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ABSTRACT

We propose inference methods for endogeneity parameters in linear simultaneous equation models

allowing for weak identification and missing instruments. Endogeneity parameters measure the

impact of unobserved variables which may be correlated with observed explanatory variables, and

play a central role in determining the “bias” associated with endogeneity and measurement errors

in structural equations. These results expand, in several ways, the finite-sample theory in Doko

and Dufour [Econometrics J., 2014] for this problem. The latter theory relies on relatively restric-

tive assumptions, in particular the hypothesis that the reduced form is complete (e.g., contains

all the relevant instruments), which is questionable in many practical situations. While the new

proposed inference methods retain identification robustness, they also allow the reduced form to

be incomplete, e.g. due to missing instruments. We propose easily applicable inference meth-

ods for endogeneity parameters — in particular, two-stage procedures [similar to those in Dufour

[Econometrica, 1990]. An application to a model of returns to schooling is presented.

Keywords: endogeneity; exogeneity; instrumental variables; simultaneous equations; IV regres-

sion; missing instruments; identification; identification robust; projection; hypothesis testing; con-

fidence set.
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1 Introduction

In a linear model where some explanatory variables are correlated with the error term, least squares

yield inconsistent estimators of model coefficients. One popular solution consists in using instru-

mental variables (IV), which are uncorrelated with the error term, but correlated with explanatory

endogenous variables. However, when this correlation is weak, IV estimation can be very imprecise

and yield unreliable tests and confidence sets. This is the weak-instrument problem which has

attracted considerable attention [for example, see Bound et al. (1995), Dufour (1997), and Staiger

and Stock (1997); for reviews, see Dufour (2003) and Mikusheva (2013)].

An important objective of the weak-instrument literature is the development of identification-

robust inference procedures, which remain valid even when the instruments are weak. This liter-

ature, however, has focused on the coefficients of the explanatory variables. In contrast, we are

interested in the parameters that give rise to the source of endogeneity in the first place: the

covariances between the (possibly) endogenous variables and the error term.

As argued in Doko Tchatoka and Dufour (2014), there are several reasons to study endogeneity

parameters. First, these provide a measure of the importance of latent variables, which are unob-

served but can influence the (observed) endogenous variables. Second, they give information on

the estimation bias of least-squares estimation. Understanding this bias is helpful in interpreting

least-squares estimated and related statistics. Third, knowledge of the degree of endogeneity can

help the investigator select the appropriate estimation method: it is known that IV can be less

efficient than least-squares when endogeneity is small, and this is true even when the instruments

are strong [see Kiviet and Niemczyk (2012), Doko Tchatoka and Dufour (2014), and Kiviet and

Pleus (2017)].

In this paper, we develop three new inference approaches for the covariances between the en-

dogenous variables and the error term. All three approaches are robust to missing or unobserved

instruments. This constitutes an important extension of the previous work Doko Tchatoka and Du-

four (2014) which also takes interest in endogeneity parameters, but assumes that the reduced-form

equation is complete (i.e. includes all relevant instruments). This latter assumption is suspect in

many practical situations.
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(1) The first approach (Section 4) is asymptotically robust to weak instruments. It is based

on the following insight: if we knew the regression coefficients of the endogenous variables,

there would be a natural plug-in estimator for the covariances of the endogenous variables and

the error term. Since we do not know the endogenous-variable coefficients, we construct a

two-stage inference procedure, using the Anderson and Rubin (1949) test for the first stage

and Dufour (1990) for the second stage. As we allow for weak instruments, this approach is

an extension of the results of Dufour (1987), whose assumptions exclude weak instruments.

(2) The second approach (Section 5) modifies the inference from Doko Tchatoka and Dufour

(2014) for the total effect, i.e. the sum of the direct and the indirect effects of the endogenous

variables on the dependent variable. Our modification yields another two-stage procedure

which is robust to both unobserved (or missing) and weak instruments. By considering

inference from the perspective of the total effect, we extend a procedure in Dufour and Jasiak

(2001), who study the total effect in the context of a different model.

(3) The third approach (Section 6) is inspired by the literature on exogeneity testing, which

focuses on the difference between least-squares and IV estimators; see Durbin (1954), Wu

(1973), Revankar and Hartley (1973), Hausman (1978), Doko Tchatoka and Dufour (2017),

and Doko Tchatoka and Dufour (2020)]. On observing that this difference can be viewed as a

measure of the OLS bias, which is directly related to the endogeneity covariances, we develop

an alternative approach to the problem.

The paper is organized as follows. In Sections 2 and 3, we state and discuss the assumptions

of our framework. The assumptions in Section 2 focus on specification, algebra, and notation, and

those in Section 3 are statistical in nature. In Sections 4 — 6, we develop the three inference

approaches for the covariances between the endogenous variables and the structural error. In

Section 7, we demonstrate how to implement our theory to returns to education. Finally, in

Section 8, we summarize the results and discuss some ideas for future work. Proofs are available

in an (online) Appendix.1

1See also the discussion paper version of the article [Dufour and Nguyen (2020)].
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2 Framework and notation

In this section, we describe our general framework, and we introduce relevant notation. Asymptotic

assumptions are discussed in Section 3.

2.1 Basic structural framework

Assumption 1 (Structural equation).

y � Y β �X1γ � u , Epuq � 0 (2.1)

where y is a T � 1 vector of dependent variables, Y is a T � G matrix of ppossiblyq endogenous

variables, and X1 is a T � k1 matrix of exogenous variables.

Assumption 1 is maintained throughout the paper. Here, the word “exogenous” may mean

“strictly exogenous”, “weakly exogenous” or “predetermined”. In particular, X1 does not have to

be nonstochastic or strictly exogenous. Explicit asymptotic assumptions are stated in Section 3.

We next consider several alternatives for the reduced-form equations for Y in (2.1). Any new

notation is immediately clarified after these alternatives.

Assumption 2 (Reduced-form equation: general form I).

Y � gpX̄, Π̄, V q. (2.2)

Assumption 3 (Reduced-form equation: general form II).

Y � gpX̄, Π̄q � V . (2.3)

Assumption 4 (Linear reduced-form equation I).

Y � X1Π1 �X2Π2 �X3Π3 � V . (2.4)
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Assumption 5 (Linear reduced-form equation II).

