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EXACT INFERENCE METHODS FOR FIRST-ORDER
AUTOREGRESSIVE DISTRIBUTED LAG MODELS

By JEAN-MARIE DUFOUR AND JAN F. KIviET'

Methods are proposed to build exact tests and confidence sets in the linear first-order
autoregressive distributed lag model with i.i.d. disturbances. For general linear hypotheses
on the regression coefficients, inference procedures are obtained which have known level.
The tests proposed are either similar (i.e., they have constant rejection probability for all
data generating processes consistent with the null hypothesis) or use bounds which are
free of nuisance parameters. Correspondingly the confidence sets are either similar with
known size (i.e., they have constant coverage probability) or conservative. We also develop
exact tests and confidence sets for various nonlinear transformations of model parame-
ters, such as long-run multipliers and mean lags. The practical usefulness of these exact
methods, which are also asymptotically valid under weak regularity conditions, is illus-
trated by some power comparisons and with applications to a dynamic trend model of
money velocity and a model of money demand.

KEYWORDS: Autoregression, exact inference, general restrictions, Monte Carlo test,
nuisance parameter elimination, similar test.

1. INTRODUCTION

A SERIOUS PROBLEM IN ECONOMETRICS is that statistical procedures which yield
exact finite-sample inference in simple static linear models have an indetermi-
nate distribution in more general and realistic models, due to the effects of
unknown nuisance parameters. In the context of dynamic models, such problems
do not occur when the relationship can be modeled according to the normal
classical linear model with finite distributed lags. However, if the relationship
has infinite distributed lags and is modeled in the popular autoregressive form,
then the nuisance parameter problem arises. Since invariance of standard
inference techniques with respect to nuisance parameters is often regained
asymptotically as the sample size increases, it is common practice to employ
asymptotic approximations. However, by simply relying on first-order asymptotic
results when analyzing a finite (and often rather small) sample, one accepts to
commit approximation errors of a largely unknown nature and magnitude. This
objectionable practice is due to the fact that hardly any operational exact
inference procedures are available to date. Hillier (1987) characterizes the
problems involved and provides solutions to some particular testing problems.
Here we develop operational exact inference techniques for (any transformation
of) all coefficients of autoregressive models with exogenous regressors, whether
stable (stationary) or not.

! The authors thank a co-editor and three anonymous referees for several useful comments. This
work was supported by grants from the Social Sciences and Humanities Research Council of
Canada, the Natural Sciences and Engineering Research Council of Canada, and the Government of
Québec (Fonds FCAR). An earlier version (see Dufour and Kiviet (1994)) has been presented at the
Econometric Society European Meeting in Uppsala (Sweden), August, 1993.
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80 J.-M. DUFOUR AND J. F. KIVIET

In the literature some solutions to the nuisance parameter problem have been
suggested for very simple dynamic models. Most attention has been paid to the
model where the lags are characterized by the presence of just one common
factor (see Sargan (1980)) and where all the explanatory variables are fixed. This
linear regression model with AR(1) errors can be stated as:

(1.1 y,=x/B+u,, u=pu,_,+s&, &~INO,oc?) (t=1,...,T),

where y, is the dependent variable, x, is a k X 1 vector of fixed (or strongly
exogenous) regressors, B is a kX 1 vector of fixed coefficients, and u, is a
random disturbance; the parameters 3, p, and o2 are unknown. The central
difficulty here comes from the fact that the distributions of test statistics (for
hypotheses about 3, for example) usually depend on unknown nuisance parame-
ters ( p, for example). To keep on using the same statistics requires one to
bound their null distributions over the nuisance parameter space. For some
illustrations of this approach, see Hillier and King (1987), Kiviet (1980, 1991),
Vinod (1976), Vinod and Ullah (1981, Ch. 4), and Zinde-Walsh and Ullah
(1987). The major drawback here is that the appropriate bounds on critical
values may be very large, if not infinite; see Krdmer, Kiviet, and Breitung (1991).
An alternative bounding technique, which does not raise the same difficulties
and involves using modified test statistics, has been suggested in Dufour (1990).
This method starts from an exact confidence set for p, constructed by “inverting”
an exact autocorrelation test, to obtain a simultaneous confidence set for p and
any element of B. Corresponding exact similar tests follow. Then, using a
projection method, exact confidence sets are constructed for the individual
components of 8 from which bounds-type tests for hypotheses on these compo-
nents are obtained. Because the confidence set on p actually restricts the
nuisance parameter space and more efficient ( p-dependent) test statistics are
used, this method avoids the main problems associated with other bounds
methods.

It should be recognized that model (1.1), which is one of the simplest dynamic
alternatives to a fully static model (where p=0 and x, does not contain any
lagged explanatory variables), has serious shortcomings when the relationship is
genuinely dynamic; see Hendry and Mizon (1978). Here, we develop exact
inference procedures for the coefficients of the model:

(1.2) y,=Ay,_,+x' B+e, &~IDQ,c?) (t=1,...,7),
t—1 t t t

where y,, x,, g, and B are defined as in (1.1). No assumptions are made on the
domain of A or the distribution of y,. The exact inference procedures to be
developed are based on test statistics whose distributions, under the null
hypothesis, do not depend on nuisance parameters (A, 3, or o) or the distribu-
tion of y,; hence y, may either be fixed or random. Normality of the distur-
bances is not required for the invariance properties to hold. However, the actual
distribution function has to be known for the calculation of exact significance
points, and this is often relatively easy under normality. Note that model (1.2)
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includes as a special case the simple Dickey-Fuller type model for inference on
one unit root in the presence of an intercept, drift, polynomial trends, seasonal
dummies, or any interactions.

The basic building block that is exploited in Dufour (1990) to obtain exact
inference for any subvector of B in model (1.1) is an exact confidence interval
for the parameter p. In the same way an exact confidence interval for the
coefficient A would enable exact inference in the more general dynamic model
(1.2). Exact inference on A can be obtained by applying least-squares to an
augmented regression model, as set out in Kiviet and Phillips (1990, 1992). Here
we first develop a related but more general procedure for testing a joint
hypothesis on A and any linear transformation of B. This procedure has a neat
likelinood-ratio (LR) interpretation and is therefore less ad hoc than earlier
procedures. As a possibly simpler alternative, we also show that confidence sets
can be built using the two-stage approach proposed in Dufour (1990), which
combines an exact confidence interval for A with the corresponding family of
“conditional” confidence sets for the relevant linear transform of B. Then exact
inference for any vector linear transformation (or subvector) of B is obtained by
applying a union-intersection method.

Critical values or p values for the test statistics mentioned above can be
obtained by Monte Carlo experiments on particular pivotal functions whose
distributions depend on the parameters specified by the null hypothesis and the
adopted distribution type for the disturbances. In principle, critical points or p
values may be evaluated to any desired degree of precision by simulation.
However, the number of required replications may get extremely large. There-
fore, we propose to use instead the technique of Monte Carlo tests (Dwass
(1957), Barnard (1963)) which allows one to obtain genuinely exact tests from
any given (possibly very small) number of replications.

Apart from inference on linear transformations of the coefficients of model
(1.2), practitioners are usually interested in inference on particular nonlinear
transformations, such as long-run multipliers, (interim) impact multipliers, or
mean and median lags. Exact procedures for testing nonlinear hypotheses in the
static linear model are examined in Dufour (1989). We show here that analo-
gous procedures can be applied in the dynamic model (1.2) in a way that exact
inference on any nonlinear hypothesis can be obtained.

