4.2the matrixÎ andĴ can be consistently estimated respectively
by

ÎT =
1

T

mT∑

j=−mT

ω(j,mT )
T∑

t=max(p,q)+1+|j|

{

Ṽt−1Σ̃
−1
U Ũt

}{

Ṽt−1−jΣ̃
−1
U Ũt−j

}

,

ĴT =
1

T

T∑

t=max(p,q)+1

Ṽ ′
t−1Σ̃

−1
U Ṽt−1.

Proof of Theorem 5.1. Take the difference between the information criterion for given values of
the ordersp andq, and its true value (for the true valuesp0, q0 andΣ0)

log(det Σ̃U ) − log (det Σ0) + [dim γ(p, q) − dim γ(p0, q0)]
(log T )1+δ

T
.

First, consider the case wherep < p0 or q < q0. In this case, asT grows to infinity, eventually
log(det Σ̃U ) > log(detΣ0) because of the left-coprime property. So eventually we must have
p ≥ p0 andq ≥ q0 because the difference of the two criteria will be positive.
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Before studying the casep ≥ p0 or q ≥ q0, let us write the residuals̃Ut for general lag operators
Φ(L) andΘ(L) in the following way:

Ũt = Φ(L)Yt − (Θ(L) − IK)Ût

= Φ(L)Yt − (Θ(L) − IK)Π̂nT (L)Yt

=
[

Φ(L) − (Θ(L) − IK)Π̂nT (L)
]

Yt

=
[

Φ(L) − (Θ(L) − IK)Θ0(L)−1Θ0(L)Π̂nT (L)
]

Yt

=
[
χ(L) − (Θ(L) − IK)Θ0(L)−1C(L) + Θ0(L)−1Φ0(L)

]
Yt (A.10)

whereC(L) = Θ0(L)Π̂nT (L) − Φ0(L) andχ(L) = Φ(L) − Θ(L)Θ0(L)−1Φ0(L).
For the casep = p0 andq = q0, using (A.10), it follows that

Σ̃U = inf
Φ,Θ

1

T

T∑

t=nT +1

ŨtŨ
′
t

= inf
Φ,Θ

1

T

T∑

t=nT +1

[
χ(L) − (Θ(L) − IK)Θ0(L)−1C(L) + Θ0(L)−1Φ0(L)

]
YtY

′
t ×

[
χ(L) − (Θ(L) − IK)Θ0(L)−1C(L) + Θ0(L)−1Φ0(L)

]′
.

From previous calculus we know that

1

T

T∑

t=nT +1

{
Θ0(L)−1Φ0(L)Yt

}{
Θ0(L)−1Φ0(L)Yt

}′

=
1

T

T∑

t=nT +1

UtU
′
t

= ΣU + Op(T
−1/2).

For the cross-product involvingχ(L) we see that

inf
Φ,Θ

1

T

T∑

t=nT +1

{χ(L)Yt} {χ(L)Yt}′

= inf
Φ,Θ

1

T

T∑

t=nT +1

{
[Φ(L) − Θ(L)Θ0(L)−1Φ0(L)]Yt

}{
[Φ(L) − Θ(L)Θ0(L)−1Φ0(L)]Yt

}′

= inf
Φ,Θ

1

T

T∑

t=nT +1

{
[Φ(L)Φ0(L)−1Θ0(L) − Θ(L)]Ut

}{
[Φ(L)Φ0(L)−1Θ0(L) − Θ(L)]Ut

}′

= Op(T
−1)
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becauseΦ(L)Φ0(L)−1Θ0(L) − Θ(L) is Op(T
−1/2). We have similar results for all the remaining

cross-product except for

1

T

T∑

t=nT +1

{
(Θ(L) − IK)Θ0(L)−1C(L)Yt

}{
(Θ(L) − IK)Θ0(L)−1C(L)Yt

}′
.

We saw previously that
∑nT

l=1 ‖Π̂l(nT )−Πl‖ = Op(nT T−1/2) so we have the same result forC(L),
i.e.

∑nT +q
l=1

∑K
j=1 |Cij,l| = Op(nT T−1/2). Combining this with the fact that1T

∑T
t=nT +1 YtY

′
t −

E[YtY
′
t ] = Op(T

−1/2) we can conclude that

1

T

T∑

t=nT +1

{
[Θ(L) − IK ]Θ0(L)−1C(L)Yt

}{
[Θ(L) − IK ]Θ0(L)−1C(L)Yt

}′
= Op(nT T−1).

Combining these results we see that forp = p0 and q = q0, Σ̃ = Σ0 + Op(nT T−1) and
equivalently

det Σ̃ = detΣ0 + Op(nT T−1).

For the case wherep ≥ p0, q ≥ q0 with eitherp or q greater then their true value, even though
the model might not be identified in this case, for the minimization of det Σ̃ we can not do any
worse than in the case wherep = p0, q = q0 so the infimum will yield the same result than for the
casep = p0 andq = q0. So eventually

det Σ̃U − det Σ0 + [dim γ(p, q) − dim γ(p0, q0)]
(log T )1+δ

T
≥ 0

because the penalty on the number of parameters will dominate. So if to select the orderp andq we
use an information criterion such as

log(det Σ̂U ) + (dim γ)
(log T )1+δ

T

with δ > 0, we will get p̂ → p0, q̂ → q0 sincelog(det Σ̂U) − log(det Σ0) = Op(nT T−1).

Proof of Theorem 5.2. The proof is similar to the proof of Theorem5.1 since we easily see that
σ̂2 = σ2

0 + Op(nT T−1).
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