Y � X1Π1 �X2Π2 � V . (2.5)

Above, V is a T �G matrix of “reduced-form errors”, while Xi and Πi are T � ki and ki �G

matrices of exogenous variables and fixed coefficients, respectively, where i � 1, 2, 3. The matrix

Π̄ � rΠ1
1,Π

1
2,Π

1
3s1 has dimension k̄�G and contains unknown coefficients. For convenience, we set:

Ȳ :� rY, X1s , X :� rX1, X2s , k :� k1 � k2 , (2.6)

X̄ :� rX1, X2, X3s , k̄ :� k1 � k2 � k3 , (2.7)

for g in p2.3q : ḡ :� gpX̄, Π̄q. (2.8)

Here, :� means “equal by definition”.

In Assumptions 2—5, X2 represents instruments excluded from the structural equation of interest

but used for IV estimation, and X3 represents missing or unobserved instruments. It is clear that

Assumptions 2 - 5 go from most general to most specific. The combination of Assumptions 1 and

5 is the most popular one in studies of simultaneous equation models. If (2.5) is assumed but the

actual reduced-form equation follows (2.4), this constitutes a misspecification in which the variables

in X3 are omitted. Similarly, if (2.5) holds but the actual reduced-form equation follows (2.2) or

(2.3), the misspecification entails both the omission of X3 and arbitrary deviation from the correct

form.

To ensure the validity of many algebraic manipulations below, we also make the following

assumption. Below, the matrices P p�q and Mp�q � I � P p�q yield the orthogonal projections onto

and off the column space of the input matrix.

Assumption 6 (Column rank). X̄, rY,Xs and rP pXqY,X1s have full-column rank with probability

one pconditional on Xq.

In this paper, we focus on inference for endogeneity parameters which capture the covariances

between Y and u when Assumption 3 holds. In our framework, the covariances between Y and
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u (for each row) are the same as the corresponding covariances between V and u. By allowing

missing instruments (X3), our framework also accommodates various forms of heteroskedasticity.

In this context, identification-robust (IR) inference on β can be achieved by using the Anderson

and Rubin (1949) (AR) statistic for testing β � β0:

ARpβ0q :� py � Y β0q1rM1 �M spy � Y β0q{k2

py � Y β0q1Mpy � Y β0q{pT � kq (2.9)

where M1 :� MpX1q, M :� MpXq and β0 P RG. However, we focus here on the link between u

and Y . For this purpose, we consider the decomposition

u � V a� e (2.10)

where a (the “regression endogeneity parameter”) is a fixed vector, and e is, in some sense, un-

correlated with Y and X̄. The coefficient a can represent the effect of V on u which then gets

transmitted to y. The unobserved variable V also affects y through Y , so that the “total effect” of

V on y is given by

θ :� β � a . (2.11)

Under Assumption 5, θ may be estimated by considering the “orthogonalized structural equation”

y � Y β �X1γ � V a� e � Y θ �X1pγ �Π1aq �X2p�Π2aq � e (2.12)

and values of θ can be tested by the corresponding AR-type F statistics for θ � θ0:

F pθ0q :� py � Y θ0q1rM �MpZqspy � Y θ0q{G
y1MpZqy{pT �G� kq (2.13)

where Z :� rY,X1, X2s. and θ0 P RG; see Doko Tchatoka and Dufour (2014).

In this paper, we do not wish to be restricted by the assumption of a complete reduced form

(Assumption 5). When Assumption 4 or Assumption 3 holds, the strategy above for θ does not

work. In Section 5, we show how to use F in the presence of missing or unobserved instruments to
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obtain inference on the covariance between Y and u.

2.2 Notation

We collect here several definitions used throughout the paper. The motivation for some of these

will be become clearer when the asymptotic framework will be introduced (Section 3). We start

with those that have already appeared but are reproduced here for completeness:

endogenous variables : y, Y pdimensions T � 1, T �Gq ;

exogenous variables : X1, X2, X3 pdimensions T � k1, T � k2, T � k3q ;

Ȳ � rY, X1s, X � rX1, X2s, X̄ � rX1, X2, X3s, Z � pY, X1, X2q ;

k � k1 � k2, k̄ � k1 � k2 � k3, Π̄ � rΠ1
1, Π1

2, Π1
3s1 . (2.14)

From these, we consider the following projection-based matrices:

P1 :� P pX1q, M1 :�MpX1q, P :� P pXq, M :�MpXq, (2.15)

N1 :� PM1 �M1P �M1 �M � P � P1; (2.16)

B1 :� pY 1M1Y q�1Y 1M1, B2 :� pY 1N1Y q�1Y 1N1 . (2.17)

P1,M1, P and M are useful abbreviations, while N1 and B2 are used in the second-stage regression

in estimating β (as opposed to γ) using IV. B1 is the OLS counterpart of B2 when one estimates

β using least squares. It is easy to verify

B1Y � IG � B2Y, B1X1 � 0 � B2X1 . (2.18)

In this context, the OLS estimator (β̂) and the IV estimator (β̃) of β are given by:

β̂ � B1y, β̃ � B2y . (2.19)
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We also consider matrices related to the asymptotic covariance matrices of β̂ and β̃:

Ω̂OLS :� 1

T
Y 1M1Y, Ω̂IV :� 1

T
Y 1N1Y Ω̂OLS, 2 :� 1

T
Y 1MY, (2.20)

where Ω̂OLS, 2 corresponds to estimating the (asymptotic) covariance of the OLS estimator of θ in

(2.12). Further,

C1 :� B2 �B1, N2 :� IT �M1Y B2, ∆̂ :� Ω̂�1
IV � Ω̂�1

OLS, (2.21)

Λ1 :� 1

T
M1N

1
2N2M1, Λ2 :� 1

T
M rȲ s � 1

T
M1MpM1Y qM1 . (2.22)

The equality of the two equivalent expressions for Λ2 follows from the Frisch-Waugh-Lovell (FWL)

theorem. The matrices C1 and N2 are associated with the difference β̃ � β̂:

β̃ � β̂ � C1y � C1u � �Ω̂�1
OLS

� 1

T
Y 1M1N2u

�
. (2.23)

∆̂ appears in the (asymptotic) covariance matrix of β̃� β̂, while Λ1 and Λ2 are associated with the

estimation of the variance of u:

σ̃2 :� y1Λ1y, σ̂2 :� y1Λ2y, Σ̃ :� σ̃2∆̂, κ :� T � k1 �G . (2.24)

σ̂2 is the OLS estimator of the (structural) error variance. We note also that the IV residuals

y � Y β̃ � X1γ̃ belong to the column space of M1 [where γ̃ � pX 1
1X1q�1X 1

1py � PY β̃q is the IV

estimator of γ], hence

y � Y β̃ �X1γ̃ �M1py � Y β̃ �X1γ̃q �M1py � Y β̃q � N2M1y . (2.25)

Consequently, σ̃2 gives the IV estimator for the variance of the structural error. We use (2.24) to

define

T � κpβ̃ � β̂q1Σ̃�1pβ̃ � β̂q, H :� pT {κqT . (2.26)
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The statistic T was originally proposed by Wu (1973), while H is a variant of the Hausman (1978)

statistic considered by Hahn et al. (2011).