The structure of this paper is as follows. In Section 2, we develop procedures
for exact joint inference on the value of A (the coefficient of the lagged
dependent variable) and linear transformations of B (the coefficients of the
exogenous regressors) by putting the test problem into a form such that the
LR-type test statistic does not depend on nuisance parameters. From these,
exact inference procedures on A only are also derived. The latter are then used
in Section 3 for testing hypotheses which do not involve A at all (i.e., which only
restrict 8) or do not involve A explicitly. In Section 4, we develop exact tests on
nonlinear transformations of the coefficients such as long-run multipliers. In
Section 5, we make the various inference procedures operational by putting
them into a Monte Carlo testing framework. Section 6 compares through Monte
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Carlo experiments the exact tests with asymptotic (size corrected) procedures,
while Section 7 illustrates the practical usefulness of the exact inference tech-
niques by applying them to a dynamic trend model of money velocity in the U.S.
and a model of Canadian money demand. Section 8 concludes.

2. EXACT JOINT INFERENCE ON A AND f3

Due to its notation, model (1.2) has the appearance of a simple partial
adjustment model. However, the relationship may involve dynamics of a more
sophisticated nature, such as

J L)

QD y=My, o+ Y X8z + ¢ (t=1,...,T).
j=1i=0

In matrix form, the model we study can be written
(2.2) y=Ay_; +XB+e,

where X =[x,...,x7] is a T Xk matrix, and y=(y;,...,¥7), y_1=o,---,
yr_1), and e=(ey,..., &p) are T X 1 vectors.
To obtain finite sample results, we make the following assumptions.

ASSUMPTION A: The T X k matrix X and the T X 1 vector ¢ are independent, y,,
is independent of &, and rank(X) = k with probability 1; B € R* and \ €9, are
fixed but unknown coefficients, with 2, ={A €R| -0 <\, <A < Az <},

ASSUMPTION B: The distribution of the vector /o (given X and y,) is known,
where o is an unknown positive constant.

Several of the invariance results given below hold without Assumption B. The
assumption that X and & are independent (strong exogeneity) entails that X can
be treated as fixed for inference purposes, which we shall do from now on.
Assumption B means that the distribution of & is known up to a scale factor.
Often we will suppose that the elements of ¢ are i.i.d. normally distributed with
mean zero, but it will be straightforward to use other distributions, provided
they are known up to a scale factor. This also includes cases where the elements
of & show heteroscedasticity and/or serial correlation of a given form, so that
the model can be transformed to the form (2.2).

We first consider tests on the value of A jointly with r linear restrictions on
B. From these, procedures for inference on A only will follow upon taking r = 0.
Let R be a known r X k matrix with rank(R) = r. Since R may be void, we have
0 <r<k. When r > 1, we consider

(23)  y=RB.

To keep notation simple, we reparameterize the model and transform the
regressors. Let R be a (k —r) X k matrix, such that Q =[R’: R'] is nonsingular,
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and let QB=(y',7'); of course, R and ¥ =Rp are not unique. Equation (2.2)
may now be rewritten as

(2.4) y=Ay_, +XQ'QOB+e=Ay_,+Zy+Zy+s,

where [Z ! Z]=XQ~! has full column rank. When r=0,we set 0 =R, QB =7,
Z=XQ" ', and Zy is simply dropped from (2.4).

Below, various tests for the joint hypothesis A= \,, y= vy, are examined.
However, sometimes we will extend the null hypothesis and we may also test it
in a model that differs from (2.4). Therefore, we introduce a notation for null
hypotheses and test statistics which uniquely refers to both the restrictions
tested and the model employed to test them:

(2.5) H( Ay, v,) is the null hypothesis Hy:A = Ay, y= vy, in model (2.4).

Conditional on y, and assuming the disturbances ¢, are i.i.d. normal, the LR
statistic for testing H(Ay, y,) is T-1n(Sy[Z1 Ay, vol/S,[W ], where

2.6)  So[ZIrgvo] == Ay = Zy) MIZ Iy = Aoy, — Zo),
Q2.7 SIW]=yM[Wly=eM[W]e,

are respectively the restricted and unrestricted sum of squared residuals, where
W=[y_,1 X]. We define M{A]l=1—-A(AA)"A for any (possibly non-full
column rank) matrix A. Note that M[y_, ! X1=M[y_, ! XQ~']. We now con-
sider the following monotonic transformation of the LR statistic:

28)  Z (Ao, v9) =So[ ZIAg, v ] /8,71,

Under H(A,,7y,) we have SO[Zlyo, Al = &'M[Z]e. Further, from the partition
W=[y_,1X] and applying the Frisch-Waugh theorem (see Gouriéroux and
Monfort (1989, Vol. 2, Rappel R.E.3, p. 478)) to M[W ], we can also write?

29 SIWl=eMIWle=eMIX]e—[(eMIX]y )y MIX]y_].

From (2.9), we see easily that the statistic % (A, v,) is not pivotal under the
null hypothesis, i.e., its distribution depends on unknown nuisance parameters.
This follows on observing that the numerator &'M[Z]e of Z.,(Ag, ) and its
denominator (2.9) can be divided by o*, and upon recognizing that the test
statistic then consists of a number of (inner) products of three stochastic vectors.
The vectors M[Z]e/o and M[X]e/o are pivotal, but M[X]y_,/o is not,

even under the null: from (2.2), we have

(210)  y_,=y(D)+C(VXB+C(N)e,

2 More explicitly, for any full column rank matrix C, let P[C]=C(C'C)"'C’' and M[C]l=1I—
P[C]. If C=[A!B], we see on applying standard formulae for inverting partitioned matrices (see
Schmidt (1976, Section 1.5, p. 27)) that M[C]= M[B] — P[M[B]A], from which (2.9) follows.
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where
1] [0 0]
A 1 0 .
22 A10 :
() = -, CcD) =] A I - s
| AT | T2 - A1 0]

so that under H(A,, v,),
Q11 y_,Jo=y,u(r)/ o+ C(A\)Zy,/o+CA)DZY/o+ C(A)e/T,

where o and y are unknown. Thus, M[Xly_, /o consists of four terms, among
which only the fourth one is pivotal: in the first two terms the factor 1 /o0 causes
problems, while /o is a nuisance factor in the third one.

