Méthodes d'inférence exactes pour un modèle de régression avec erreurs AR(2) gaussiennes *

Jean-Marie Dufour †
Université de Montréal

Malika Neifar [‡]
Institut Supérieur de Gestion de Sousse

Première version: Janvier 2000 Révisions: Mai 2002, Juin 2005 Cette version: 27 août 2005 Compilé: 27 août 2005, 11:07am

À paraître dans L'Actualité économique.

^{*} Cette recherche a bénéficié du support financier de la Chaire de recherche du Canada en économétrie, du Conseil des Arts du Canada (Bourse Killam), du Conseil de recherche en sciences humaines du Canada, du Conseil de recherche en sciences naturelles et en génie du Canada, de la Fondation Alexander von Humboldt (Allemagne), de l'Institut de Finance mathématique de de Montréal (IFM2), du Réseau canadien de centres d'excellence (projet MITACS), du Fonds de recherche sur la société et la culture (Québec), et du Fonds de recherche sur la nature et les technologies (Québec).

[†] Titulaire de la Chaire de recherche du Canada en économétrie (Université de Montréal). Centre interuniversitaire de recherche en analyse des organisations (CIRANO), Centre interuniversitaire de recherche en économie quantitative (CIREQ) et Département de sciences économiques, Université de Montréal. Adresse postale: Département de sciences économiques, Université de Montréal, C.P. 6128 succursale Centre Ville, Montréal, Québec, Canada H3C 3J7. TEL: (514) 343 2400; FAX: (514) 343 5831; courriel: jean.marie.dufour@umontreal.ca. Page Web: http://www.fas.umontreal.ca/SCECO/Dufour.

[‡] Institut Supérieur de Gestion de Sousse, C.P.763, Sousse 4000, Tunisie. Courriel : malika.neifar@isgs.rnu.tn .

RÉSUMÉ

Ce texte propose des méthodes d'inférence exactes (tests et régions de confiance) sur des modèles de régression linéaires avec erreurs autocorrélées suivant un processus autorégressif d'ordre deux [AR(2)], qui peut être non-stationnaire. L'approche proposée est une généralisation de celle décrite dans Dufour (1990) pour un modèle de régression avec erreurs AR(1) et comporte trois étapes. Premièrement, on construit une région de confiance exacte pour le vecteur des coefficients du processus autorégressif (φ). Cette région est obtenue par inversion de tests d'indépendance des erreurs sur une forme transformée du modèle contre des alternatives de dépendance aux délais un et deux. Deuxièmement, en exploitant la dualité entre tests et régions de confiance (inversion de tests), on détermine une région de confiance conjointe pour le vecteur φ et un vecteur d'intérêt γ de combinaisons linéaires des coefficients de régression du modèle. Troisièmement, par une méthode de projection, on obtient des intervalles de confiance «marginaux» ainsi que des tests à bornes exacts pour les composantes de γ . Ces méthodes sont appliquées à des modèles du stock de monnaie (M2) et du niveau des prix (indice implicite du PNB) américains.

Mots-clefs : régression linéaire ; autocorrélation ; AR(2) ; test exact ; région de confiance exacte ; test induit ; test à borne généralisé ; projection ; masse monétaire ; M2 ; niveau des prix.

ABSTRACT

In this paper, we consider a linear regression model with Gaussian autoregressive errors of order p=2, which may be nonstationary. Exact inference methods (tests and confidence regions) are developed for the autoregressive parameters and the regression coefficients. We generalize the method proposed in Dufour (1990) for linear regression models with autoregressive errors of order p=1. The proposed approach consists in three stages. First, we build an exact confidence set for the complete vector of the autoregressive coefficients (φ) . This region is obtained by inverting independence tests for model errors after the model has been transformed to get independent errors under the null hypothesis. The independence tests are based on combining tests for the presence of autocorrelation at lags one and two. Exploiting the duality between tests and confidence sets, an exact confidence set is then built by finding the set of autoregressive parameter values which are not rejected (test inversion). Second, using this confidence set for φ , simultaneous confidence sets for the autoregressive parameters and regression coefficients are obtained. Finally, marginal confidence intervals for the regression coefficients are derived using a projection approach. We also propose generalized bounds tests for the regression parameters. These methods are applied to time series models of the U.S. money stock (M2) and GNP deflator.

Key words: AR(2) errors; exact test; confidence set; induced test; generalized bounds test; projection method; test inversion; money stock; M2; price level.

Table des matières

1.	Int	troduction	1
2.	Mo	odèle et notations	2
3.	Ré	égions de confiance pour les coefficients autorégressifs	5
4.	Inf	férence jointe sur les coefficients autorégressifs et de régression	8
5.	Inf	férence sur les coefficients de régression	10
6.	Ap	oplication économique	11
7.	Co	onclusion	19
A.	Or	rthogonalisation des valeurs initiales d'un modèle AR(2)	20
B.	Do	onnées	21
Ta	ble	des figures	
	1 2	Stock de monnaie américain (1889-1970): région de confiance exacte de niveau 0.95 pour les coefficients du modèle AR(2) avec tendance Stock de monnaie américain (1889-1970): région de confiance exacte de niveau 0.95 restreinte au triangle de stationnarité pour les coefficients du modèle AR(2) avec tendance	13
	3	Stock de monnaie américain (1889-1970): région de confiance exacte de niveau 0.975 pour les coefficients du modèle AR(2) avec tendance Stock de monnaie américain (1889-1970): région de confiance exacte de niveau 0.975 restreinte au triangle de stationnarité pour les coefficients du modèle AR(2)	14
	5	avec tendance	14 17
	6	Indice de prix implicite du PNB américain (1889-1970): région de confiance exacte de niveau 0.95 restreinte au triangle de stationnarité pour les coefficients du modèle AR(2) avec tendance	17
	7	Indice de prix implicite du PNB américain (1889-1970): région de confiance exacte de niveau 0.975 pour les coefficients du modèle AR(2) avec tendance	18
	8	Indice de prix implicite du PNB américain (1889-1970): région de confiance exacte de niveau 0.975 restreinte au triangle de stationnarité pour les coefficients du modèle AR(2) avec tendance	18

1. Introduction

L'inférence sur des modèles de régression avec erreurs autorégressives constitue l'un des sujets classiques de l'économétrie. Deux problèmes de base se posent dans ce contexte : (1) tester l'indépendance des erreurs contre la présence d'autocorrélation ; (2) développer des méthodes d'inférence pour les coefficients du modèle, i.e. les paramètres du modèle autorégressif des erreurs et ceux du modèle de régression.

Le premier sujet a été relativement bien étudié et de nombreuses procédures valides – tant dans les échantillons finis qu'asymptotiquement – ont été proposées pour ce problème; voir le survol de King (1987). Sur le second sujet, la plupart des méthodes d'inférence (tests et régions de confiance) disponibles sont basées sur des approximations asymptotiques obtenues en supposant que la taille de l'échantillon tend vers l'infini. Il n'y a aucune garantie pour que ces procédures soient valides en échantillon fini au sens de la théorie classique des tests et des régions de confiance [voir Lehmann (1986)], même si l'on suppose que les régresseurs sont fixes et que les erreurs suivent une loi normale. De fait, plusieurs études de simulation suggèrent que les points critiques asymptotiques peuvent être très peu fiables et conduire à de sérieuses distorsions de niveau; voir, par exemple, Park et Mitchell (1980), Miyazaki et Griffiths (1984), Nankervis et Savin (1985) et DeJong, Nankervis, Savin et Whiteman (1992), dans le contexte des modèles AR(1). Très peu de méthodes d'inférence exactes ont été proposées pour des modèles de régression avec erreurs autocorrélées, et celles-ci sont limitées à des modèles linéaires dont les erreurs suivent des processus AR(1) ou MA; voir Dufour (1990), Dufour et King (1991), Dufour et Kiviet (1998), Dufour et Torrès (1998) et les références dans ces articles.

Dans ce texte, nous proposons des méthodes d'inférence exactes pour une classe générale de modèles de régression dont les erreurs suivent un processus AR(2). Ceci nous permettra de considérer les problèmes spécifiques associés à des processus autorégressifs à plus d'un paramètre. En outre, le modèle AR(2) est qualitativement beaucoup plus riche que le modèle AR(1) car il peut produire des mouvements cycliques (dans le cas où les racines du polynôme caractéristique sont complexes). La méthode proposée constitue une généralisation de celle décrite dans Dufour (1990) pour un modèle de régression avec erreurs AR(1). Celle-ci comporte trois étapes. En premier lieu, on construit une région de confiance exacte pour le vecteur complet des coefficients du processus autorégressif (φ) . La construction de cette région se fait par inversion de tests d'indépendance des erreurs contre des alternatives de dépendance à différents délais. En deuxième lieu, on obtient une région de confiance simultanée pour φ et un vecteur d'intérêt γ de combinaisons linéaires des coefficients de régression β , ce qui fournit aussi des tests pour toutes les hypothèses qui fixent à la fois les valeurs de φ et γ . Finalement, on déduit par une méthode de projection une région de confiance pour les éléments appropriés de γ ainsi que des tests à bornes exacts pour toute hypothèse sur γ .

Les tests d'indépendance sont obtenus en combinant plusieurs tests (test induit). Cette approche a l'avantage de simplifier considérablement le calcul des distributions des statistiques sous l'hypothèse nulle et de permettre l'utilisation de tables. Les valeurs critiques appropriées peuvent être calculées par l'algorithme d'Imhof ou par des algorithmes semblables; voir, par exemple, Imhof (1961), Pan (1964), Koerts et Abrahamse (1969), Farebrother (1980, 1984, 1985), Palm et Sneek (1984) et Ansley, Shively et Kohn (1992).