Finally, let
a� be the binary relation indicating both terms having the same limiting variable.

For any symmetric matrices Ā and B̄, define Ā © B̄ (Ā ¨ B̄) to mean that Ā � B̄ is positive

(negative) semidefinite. Lastly, ¡ and   are defined analogously.

3 Asymptotic assumptions

In this section, we describe general asymptotic assumptions for studying the behavior of inference

procedures when instruments are missing. We also discuss their meaning and derive a useful

dominance lemma.

Assumption 7 (Convergence, I). For ḡ :� gpX̄, Π̄q in (2.8), we have:

1

T
ḡ1ru, V s pÝÑ

TÑ8
0,

1

T
X 1ru, V s pÝÑ

TÑ8
0,

1

T
ru, V s1ru, V s pÝÑ

TÑ8
Σ :�

�
�� σ2

u σuV

σV u ΣV

�
�
 , (3.1)

1

T
rX, ḡs1rX, ḡs pÝÑ

TÑ8
Σ̄ :�

�
������

Σ1 Σ12 Σ1g

Σ21 Σ2 Σ2g

Σg1 Σg2 Σg

�
�����
�

�
��ΣX ΣXg

ΣgX Σg

�
�
 , (3.2)

where Σ, ΣX and Σg1Σ�1
1 Σ1g are positive definite.

Assumption 7 entails we can use laws of large numbers in our context. It encompasses cases

with a set of “missing” instruments in ḡ. It is easy to see that Assumption 7 entails the following

convergence properties:

ΩOLS :� plim Ω̂OLS , ΩOLS, 2 :� plim Ω̂OLS, 2, (3.3)

ΩIV :� plim
1

T
Y 1N1Y , ΣY :� plim

1

T
Y 1Y . (3.4)
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We have the following identities:

ΣY � ΣV � Σg , ΩOLS � ΣV � Σg � Σg1Σ�1
1 Σ1g , (3.5)

ΩOLS, 2 � ΣV � Σg � ΣgXΣ�1
X ΣXg , ΩIV � ΣgXΣ�1

X ΣXg � Σg1Σ�1
1 Σ1g . (3.6)

Further, the following lemma gives a number of useful related inequalities.

Lemma 1 (Upper and lower bounds for ΣV ). Under Assumptions 1, 3, 6, and 7, we have:

σV upσ2
uq�1σuV ¨ ΣV ¨ ΩOLS, 2 ¨ ΩOLS ¨ ΣY , (3.7)

where the parameters σ2
u, ΩOLS, 2, ΩOLS, and ΣY can be estimated consistently.

The consistent estimation of σ2
u, ΩOLS, 2, ΩOLS, and ΣY is obvious. Lemma 1 represents the price

we have to pay to have the flexibility of Assumption 3 or Assumption 4. The (matrix) bounds on

ΣV can be consistently estimated, but not ΣV itself. As a result, we design our inference approaches

so that they do not rely on a consistent estimator of ΣV . Even when a consistent estimator of ΣV

is available (e.g. under Assumption 5), we need to use it judiciously (this will be discussed below.)

Under Assumption 7, we can define a and e as follows:

a :� Σ�1
V σV u, e :� u� V a . (3.8)

Then, it is not difficult to show that

1

T
e1e � 1

T
pu� V aq1pu� V aq pÝÑ

TÑ8
σ2
u � σuV Σ�1

V σV u :� σ2
e . (3.9)

To state results regarding convergence in distribution, we need an additional assumption. We

consider here the following one.
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Assumption 8 (Convergence, II).

1?
T

vec

�
���
�
��X 1u X 1V

ḡ1u ḡ1V

�
�

�
��� dÝÑ

TÑ8
vec

�
���
�
��ΨXu ΨXV

Ψgu ΨgV

�
�

�
��� � N

�
0, Σb Σ̄

�
, (3.10)

?
T
� 1

T
V 1u� σV u

� dÝÑ
TÑ8

ΨV u � N r0, ΩV us (3.11)

where ΩV u :� σ2
uΣV � σV uσuV . Moreover, tΨXu,ΨXV ,Ψḡu,ΨḡV u and ΨV u are independent.

As with Assumption 7, Assumption 8 can readily accommodate unobserved instruments, as

well as both strong and weak-instrument asymptotics. The multiplicative form of the covariance

matrix in (3.10) follows from the asymptotic orthogonality between tX, ḡu and tu, V u (Assumption

7). When

ḡ � X1Π1 �X2Π2 �X3Π3 , (3.12)

(3.10) is implied by Assumption 4.1 in Doko Tchatoka and Dufour (2020). The same asymptotic

orthogonality between tX, ḡu and tu, V u motivates the independence specification on the last line

of Assumption 8. The additive form of the asymptotic covariance matrix in (3.11) is suggested by

Isserlis’s Theorem [Isserlis (1918)], also known as Wick’s Theorem [Wick (1950)].2 The intuition

here can be seen by considering the case where the vectors put, V 1
t q1 are i.i.d. with covariance matrix

Σ [defined in Assumption 7]. Then, (3.11) holds with ΩV u � Eru2
tVtV

1
t s. Note that put, V 1

t q1 do not

have to be multivariate normal, but if they are so asymptotically, then we can use Isserlis’ Theorem

to compute Epu2
tVtV

1
t q as if put, V 1

t q1 is multivariate normal.

Assumptions 7 and 8 hold in cases where the vectors put, V 1
t q1 are i.i.d. (with appropriate

finite moments), but they also allow for some error heteroskedasticity and autocorrelation in finite

samples. However, the influence of these features disappear in the asymptotic distribution of the

statistics we consider below.