These nuisance terms can be removed by extending the regression. Extending
a model by including particular redundant regressors in order to achieve
invariance of tests has also been suggested in Dufour and Dagenais (1985) and
Dufour and King (1991, p. 125) with respect to inference problems in model
(1.1). For model (1.2) the basic idea originates from Kiviet and Phillips (1990,
1992). To get a pivotal statistic for testing the restrictions A=A, and y=v,,
rewrite model (2.4) as

(2.12)  y=Aly_, —youlA) — C(A)Zy, — C(A)Z7]
+ M youlrg) + COA) Zyy + COANZT | + Zy+ Z7 + &

and then consider a more general model by relaxing some of the coefficient
restrictions in (2.12):

(213)  y=Ay_, +Zy+Zy+ Ay (X))
+ Ay x[COADZyy ] + COADZ Yy 4 + €,

which specializes to model (2.4) when A, , =0, A, , =0, and ¥, , =0. We
now consider testing the null hypothesis

(2.14)  H*(Xg,v9): A=Ay, Y= Vg,
against (2.13). One obvious statistic to do this is the LR-type statistic
(2.15) z\jky()\m ¥o) = — Ay, — ZVO)/M[Z()\O, 70)]

XY = XY_1 = Zyo) /Y MIW (A, vo)ly,

where  Z(Ag, vo) = [Z | (X)) | C(A)Zy, | C(A)Z] and W(Ay, y,) =
[y_1 1 Z{Z(X,v0)l. An intuitive way to see that Z* (A, 7y,) is pivotal under
H*(A,,y,) consists in noting that the residuals ot_, = M[Z } Z(A,, y,)ly_, of the
regression of y_, on [Z ! Z(A,,v,)] do not involve B as a nuisance parameter,
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and since the residuals of the regression of y on [y_, | Z!Z(\,, y,)] satisty
Mly_ 1 Z: Z(/\U yIly=Mly_,:1Z: Z(/\O,yo)]s— Mla_,: Z: Z(/\O,yo)]e, the
distribution of the residual sum of squares y'M[y_, 1 Z 1 Z(Ay, y)ly =

e'Mlu_, 1 Z 1 Z()Ay, y))]le does not depend on B. By a similar argument, the
distribution of the numerator of £ * (A, y,) does not depend on B, and taking
the ratio of both sums of squares then eliminates o from the null distribution of
Ny vo)- Proposition 1 below provides a more rigorous proof of the pivotal
character of 4% (A, y,) under H* (A, y,).

It is clear that test statistic (2.15) does not take into account a few valid
restrictions. Therefore, we shall also consider testing

(2.16)  H**(Ay,v9): A=Ay, Y=Yy, A =0, )\,< «=0,9,,=0
in model (2.13) with the test statistic
QI AN ve) = = Ny- 1 — Zy,)
MIZIy = Moy, = Zy) /Yy MIW( Ay, y)]y.

When y, is taken as fixed, we can also obtain pivotal statistics from extended
regressions with one redundant regressor less. To that end we consider the
hypotheses

(218 H'(Ag,v): A=Ay, ¥=7,»

(219 H™ (A7)t A=Ag, Y=y, Ay =0,7, , =0,
in the extended model
(220)  y=Ay_, +Zy+Zy+ A Lyu(A) + C(A) Zy 1+ C(A)DZ 7, 5 + &,

which is another generalization of (2.12). We test H (A, y,) using
(221 “E’;\Ty()t(l’ ¥o) =y = Agy_ — Z'Y())’M[ZT( Ay, 'YU)]
X(y—Agy-, — ZVO)/y,M[WT(AO’ 'Yo)]ya

where Z:(AO, Yo) =12 youlrg) + C(A))Zy, ! C(A)Z] and W'(Ay, y,) =
[y_1Z:Z(Ay, o)l Similarly, H™(A, y,) is tested with

(2.22) ei””(/\oa Y) =G =y —Zy,)
MIZY(y = Agy_, = Zy0) /Y MW (Aq, 9]y

The basic properties that enable one to use the test procedures suggested
above for obtaining exact inference are stated in the following proposition.

ProrosITION 1: Suppose that model (2.4) and Assumption A hold. Then the
statistics 4% (A, v0)y L5 (Mg, vo)s L (Ags vo)s and (N, y,), given in
(2.15), (2.17), (2.21), and (2.22) ;espectwely, can be written as follows when A = A,
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and y=y,:
=5’ﬂ)\*y(/\0’ 70): [ ; , ]
\ S[n, Z(Aq, )]
nM[Z]n
B s 1) = ST
Ay Moo Yo S[n, Z(xy, vo)]
n,M ZT(A ’7 ) n
2O = 7 o)
S[n,Z'()\oaVO)]
n"M[Z]n

gT* A N = )
(Ao, 70) S[v, ZT (A, 7))

where = ¢/0 and
S(n,A) = nM[Aln
~[rmrAlcOD /0 C(a)  MIAICAD |, for
A=Z(\g,vy) =[Z:Z(ry, 7))
= [Z:Z: (X)) : C(Ay) Zy, :C(AO)Z] or
A=Z"Ng,v0) =[Z:Z1 (A, 7y)]
= [Z:Z:yob(/\o) + C(Ay) Zy, :C()\O)Z] respectively .

Proposition 1 shows that the null distributions of the test statistics considered
do not involve the nuisance parameters y and o, as long as the distribution of
g/0 does not. The null distributions of Z£* (A, v,) and Z**(Ay,v,) only
depend on Ay, y,, R, and the regressor matrix X, as well as on the distribution
of &/0; those of AT, (Ag,v,) and Z%(A,, v,) also depend on y,. For example,
irrespective of the values of ¥ and o, there is a point £* (a; Ay, v,, X, R) such
that P[.Z* (Ag, 7o) 2.,5%:‘1/(&; Xos Yos X, RIA = Ay, y=v,] = a. Thus the test that
rejects the null when Z* (A, vy) >L¥ (a:Ay, vy, X, R) has size a. An exact
confidence set for (A, y) with size 1 — a is given by

2.23)  &,(a) = {(N,70): K25 (N0 7y) < Z5, (5 40,70, X, R,

However, the critical points ,S;j\f"y(a; Ags Yo, X, R) are difficult to evaluate with
great precision. In Section 5 we show how closely related fully exact tests and
confidence sets can be obtained from a finite and relatively small number of
Monte Carlo experiments.

When r =0, the above statistics provide tests of A =A. In particular, the
statistic (2.15) can be expressed as

(224) e%\*()\o) = (y - /\oy_l),M[X(/\o)](yO - )\y_l)/y,M[W()\o)]Ya
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where X(A)) =[X (1)) C(A)X]and W(A) =[y_,: X(Ay)], while the statis-
tic in (2.17) can be written

(2.25)  ZHF(N) = (y = Agy_ ) MIX 1y — Agy_ 1) /Y MIW (A)]y.

If y, =0, (2.24) and (2.25) specialize respectively to

(2260 F(A) == Ay ) M[XTOA)] G = Ay_ ) /Y M[WT(A)]y
and

227 FFA) =G = Ay ) MIXIy—dy_ ) /yM[WIA]y,

where XT(A)) =[X{C(A)X]and WT(A) =[y_, ! XT(AL.

The £**(A,) procedure is a generalization of the test denoted @5 in Dickey
and Fuller (1981, p. 1059) for the special case where A, =1 and X = «(1). Also
note that the tests £*(Ay) and £'(A,) restrict only one parameter, and
therefore testing against one-sided alternatives is possible here. The ¢ ratio
version of Z*(A,) was already suggested in Kiviet and Phillips (1990). Finally,
we note that

(228) ¥ (a) ={A €2,: Z*(A) < £*(a; A, X)),

where P[,?;\*()\O)>,S%*(a; Ags XA = Ayl =@, is a confidence set for A with
level 1 — «. Confidence sets based on the other three tests for inference on A
are built in the same way.

3. INFERENCE ON RESTRICTIONS NOT INVOLVING A EXPLICITLY

Joint inference on A and any linear transformation of 8 can also be obtained
from a two-stage procedure, i.e., an exact simultancous confidence set for (A, y)
can be constructed by combining an exact confidence set for A with the
corresponding family of “conditional” confidence sets for y; see Dufour (1990).
The duality between tests and confidence sets then again leads to an exact test
for any joint null hypothesis on A and y. We already proposed a procedure for
such joint tests in Section 2, but the two-stage procedure makes it easier to
obtain exact inference on restrictions not involving A.