Les régions de confiance pour les coefficients du processus autorégressif sont obtenues par «inversion» de tests d'indépendance entre les erreurs dans un modèle dont les erreurs ont été orthogonalisées sous l'hypothèse nulle, contre des alternatives de dépendance à différents délais (plus grands ou égaux à 1). Il existe une littérature assez considérable sur ce sujet qui sera exploitée ici; voir Thomas et Wallis (1971), Schmidt (1972), Wallis (1972), Vinod (1973), Webb (1973) et King (1981, 1985, 1987).

Après avoir décrit le modèle étudié et les principales notations utilisées (section 2), notre texte suivra les principales étapes de la méthode proposée. Nous allons montrer : (1) comment construire une région de confiance exacte pour les coefficients du processus AR(2) qui caractérise les erreurs (section 3); (2) comment, étant donnée cette région de confiance, construire une région de confiance simultanée pour les coefficients du modèle autorégressif et tout vecteur de transformations linéaires des coefficients de régression du modèle (section 4); (3) comment construire des régions de confiance «marginales» et des tests à bornes pour les coefficients de régression du modèle ou pour tout vecteur de transformations linéaires de ces mêmes coefficients (section 5). Dans la section 6, nous appliquons la méthode proposée à un modèle du stock de monnaie (M2) et de l'indice de prix implicite du PNB (DGNP) américains. Nous concluons à la section 7.

2. Modèle et notations

Dans la suite de ce texte, nous allons considérer le modèle de régression suivant dont les erreurs suivent un processus AR(2):

$$y_t = x_t'\beta + u_t,$$
 (2.1)
 $u_t = \varphi_1 u_{t-1} + \varphi_2 u_{t-2} + e_t, \quad e_t \stackrel{i.i.d.}{\sim} N(0, \sigma^2), \ t = 1, \dots, T,$

où y_t est la variable dépendante (au temps t), les x_t sont des vecteurs fixes (ou strictement exogènes) de dimension $k \times 1$, β est un vecteur $k \times 1$ de coefficients fixes et u_t est une erreur aléatoire; les coefficients β , φ_1 , φ_2 et σ^2 sont inconnus. En outre, nous allons considérer trois hypothèses possibles sur les u_t .

Hypothèse A Erreurs stationnaires. (i) $\varphi_1 + \varphi_2 < 1$, $\varphi_2 - \varphi_1 < 1$, $|\varphi_2| < 1$; (ii) les valeurs initiales suivent la loi

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \sim \mathcal{N} \left[0, \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix} \right] \tag{2.2}$$

où σ_{11}, σ_{12} et σ_{22} satisfont les conditions requises pour que u_t soit stationnaire :

$$\sigma_{11} = \sigma_{22} = \sigma^2 \left(\frac{1 - \varphi_2}{1 + \varphi_2} \right) \left[\frac{1}{(1 - \varphi_2)^2 - \varphi_1^2} \right],$$

¹Les conditions de stationnarité sur φ_1 et φ_2 sont bien connues ; voir par exemple Box et Jenkins (1976, section 3.2.4).

$$\sigma_{12} = \frac{\varphi_1 \sigma_{11}}{1 - \varphi_2} = \sigma^2 \left(\frac{\varphi_1}{1 + \varphi_2} \right) \left[\frac{1}{(1 - \varphi_2)^2 - \varphi_1^2} \right].$$

Hypothèse B Erreurs stationnaires ou intégrées. (i) $\varphi_1 + \varphi_2 \leq 1$, $\varphi_2 - \varphi_1 \leq 1$, $|\varphi_2| \leq 1$; (ii) u_1 et u_2 sont indépendants de e_3, \ldots, e_T et suivent une distribution quelconque.

Hypothèse C MODÈLE AR(2) GÉNÉRAL SUR LES ERREURS. u_1 et u_2 sont indépendants de e_3, \ldots, e_T et suivent une distribution quelconque avec $(\varphi_1, \varphi_2)' \in S_2$ où S_2 est un ensemble qui contient le triangle de stationnarité.

La condition A est celle requise pour que u_t soit stationnaire. La condition B permet un processus stationnaire ou intégré (en excluant les structures explosives) avec une distribution marginale quelconque sur les valeurs initiales, ce qui implique que le processus u_t n'est pas en général stationnaire (bien qu'il puisse l'être asymptotiquement). Enfin la condition C permet de considérer un processus AR(2) tout à fait général, stationnaire, intégré ou explosif.

Considérons d'abord la situation où φ_1 et φ_2 sont connus. Dans ce cas, on peut transformer le modèle comme suit :

$$y_t(\varphi) = x_t(\varphi)'\beta + u_t(\varphi), \quad t = 3, \dots, T,$$

où $\varphi = (\varphi_1, \varphi_2)'$ et

$$y_t(\varphi) = y_t - \varphi_1 y_{t-1} - \varphi_2 y_{t-2},$$

$$x_t(\varphi) = x_t - \varphi_1 x_{t-1} - \varphi_2 x_{t-2},$$

$$u_t(\varphi) = u_t - \varphi_1 u_{t-1} - \varphi_2 u_{t-2}.$$

Sous l'hypothèse A, on peut aussi orthogonaliser les deux premières observations en utilisant la transformation :

$$y_1(\varphi) = \frac{\sigma}{\sigma_u} y_1, \quad x_1(\varphi) = \frac{\sigma}{\sigma_u} x_1,$$

$$y_2(\varphi) = \sqrt{1 - \varphi_2^2} \left(y_2 - \frac{\varphi_1}{1 - \varphi_2} y_1 \right), \quad x_2(\varphi) = \sqrt{1 - \varphi_2^2} \left(x_2 - \frac{\varphi_1}{1 - \varphi_2} x_1 \right),$$

$$u_1(\varphi) = \frac{\sigma}{\sigma_u} u_1, \quad u_2(\varphi) = \sqrt{1 - \varphi_2^2} \left(u_2 - \frac{\varphi_1}{1 - \varphi_2} u_1 \right),$$

où $\sigma_u = \sigma_{11}$ tel que défini dans l'hypothèse A. Contrairement à Judge, Griffiths, Carter Hill, Lütkepohl et Lee (1985, page 191), cette dérivation donne les transformations appropriées puisque $V[u_2(\varphi)] = V[u_1(\varphi)] = \sigma^2$ [voir l'annexe A]. En notation matricielle, le modèle peut alors s'écrire (avec $\bar{p}=1$):

$$y^{S}(\varphi) = X^{S}(\varphi)\beta + u^{S}(\varphi) \tag{2.3}$$

où

$$y^{S}(\varphi) = [y_{\bar{p}}(\varphi), \dots, y_{T}(\varphi)]',$$

 $u^{S}(\varphi) = [u_{\bar{p}}(\varphi), \dots, u_{T}(\varphi)]',$

$$X^{S}(\varphi) = [x_{\bar{p}}(\varphi), \ldots, x_{T}(\varphi)]'.$$

Sous les hypothèses B et C, les deux premières observations font apparaître de nouveaux paramètres. Pour éviter de les modéliser, nous allons conditionner sur ces deux observations. Les choses se passent donc comme si on perdait deux observations. Quand le modèle (2.1) comprend une constante, on a $x_t = (1, z_t')'$ et

$$y_t(\varphi) = (1 - \varphi_1 - \varphi_2)\beta_1 + (z_t - \varphi_1 z_{t-1} - \varphi_2 z_{t-2})'\bar{\gamma} + e_t, \quad t = 3, \dots, T,$$

où $\beta=(\beta_1,\,\bar{\gamma}')'$ et $\bar{\gamma}=(\beta_2,\,\ldots,\,\beta_k)'$. Il est clair que le coefficient β_1 n'est pas identifiable lorsque $\varphi_1+\varphi_2=1$ (racine unitaire simple). Pour éviter ce problème, on redéfinit la constante comme suit :

$$\bar{\beta}_1 = (1 - \varphi_1 - \varphi_2)\beta_1$$

ce qui donne le modèle

$$y_t(\varphi) = \bar{\beta}_1 + z_t(\varphi)'\bar{\gamma} + e_t, \quad t = 3, \ldots, T,$$

où $x_t(\varphi) = [1, z_t(\varphi)']', z_t(\varphi) = (z_t - \varphi_1 z_{t-1} - \varphi_2 z_{t-2})$ et $\bar{\beta}_1$ est identifiable quelles que soient les valeurs de φ_1 et φ_2 .

Quand le modèle (2.1) comprend une constante et une tendance déterministe t, on a $x_t = (1, t, z'_t)'$ et

$$y_t(\varphi) = (1 - \varphi_1 - \varphi_2)\beta_1 + [t - \varphi_1(t - 1) - \varphi_2(t - 2)]\beta_2 + (z_t - \varphi_1 z_{t-1} - \varphi_2 z_{t-2})'\tilde{\gamma} + e_t$$

où $\beta=(\beta_1,\beta_2,\tilde{\gamma}')'$ et $\tilde{\gamma}=(\beta_3,\ldots,\beta_k)'$. Les paramètres du modèle sont identifiés dans le cas où le processus est stationnaire. Toutefois, les coefficients β_1 et β_2 peuvent ne pas être identifiables lorsque le processus de u_t est non stationnaire. Si le processus admet une racine unitaire simple $(\varphi_1+\varphi_2=1)$, le modèle transformé prend la forme

$$y_t(\varphi) = \delta_1 + \delta_2 t + (z_t - \varphi_1 z_{t-1} - \varphi_2 z_{t-2})' \tilde{\gamma} + e_t, \quad t = 3, \dots, T,$$

où les paramètres

$$\delta_1 = (1 - \varphi_1 - \varphi_2)\beta_1 + (\varphi_1 + 2\varphi_2)\beta_2$$
 et $\delta_2 = (1 - \varphi_1 - \varphi_2)\beta_2$

sont identifiables quelles que soient les valeurs de φ_1 et φ_2 . Si le processus admet une racine unitaire simple $(\varphi_1+\varphi_2=1)$, on a $\delta_1=(1+\varphi_2)\beta_2$ et $\delta_2=0$. Dans le cas d'une racine unitaire double (c'est-à-dire $\varphi_1+\varphi_2=1$ et $\varphi_2=-1$), on a $\delta_1=\delta_2=0$ et le modèle transformé se réduit à

$$y_t(\varphi) = (z_t - \varphi_1 z_{t-1} - \varphi_2 z_{t-2})' \tilde{\gamma} + e_t, \quad t = 3, \dots, T.$$