2The variant sufficient for our purpose can be stated as follows.
Theorem [Isserlis]. If pZ1,Z2,Z3,Z4q is a zero-mean multivariate normal random vector, then

EpZi1Zi2Zi3Zi4q � EpZi1Zi2qEpZi3Zi4q � EpZi1Zi3qEpZi2Zi4q � EpZi1Zi4qEpZi2Zi3q

where the indices 1 ¤ i1, i2, i3, i4 ¤ 4 can be equal to one another.
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4 Two-stage inference for endogeneity covariances

In this section, we discuss inference methods based on a two-stage process which makes joint

inference on the structural parameter β and the endogeneity covariances σV u. Due to the possi-

bility of identification failure (or weak identification), this turns out to be important for building

identification-robust inference methods. We rely on the fact that identification-robust inference on

β is already known to be feasible. This feature is then ported to joint inference on β and σV u, and

finally to inference on σV u alone.

4.1 Inference for structural parameter β

We discuss inference for the structural parameter β, which can be viewed as a first step in the

process considered here.

Proposition 1. Suppose that Assumptions 1, 3, 6, 7 and 8 hold. Then,

ARpβq dÝÑ
TÑ8

χ2
k2{k2 . (4.1)

This asymptotic convergence holds regardless of whether the instruments are strong or weak.

The null distribution of the AR statistic does not depend on the form of the reduced-form equation.

Using (4.1), we can construct an asymptotic confidence set for β:

IAR
β pαq :� tβ0 P RG : ARpβ0q ¤ Q1�αpχ2

k2q{k2u . (4.2)

This confidence set can be unbounded, which indicates identification is weak. In this case, the

unbounded confidence set remains useful as it should lead to searching for other instruments or

changing the model.3

3As pointed out at the end of Section 3, Assumptions 7 and 8 do not preclude a certain level of heteroskadas-
ticity (or autocorrelation) in the error vectors, but these complications are asymptotically negligible. Allowing for
stronger forms of heteroskedasticity or autocorrelation would require modifications of the test statistics (along with
the corresponding confidence set procedures). But this would go beyond the scope of the current paper.
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4.2 Conditional point estimation of endogeneity covariances

We now develop the first inference approach to σV u. On setting

σY u :� plimTÑ8
1

T
Y 1u (4.3)

and using Assumption 7, it is easy to see that

σY u � σV u. (4.4)

An advantage of viewing σV u as σY u is that Y is observed. If ù is an estimator of u, then

σ̂Y u � 1

T
Y 1ù (4.5)

is an estimator of σY u. In particular, for any candidate value β0 for the true β, we can form

σ̂V upβ0q :� σ̂Y upβ0q :� 1

T
Y 1ùpβ0q , ùpβ0q :�M1py � Y β0q. (4.6)

One can verify that

σ̂V upβ0q � σV u � Ω̂OLS

�
β̂ � β0 � Ω̂�1

OLSσV u
�
. (4.7)

This closely links the conditional estimator of σV u (“conditional” in the sense that σ̂V u entails

having a candidate for β) to a bias-corrected estimator β̂� Ω̂�1
OLSσV u for β. In the next subsection,

we look at this bias-corrected estimator.

4.3 Joint inference for structural parameters and endogeneity covariances

The bias-corrected estimator β̂ � Ω̂�1
OLSσV u satisfies the following convergence result.

Lemma 2. Suppose that Assumptions 1, 3, 6, 7 and 8 hold. Then,

?
T pβ̂ � β � Ω̂�1

OLSσV uq
dÝÑ

TÑ8
N
�
0, σ2

uΩ�1
OLS � Ω�1

OLSσV uσuV Ω�1
OLS

�
. (4.8)
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In our context, a candidate for σV u will be supplied by a hypothesis test. To use (4.8), we need

a consistent estimator of σ2
u. We know that σ̂2 underestimates σ2

u asymptotically, and while σ̃2 is

consistent for σ2
u, though convergence may be slow when the instruments in X2 are weak. Given

for β0 and σ0 (both with dimension G� 1), we consider:

σ́2
upβ0q :� 1

T
py � Y β0q1M1py � Y β0q , (4.9)

V pβ0, σ0q :� σ́2
upβ0qΩ̂�1

OLS � Ω̂�1
OLSσ0σ

1
0Ω̂�1

OLS , (4.10)

W pβ0, σ0q :� T pβ̂ � β0 � Ω̂�1
OLSσ0q1rV pβ0, σ0qs�1pβ̂ � β0 � Ω̂�1

OLSσ0q . (4.11)

We can then prove the following convergence properties.

Theorem 1. Suppose that Assumptions 1, 3, 6, 7 and 8 hold, and let σ́2
u, V , and W be defined as

in p4.9q and p4.10q. Then,

σ́2
upβq pÝÑ

TÑ8
σ2
u, V pβ, σV uq pÝÑ

TÑ8
σ2
uΩ�1

OLS � Ω�1
OLSσV uσuV Ω�1

OLS, (4.12)

W pβ, σV uq dÝÑ
TÑ8

χ2
G . (4.13)

Theorem 1 can be exploited in two ways. First, (4.13) allows one to perform an asymptotic

test for the joint hypothesis β � β0, σV u � σ0 by comparing W pβ0, σ0q with the appropriate

quantile of χ2
G. Second, (4.13) allows one to perform an asymptotic test for σV u given β. Under

the assumptions of Theorem 1, we have:

?
T
�
σ̂V upβq � σV u

� dÝÑ
TÑ8

N
�
0, σ2

uΩOLS � σV uσuV
�
. (4.14)

Then, the function W — which is originally defined as a function of β̂�β0 — has the interpretation:

W pβ0, σ0q � T pσ̂V upβ0q � σ0q1
�
σ́2
upβ0qΩ̂OLS � σ0σ

1
0

��1pσ̂V upβ0q � σ0q . (4.15)

This perspective of inference for σV u conditional on β induces the application of the results of

Dufour (1990) in the next subsection.
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4.4 Projection-based inference for endogeneity covariances

Let 1�α be the nominal level for the desired confidence set for σV u. Let α1 and α2 be any positive

real numbers such that α1 � α2 � α. Define: @β0 P RG,

I1σV upα2;β0q :� tσ0 P RG : W pβ0, σ0q ¤ Q1�α2pχ2
Gqu, (4.16)

G1
pβ, σV uq

pα1, α2q :� tpβ0, σ0q : β0 P IAR
β pα1q and σ0 P I1σV upα2;β0qu , (4.17)

I1σV upα1, α2q :� tσ0 P RG : pβ0, σ0q P G1
pβ, σV uq

pα1, α2q for some β0 P IAR
β pα1qu . (4.18)

These can be interpreted as follows: (1) I1σV upα2;β0q is an asymptotic confidence set for σV u given

β � β0; (2) G1
pβ, σV uq

pα1, α2q is a joint confidence set for pβ, σq obtained by taking the graph of

the set-valued map β0 ÞÑ I1σV upα2;β0q for β0 P IAR
β pα1q; (3) I1σV upα1, α2q is corresponding the

projection-based confidence set for σ. The validity of these confidence sets is established by the

following theorem.