First assume that the true value of A is given. An exact similar test for y= vy,
is then obtained (without extending the model) from the statistic

GD L) =G — Ay, ~Zy) MIZ]
Xy —Ay_, —Zyy)/(y— Ay_ Y MIX 1y — Ay_)),

which reduces when y=1y, to &, (v)=¢eM [Z le/e'M[X le. Given Assump-
tion B, it yields a similar test, and its critical value &, \(a; X, R) is the smallest
point such that P[.Z,(vy) >%, ,(a; X, R)] < a; this critical value does not
depend on vy, or A. Then the set

32 Ful@) ={y:%,(%) <Z,.(a; X, R)}
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is an exact confidence set for y (given A). Note that the statistic

33 T =——[ZFulv) — 1]

produces the same inferences. When ¢/ 0 ~ N0, I;], 7,,,(v,) follows (under the

null hypothesis) a Fisher distribution with (r,7 —k) degrees of freedom. So,
under normality, ,,(e; X, R) =1+r(T—k)"'FHa;r,T—k).
Suppose now that A is unknown, and let

(3.4) 0<a=a,+a,<1 with 0<eq;<1 (i=1,2).

A size 1 — a; confidence set %,(«,) for A can be constructed by using £*(A,)
or Z**(A,) as described in Section 2. Now consider the set

(3.5) @ (o), ay) ={(Ag,v0): A€ (a;) and y, € %ﬂ)\l‘(az)},

where %, (a,) ={yy: %, (A, vo) <Z,, (ay; X, R)}. Under (A7) = (A, 7o),
we have £, (v,) = &'M[Z)e/s'M[ X le, and so the quantiles of Z, () do not
depend on nuisance parameters nor on A, and vy,. This invariance is especially
convenient when &, («,) has to be assessed for various A, values, which—as
we shall see—is required when these conditional sets are used to construct
unconditional inference for (A, y) or vy only.

Upon using the Boole-Bonferroni inequality, we find

3.6)  P[(Ly)eg (a,a)]
=P[/\ €&,(a,) and ye(gyu(az)]
>1-PlaeF(a)] - Plye?,,(a,)]
=l-a,—a,=1—a,

so that &, (@, a,) is a conservative 1 — & level confidence set. This two-stage
joint confidence set will be quite convenient for making inference on individual
elements of B and cross-restrictions between A and .

3.1. Inference on B Only

Below we shall “marginalize” with respect to A the two-stage joint confidence
set &, ,(a,, a,) defined in (3.5) in order to produce inference about y only. To
do this, we define the r-dimensional random sets

(3.7) &/ (o), a,) = {yo 13X, € €,(a,) such that (Ay,v,) €%, ,(a, az)},
Gllay, ay) ={v,: Y\ €& (a), (A, 7)) €F, (e, ay)},

with the convention (), a,) = &, (al, a,) = when &,(a,) = J, where J is
the empty set. The two sets are nested ie, 3% (a),a,) <% (a, a,), and
their use is justified by the following proposition.
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PROPOSITION 2: Suppose that model (2.4) holds jointly with the Assumptions A
and B. Let &(a,) be a confidence set for X such that P[A € &\(a)]=1—a,. If
0<a <L,0<ay+a,=a<l—a, and o) =a+ a, <1, then the random sets
defined in (3.7) satisfy %, (a,, ay) €&/ (a;, a,) and

P[VE%YL(al,a'Z)] <1 —asP[yG“gyU(al,az)].

From the above results, conservative and liberal tests for y= vy, can be
derived. We define

(B8 Zl(y) =int{Z,, (vp): X €Z ()},
ZV(yy) = sup{Z,, (7o) : Ay € Z ()}

Note the event y, € € (a,, a,) implies Z"(y,) sizm(az; X, R). With respect
to the true vy this entails for y= y,:

G9) Pl () >Z(ay X, B| <P[ye & (e, )] < a.
Similarly, #"(y,) >Z,,(a}; X, R) is equivalent with v, & & (a,, a}), hence
(3.10) P[i@u(yo) >5,;V|A(af3; X,R)] =P[y6€ & (ay, ag)] >a,

when y = v,. Because ) > a, entails .,S,;;M(az; X,R) zﬁ?m(a’z; X, R), the gen-
eralized bounds principle can be applied, yielding the test:

(3.11)  reject y =y, when £ (y,) >Z, ,(a,; X, R),
accept y =y, when Z"(y,) <Z,,(a}; X, R),

whereas the test is inconclusive otherwise. In practice, simulation procedures
have to be used first to obtain a %,(«a,) interval, and then %" () and £"(y,)
have to be assessed. Under normality of ¢ the .Z,, can easily be obtained from
tabulated critical F' values. In general, they have to be simulated. However, in
Section 5 we will make this procedure operational in an easier way.

3.2. Cross-restrictions between \ and B

As far as linear restrictions on A and B are concerned, the only situation for
which we have not yet obtained an exact inference procedure is the case where
the restrictions involve both A and elements of B, but do not explicitly (nor
implicitly) specify A = A,. Let us focus on the case

(3.12)  Hy(ky): A+ k) B= kK,

where only one restriction is tested; «, is a k X 1 vector and «,, a scalar, both of
which are known. This case can be handled as follows. Let

(3.13) y=k|B, k=A+y=A+«|B.
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Hence, both vy and « are scalar unknown parameters here. We define the set
(314 &.(a)={k,:3(A,7,) €%, ,(a) such that k, = A, + v},

where %, ,(«@) is a level 1 — a confidence set for (A, ¥). Then we have

(3.15) P[KE%;”K(a)]ZP[(A,y)E%,Y(a)]Zl—a,

and the test which rejects Hy(k,): k= Ky, when «k, & %, (a) has level a. The
case where we have more general restrictions, including at least one of the form
(3.12), is covered by the general results in the next section.

4. TESTS OF NON-REGULAR HYPOTHESES

We now generalize the foregoing results on linear restrictions and consider
general problems where two arbitrary hypotheses are compared, viz.

4.1 ho(A,y)=0e (X,y) el cR™*, I, +J,
42 h(ALB)=0e(ABY N CR*, 0 #D.

These cover special cases such as nonlinear restrictions, inequality restrictions,
and non-nested hypotheses.

When A is known, y — Ay_; =y(A) = XB + ¢ satisfies the assumptions of the
standard linear regression model, except that ¢/ may be non-normal. Dufour
(1989) deals with exact solutions to inference problems on nonregular hypothe-
ses in that model under normality. We shall stick to our more general Assump-
tions A and B and extend these results to dynamic models. Let

4.3)  S(A, By) =[y(Ay) —XB,TIy(Ay) — XB,]

denote the residual sum of squares for arbitrary coefficient values (Ay, B)),
where (A, By) € R¥*! with A, €9,. We first consider the case where the true
value of A is known, and define

(4.4)  S,(N) =inf(S(A, By): By € R and (A, RBy) = 0},
S:(A) =inf{S(A, By): By € R* and h,(A, B,) = 0}.

The LR type test for the two hypotheses can be written (after a monotonic
transformation, and still taking A to be known) as:

(4.5 LIy, 2) =S,(0D /S, (N).

We also define for any given value vy, the sum of squares:

4.6)  Sy(A,y,) =inf{S(A, By): B, € R* and RB, =, € R},
@7  S()=inf{S(A, By): B, € R*}.