En utilisant la notation matricielle, on peut écrire le modèle transformé comme suit (avec $\bar{p}=3$):

$$y^{C}(\varphi) = X^{C}(\varphi)\bar{\beta} + u^{C}(\varphi) \tag{2.4}$$

οù

$$y^{C}(\varphi) = [y_{\bar{p}}(\varphi), \dots, y_{T}(\varphi)]',$$

$$u^{C}(\varphi) = [u_{\bar{p}}(\varphi), \dots, u_{T}(\varphi)]',$$

$$X^{C}(\varphi) = [\bar{x}_{\bar{p}}(\varphi), \dots, \bar{x}_{T}(\varphi)]',$$

et

$$\bar{x}_{t}(\varphi) = [1, (z_{t} - \varphi_{1}z_{t-1} - \varphi_{2}z_{t-2})']', \ \bar{\beta} = (\bar{\beta}_{1}, \beta_{2}, \dots, \beta_{k})', \quad \text{si } x_{t} = (1, z'_{t})', \\ \bar{x}_{t}(\varphi) = [1, t, (z_{t} - \varphi_{1}z_{t-1} - \varphi_{2}z_{t-2})']', \ \bar{\beta} = (\delta_{1}, \delta_{2}, \beta_{3}, \dots, \beta_{k})', \quad \text{si } x_{t} = (1, t, z'_{t})'.$$

De façon générale, le modèle transformé prendra la forme :

$$y(\varphi) = X(\varphi)\beta_* + u(\varphi). \tag{2.5}$$

$$\begin{array}{l} \bar{p}=1\,,\;\beta_*=\beta\,,\;y(\varphi)=y^S(\varphi)\,,\;X(\varphi)=X^S(\varphi)\,,\;u(\varphi)=u^S(\varphi)\,,\quad\text{sous A,}\\ \bar{p}=3\,,\;\beta_*=\bar{\beta}\,,\;y(\varphi)=y^C(\varphi)\,,\;X(\varphi)=X^C(\varphi)\,,\;u(\varphi)=u^C(\varphi)\,,\quad\text{sous B ou C.} \end{array} \eqno(2.6)$$

Nous supposerons en outre que $\operatorname{rang}[X(\varphi)] = k < T - \bar{p} + 1 = T_1$ et T_1 est le nombre effectif d'observations. Dans ce cas, l'équation de régression transformée (2.5) peut être estimée par moindres carrés ordinaires (MCO) et fournit un estimateur unique que nous dénoterons $\hat{\beta}_*(\varphi)$:

$$\begin{split} \hat{\beta}_*(\varphi) &= [X(\varphi)'X(\varphi)]^{-1}X(\varphi)'y(\varphi) \,, \\ \hat{u}(\varphi) &= y(\varphi) - X(\varphi)\hat{\beta}_*(\varphi) \,, \\ s(\varphi)^2 &= \hat{u}(\varphi)'\hat{u}(\varphi)/(T_1 - k) = \|\hat{u}(\varphi)\|^2/(T_1 - k) \,. \end{split}$$

Afin de faciliter l'interprétation des résultats, il sera en outre utile de reparamétrer les erreurs autorégressives de manière analogue à Dickey (1976), Fuller (1976) et Beveridge et Nelson (1981). On voit facilement que

$$u_{t} = \varphi_{1}u_{t-1} + \varphi_{2}u_{t-2} + e_{t}$$

$$= (\varphi_{1} + \varphi_{2})u_{t-1} - \varphi_{2}(u_{t-1} - u_{t-2}) + e_{t}$$

$$= \theta_{1}u_{t-1} + \theta_{2}\triangle u_{t-1}, \quad t = 1, \dots, T,$$
(2.7)

où $\theta_1 = \varphi_1 + \varphi_2$, $\theta_2 = -\varphi_2$, $\triangle u_{t-1} = u_{t-1} - u_{t-2}$. L'hypothèse de racine unitaire simple sous ce paramétrage s'écrit $\theta_1 = 1$, alors que l'hypothèse de racine unitaire double est $\theta_1 = \theta_2 = 1$.

3. Régions de confiance pour les coefficients autorégressifs

Dans cette section, nous construisons une région de confiance exacte pour le vecteur complet des coefficients du processus autorégressif (φ) . Celle-ci sera obtenue par inversion de tests d'indépendance des erreurs orthogonalisées sous l'hypothèse nulle contre des hypothèses de dépendance à différents délais (plus grands ou égaux à 1). Généralement, les intervalles de confiance sur les

paramètres du vecteur φ représentent la persistance de façon plus précise que les tests de racine unitaire [voir, par exemple, Andrews (1993) et Stock (1994)].

Considérons d'abord le problème qui consiste à tester l'hypothèse suivante :

$$H_0(\varphi_0): \varphi = \varphi_0 \text{ contre } H_a(\varphi_0): \varphi \neq \varphi_0$$

où $\varphi_0=(\varphi_{10},\varphi_{20})'$ les valeurs hypothétiques. Sous $H_0(\varphi_0)$, le modèle transformé s'écrit :

$$y(\varphi_0) = X(\varphi_0)\beta_* + u(\varphi_0)$$

où les erreurs $u_t(\varphi_0)$ du modèle transformé (erreurs orthogonalisées sous l'hypothèse nulle) sont indépendantes $N[0, \sigma^2]$. Si $\varphi \neq \varphi_0$, les erreurs $u_t(\varphi_0)$ demeurent autocorrélées et suivent un processus ARMA(2, 2). En effet,

$$u_{t}(\varphi_{0}) = u_{t} - \varphi_{10}u_{t-1} - \varphi_{20}u_{t-2}$$

$$= \varphi_{1}u_{t-1} - \varphi_{2}u_{t-2} + e_{t} - \varphi_{10}(\varphi_{1}u_{t-2} + \varphi_{2}u_{t-3} + e_{t-1})$$

$$- \varphi_{20}(\varphi_{1}u_{t-3} + \varphi_{2}u_{t-4} + e_{t-2})$$

$$= \varphi_{1}(u_{t-1} - \varphi_{10}u_{t-2} - \varphi_{20}u_{t-3}) + \varphi_{2}(u_{t-2} - \varphi_{10}u_{t-3} - \varphi_{20}u_{t-4})$$

$$+ e_{t} - \varphi_{10}e_{t-1} - \varphi_{20}e_{t-2}$$

$$= \varphi_{1}u_{t-1}(\varphi_{0}) + \varphi_{2}u_{t-2}(\varphi_{0}) + e_{t} - \varphi_{10}e_{t-1} - \varphi_{20}e_{t-2}$$

ou encore

$$u_t(\varphi_0) - \varphi_1 u_{t-1}(\varphi_0) - \varphi_2 u_{t-2}(\varphi_0) = e_t - \varphi_{10} e_{t-1} - \varphi_{20} e_{t-2}. \tag{3.1}$$

Lorsque $u_t(\varphi_0)$ est stationnaire, sa fonction d'autocovariance doit satisfaire les équations suivantes :

$$\begin{array}{lll} \gamma_0 & = & \varphi_1 \gamma_1 + \varphi_2 \gamma_2 + \sigma^2 - \varphi_{10} (\varphi_1 - \varphi_{10}) \sigma^2 - \varphi_{20} [\varphi_1 (\varphi_1 - \varphi_{10}) + (\varphi_2 - \varphi_{20})] \sigma^2 \,, \\ \gamma_1 & = & \varphi_1 \gamma_0 + \varphi_2 \gamma_1 - \varphi_{10} \sigma^2 - \varphi_{20} (\varphi_1 - \varphi_{10}) \sigma^2 \,, \\ \gamma_2 & = & \varphi_1 \gamma_1 + \varphi_2 \gamma_0 - \varphi_{20} \sigma^2 \,, \\ \gamma_j & = & \varphi_1 \gamma_{j-1} + \varphi_2 \gamma_{j-2}, \; \forall \; j \geq 3 \,. \end{array}$$

Pour $\varphi_{10}=\varphi_1$ et $\varphi_{20}=\varphi_2$, on aura : $\gamma_0=\sigma^2,\,\gamma_1=\gamma_2=0$ et donc $\gamma_j=0$ pour $j\geq 3$. Ceci implique l'indépendance des $u_t(\varphi_0)$ à tous les délais $j\geq 1$. Il est suffisant que $\gamma_1=\gamma_2=0$ pour avoir $\gamma_j=0,\,\forall\,j\geq 1$. L'équation (3.1) peut également s'écrire :

$$(1 - \varphi_1 B - \varphi_2 B^2) u_t(\varphi_0) = (1 - \varphi_{10} B - \varphi_{20} B^2) e_t,$$

d'où sous $H_0(\varphi_0): u_t(\varphi_0) = e_t \stackrel{i.i.d.}{\sim} N[0, \sigma^2].$

Pour tester $H_0(\varphi_0)$, il est donc suffisant de tester l'hypothèse que les perturbations $u_t(\varphi_0)$, $t = \bar{p}, \ldots, T$, du modèle transformé sont indépendantes contre la présence d'autocorrélation aux délais 1 et 2. Pour ce faire, nous allons d'abord considérer des statistiques de Durbin et Watson (1950)

généralisées pour $j \ge 2$; voir Vinod (1973). Ces statistiques peuvent s'écrire :

$$d_{j}(\varphi_{0}) = \frac{\sum_{t=\bar{p}}^{T-j} [\hat{u}_{t+j}(\varphi_{0}) - \hat{u}_{t}(\varphi_{0})]^{2}}{\sum_{t=\bar{p}}^{T} \hat{u}_{t}(\varphi_{0})^{2}}$$
(3.2)

ou encore

$$d_j(\varphi_0) = \frac{\hat{u}(\varphi_0)' A_j \hat{u}(\varphi_0)}{\hat{u}(\varphi_0)' \hat{u}(\varphi_0)}$$
(3.3)

où $\hat{u}(\varphi_0) = [\hat{u}_{\bar{p}}(\varphi_0), \ldots, \hat{u}_T(\varphi_0)]'$ et A_1, A_2 sont des matrices $T_1 \times T_1$ de la forme