Theorem 2. Suppose that Assumptions 1, 3, 6, 7, and 8 hold, and let 1 � α be any nominal

coverage probability and let IAR
β pα1q be as constructed in p4.2q. Then, for all α1 ¡ 0 and α2 ¡ 0

such that α1�α2 � α, G1
pβ, σV uq

pα1, α2q and I1σV upα1, α2q are asymptotic confidence sets of nominal

confidence level 1� α for pβ, σV uq and σV u, respectively, i.e.

lim
TÑ8

Prrpβ, σV uq P G1
pβ, σV uq

pα1, α2qs ¥ 1� α, (4.19)

lim
TÑ8

PrrσV u P I1σV upα1, α2qs ¥ 1� α. (4.20)

This confidence set for σV u does not rely on any specification of g other than the general

regularity assumptions stated in Assumptions 7 and 8. In particular, we allow for nonlinearity,

missing X3, and no obvious candidate as a consistent estimator for ΣV .
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5 Inference for total effect

In this section, we provide a second approach for inference on σV u. We do this by extending Doko

Tchatoka and Dufour (2014) to allow for missing or unobserved instruments. Like with I1σV u , the

confidence set built in this section (I3σV u below) is also robust to weak instruments.

These authors observe that, under Assumption 5, (2.12) is correct, and, under regularity as-

sumptions similar to those in Assumptions 7 and 8, it follows that

F pβ � aq � ry � Y pβ � aqs1rM �MpZqsry � Y pβ � aqs{G
y1MpZqy{pT �G� kq

dÝÑ
TÑ8

χ2
G{G . (5.1)

Since a � Σ�1
V σV u, we have: F pβ � Σ�1

V σV uq dÝÑ
TÑ8

χ2
G{G. This suggests the following definitions:

for any G�G positive definite matrix Σ0 and any G� 1 vector β0,

I2σV upα2;β0, Σ0q :� tσ0 P RG : F pβ0 � Σ�1
0 σ0q ¤ Q1�α2pχ2

Gq{Gu,

G2
pβ, σV uq

pα1, α2; Σ0q :� tpβ0, σ0q : β0 P IAR
β pα1q and σ0 P I2σV upα2;β0, Σ0qu,

I2σV upα1, α2; Σ0q :� tσ0 P RG : pβ0, σ0q P G2
pβ, σV uq

pα1, α2; Σ0q for some β0 P IAR
β pα1qu.

If Assumption 5 holds, then

lim
TÑ8

PrrσV u P I2σV upα1, α2; ΣV qs ¥ 1� α whenever α1 � α2 � α .

The performance of the confidence set I2σV u depends on the on the strength of X2 as instrument.

However, it is clearly vulnerable to misspecification of (2.5). Another issue is that ΣV is unavailable.

When (2.5) holds, a natural candidate for estimating ΣV is

Σ̂V :� 1

T � k
Y 1MY � T

T � k
Ω̂OLS, 2 . (5.2)

However, F pβ �Σ�1
V σV uq does not have the same asymptotic distribution as F pβ � Σ̂�1

V σV uq. For
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θ̂ :� pY 1MY q�1Y 1My , we have:

?
T pθ̂ � β � Σ̂�1

V σV uq �
?
T pθ̂ � β � aq � Σ̂�1

V

?
T pΣ̂V � ΣV qa . (5.3)

In the latter equation, the second term contributes to the asymptotic distribution of
?
T pθ̂ � β �

Σ̂�1
V σV uq, even if Σ̂V

pÝÑ
TÑ8

ΣV . The problem is more unpredictable when (2.5) is misspecified

because Σ̂V
pÝÑ

TÑ8
ΣV no longer holds. In the present framework, it is easy to rectify the situation

using the following lemma.

Lemma 3. Suppose that Assumptions 1, 3, 6, 7, and 8 hold. Then,

?
T pθ̂ � β � Σ̂�1

V σV uq dÝÑ
TÑ8

N
�
0, σ2

uΩ�1
OLS, 2 � Ω�1

OLS, 2σV uσuV Ω�1
OLS, 2

�
. (5.4)

Under Assumption 5, I2σV up�;β, Σ̂q would treat the left-hand side (LHS) of (5.4) as if its asymp-

totic covariance matrix were

σ2
eΩ

�1
OLS, 2 � σ2

uΩ�1
OLS, 2 � σuV Σ�1

V σV uΩ�1
OLS, 2 (5.5)

where σ2
e is defined in (3.9). It is clear that the quantity in (5.5) is smaller than the actual

asymptotic covariance matrix in (5.4). Thus, even when Assumption 5 is true, the joint test

for β � β0 and σV u � σ0 as using F pβ0 � Σ̂�1
V σ0q and a critical value of χ2

G{G will overreject

asymptotically, thus failing to achieve asymptotic level control.

On the other hand, for the same joint hypothesis, we can use (5.4) to achieve asymptotic level

control with:

W̄ pβ0, σ0q :� T pθ̂ � β0 � Σ̂�1
V σ0q1Σ̂pβ0, σ0q�1pθ̂ � β0 � Σ̂�1

V σ0q (5.6)

where

Σ̂pβ0, σ0q :� σ́upβ0q2Ω̂�1
OLS, 2 � Ω̂�1

OLS, 2σ0σ
1
0Ω̂�1

OLS, 2 . (5.7)
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Even if Assumption 5 is not satisfied, we have (under the null hypothesis):

W̄ pβ, σV uq dÝÑ
TÑ8

χ2
G (5.8)

and valid confidence sets for σV u [denoted I3σV upα2;β0q and I3σV upα1, α2q] can be built on replacing

W by W̄ in (4.16) - (4.18). This is formally stated in the following theorem.