Note that the statistic (3.1) for testing y = 7y, can now be expressed as %, ,(v,)
= 5¢(X, 7¢)/S(). Below it is shown that its critical value %, ,(«; X, R) remains
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valid as a conservative critical value for testing the nonregular hypotheses (4.1)
and (4.2) through the statistic .%-,(I, 2,).

PROPOSITION 3: Suppose that model (2.4) holds jointly with the Assumptions A
and B. Then, if (\,y') € Iy, we have P[.Z. (I, 2,) >%, ,(a; X, R)] < a.

It is also possible to obtain liberal critical values, but these are of less interest.
Proposition 3 concerns the unrealistic case where A is known. However, an exact
confidence interval %,(a) can be exploited to obtain unconditional inference on
the hypotheses (4.1) and (4.2). We define

(4.8)  FHI,, ) =inf{F, (I, 2): A € F(a)),
ATy, ) = SUP{*Z“MO(FO’ 0):0e g\(al)}‘

PROPOSITION 4: Under the assumptions of Proposition 3, let &(a;) be a
confidence set for A such that PIN € & \(a)l=21-a. If 0<a;<1,0<a; + a,
=a<l—-ay, and as=a+ «a,, then for the statistics defined in (4.8) we have
under (A,y'Y € I'y:

P[HH(Ty, 0) >Z,,(ay; X, R)]
<a<P|FUT,,0)>%,,(ay; X, R)].

This yields the following generalized bounds test procedure:
(4.9) reject(A,y') € I, when - (T, 2,) >°‘ZIA( a,; X, R),
accept (A,7') € T, when ZY(I, 2,) <.Z,,(a}; X, R),

whereas the test is inconclusive otherwise. Rather than obtaining a test for
(A,y'Y €I, from the above procedure, which is inspired by the two-stage
approach of Section 3, we can also make use of the comprehensive procedures
of Section 2. We shall illustrate this for a particular example.

In the context of dynamic model (1.2), which originates from the underlying
relationship (2.1), nonlinear transformations of the regression coefficients which
are particularly relevant are expressions such as: (8, + -+ +8,,;,))/(1 — 1), i.e.
the total multiplier for regressor z”, where j=1,...,J;1— ()" ie. the
standardized interim multiplier after i time periods; A/(1 — A), the mean lag;
and max{In(0.5)/In(A) — 1,0}, i.e. the median lag. Note that these nonlinear
characterizations of particular aspects of the dynamic adjustment process are
only meaningful if &, (-1, +1).

We shall focus now on the problem of producing exact inference on the
parameter ¢ = y/(1 — A), where again y = R 3; hence, ¢ may represent a vector
of total or long-run multipliers. From a confidence set &, ,(a) for (A,y), we
construct the set

(4.100 Z,(a)= {‘Po :3(Xg, 7)) €%, ,(a) such that ¢, =y,/(1 - /\0)}.
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Note that this set is not necessarily bounded. It is clear that Pl¢ € %(P(a)] >1-
a, and that an exact test of ¢ = ¢, corresponds to this confidence set. In case
we start from the two-state confidence set %, _(a,, a,) in (3.6) we can obtain the
set, which corresponds to test procedure (4.9):

4.11) %(al,az)—{% Py = 70/(1_)\0) and

vIAo(VO’ Ag) <3M(a2,X R) for some A, € %A(al)}

5. EXACT INFERENCE BASED ON FEW MONTE CARLO EXPERIMENTS

When we want to use the various tests mentioned in Proposition 1 in practice,
we face particular computational problems. The explicit assessment of critical
values requires iterations, but that can be avoided by employing p values, both
for testing and for the construction of confidence sets. We show this for the test
based on £* (A, v,). Let 3 ,(Ag, ) denote the value of this test statistic as
obtained from the sample (it i is 51mply a ratio of two particular residual sums of
squares). Under the restrictions, the test statistic can be written as

1) aM[Z(A, v

(ML Z(Ag, y)IC(A)7)
7' C(Ay) M Z( Xy, y)IC(A)M

X n,M[Z(/\(), 70)]77 -

Drawings distributed as (5.1) can be obtained easily by computer simulation.
When generatmg N —1 independent realizations of (5.1), indicated by {%;
j=1,. — 1}, the frequency of the occurrence of .Z; >3 (X5 70) gives an
estimate of the p value. The restrictions are rejected 1f thls is strictly smaller
than a. Then (A, y,) is not in the confidence set (2.23). By searching over 2,
and feasible y, values the full set (2.23) can be established to a certain degree
of precision, depending on the number N and the intricacy of the (grid-) search
over the (A, y) space. As it happens, the number of replications has in fact to be
extremely high. Using a normal approximation, the standard deviation of the p
value estimate in the neighborhood of « is [a(l — a)/N]"? Keeping this
below 1% of a requires N > 10*(1 — a)/a;i.e. at a =0.05 we need N > 190,000
which seems prohibitively large.

To avoid this difficulty, we shall use instead “randomized” or “Monte Carlo”
versions of the tests of Proposition 1, which yield genuinely exact and computa-
tionally much cheaper procedures. This approach was originally suggested by
Dwass (1957), Barnard (1963), and Birnbaum (1974). It is based on a general
property which we state for convenience in the following lemma.

LEMMA: Let Z;, j=1,..., N, be independent and identically distributed (i.i.d.)
real random variables with continuous distribution, and let R (N) = X} U(Z; — Z,)
be the rank of Z; when Z,, ..., Zy are ranked in nondecreasing order (j =1,..., N),



FIRST-ORDER AUTOREGRESSION 93
where U(x) =1 if x 20, and U(x) =0 if x <0. Then, forj=1,...,N,
(52)  P[R(N)/N=x|=QQ+IINO-x)D/N, if 0<x<1
where I[x] is the largest integer less than or equal to x.

_ For a simple proof of this lemma, see Dufour and Kiviet (1994) or Hijek and
Sidak (1967). Note that the lemma would not hold if Z,,..., Z,, were i.i.d. with a
discrete distribution. We can use it as follows. Let Z, be the value of a test
statistic computed from an observed sample, and Z,,...,Z, iid. random
variables with the same distribution as Z, under a null hypothesis of interest.
For example, to test A=A, and y=1y,, we may take Z, =Z"(Aj,v,)=
4%, (Ags ¥o), the observed test statistic %% (Ag,¥y), and Z; =Z*(Ag, vy), j =
2,...,N, which are N —1 independent replications of the variable defined in
(5.1). Clearly Z,,...,Z, can easily be generated by Monte Carlo methods. Then
py=IN+1—-R,(N)]/N is (with probability one) the proportion of the vari-
ables Z,,Z,,...,Zy that are greater than or equal to Z,, hence for 0 <a <1
and provided Nea is an integer, P[py<a]l=P[R,/N>=(N+1)/N—al=a.
py may thus be interpreted as a randomized p value, and can be used for
building tests and confidence sets. The resulting procedures are not strictly
speaking equivalent to the corresponding procedures one would obtain by
computing analytically the appropriate critical values, but they nevertheless have
the desired levels. In the simulation test an extra random element has been
included; this yields genuine exactness for finite values of N. Given the fact that
we cannot assess the relevant null distribution analytically, this simulation-based
method is the only really exact way to proceed. There is typically a power loss
associated with the simulation. However, as N — o, the Monte Carlo procedure
becomes equivalent to the corresponding nonrandomized procedure under weak
regularity conditions; for further discussion, see Birnbaum (1974), Dwass (1957),
Edgington (1980), Foutz (1980), and Jockel (1986). For other applications of
Monte Carlo tests in a time series context, see Dufour and Hallin (1987) and
Theil and Shonkweiler (1986).