Le test consiste à rejeter $H_0(\varphi_0)$ lorsqu'au moins l'un des tests basés sur $d_1(\varphi_0)$ ou $d_2(\varphi_0)$ rejette l'hypothèse d'indépendance. La région critique de niveau α_{1j} pour chacun de ces tests est de la forme :

$$d_i(\varphi_0) < d_i^L[X(\varphi_0)] \text{ ou } d_i(\varphi_0) > d_i^U[X(\varphi_0)].$$
(3.4)

Les points $d_j^L[X(\varphi_0)]$ et $d_j^U[X(\varphi_0)]$ sont choisis de façon à ce que, sous l'hypothèse nulle,

$$\mathsf{P}\big[d_j(\varphi_0) < d_j^L[X(\varphi_0)]\big] = \alpha_{1j}^L, \quad \mathsf{P}\big[d_j(\varphi_0) > d_j^U[X(\varphi_0)]\big] = \alpha_{1j}^U, \quad \alpha_{1j}^L + \alpha_{1j}^U = \alpha_{1j} \; ,$$

 $j=1,\,2,\,$ où $0<\alpha_{1j}<1.$ Comme en présence d'une constante, la statistique $d_j(\varphi_0)$ a une distribution symétrique par rapport à 2, il est naturel de prendre $\alpha_{1j}^L=\alpha_{1j}^U=\alpha_{1j}/2.$ En outre, par l'inégalité de Boole-Bonferroni, on voit facilement que le niveau global du test, c'est-à-dire

la probabilité qu'au moins l'une des deux statistiques $d_1(\varphi_0)$ et $d_2(\varphi_0)$ soit significative, ne peut excéder $\alpha_1=\alpha_{11}+\alpha_{12}$. En général, les points critiques $d_j^L[X(\varphi_0)]$ et $d_j^U[X(\varphi_0)]$ dépendent de $X(\varphi_0)$. Par conséquent, il sera commode d'utiliser la fonction de répartition de $d_j(\varphi_0)$:

$$F_i[z; X(\varphi_0)] = P[d_i(\varphi_0) \le z \mid H_{0i}], \quad j = 1, 2,$$

où $H_{0j}: \varphi_j=\varphi_{j0}$, et d'évaluer cette fonction à $\hat{d}_j(\varphi_0)$ qui représente la valeur observée de $d_j(\varphi_0)$:

$$\alpha_{1j}(\varphi_0) = F_j[\hat{d}_j(\varphi_0); X(\varphi_0)].$$

La région critique basée sur $d_j(\varphi_0)$, définie en (3.4), peut alors s'écrire :

$$\alpha_{1j}(\varphi_0) < \alpha_{1j}^L \text{ ou } \alpha_{1j}(\varphi_0) > 1 - \alpha_{1j}^U.$$
 (3.5)

De façon équivalente, la région d'acceptation s'écrit :

$$d_j^L[X(\varphi_0)] \le d_j(\varphi_0) \le d_j^U[X(\varphi_0)]$$

ou encore

$$\alpha_{1j}^L \le \alpha_{1j}(\varphi_0) \le 1 - \alpha_{1j}^U. \tag{3.6}$$

On accepte $H_0(\varphi_0)$ lorsque

$$\alpha_{1j}^L \le \alpha_{1j}(\varphi_0) \le 1 - \alpha_{1j}^U, \ j = 1, \ 2.$$

On obtient ainsi une région de confiance conjointe valide pour $(\varphi_1, \varphi_2)'$ de niveau plus grand ou égal à $1 - \alpha_1$:

$$I(\alpha_{11},\ \alpha_{12}) = \{(\varphi_{10},\ \varphi_{20}) \in S_2 : \alpha_{11}^L \le \alpha_{11}(\varphi_0) \le 1 - \alpha_{11}^U \text{ et } \alpha_{12}^L \le \alpha_{12}(\varphi_0) \le 1 - \alpha_{12}^U \}$$

où S_2 est l'ensemble des valeurs admissibles de $(\varphi_1, \varphi_2)'$. Par exemple, sous l'hypothèse A, l'ensemble S_2 s'écrit

$$S_2 = \{ (\varphi_{10}, \, \varphi_{20})' : \varphi_{10} + \varphi_{20} < 1, \varphi_{20} - \varphi_{10} < 1, |\varphi_{20}| < 1 \}$$

= \{ \((\varphi_{10}, \varphi_{20})' : -1 < \varphi_{20} < 1, \varphi_{20} - 1 < \varphi_{10} < 1 - \varphi_{20}\}.

En pratique, la région de confiance $I(\alpha_{11}, \alpha_{12})$ peut être établie par un balayage de l'ensemble admissible, où on ne retient que les points $(\varphi_{10}, \varphi_{20})'$ qui sont acceptés par les deux tests basés sur $d_1(\varphi_0)$ et $d_2(\varphi_0)$.

4. Inférence jointe sur les coefficients autorégressifs et de régression

Sachant comment construire une région de confiance exacte pour les coefficients d'autocorrélation, nous allons maintenant décrire comment obtenir des régions de confiance conjointes pour ces coefficients et le vecteur γ des combinaisons linéaires des coefficients de régression β . Plus précisément, nous allons considérer le problème qui consiste à construire une région de confiance conjointe pour le vecteur φ et le vecteur $\gamma = C\beta_*$, où C est une matrice $m \times k$ de rang m.

Pour toute valeur φ_0 dans la région de confiance exacte de φ , le modèle (2.1) peut être transformé de façon à ce que les erreurs soient indépendantes. Comme précédemment, le modèle transformé

$$y(\varphi_0) = X(\varphi_0)\beta_* + u(\varphi_0)$$

satisfait toutes les hypothèses du modèle linéaire classique. Les estimateurs des MCO pour ce modèle sont :

$$\hat{\beta}_*(\varphi_0) = [X(\varphi_0)'X(\varphi_0)]^{-1}X(\varphi_0)'y(\varphi_0), \quad \hat{u}(\varphi_0) = y(\varphi_0) - X(\varphi_0)\hat{\beta}_*(\varphi_0),$$

$$s^2(\varphi_0) = \hat{u}(\varphi_0)'\hat{u}(\varphi_0)/(T_1 - k).$$

Si on considère l'hypothèse $H_0(\gamma_0)$: $\gamma=\gamma_0$, on voit – en tenant compte du fait que φ désigne toujours la vraie valeur du vecteur des coefficients autorégressifs – que la statistique de Fisher pour $H_0(\gamma_0)$,

$$F(\gamma_0; \varphi) = \frac{\left(C\hat{\beta}_*(\varphi) - \gamma_0\right)' \left\{C[X(\varphi)'X(\varphi)]^{-1}C'\right\}^{-1} \left(C\hat{\beta}_*(\varphi) - \gamma_0\right)/m}{\hat{u}(\varphi)'\hat{u}(\varphi)/(T_1 - k)}$$

suit sous $H_0(\gamma_0)$ une loi de Fisher avec (m,T_1-k) degrés de liberté. Par conséquent, l'ensemble

$$J(\alpha_2; \varphi) \equiv \{ \gamma_0 : F(\gamma_0; \varphi) \le F(\alpha_2; m, T_1 - k) \}$$

est une région de confiance de niveau $1-\alpha_2$ pour γ . De plus, il est facile de voir que le vecteur $\left(d_1(\varphi),\,d_2(\varphi)\right)'$ et la statistique $F(\gamma_0;\,\varphi)$ sont indépendants lorsque $\gamma=\gamma_0$ [voir Dufour (1990)]. En outre, la région de confiance

$$K(\alpha_{11}, \alpha_{12}, \alpha_2) \equiv \{(\varphi_0, \gamma_0) : \varphi_0 \in I(\alpha_{11}, \alpha_{12}) \text{ et } \gamma_0 \in J(\alpha_2; \varphi_0)\}$$

est de niveau plus grand ou égal à $(1 - \alpha_1)(1 - \alpha_2)$, car

$$\begin{split} \mathsf{P}[(\varphi,\,\gamma) \in K(\alpha_{11},\,\alpha_{12},\,\alpha_{2})] &= \mathsf{P}[\varphi \in I(\alpha_{11},\,\alpha_{12}) \; \mathrm{et} \; \gamma \in J(\alpha_{2};\,\varphi)] \\ &= \mathsf{P}[\varphi \in I(\alpha_{11},\,\alpha_{12})] \mathsf{P}[\gamma \in J(\alpha_{2};\,\varphi)] \\ &\geq \; (1-\alpha_{1})(1-\alpha_{2}) \, . \end{split}$$

Plutôt que d'utiliser la région de confiance ellipsoïdale $J(\alpha_2; \varphi)$, dont la forme peut être difficile à saisir (notamment si $m \geq 2$), on peut aussi considérer une région de confiance «induite» de forme rectangulaire [voir Savin (1984)]. Si on dénote $\gamma = (\gamma_1, \ldots, \gamma_m)'$ et $\gamma_0 = (\gamma_{10}, \ldots, \gamma_{m0})'$, une telle région s'écrit :

$$J_I(\alpha_2; \varphi) = \{ \gamma_0 : |\hat{\gamma}_j - \gamma_{j0}| \le \hat{V}(\hat{\gamma}_j)^{\frac{1}{2}} t[\alpha_2/(2m); T_1 - k], j = 1, \dots, m \}$$

où $\hat{\mathsf{V}}(\hat{\gamma}_j)$ est le $j^{i\grave{e}me}$ diagonale de la matrice $\hat{\mathsf{V}}(\hat{\gamma})=s^2(\varphi)\{C[X(\varphi)'X(\varphi)]^{-1}C'\}^{-1}.$ On peut

montrer facilement, par l'inégalité de Boole-Bonferroni, que

$$P[\gamma \in J_I(\alpha_2; \varphi)] \ge (1 - \alpha_2).$$

De cette observation, on déduit que la région de confiance conjointe induite

$$K_I(\alpha_{11}, \alpha_{12}, \alpha_2) = \{ (\varphi_0, \gamma_0) : \varphi_0 \in I(\alpha_{11}, \alpha_{12}) \text{ et } \gamma_0 \in J_I(\alpha_2; \varphi_0) \}$$

satisfait la condition de niveau

$$P[\gamma \in K_I(\alpha_{11}, \alpha_{12}, \alpha_2)] > (1 - \alpha_1)(1 - \alpha_2).$$

Enfin, si on désire construire des tests pour des hypothèses de la forme

$$H_0(\varphi_0, \gamma_0) : \varphi = \varphi_0 \text{ et } \gamma = \gamma_0,$$
 (4.1)

il suffit de rejeter $H_0(\varphi_0, \gamma_0)$ lorsque $(\varphi_0, \gamma_0) \notin K(\alpha_{11}, \alpha_{12}, \alpha_2)$ [ou encore lorsque $(\varphi_0, \gamma_0) \notin K_I(\alpha_{11}, \alpha_{12}, \alpha_2)$]. Les tests obtenus de cette manière ont pour niveau α .