Theorem 3. Suppose that Assumptions 1, 3, 6, 7, and 8 hold, and let α P p0, 1q, α1 ¡ 0 and

α2 ¡ 0 with α1 � α2 � α. Then,

lim
TÑ8

Pr
�
W̄ pβ, σV uq ¡ Q1�αpχ2

Gq
� � α, lim

TÑ8
Pr
�
σV u P I3σV upα1, α2q

� ¥ 1� α (5.9)

where I3σV upα1, α2q is defined by p4.16q - p4.18q with W replaced by W̄ .

6 Exogeneity tests

In this section, we present a third approach for inference on σV u. Its rationale derives from the

observation that β̃ � β̂ can be interpreted as a measure of the OLS bias, which in turn depends on

the endogeneity covariances σV u. Under Assumption 7, we have:

1

T
Y 1N1u � 1

T
Y 1Pu� 1

T
Y 1P1u

pÝÑ
TÑ8

0� 0 � 0 , (6.1)

1

T
Y 1M1u � 1

T
pḡ � V q1u� 1

T
Y 1P1u

pÝÑ
TÑ8

σV u . (6.2)

We can then take the probability limit of the difference in (2.23):

β̂ � β̃ � �C1u � B1u�B2u
pÝÑ

TÑ8
Ω�1

OLSσV u � Ω�1
IV 0 � Ω�1

OLSσV u . (6.3)

This suggests to consider β̂ � β̃ � Ω̂�1
OLSσV u as for inference on σV u.
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Theorem 4. Suppose that Assumptions 3, 6, 7, and 8 hold, and set

W pσ0q :� T
�pβ̂ � β̃q � Ω̂�1

OLSσ0

�1�
Ω̂�1
OLSσ0σ

1
0Ω̂�1

OLS � σ̃2∆̂
��1�pβ̂ � β̃q � Ω̂�1

OLSσ0

�
(6.4)

where ΩOLS and ΩIV are as defined in p3.4q. Then,

?
T
�
Ω̂OLSpβ̂ � β̃q � σV u

� dÝÑ
TÑ8

N r0, σV uσuV � σ2
upΩOLSΩ�1

IVΩOLS � ΩOLSqs , (6.5)

?
T
�pβ̂ � β̃q � Ω̂�1

OLSσV u
� dÝÑ
TÑ8

N r0, Ω�1
OLSσV uσuV Ω�1

OLS � σ2
upΩ�1

IV � Ω�1
OLSqs . (6.6)

Further, for any G� 1 fixed vector σ0, 0   α   1, and

I4σV upαq :� tσ0 P RG : W pσ0q ¤ Q1�αpχ2
Gqu , (6.7)

we have:

W pσV uq dÝÑ
TÑ8

χ2
G , (6.8)

lim
TÑ8

PrrσV u P I4σV upαqs � 1� α . (6.9)

We note that W p0q coincides with the Hausman statistic H � pT {κqT . Moreover, the confi-

dence set I4σV u does not rely on a consistent estimator for ΣV and is robust to general specifications

of ḡ. On the other hand, as β̃ and σ̃2 are involved, I4σV u is vulnerable if X2 contains weak in-

struments. However, when X2 is strong, then I4σV upαq should exhibit better size control in finite

samples as it is a direct confidence set for σV u that does not go through any two-stage construction.

7 Application to return-to-schooling model

In this section, we illustrate the theoretical results with an empirical example using return to

schooling data provided in Hayashi (2000). In turn, this data set is a subset of that from Blackburn

and Neumark (1992). A motivation for our selection of this application is that it has been studied in

the related works of Kiviet (2020) and Kiviet and Pleus (2017). This should give us comparability.
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We begin by describing the data, the variables, and performing some preliminary calculations.

We will compute IAR
β and I1σV u . To simplify the presentation, we do not compute I3σV u because, as

we have seen in our simulation experiments, I3σV u performs very similarly to I1σV u . On the other

hand, while I4σV u is generally not as reliable as I1σV u , the exogeneity-test based confidence set is

easier to compute, so it is included for comparison. Along the way, we also provide remarks on

computation implementation.

A deep dive into this data set is within neither the intention nor the scope of this paper. Indeed,

the objective here is to demonstrate the practical applicability of the tools developed in this paper.

We will, however, provide a short discussion at the end of the section.

7.1 Data

Hayashi’s data contain a panel on nonblack men, each of whom appears in the data two times, one

before 1980 and one in 1980. We focus on the earlier appearance. The dependent variable is log

wage (lw) and the explanatory variables are: constant, dummy of residence in the southern states

(rns), dummy for residency in metropolitan areas (smsa), tenure in years (tenure), experience in

years (expr), iq (iq), age (age), schooling in years (s), and year dummies for the years 1967—1971

and 1973 (there is no observation for 1972 and the year 1966 is excluded as a constant is already

included). There is also kww (score on the test “Knowledge of the World of Work”), which is used

as an excluded instrument, along with its square and the squares of age and exp. Overall, there

are T � 758 observations.

In our notation, the above translates to:

T � 758, y � lw, X2 � rkww, kww2, age2, expr2s, k2 � 4 . (7.1)
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As for Y and X1, Kiviet and Pleus (2017) consider:

IV :
G � 2, k1 � 12, Y � rs, iqs,
X1 � rι, expr, rns, tenure, smsa, age, year dummiess ;

(7.2)

IV1 :
G � 1, k1 � 13, Y � iq,
X1 � rι, s, expr, rns, tenure, smsa, age, year dummiess;

(7.3)

IV2 :
G � 1, k1 � 13, Y � s,
X1 � rι, iq, expr, rns, tenure, smsa, age, year dummiess .

(7.4)

For brevity here, we focus on IV configuration. The working paper version of this work provides

additional results for IV1 and IV2.

7.2 Results

When I1σV u has to be computed in two stages, there are two complications: I1σV u is conservative

and may be unbounded. In our example here, Y � rs, iqs, the eigenvalues of Y 1Mpα1qY are

both positive, so the AR confidence set for β will be bounded [Dufour and Taamouti (2005)], so

constructing I1σV u is almost as easy as constructing I4σV u .
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(a) I4σV upαq with α � 0.05

(b) I1σV upα1, α2q with α1 � α2 � 0.025

Figure 1: Confidence regions for σV u

In Figure 1, we show both the I1σV u and I4σV u confidence sets for σV u in (6.7). By comparing

panels (a) and (b), we see that, despite its inherent conservativeness, I1σV u is not always larger than

I4σV u . Kiviet and Pleus (2017) warn of “slightly weak” instruments when both iq and s are treated

as endogenous, but this is not an issue for us as I1σV u is identification-robust.