Since it is not clear which one of the various tests mentioned in Proposition 1
is the most powerful in a particular model, it is tempting (and perhaps sensible)
to work with various procedures, and to compare their results before a choice is
made. However, this will affect the significance level and so leaves room for
further study of the relative power and interdependence of these individually
exact tests.

Finally, it is worthwhile noting that so-called “parametric bootstrap tests” (see
Efron and Tibshirani (1993, Section 6.5) or Hall (1992)) may be interpreted as
Monte Carlo tests when the test statistic does not depend on nuisance parame-
ters. In a Monte Carlo test the number of replications and the fact that we get a
“randomized test” are explicitly taken into account (hence the possibility of
getting an exact test), while in “bootstrap tests” the distribution of the test
statistic is simply “approximated” by simulation and the number of replications
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is treated as being essentially infinite (which is of course never the case). So
“parametric bootstrap tests” are not really alternative tests, but simply “ap-
proximate” Monte Carlo tests stripped of their finite sample justification.
Because the literature on Monte Carlo tests considerably predates the
“bootstrap” literature (which starts with Efron (1979) without reference to the
earlier work of Dwass (1957), Barnard (1963), and Birnbaum (1974)), we prefer
to use here the term “Monte Carlo test” rather than “bootstrap test.” For
further discussion of the relationship between Monte Carlo testing and the
“bootstrap,” see Hall and Titterington (1989) and Hall (1994). An examination
of the qualities of the “nonparametric bootstrap” in autoregressive models is
given in Giersbergen and Kiviet (1996).

6. SIMULATION RESULTS

Before we apply the procedures proposed above to empirical data, we will
study their size and power properties relative to asymptotic tests in a few Monte
Carlo experiments. We generated data according to the model:

(6.1) Vi=AY,_1+ B+ Box, + Byx,_ t+ &, g, ~1IN(0, .2),
Ax,=8+v,, v,~IIN0,qg?), y_g=x_5=0,

In all experiments we set: ¢, = 0.01, 6=0.01, B, =0, B, =1—A, B; =0, S =100,
T =20. Hence, A and o, are the only parameters that will vary. Since ¢, and v,
are mutually independent, x, is strongly exogenous. For |A| < 1, the variables y,
and x, are cointegrated I(1) processes. After substituting the selected parame-
ter values, this partial adjustment model can be written in the error-correction
form

(6.2) Ay, =1 =1 Ax, + (A= Dly,_; —x,_1]+ &,

For § — o, and using [y,_; —x,_,1= —[A8/(0 = DI+ Z7_oA(e,__; — Av,_,_)),
one finds

63)  var(4y) = [ - Va2 +202] /0 + M.

The signal-to-noise ratio of (6.2) is given by [var(Ay,) — var(e,)]/var(e,) = (1 —
k)/k, where k=var(e,)/var(4y,)=(0+A)/[2+ {1 —N)a,?/a?] For increas-
ing g the signal-to-noise ratio decreases, and « converges to a maximum of
(1 4+ M) /2, which approaches unity as A — 1.

Table I contains results on tests for the hypothesis A = A, for a few positive
A, and A values in combination with just two g,> values, chosen such that « is
either (1 +1)/2—0.2 or (1+A)/2—107*; the resulting R? values (averaged
over the Monte Carlo replications) for the first equation of (6.1) are also given.
We chose N = 1000 and generated 50,000 Monte Carlo replications. We kept x,
fixed and also the values of ¢,/c, for = —S,...,0; other realizations of the x,
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TABLE I

S1ZE (%) OF ASYMPTOTIC TESTS AND THE REJECTION FREQUENCIES (%) OF EXACT AND
S1zZE-CORRECTED ASYMPTOTIC TESTS IN MODEL (6.1); NOMINAL LEVEL « = 5%, N = 1000;
50,000 MONTE CARLO REPLICATIONS

Ao A 3 R? G v r< >
0.3 0.3 0.45 0.9860 6.1 11.6 10.8 1.0
0.3 0.3 0.6499 0.2084 6.2 11.9 11.5 0.6
0.5 0.5 0.55 0.9880 8.1 14.6 14.1 0.9
0.5 0.5 0.7499 0.3034 8.8 15.8 15.8 0.3
0.7 0.7 0.65 0.9919 9.3 16.1 15.6 0.7
0.7 0.7 0.8499 0.4729 13.8 23.5 23.8 0.2
0.9 0.9 0.75 0.9968 8.3 14.7 14.1 1.0
0.9 0.9 0.9499 0.6825 27.8 422 42.6 0.0

Ao A « R2 Z* K F° g°
0.3 0.3 0.45 0.9860 5.0 5.1 5.0 4.93
0.3 0.3 0.6499 0.2084 5.0 5.1 5.0 4.93
0.3 0.0 0.30 0.9866 22.4 15.0 29.8 4.93
0.3 0.0 0.4999 0.1684 22.2 12.7 25.1 4.93
0.3 0.6 0.60 0.9898 3.6 13.0 16.2 493
0.3 0.6 0.7999 0.3768 3.0 6.7 5.4 493
0.3 0.99 0.795 0.9988 100.0 100.0 100.0 4.93
0.3 0.99 0.9949 0.6962 19.8 26.7 35.0 4.93
0.5 0.5 0.55 0.9880 5.0 5.0 4.6 5.82
0.5 0.5 0.7499 0.3034 5.0 5.0 5.0 5.82
0.5 0.0 0.30 0.9866 39.9 29.4 57.5 5.82
0.5 0.0 0.4999 0.1684 38.1 22.7 474 5.82
0.5 0.99 0.795 0.9988 90.6 99.9 100.0 5.82
0.5 0.99 0.9949 0.6962 34 10.9 9.8 5.82
0.7 0.7 0.65 0.9919 5.1 49 34 7.23
0.7 0.7 0.8499 0.4729 5.1 49 5.0 7.23
0.7 0.99 0.795 0.9988 1.7 80.4 96.1 7.23
0.7 0.99 0.9949 0.6962 2.9 5.4 2.5 7.23
0.9 0.9 0.75 0.9968 5.1 4.9 1.1 10.16
0.9 0.9 0.9499 0.6825 5.1 4.9 5.0 10.16
0.9 0.99 0.795 0.9988 2.7 79 32 10.16
0.9 0.99 0.9949 0.6962 49 5.0 4.4 10.16

series and of y, will lead to different rejection frequencies. The upper part of
the table gives sizes of asymptotic tests. & refers to the standard F test; 7 to
the corresponding Wald test where no degrees of freedom corrections are
employed and y? critical values are used; # < and > refer to one sided ¢
tests against the alternatives A <A, and A > A, respectively. We find that the
size distortions can be quite substantial. We did not attempt to obtain an upper
bound to the actual sizes over the whole parameter space; possibly this upper
bound is 1. From the limited set of simulations of the actual null distributions
for A = A, of the statistic & over (A, g,) we established a “size corrected” critical
value (indicated by 7). Since we did not look at the whole parameter space (for
each A, only two values of o¢,) and the null distribution of the standard F
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statistic depends on both (Ay, o,) and the exogenous regressor coefficients
(B, By, B3), it appears most likely that these size corrections still involve
over-rejections and thus power comparisons which may be heavily biased against
the similar tests .#* and Z**.