5. Inférence sur les coefficients de régression

Nous pouvons maintenant construire une région de confiance exacte pour γ et des tests à bornes pour $H_0(\gamma_0)$: $\gamma = \gamma_0$. Pour ce faire, nous allons définir les deux ensembles suivants :

$$U(\alpha_{11}, \, \alpha_{12}, \, \alpha_{2}) = \{ \gamma_{0} : \quad (\varphi_{0}, \, \gamma_{0}) \in K_{I}(\alpha_{11}, \, \alpha_{12}, \, \alpha_{2})$$

$$\text{pour au moins un } \varphi_{0} \in I(\alpha_{11}, \, \alpha_{12}) \} \,,$$
(5.1)

$$L(\alpha_{11}, \, \alpha_{12}, \, \alpha_2) = \{ \gamma_0 : \quad (\varphi_0, \, \gamma_0) \in K_I(\alpha_{11}, \, \alpha_{12}, \, \alpha_2)$$
pour tout $\varphi_0 \in I(\alpha_{11}, \, \alpha_{12}) \},$

$$(5.2)$$

où $I(\alpha_{11}, \alpha_{12})$ est une région de confiance pour φ telle que

$$P[\varphi \in I(\alpha_{11}, \alpha_{12})] \ge 1 - \alpha_1, \ 0 < \alpha_1 < 1 \text{ et } \alpha_{11} + \alpha_{12} = \alpha_1.$$

Si, de plus, on choisit α_1 , α_2 et α'_2 tels que

$$(1 - \alpha_1)(1 - \alpha_2) = 1 - \alpha$$
, $(1 - \alpha_1)\alpha_2' = \alpha$ et $0 \le \alpha_1 < \alpha \le 1 - \alpha_1$, (5.3)

on a

$$\alpha_1 < \alpha \le \alpha'_2, \ L(\alpha_{11}, \alpha_{12}, \alpha'_2) \subseteq U(\alpha_{11}, \alpha_{12}, \alpha_2)$$

et

$$P[\gamma \in L(\alpha_{11}, \alpha_{12}, \alpha'_{2})] \le 1 - \alpha \le P[\gamma \in U(\alpha_{11}, \alpha_{12}, \alpha_{2})]$$
 (5.4)

pour toutes les valeurs de φ et γ admissibles [la démonstration est analogue à celle présentée dans l'appendice de Dufour (1990)]. En d'autres termes, $U(\alpha_{11}, \alpha_{12}, \alpha_2)$ est une région de confiance

conservatrice de niveau $1-\alpha$ pour γ et $L(\alpha_{11},\,\alpha_{12},\,\alpha_2')$ est une région de confiance libérale au même niveau. À partir de ces deux régions de confiance, on peut facilement déduire des tests conservateurs (ou libéraux) pour toute hypothèse de la forme $H_0(\gamma_0): \gamma=\gamma_0$, ainsi que des tests à bornes. Pour ce faire, on définit les deux statistiques suivantes :

$$Q_{L}(\gamma) = \inf\{F(\varphi_{0}, \gamma) : \varphi_{0} \in I(\alpha_{11}, \alpha_{12})\},$$

$$Q_{U}(\gamma) = \sup\{F(\varphi_{0}, \gamma) : \varphi_{0} \in I(\alpha_{11}, \alpha_{12})\},$$
(5.5)

où $\alpha_{11}+\alpha_{12}=\alpha_1$ et α_1, α_2 et α_2' vérifient (5.3). Il est à noter que l'événement $\gamma\notin U(\alpha_{11},\alpha_{12},\alpha_2)$ est équivalent avec la probabilité un à $Q_L(\gamma)\geq F(\alpha_2;m,T_1-k)$ alors que l'événement $\gamma\in L(\alpha_{11},\alpha_{12},\alpha_2')$ est équivalent à $Q_U(\gamma)\leq F(\alpha_2';m,T_1-k)$. Comme

$$P[\gamma \in U(\alpha_{11}, \alpha_{12}, \alpha_2)] \ge 1 - \alpha, \quad P[\gamma \in L(\alpha_{11}, \alpha_{12}, \alpha_2')] \le 1 - \alpha,$$

on déduit que

$$P[Q_L(\gamma) \ge F(\alpha_2; m, T_1 - k)] \le \alpha, \quad P[Q_U(\gamma) \le F(\alpha_2'; m, T_1 - k)] \le 1 - \alpha.$$

L'événement $Q_L(\gamma_0) \geq F(\alpha_2; m, T_1 - k)$ est donc une région critique conservatrice alors que $Q_U(\gamma_0) \geq F(\alpha_2'; m, T_1 - k)$ est une région critique libérale pour tester $H_0(\gamma_0) : \gamma = \gamma_0$ au niveau α . Comme $Q_L(\gamma_0) \leq Q_U(\gamma_0)$ et $F(\alpha_2; m, T_1 - k) \geq F(\alpha_2'; m, T_1 - k)$ pour $\alpha_2 \leq \alpha_2'$, il est clair que la région critique libérale contient la région conservatrice. Ceci suggère d'utiliser un test à bornes pour $H_0(\gamma_0)$:

rejeter
$$H_0(\gamma_0)$$
 si $Q_L(\gamma_0) \geq F(\alpha_2; m, T_1 - k)$, accepter $H_0(\gamma_0)$ si $Q_U(\gamma_0) \leq F(\alpha_2'; m, T_1 - k)$.

Dans les autres cas, il est préférable de considérer le test comme non concluant.

6. Application économique

Afin d'illustrer l'approche développée plus haut, nous allons considérer deux des séries annuelles étudiées par Nelson et Plosser (1982) : un agrégat monétaire (M2) et l'indice implicite du PNB américains. Chaque série comprend T=82 observations s'étendant de 1889 à 1970.

Commençons par la masse monétaire, que nous dénoterons $M2_t$. Nous supposons que la série $m_t \equiv \log(M2_t)$ admet la représentation suivante, qui est un cas particulier du modèle (2.1) :

$$m_{t} = \beta_{1} + \beta_{2}t + u_{t},$$

$$u_{t} = \varphi_{1}u_{t-1} + \varphi_{2}u_{t-2} + e_{t}, \ e_{t} \stackrel{i.i.d.}{\sim} N(0, \sigma^{2}), \ t = 1, \dots, T.$$

$$(6.1)$$

Si on n'impose pas les conditions de stabilité et on estime le modèle par maximum de vraisemblance

 $^{^{2}}M_{2}$ est la somme de M_{1} avec les dépôts à terme, et M_{1} est la somme des pièces, billets et dépôts à vue.

conditionnel (étant donné les deux première observations) on obtient : ³

$$m_{t} = \begin{array}{ccc} 1.2167 & +0.05907 \ t & + \hat{u}_{t} \,, \\ & (0.03801) & (0.001393) \end{array}$$
$$\hat{u}_{t} = \begin{array}{ccc} 1.5820 \, \hat{u}_{t-1} & -0.6635 \, \hat{u}_{t-2} & + \hat{e}_{t} \,, \\ & (0.08276) & (0.08282) \end{array}$$

où les écart-types asymptotiques sont données entre parenthèses. Notons que le processus u_t peut aussi s'écrire [suivant le paramétrage utilisé par Dickey (1976), Fuller (1976), Hasza et Fuller (1979) et Beveridge et Nelson (1981)]:

$$\hat{u}_t = \hat{\theta}_1 \hat{u}_{t-1} + \hat{\theta}_2 (\hat{u}_{t-1} - \hat{u}_{t-2}) + \hat{e}_t$$

où $\hat{\theta}_1=\hat{\varphi}_1+\hat{\varphi}_2,=0.9185$ et $\hat{\theta}_2=-\hat{\varphi}_2=0.6635$. Rappelons que β_1 et β_2 sont non identifiables dans le cadre du modèle transformé

$$m_t(\theta) = (1 - \theta_1)\beta_1 + (\theta_1 - \theta_2)\beta_2 + (1 - \theta_1)\beta_2 t + e_t$$

quand le processus étudié admet une racine unitaire simple. Par contre, les coefficients transformés

$$\delta_1 = (1 - \theta_1)\beta_1 + (\theta_1 - \theta_2)\beta_2, \quad \delta_2 = (1 - \theta_1)\beta_2$$
 (6.2)

sont identifiables. Les estimateurs du maximum de vraisemblance de ces paramètres sont $\hat{\delta}_1 = 0.1142$ et $\hat{\delta}_2 = .004814$.