8 Conclusion

In this paper, we take an interest in endogeneity parameters: the covariances between the endoge-

nous variables and the error term. We have developed three new inference procedures for these, all

of which are robust to missing instruments. Two of the procedures are robust to weak instruments,

whereas the third procedure can have better size control when the excluded instruments are strong.
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A venue for future work is the bootstrap implications of our results. The plug-in estimator of

Section 4 naturally suggests bootstrap inference. And, as we have computed various asymptotic

covariance matrices, it is easy to enjoy bootstrap refinement by working only with pre-pivoted

statistics.
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Technical appendix

December 2020

A Proofs

In this section, we provide proofs for the results in the main text of the paper.

Proof of Lemma 1. By (3.5), we have ΣY © ΣV , and by the matrix Cauchy-Schwarz inequality [for

the relevant variant, see Gourieroux and Monfort (1995), p. 469, or Tripathi (1999)], ΩOLS © ΣV

and ΩOLS, 2 © ΣV . Thus, ΣY , ΩOLS and ΩOLS, 2 provide upper bounds for ΣV . Moreover, we have

the ordering

ΣY © ΩOLS © ΩOLS, 2 (A.1)

where the second inequality uses ΩOLS � ΩOLS, 2 � ΩIV © 0. By the Cauchy-Schwarz inequality

again, we get

ΣV © σV upσ2
uq�1σuV . (A.2)

Proof of Proposition 1. Because y � Y β �X1γ � u, we can write

ARpβq � u1rM1 �M su{k2

u1Mu{pT � kq . (A.3)
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For the numerator, we use M1 �M � P pM1X2q to write:

pX 1
2M1X2q�1{2X 1

2M1u
a� �

Σ2 � Σ21Σ�1
1 Σ12

��1{2�� Σ21Σ�1
1

... Ik2
� 1?

T
X 1u (A.4)

which converges in distribution to Np0, σ2
uIk2q. Therefore, the numerator of ARpβq converges in

distribution to σ2
uχ

2
k2
{k2. Now the claim follows because, for the denominator, we have:

1

T � k
u1Mu

a� 1

T
u1u� 1

T
u1X

�
1

T
X 1X


�1 1

T
X 1u

pÑ σ2
u. (A.5)

Proof of Lemma 2. We have

?
T pβ̂ � β � Ω̂�1

OLSσV uq � Ω̂�1
OLS

?
T
� 1

T
Y 1M1u� σV u

�

a� Ω�1
OLS

�
���?T

�
1

T
V 1u� σV u



� �� Σg1Σ�1

1

... IG
� 1?

T

�
��X 1

1u

ḡ1u

�
�

�
��� (A.6)

which converges in distribution to a normal distribution with mean 0 and covariance matrix

Ω�1
OLS

�
σ2
uΣV � σV uσuV � σ2

u

�
�Σg1Σ�1

1 IG


���Σ1 Σ1g

Σg1 Σg

�
�

�
���Σ�1

1 Σ1g

IG

�
�

�

Ω�1
OLS

� Ω�1
OLS

�
σ2
uΣV � σV uσuV � σ2

u

�
Σg � Σg1Σ�1

1 Σ1g

	�
Ω�1

OLS

� σ2
uΩ�1

OLS � Ω�1
OLSσV uσuV Ω�1

OLS. (A.7)

Proof of Theorem 2. Boole’s inequality implies

Prrpβ, σV uq P G1
pβ, σV uq

pα1, α2qs � Prrβ P IAR
β pα1q and σV u P I1σV upα2;β0qs

¥ Prrβ P IAR
β pα1qs � PrrσV u P I1σV upα2;β0qs � 1, (A.8)
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which converges to p1 � α1q � p1 � α2q � 1 � 1 � α, thanks to (4.1) and Theorem 1. This proves

the first inequality in (4.19). Next, because pβ, σV uq P G1
pβ, σV uq

pα1, α2q implies σV u P I1σV upα1, α2q,
we have

PrrσV u P I1σV upα1, α2qs ¥ Prrpβ, σV uq P G1
pβ, σV uq

pα1, α2qs . (A.9)

Taking the limits of both sides, we have the second inequality in (4.19).

Proof of Lemma 3. We have:

?
T
�
θ̂ � β � Σ̂�1

V σV u

�
�
?
T

�
Ω̂�1

OLS, 2

� 1

T
Y 1Mu

	
� T � k

T
Ω̂�1

OLS, 2σV u

�
a� Ω̂�1

OLS, 2

?
T

�
1

T
Y 1Mu� σV u

�
dÝÑ

TÑ8
N
�

0, σ2
uΩ�1

OLS, 2 � Ω�1
OLS, 2σV uσuV Ω�1

OLS, 2

	
. (A.10)

The last convergence above follows in a similar manner to (4.8).

Proof of Theorem 4. To start, we use (6.3) to write:

?
T
� 1

T
pY 1M1Y qpβ̂ � β̃q � σV u

� � 1?
T
pY 1M1Y qpB1 �B2qu�

?
TσV u

� 1?
T
V 1u�

?
TσV u � 1?

T
V 1P1u� 1?

T
ḡ1M1u� 1?

T
pY 1M1Y qpY 1N1Y q�1Y 1pP � P1qu

a�
?
T

�
1

T
V 1u� σV u



� 1?

T
ḡ1M1u� 1?

T
pY 1M1Y qpY 1N1Y q�1ḡ1pP � P1qu

a�
?
T

�
1

T
V 1u� σV u



� 1?