In the lower part of the table we present rejection frequencies for %, which
refers to the (incompletely) size-corrected F test, and for #* and #**, the two
exact (two-sided) tests. Estimated sizes for &* and Z** may differ from 5%
due to the randomness of the Monte Carlo. We find that neither of the three
tests is superior. Test ¥ ** seems to have higher power than #* if A > A, (and
vice versa). The exact tests prove to have power which may be as high as 100%,
and their rejection frequency is occasionally found to be higher than for €.
Note that a genuinely size-corrected F test will have a rejection frequency not
exceeding that of € and for use in practice it will be much more computer
intensive than our procedures, since it requires a full search over the nuisance
parameter space.

7. EMPIRICAL APPLICATIONS

For an application and illustration of the exact procedures in the context of
pure univariate time-series analysis we used annual data published by Balke and
Gordon (1986, pp. 781-786) on nominal GNP and M2 in the US. We analyze
the natural logarithm of GNP /M2, i.e. the velocity of M2 (indicated by v,), over
the period 1959-1983. Estimation by OLS yields

(7.1) = 0135 — 0.005 (t/T)+ (0.723)v, |+ 5, (t=1,...,T),
0.037)  (0.020) (0.090)

T=35;, s=0.0286; R>=0.739; DF= —3.078.

Estimated (asymptotic) standard errors are presented in parentheses; s is the
usual estimator of o and DF is the ¢ ratio Dickey-Fuller statistic for testing
A =1. Asymptotic tests for higher order (up to fourth) serial correlation, for
structural change, and for non-normality of the disturbances have large p values
and hence do not indicate severe misspecification. This is also the case for the
more restricted model:

(7.2)  v,= 0138 + 0.710 v, , + 3 (t=1,...,T);
(0.034)  (0.074)

T=35, 5=0.0281; R*>=0.739; DF= —3.919.

For producing exact inference we chose 9, =[—1, +1] and used 999 replica-
tions for the Monte Carlo tests.

When assuming normality of the disturbances in specification (7.1) we found,
upon using the Z** statistic, an exact 95% confidence set for A given by
&, (0.05) =[0.64, 1.00]. The statistic 4* yields the wider region &,* (0.05) =
[0.28, 1.00]. Hence we see that the corresponding unit root hypothesis tests
(which are both in fact equivalent to particular Dickey-Fuller type tests) do not
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reject A = 1. However, when we use our comprehensive procedures, and test in
(7.4) the joint null hypothesis A =1 and B,=0 (we indicate the intercept
coefficient by B, and the trend coefficient by B.), we find for both the statistics
L% (Mg, ¥o) and Z3¥ (Mg, 7o) p values of 0.042, and hence, the pure random
walk with drift model is rejected at level 5%. Again the tests that do not include
the zero restrictions on the redundant regressors under the null seem less
powerful; they both yield a p value of 0.136 (note that conditioning on y, has
apparently no effect here). If we do “a test on the regression,” viz. A =0 and
B.= 0, all four tests mentioned in Proposition 1 yield zero p values. Testing the
same joint hypotheses by two-stage procedures, the random walk with drift
hypothesis is rejected at 10% level, since the p value of the conditional test
statistic (4.1) is 0.043; zero restrictions on all coefficients apart from the
intercept are rejected right away as A = 0 is not in the confidence set ;**(0.05).

Exploiting the %** interval we find the 90% confidence intervals [0.004,
0.190] and [—0.078, 0.040] for B, and B, respectively. Upon testing the signifi-
cance of the trend we obtain a p value for Z"(y,) of 0.994, so a zero value of
the trend coefficient should certainly not be rejected (as we already learned
from the confidence set), but we also find a p value for ,Z/U(yo) of 0.043; this is
smaller than 0.15 and hence the bounds-test with level 10% (o, = 0.05 = «,) is
inconclusive. So, acceptance of a zero trend coefficient (which seems more or
less self-evident following naive asymptotic reasoning) is in fact not strongly
sustained by the 35 data observations.

Upon applying the exact procedures under normality to the parsimonious
parameterization (7.2) we obtained &**(0.05) =[0.64,0.99], so the unit root
hypothesis is rejected now. This interval yields a 90% conservative confidence
set [—0.001,0.178] for the intercept, which thus is insignificant.

For illustration purpose (and not primarily for its empirical relevance) we also
examined non-normal disturbances, viz. i.i.d. disturbances that are distributed as
(xf—1), ie. skew with zero mean, and ¢, (or Cauchy) disturbances, i.c.,
symmetric but with no finite moments. For the skew disturbances we found for
(7.5) the interval %;¥*(0.05) =[0.64, 0.96] and the intercept is now significantly
positive, since .ZY(),) has a p value of 0.004; thus the bounds test rejects. The
Cauchy disturbances yield #,**(0.05) = [0.61,1.00] in (7.2) and the p values of
ZY(y,) and Z!(y,) for the intercept are 0.380 and 0.001 respectively, so the
bounds test does not reject; the conservative confidence set for the intercept is
[—0.004, 0.191].

To illustrate the inference techniques in a simple structural econometric
model, we built on an empirical study on narrow money demand in Canada by
Marothia and Phillips (1982), henceforth MP. They perform various regressions
in order to identify the key explanatory variables for money demand and supply
functions, by using both single and simultaneous equation estimation tech-
niques. In the case of the demand equation OLS, 2SLS, 3SLS, and IV give
virtually the same results, viz. that real cash balance (m,) is determined only by
real income (y,), the short-term interest rate (r,), lagged real cash balance
(m,_,), and an intercept. MP’s study is based on logs of quarterly data from
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1970 (D until 1979 (IV). During this period Canada had a flexible exchange rate
regime. All data, except interest rates, are seasonally adjusted. The effects of
long-term interest rates and wealth are found to be insignificant. The similarity
of the various estimates is interpreted here as indicating that simultaneity is not
a major issue for this particular equation. Of course, strong-exogeneity (espe-
cially of y,) is highly unlikely here.

We adopt the final preferred specification of MP and obtain (due to data
revisions our findings differ slightly from those published by MP):

(73)  m,=— 0430 + 0.083 y,— 0.058 r,+ 0.913 m,_,+ &
(0.304)  (0.039)"  (0.010)  (0.056)

t

T=39; 5=0.0136; R*=0.9594.

No obvious statistical evidence is found regarding structural breaks, (higher
order) serial correlation, or non-normality of the disturbances. The main conclu-
sions of MP on Canadian narrow money demand concern the estimated values
of the long-run elasticities with respect to income and interest; equation (7.3)
yields the plausible estimates 0.95 and —0.67 respectively.

We first examine standard asymptotic inference on the coefficient values as
typically provided in current practice ( B, is the intercept, 3, and B; are the y
and r coefficients respectively). Table II presents confidence intervals for
individual coefficients obtained at nominal levels 95 and 90%. Such intervals can
either be based on critical values of the standard Normal or the Student
distribution. The latter (indicated by “asymptotic ¢”) include a degrees of
freedom correction, which—as is generally believed—should reduce the approx-
imation errors committed in small samples. The (uncorrected) pure asymptotic
intervals are indicated by ‘“asymptotic N.” The intervals for A, although ob-
tained by the standard OLS recipe, are not genuinely asymptotic intervals, since
the normal asymptotic distribution is only valid for |A| < 1; tests where Ay, > 1
require different asymptotic null distributions.