Notons que, si on impose la condition de stationnarité et on estime le modèle par maximum de vraisemblance, les résultats sont très proches des précédents :

$$m_t = \begin{array}{rrr} 1.2759 & +0.05806 \ t & + \hat{u}_t \,, \\ & (0.1028) & (0.00211) \\ \hat{u}_t = \begin{array}{rrr} 1.56 \, \hat{u}_{t-1} & -0.65 \, \hat{u}_{t-2} & + \hat{e}_t \,, \\ & (0.08392) & (0.08392) \end{array}$$

d'où
$$\hat{\theta}_1=\hat{\varphi}_1+\hat{\varphi}_2,=0.91,\,\hat{\theta}_2=-\hat{\varphi}_2=0.65,\,\hat{\delta}_1=0.1299$$
 et $\hat{\delta}_2=0.005225.$

Nous allons maintenant construire des régions de confiance conjointes pour le vecteur $\theta=(\theta_1,\theta_2)'=(\varphi_1+\varphi_2,-\varphi_2)'$ des coefficients du modèle autorégressif et en déduire par projection des intervalles de confiance pour chacun des paramètres θ_1 et θ_2 , ainsi que des intervalles de confiance simultanés pour δ_1 et δ_2 . En appliquant la procédure développée à la section 3, nous avons obtenu des régions de confiance conjointes pour les paramètres du modèle AR(2) des erreurs aux niveaux 0.95 et 0.975; voir les graphiques 1 - 4. De là, par projection, on obtient les intervalles de confiance

³Le maximum de vraisemblance dans ce cas équivaut à estimer le modèle en appliquant la méthode des moindres carrées non-linéaires; voir Pagan (1974).

⁴Cette estimation du modèle de tendance avec erreurs AR(2) ainsi que les suivantes de ce type furent obtenues au moyen du logiciel SHAZAM (version 9).

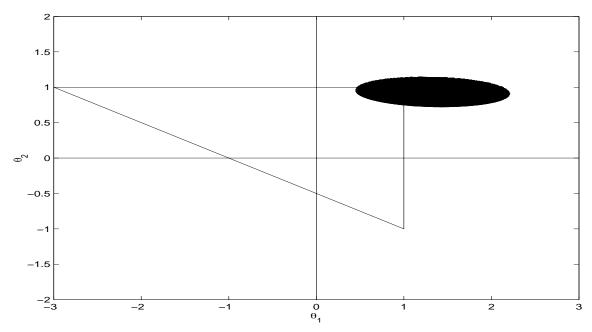


Figure 1. Stock de monnaie américain (1889-1970) : région de confiance exacte de niveau 0.95 pour les coefficients du modèle AR(2) avec tendance

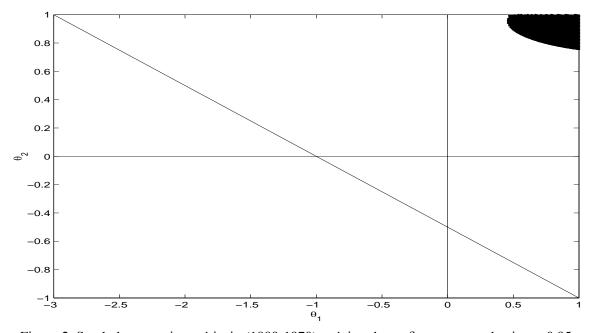


Figure 2. Stock de monnaie américain (1889-1970) : région de confiance exacte de niveau 0.95 restreinte au triangle de stationnarité pour les coefficients du modèle AR(2) avec tendance

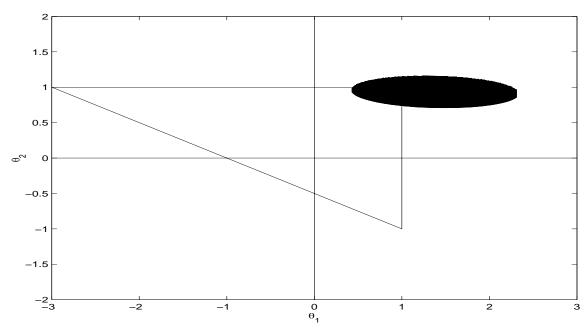


Figure 3. Stock de monnaie américain (1889-1970) : région de confiance exacte de niveau 0.975 pour les coefficients du modèle AR(2) avec tendance

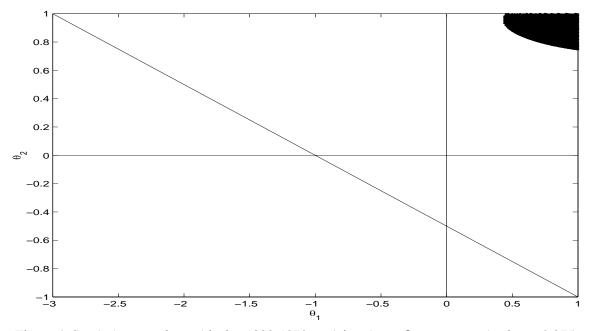


Figure 4. Stock de monnaie américain (1889-1970) : région de confiance exacte de niveau 0.975 restreinte au triangle de stationnarité pour les coefficients du modèle AR(2) avec tendance

simultanés suivants : au niveau 0.95,

$$\theta_1 \in [0.73, 1.14], \ \theta_2 \in [0.46, 2.2],$$

et, au niveau 0.975.

$$\theta_1 \in [0.717, 1.155], \ \theta_2 \in [0.44, 2.3].$$

Les points critiques sont obtenues en appliquant l'algorithme d'Imhof (1961) tel que programmé dans la sous-routine FQUAD de Koerts et Abrahamse (1969),⁵ avec $\alpha_{11}=\alpha_{21}=\alpha_{12}=\alpha_{22}=\alpha_1/4,\ \alpha_1=0.05$ pour le premier cas et $\alpha_1=0.025$ pour le second, et $T_1=80.6$ Ces régions de confiance ne permettent pas d'exclure le cas où le modèle n'est pas stationnaire. En particulier, l'hypothèse de racine unitaire double $(\theta_1,\theta_2)=(1,1)$ n'est pas rejetée. De là, par projection dans le triangle de stationnarité (en enlevant tout ce qui se trouve à l'extérieur de ce triangle), on construit les intervalles de confiance suivants : au niveau 0.95.

$$\theta_1 \in [0.73, 1), \quad \theta_2 \in [0.46, 1),$$

et, au niveau 0.975,

$$\theta_1 \in [0.717, 1), \quad \theta_2 \in [0.44, 1).$$

Les coefficients de régression β_1 et β_2 ne sont pas identifiables dans le cas non stationaire. Mais nous pouvons construire des intervalles de confiance pour δ_1 et δ_2 . En prenant $\alpha_1=\alpha_2=0.025$ et utilisant le point critique $t(\alpha_2/4, 78)=2.5569$, on obtient les intervalles suivants de niveau $1-\alpha_1-\alpha_2=0.95$:

$$\delta_1 \in [-0.1160, 0.1585], \quad \delta_2 \in [-.004310, 0.007558].$$

On voit que ces intervalles sont remarquablement courts en dépit du fait que que β_1 et β_2 ne semblent pas identifiables. Ces intervalles contiennent la valeur zéro, car (1, 1) est compris dans la région de confiance conjointe pour (θ_1, θ_2) . Par conséquent, on peut dire que δ_1 et δ_2 ne sont pas significativement différents de zéro (au niveau 0.05).

Nous allons maintenant étudier l'indice implicite du PNB américain que nous dénoterons $DGNP_t$. Nous supposons à nouveau que la série $p_t = \log(DGNP_t)$ admet la représentation (6.1). Dans ce cas, les résultats asymptotiques obtenus par maximum de vraisemblance conditionnel (sans imposer la stationnarité) sont :

$$p_t = 3.2403 + 0.01833 t + \hat{u}_t, (0.04234) (0.002306)$$

⁵Nous pouvons aussi utiliser l'un des algorithmes proposés par Pan (1964), Farebrother (1980, 1984, 1985), Palm et Sneek (1984), et Ansley et al. (1992).

⁶Puisque le modèle considérée possède une constante, la statistique $d_j(\varphi_0)$ a une distribution symétrique par rapport à deux et il serait naturel de choisir $\alpha_{ij} = \alpha_j/2$. En plus, nous donnons la même importance à θ_1 et θ_2 , et alors $\alpha_{ij} = \alpha/4$. Notons que différentes partitions de α en α_j , j = 1, 2, génèrent différentes procédures dont les puissances peuvent différer. A priori il n'est pas évident qu'une partition particulière domine uniformément les autres.

$$\hat{u}_t = 1.4164 \,\hat{u}_{t-1} - 0.4587 \,\hat{u}_{t-2} + \hat{e}_t \,.$$

$$(0.09877) \quad (0.09992)$$

Suivant le paramétrage de Dickey-Fuller, le processus AR(2) des erreurs s'écrit :

$$\hat{u}_t = \hat{\theta}_1 \hat{u}_{t-1} + \hat{\theta}_2 (\hat{u}_{t-1} - \hat{u}_{t-2}) + \hat{e}_t$$
, $\hat{\theta}_1 = \hat{\varphi}_1 + \hat{\varphi}_2 = 0.9577$, $\hat{\theta}_2 = -\hat{\varphi}_2 = 0.4587$,

et $\hat{\delta}_1 = 0.1462$, $\hat{\delta}_2 = .0007754$. Si on impose la stabilité, on obtient à nouveau des résultats très semblables à ceux basés sur la méthode conditionnelle :

$$p_{t} = \begin{array}{ccc} 3.0367 & +0.02132 t & +\hat{u}_{t}, \\ & (0.1196) & (0.002402) \\ \hat{u}_{t} = \begin{array}{ccc} 1.3900 \, \hat{u}_{t-1} & -0.4600 \, \hat{u}_{t-2} & +\hat{e}_{t}, \\ & (0.09805) & (0.09805) \end{array}$$

d'où
$$\hat{\theta}_1=\hat{\varphi}_1+\hat{\varphi}_2=0.9300\,,\;\hat{\theta}_2=-\hat{\varphi}_2=0.4600,\,\hat{\delta}_1=0.01492$$
 et $\hat{\delta}_2=0.2226.$