T
ḡ1u� Σg1Σ�1

1

1?
T
X 1

1u� ΩOLSΩ�1
IV ΣgXΣ�1

X

1?
T
X 1u

� ΩOLSΩ�1
IV Σg1Σ�1

1

1?
T
X 1

1u. (A.11)

Here, we have used the following convergence results:

V 1X1
pÝÑ

TÑ8
0 , V 1X

pÝÑ
TÑ8

0 , (A.12)
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1?
T
V 1P1u

dÝÑ
TÑ8

0 ,
1?
T
V 1pP � P1qu dÝÑ

TÑ8
0 . (A.13)

The term
?
T p 1

T V
1u�σV uq dÝÑ

TÑ8
ΨV u is directly given by Assumption 8. To deal with the remaining

terms in the last two lines above, we write:

Σ�1
X �

�
�� Σ1 Σ12

Σ21 Σ2

�
�� � �

Σ�1 Σ�2
�
, Σ�1 :�

�
�� Σ1

Σ21

�
�� , Σ�2 :�

�
�� Σ12

Σ2

�
�� , (A.14)

?
T
� 1

T
pY 1M1Y qpβ̂ � β̃q � σV u

� a�?T � 1

T
V 1u� σV u

�� δ ϕT (A.15)

where

ϕT :� 1?
T

�
������
X 1

1u

X 1
2u

ḡ1u

�
�����


dÝÑ
TÑ8

N r0, σ2
uΣ̄s , (A.16)

Σ̄ :�

�
�� ΣX ΣXg

ΣgX Σg

�
�� �

�
������

Σ1 Σ12 Σ1g

Σ21 Σ2 Σ2g

Σg1 Σg2 Σg

�
������ , (A.17)

δ :� �� Σg1Σ�1
1 � ΩOLSΩ�1

IV Σg1Σ�1
1 � ΩOLSΩ�1

IV ΣgX Σ�1 ... � ΩOLSΩ�1
IV ΣgX Σ�2 ... IG

�
. (A.18)

Since ϕT � Np0, σ2
uΣ̄), we compute δ Σ̄ δ1. We can do this step-by-step as follows:

δ

�
������

Σ1

Σ21

Σg1

�
������ � �Σg1 � ΩOLSΩ�1

IV Σg1 � ΩOLSΩ�1
IV ΣgX

�
�� Σ1Σ1 � Σ12Σ21

Σ21Σ1 � Σ2Σ21

�
��� Σg1

� ΩOLSΩ�1
IV Σg1 � ΩOLSΩ�1

IV

�
Σg1

... Σg2

���� Ik1

0k2�k1

�
��

� ΩOLSΩ�1
IV Σg1 � ΩOLSΩ�1

IV Σg1 � 0 , (A.19)
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δ

�
������

Σ12

Σ2

Σg2

�
�����
� �Σg1Σ�1

1 Σ12 � ΩOLSΩ�1
IV Σg1Σ�1

1 Σ12 � ΩOLSΩ�1
IV ΣgX

�
�� Σ1Σ12 � Σ12Σ2

Σ21Σ12 � Σ2Σ2

�
��� Σg2

� rΣg2 � Σg1Σ�1
1 Σ12s � ΩOLSΩ�1

IV Σg1Σ�1
1 Σ12 � ΩOLSΩ�1

IV

�
Σg1

... Σg2

���� 0k1�k2

Ik2

�
��

� rΣg2 � Σg1Σ�1
1 Σ12s � ΩOLSΩ�1

IV rΣg2 � Σg1Σ�1
1 Σ12s

� pIG � ΩOLSΩ�1
IV qrΣg2 � Σg1Σ�1

1 Σ12s , (A.20)

δ

�
������

Σ1g

Σ2g

Σg

�
�����
� �Σg1Σ�1

1 Σ1g � ΩOLSΩ�1
IV Σg1Σ�1

1 Σ1g � ΩOLSΩ�1
IV ΣgXΣ�1

X ΣXg � Σg

� �Σg1Σ�1
1 Σ1g � ΩOLSΩ�1

IV pΣgXΣ�1
X ΣXg � Σg1Σ�1

1 Σ1gq � Σg

� �Σg1Σ�1
1 Σ1g � ΩOLSΩ�1

IV ΩIV � Σg � �Σg1Σ�1
1 Σ1g � ΩOLS � Σg � �ΣV (A.21)

and so

δ

�
������

Σ1 Σ12 Σ1g

Σ21 Σ2 Σ2g

Σg1 Σg2 Σg

�
�����
δ

1 � �
0

...
�
IG � ΩOLSΩ�1

IV

��
Σg2 � Σg1Σ�1

1 Σ12

� ... � ΣV

�
δ1

� �pIG � ΩOLSΩ�1
IV qrΣg2 � Σg1Σ�1

1 Σ12s
�
Σ21 ... Σ2

���� Σ1g

Σ2g

�
��Ω�1

IV ΩOLS � ΣV

� �pIG � ΩOLSΩ�1
IV q

�
Σg2Σ21Σ1g � Σg2Σ2Σ2g

� Σg1Σ�1
1 Σ12Σ21Σ1g � Σg1Σ�1

1 Σ12Σ2Σ2g

�
Ω�1

IV ΩOLS � ΣV . (A.22)

Since

Σg2Σ21Σ1g � Σg2Σ2Σ2g � ΩIV � Σg1Σ1Σ1g � Σg1Σ12Σ2g � Σg1Σ�1
1 Σ1g , (A.23)
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we have

Σg2Σ21Σ1g � Σg2Σ2Σ2g � Σg1Σ�1
1 Σ12Σ21Σ1g � Σg1Σ�1

1 Σ12Σ2Σ2g

� ΩIV � Σg1pΣ1 � Σ�1
1 Σ12Σ21qΣ1g � Σg1pΣ12 � Σ�1

1 Σ12Σ2qΣ2g � Σg1Σ�1
1 Σ1g . (A.24)

Using block-inversion formulas [e.g., Abadir and Magnus (2005), Exercise 5.16, p. 106], we can

check that

Σ1 � Σ�1
1 Σ12Σ21 � Σ�1

1 and Σ12 � Σ�1
1 Σ12Σ2 � 0k1�k2 , (A.25)

which in turn implies

Σg2Σ21Σ1g � Σg2Σ2Σ2g � Σg1Σ�1
1 Σ12Σ21Σ1g � Σg1Σ�1

1 Σ12Σ2Σ2g � ΩIV . (A.26)

We finally arrive at

δ Σ̄ δ1 � pΩOLSΩ�1
IV � IGqΩIVΩ�1

IV ΩOLS � ΣV

� ΩOLSΩ�1
IV ΩOLS � ΩOLS � ΣV . (A.27)

Putting everything together, we have the following asymptotic covariance for the LHS of (A.15):

σ2
uΣV �σV uσuV �σ2

upΩOLSΩ�1
IV ΩOLS�ΩOLS�ΣV q � σV uσuV �σ2

upΩOLSΩ�1
IV ΩOLS�ΩOLSq . (A.28)
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