Les régions de confiance pour le vecteur $\theta=(\theta_1,\theta_2)'=(\varphi_1+\varphi_2,-\varphi_2)'$ sont construites de la même manière que pour le modèle du stock de monnaie. Les régions de confiance conjointes au niveau 0.95 sont représentées sur les figures 5 (non contrainte) et 6 (restreinte au triangle de stationnarité), et au niveau 0.975 sur les figures 7 et 8. Il est intéressant de noter que les points (1,1),(1,0) et (0,1) sont tous exclus de la région conjointe, même si des points avec $\theta_1=1$ ou $\theta_2=1$ s'y retrouvent. Les intervalles de confiance par projection correspondants sont les suivants : au niveau 0.95, avec $\alpha_1=0.05$ et $\alpha_{11}=\alpha_{21}=\alpha_{12}=\alpha_{22}=\alpha_1/4$,

modèle non contraint :
$$\theta_1 \in [0.551, 1.39]$$
 , $\theta_2 \in [0.2, 5.1]$, modèle stationnaire : $\theta_1 \in [0.844, 1)$, $\theta_2 \in [0.2, 1)$. (6.3)

et, au niveau 0.975, avec $\alpha_1 = 0.025$ et $\alpha_{11} = \alpha_{21} = \alpha_{12} = \alpha_{22} = \alpha_1/4$,

$$\begin{array}{lll} \text{mod\`ele non contraint}: & \theta_1 \in [0.51\,,\,\,1.45]\,, & \theta_2 \in [0.17\,,\,\,5.88]\,, \\ \text{mod\`ele stationnaire}: & \theta_1 \in [0.73\,,\,\,1)\,, & \theta_2 \in [0.17\,,\,\,1)\,. \end{array} \tag{6.4}$$

On voit que ces intervalles sont remarquablement courts quand on se restreint au triangle de stationnarité (ou à ce dernier plus sa frontière, laquelle correspond au cercle unité).

Par ailleurs, les deux paramètres de régression β_1 et β_2 ne sont pas ici identifiables, mais δ_1 et δ_2 le sont. Les intervalles de confiance pour δ_1 et δ_2 au niveau $\alpha=0.95$ [avec $\alpha_1=\alpha_2=0.025$ et un point critique $t(\alpha_2/4;78)=2.5569$ basé sur la loi de Student t(78)] sont les suivants :

$$\delta_1 \in \left[0.00045105\,,\; 0.3617\right],\; \delta_2 \in \left[-0.0001561\,,\; 0.002895\right].$$

À nouveau, ces intervalles sont très précis. On notera que δ_1 est significativement différent de zéro tandis que δ_2 ne l'est pas.

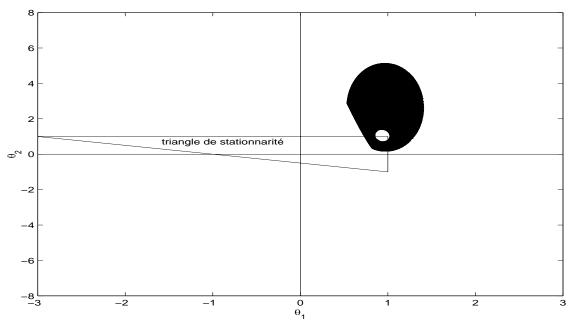


Figure 5. Indice de prix implicite du PNB américain (1889-1970) : région de confiance exacte de niveau 0.95 pour les coefficients du modèle AR(2) avec tendance

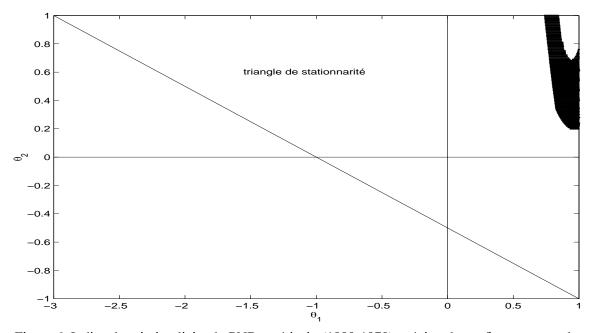


Figure 6. Indice de prix implicite du PNB américain (1889-1970) : région de confiance exacte de niveau 0.95 restreinte au triangle de stationnarité pour les coefficients du modèle AR(2) avec tendance

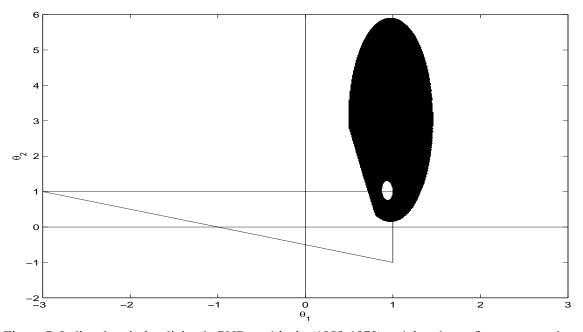


Figure 7. Indice de prix implicite du PNB américain (1889-1970) : région de confiance exacte de niveau 0.975 pour les coefficients du modèle AR(2) avec tendance

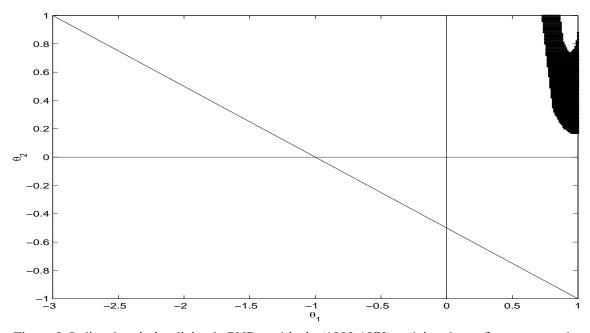


Figure 8. Indice de prix implicite du PNB américain (1889-1970) : région de confiance exacte de niveau 0.975 restreinte au triangle de stationnarité pour les coefficients du modèle AR(2) avec tendance

7. Conclusion

L'inférence statistique sur des modèles de régression avec erreurs autorégressives d'ordre deux est un problème fréquent dans l'analyse économétrique. Les méthodes disponibles sont généralement fondées sur des approximations asymptotiques. Il n'y a aucune garantie que ces méthodes sont «valides» en échantillon fini.

Dans cet article, nous avons généralisé l'approche décrite dans Dufour (1990) pour des modèles de régression avec erreurs AR(1) à des modèles de régression avec erreurs AR(2). Celle-ci comporte trois étapes : en premier lieu, nous construisons une région de confiance exacte pour le vecteur des coefficients du processus autorégressifs (φ) , en deuxième lieu une région de confiance simultanée pour φ et le vecteur des combinaisons linéaires des coefficients de régression β qu'on note par γ , et en dernier lieu, nous déduisons par projection une région de confiance et nous dérivons un test à borne pour γ . La construction de la région de confiance pour les coefficients du vecteur φ est faite par inversion de tests d'indépendance (tests induits) des erreurs contre des alternatives de dépendance à différents délais. Nous avons appliqué les méthodes proposées à la masse monétaire élargie (M2) et à l'indice de prix implicite du PNB américains.

La recherche d'autres méthodes d'inférence exactes est souhaitable afin de faire une comparaison rigoureuse en terme de puissance des différentes approches. En outre, nous travaillons à la méthode proposée ici au cas où les erreurs suivent un processus AR(p) d'ordre quelconque.

Annexes

A. Orthogonalisation des valeurs initiales d'un modèle AR(2)

Rappelons que

$$u_1(\varphi) = (\sigma/\sigma_u)u_1, \tag{A.1}$$

$$u_2(\varphi) = \sqrt{1 - \varphi_2^2} u_2 - \varphi_1 \sqrt{(1 + \varphi_2)/(1 - \varphi_2)} u_1,$$
 (A.2)

$$V(u_1) = \sigma_{11} = V(u_2) = \sigma_{22} = \left(\frac{1 - \varphi_2}{\Delta}\right) \sigma^2,$$
 (A.3)

$$Cov(u_1, u_2) = \sigma_{21} = \sigma_{12} = \sigma^2 \frac{\varphi_1}{\Delta},$$
 (A.4)

où $\Delta=(1+\varphi_2)[(1-\varphi_2)^2-\varphi_1^2].$ Alors,

$$V[u_1(\varphi)] = (\sigma/\sigma_u)^2 V(u_1) = \sigma^2,$$

$$\begin{aligned} \mathsf{V}[u_{2}(\varphi)] &= \varphi_{1}^{2} \frac{1 + \varphi_{2}}{1 - \varphi_{2}} \sigma_{11} + (1 - \varphi_{2}^{2}) \sigma_{22} - 2\varphi_{1} \sqrt{\frac{1 + \varphi_{2}}{1 - \varphi_{2}}} \sqrt{1 - \varphi_{2}^{2}} \sigma_{12} \\ &= \sigma^{2} [\varphi_{1}^{2} \frac{1 + \varphi_{2}}{1 - \varphi_{2}} + (1 - \varphi_{2}^{2})] \frac{1 - \varphi_{2}}{\Delta} - 2\sigma^{2} \varphi_{1} \frac{\varphi_{1}}{\Delta} \sqrt{\frac{(1 + \varphi_{2})(1 - \varphi_{2}^{2})}{1 - \varphi_{2}}} \\ &= \sigma^{2} \frac{1 + \varphi_{2}}{\Delta} [\varphi_{1}^{2} + (1 - \varphi_{2})^{2}] - 2\varphi_{1}^{2} \sigma^{2} \frac{1 + \varphi_{2}}{\Delta} \\ &= \sigma^{2} \frac{(1 + \varphi_{2})[(1 - \varphi_{2})^{2} - \varphi_{1}^{2}]}{\Delta} = \sigma^{2}, \end{aligned}$$

$$\begin{split} C[u_1(\varphi),\,u_2(\varphi)] &= (\sigma/\sigma_u)\sqrt{1-\varphi_2^2}\,\operatorname{E}\left[u_1\left(u_2-\frac{\varphi_1}{1-\varphi_2}u_1\right)\right] \\ &= (\sigma/\sigma_u)\sqrt{1-\varphi_2^2}\left[\sigma_{12}-\frac{\varphi_1}{1-\varphi_2}\sigma_{11}\right] \\ &= (\sigma/\sigma_u)\sqrt{1-\varphi_2^2}\left[\sigma^2\frac{\varphi_1}{\Delta}-\frac{\varphi_1}{1-\varphi_2}\left(\frac{1-\varphi_2}{\Delta}\right)\sigma^2\right] = 0\,. \end{split}$$

Ceci démontre que $u_1(\varphi)$ et $u_2(\varphi)$ sont i.i.d. $N[0, \sigma^2]$. De plus, par le fait que ces deux variables sont fonctions de u_1 et u_2 seulement, $u_1(\varphi)$ et $u_2(\varphi)$ sont indépendantes de $u_t(\varphi)$, $t=3,\ldots,T$.

B. Données

Tableau 1. Stock de monnaie américain M2 (en milliards de \$ U.S, moyenne annuelle, 1889-1970; et indice de prix implicite du PNB (GNP deflator, DGNP)

Année	M2	DGNP	Année	M2	DGNP	Année	M2	DGNP
1889	3.60	25.9	1918	26.73	52.6	1947	146.00	74.6
1890	3.92	25.4	1919	31.01	53.8	1948	148.10	79.6
1891	4.08	24.9	1920	34.80	61.3	1949	147.50	79.1
1892	4.43	24.0	1921	32.85	52.2	1950	150.80	80.2
1893	4.26	24.5	1922	33.72	49.5	1951	156.40	85.6
1894	4.28	23.0	1923	36.60	50.7	1952	164.90	87.5
1895	4.43	22.7	1924	38.58	50.1	1953	171.20	88.3
1896	4.35	22.1	1925	42.05	51.0	1954	177.20	89.6
1897	4.64	22.2	1926	43.68	51.2	1955	183.70	90.9
1898	5.26	22.9	1927	44.73	50.0	1956	186.90	94.0
1899	6.09	23.6	1928	46.42	50.4	1957	191.80	97.5
1900	6.60	24.7	1929	46.60	50.6	1958	201.10	100.0
1901	7.48	24.5	1930	45.73	49.3	1959	210.10	101.6
1902	8.17	25.4	1931	42.69	44.8	1960	210.70	103.3
1903	8.68	25.7	1932	36.05	40.2	1961	221.20	104.6
1904	9.24	26.0	1933	32.22	39.3	1962	233.90	105.8
1905	10.24	26.5	1934	34.36	42.2	1963	249.10	107.2
1906	11.08	27.2	1935	39.07	42.6	1964	264.70	108.8
1907	11.60	28.3	1936	43.48	42.7	1965	285.90	110.9
1908	11.44	28.1	1937	45.68	44.5	1966	308.00	113.9
1909	12.68	29.1	1938	45.51	43.9	1967	331.80	117.6
1910	13.34	29.9	1939	49.27	43.2	1968	361.60	122.3
1911	14.12	29.7	1940	55.20	43.9	1969	385.20	128.2
1912	15.13	30.9	1941	62.51	47.2	1970	401.30	135.3
1913	15.73	31.1	1942	71.16	53.0			
1914	16.39	31.4	1943	89.91	56.8			
1915	17.59	32.5	1944	106.80	58.2			
1916	20.85	36.5	1945	126.60	59.7			
1917	24.37	45.0	1946	138.70	66.7			

Références

- Andrews, D. W. K. (1993), 'Tests for parameter instability and structural change with unknown change point', *Econometrica* **61**, 821–856.
- Ansley, G. H., Shively, T. S. et Kohn, R. (1992), 'Computing *p*-value for the generalised Durbin-Watson and other invariant test statistics', *Journal of Econometrics* **54**, 277–300.
- Beveridge, S. et Nelson, C. (1981), 'A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the 'business cycles', *Journal of Monetary Economics* **7**, 151–174.
- Box, G. E. P. et Jenkins, G. M. (1976), *Time Series Analysis : Forecasting and Control*, second edn, Holden-Day, San Francisco.
- DeJong, D. N., Nankervis, J. C., Savin, N. E. et Whiteman, C. H. (1992), 'The power problems of unit root tests in time series with autoregressive errors', *Journal of Econometrics* **53**, 323–343.
- Dickey, D. A. (1976), Estimation and Testing of Non Stationary Time Series, PhD thesis, University of Iowa.
- Dufour, J.-M. (1990), 'Exact tests and confidence sets in linear regressions with autocorrelated errors', *Econometrica* **58**, 475–494.
- Dufour, J.-M. et King, M. L. (1991), 'Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary or nonstationary AR(1) errors', *Journal of Econometrics* **47**, 115–143.
- Dufour, J.-M. et Kiviet, J. F. (1998), 'Exact inference methods for first-order autoregressive distributed lag models', *Econometrica* **66**, 79–104.
- Dufour, J.-M. et Torrès, O. (1998), Union-intersection and sample-split methods in econometrics with applications to SURE and MA models, *in* A. Ullah et D. E. A. Giles, eds, 'Handbook of Applied Economic Statistics', Marcel Dekker, New York, pp. 465–505.
- Durbin, J. et Watson, G. S. (1950), 'Testing for serial correlation in least squares regression I', *Biometrika* **37**, 409–428.
- Farebrother, R. W. (1980), 'Algorithm AS153. Pan's procedure for the tail probabilities of the Durbin-Watson statistic', *Applied Statistics* **29**, 224–7 and 30.
- Farebrother, R. W. (1984), 'A remark on algorithms AS106, AS153 and AS155: The distribution of a linear combination of χ^2 random variables', *Applied Statistics* 33, 366–369.
- Farebrother, R. W. (1985), 'Eigenvalue: Free methods for computing the distribution of a quadratic form in normal variables', *Statistical Papers* **26**, 287–302.
- Fuller, W. A. (1976), Introduction to Statistical Time Series, John Wiley & Sons, New York.
- Hasza, D. P. et Fuller, W. A. (1979), 'Estimation for autoregressive processes with unit roots', *The Annals of Statistics* **7**, **5**, 1106–1120.
- Imhof, P. J. (1961), 'Computing the distribution of quadratic forms in normal variables', *Biometrika* **48**, 419–426. Corrigendum 49 (1962), 284.

- Judge, G. G., Griffiths, W. E., Carter Hill, R., Lütkepohl, H. et Lee, T.-C. (1985), *The Theory and Practice of Econometrics*, second edn, John Wiley & Sons, New York.
- King, M. L. (1981), 'The alternative Durbin-Watson test: An assessment of Durbin and Watson's choice of statistic', *Journal of Econometrics* **17**, 51–66.
- King, M. L. (1985), 'A point optimal test for autoregressive disturbances', *Journal of Econometrics* **27**, 21–37.
- King, M. L. (1987), Testing for autocorrelation in linear regression models: A survey, *in* M. L. King et D. E. A. Giles, eds, 'Specification Analysis in the Linear Model: In Honour of Donald Cochrane', Routledge & Kegan Paul, pp. 19–73.
- Koerts, J. et Abrahamse, A. P. J. (1969), *On the Theory and Application of the General Linear Model*, Rotterdam University Press, Rotterdam, The Netherlands.
- Lehmann, E. L. (1986), Testing Statistical Hypotheses, 2nd edition, John Wiley & Sons, New York.
- Miyazaki, S. et Griffiths, W. E. (1984), 'The properties of some covariance matrix estimators in linear models with autocorrelated errors', *Economics Letters* **14**, 351–356.
- Nankervis, J. C. et Savin, N. E. (1985), 'Testing the autoregressive parameter with the t statistic', Journal of Econometrics 27, 143–161. Correction 34, 391.
- Nelson, C. R. et Plosser, C. I. (1982), 'Trends and random walks in macroeconomic time series', *Journal of Monetary Economics* **10**, 139–162.
- Pagan, A. R. (1974), 'A generalized approach to the treatment of autocorrelation', *Australian Economic Papers* **13**, 267–280.
- Palm, F. C. et Sneek, J. M. (1984), 'Significance tests and spurious correlation in regression models with autocorrelated errors', *Statistische Hefte* **25**, 87–105.
- Pan, J.-J. (1964), 'Distributions of the noncircular serial correlation coefficients', *Shuxue Jinzhan* **7**, 328–37.
- Park, R. E. et Mitchell, B. M. (1980), 'Estimating the autocorrelated error model with trended data', *Journal of Econometrics* **13**, 185–201.
- Savin, N. E. (1984), Multiple hypothesis testing, *in* Z. Griliches et M. D. Intrilligator, eds, 'Handbook of Econometrics, Volume 2', North-Holland, Amsterdam, chapter 14, pp. 827–879.
- Schmidt, P. (1972), 'A generalisation of the Durbin-Watson test', *Australian Economic Papers* pp. 203–209.
- Stock, J. H. (1994), Unit root, structural breaks and trends, *in* R. F. Engle et D. L. McFadden, eds, 'Handbook of Econometrics, Volume IV', North-Holland, Amsterdam, chapter 46, pp. 2740–2841.
- Thomas, J. J. et Wallis, K. F. (1971), 'Seasonal variation in regression analysis', *Journal of the Royal Statistical Society, Series A* **134**, 57–72.
- Vinod, H. D. (1973), 'Generalisation of the Durbin-Watson statistic for higher order autoregressive processes', *Communication in Statistics, Theory and Methods* **2**, 115–144.

- Wallis, K. J. (1972), 'Testing for fourth order autocorrelation in quarterly regression equation', *Econometrica* **40**, 617–636.
- Webb, G. I. (1973), Autocorrelations and the General Linear Model, PhD thesis, The City University, London.