Table III presents exact confidence intervals %,(«,) obtained under normality
from Z* and £** for N=2000 (but N=1000 gave virtually the same
results). In the upper part of the table we present results for A €9, =[—2, +2].
Both exact intervals for A are much wider than the asymptotic intervals.

TABLE 11

AsYMPTOTIC CONFIDENCE INTERVALS FOR THE INDIVIDUAL COEFFICIENTS OF THE CANADIAN
MoNEY DEMAND EQUATION (7.3)

Nominal level = 95% Nominal level = 90%
Coefficient Asymptotic N Asymptotic ¢ Asymptotic N Asymptotic ¢
A [0.81, 1.02] [0.80, 1.03] [0.83, 1.00] [0.82, 1.01]
B [—0.99,0.13] [-1.05,0.19] [—0.90, 0.04] [—0.94, 0.08]
B, [0.01, 0.16] [0.00, 0.16] [0.02, 0.14] [0.02, 0.15]

Bs [—0.08, —0.04] [—0.08, —0.04] [-0.07, —0.04] [-0.07, —0.04]
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TABLE III

ExAcTt CONFIDENCE INTERVALS FOR THE INDIVIDUAL COEFFICIENTS OF THE CANADIAN
MoNEY DEMAND EQUATION (7.3)

9)‘ Coefficient Confidence level Interval Statistic(s)
[-2, +2] A 95% [0.573, 1.363] K
95% [0.716, 1.169] HEE
B >90% [—1.365, 0.645]
B > 90% [-0.117, 0.246] ZF* and ZF
B; > 90% [—0.084, —0.029]
[—-1, +1] A 95% [0.573, 1] Z*
95% [0.716, 1] B
B1 > 90% [—1.365,0.292]
B2 >90% [—0.017, 0.246] ZF* and ,S?YL
Bs > 90% [—0.084, —0.036]

Apparently the information in the data or the capabilities of the tests are very
weak with respect to rejecting exorbitant (from an economic point of view) A
values. The test % **, which restricts the coefficients of the redundant variables
under the null, seems the more effective one for these data. A fair comparison
with the asymptotic intervals would require the assessment of the actual size of
the latter type of intervals, which is impossible, due to the dependence on
unknown nuisance parameter values.

The intervals for the B’s have been obtained by employing (3.7) for a, = 0.05
= a, with #**(0.05). The intervals for B8 indicate that, according to these exact
procedures, the income coefficient is not significantly different from zero at the
10% level. As it seems, in this relationship and for these data, an estimated
cocfficient of A greater than unity can easily be accommodated by a negative
income effect. The results in the lower part of Table III, which are obtained
under the a priori restriction |A| < 1, still indicate insignificance of the income
coefficient.

In the first row of Table IV joint significance of the explanatory variables is
found by all four comprehensive tests and also by the two-stage procedure. In

TABLE IV

EXACT p-VALUES FOR VARIOUS JOINT HYPOTHESES ON THE COEFFICIENTS OF THE CANADIAN
MoNEY DEMAND EQUATION (7.3); 2, =[—1, +1]

Test statistic(s)

Null hypothesis Zx B Z Zi LB
A=0,B8,=B;=0 0.000 0.000 0.000 0.000 0.000
A=0.86, B, =0.12, B3 = —0.05 0.253 0.392 0.253 0.392 0.268
A=1,B,=B;=0 0.003 0.000 0.003 0.000 0.000
By=pB;=0 not applicable 0.000
By +B3=0 not applicable 0.985
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the second row the three values for the coefficients found by MP are tested and
not rejected. Testing the (structural) MP specification against the pure time-
series simple random walk with drift specification, i.e. A =1, 8, = B; = 0, yields
strong rejections at the 1% level. Hence, the explanatory variables suggested by
economic theory produce a statistically highly significant improvement over the
pure descriptive unit-root model.

Building on the confidence interval %;**(0.05), procedure (3.11) yields a zero
p-value for the hypothesis 3, = B; = 0. Hence, it is rejected at level o = 0.05 + «,
for any «, > 0. For the hypothesis B8, + 8; = 0 this procedure yields an insignif-
icant " value. However, the test of this hypothesis is inconclusive since %"
has a zero p value, which is below o) =2a; + a, > 10%. Tests on long-run
elasticities are sensible only when we restrict the domain of A. If we choose
9, =[0,1), then the confidence set will be unbounded. Bounded sets can be
obtained from (4.10) or (4.11) if we choose 9, = [0, AY] with AY < 1, which is not
pursued here.

8. CONCLUSION

By exploiting techniques to annihilate nuisance parameters from test statistics
and by using these in combination with generalized bounds test procedures we
are able to produce exact inference techniques on virtually any form of hypothe-
sis on the coefficients of a first-order autoregressive distributed lag model. The
resulting procedures are computer intensive, but nevertheless operational. As
usual, genuine exactness is only obtained under specific conditions. In the
present case the conditions are of similar nature as those for exactness of # and
& tests in the static linear regression model. These conditions are: strongly
exogenous regressors and i.i.d. normally distributed disturbances. In fact, the
requirements for exactness of the techniques presented here for the first-order
dynamic regression model are weaker, since we can deal straightaway with any
(up to a scale factor known) form of distribution of the disturbances.

Our inference procedures can also be justified under weaker regularity
conditions on the basis of asymptotic arguments; see Dufour and Kiviet (1994)
for further details. Of course practitioners can take the inexactness of standard
tests for granted and, although a finite sample is analyzed, rely simply on
asymptotic theory assuming that particular regularity conditions are fulfilled and
asymptotic properties do reasonably well hold for the actual finite sample under
study. Here, however, we have shown how such speculations and sometimes
quite inaccurate approximations (see also Nankervis and Savin (1985, 1987)) can
be avoided. The nonsimilarity of the classical inference techniques in finite
samples precludes the assessment of their actual significance and power in
practical empirical situations, and a proper comparison of the efficiency of the
two approaches is therefore hard to establish. This seems feasible to a limited
degree in controlled simulation experiments only, as we demonstrated. When
comparing a particular data distribution compatible with a given composite null
hypothesis, such as H: A =1, against some alternative distribution, an asymp-
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totic test may appear to have more “power” because it rejects the null hypothe-
sis more frequently under the alternative. But this is typically misleading: the
asymptotic test should be “size-corrected” with respect to the whole null
hypothesis to bring its maximal rejection probability under the null hypothesis at
the nominal level. The appropriate size correction may require an important
increase in the critical value. In the Monte Carlo experiments presented in
Section 7, we could ascertain that the appropriate size corrections could be very
substantial, but we could only perform partial ones. For other illustrations of
this phenomenon, see Campbell and Dufour (1997) and Dufour and Torrés
(1997). Currently there is no method for finding the theoretically correct critical
value, and the methods proposed in this paper are the only ones which are
provably valid for the inference problems considered in this article.
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APPENDIX

Proor of ProposiTION 1: Upon dividing the numerator and denominator of the various test
statistics by o2 it is obvious that, under A = A, and y= v,, the numerators are pivotal quadratic
forms in &/0. Proceeding as in (2.9) the unrestricted sum of squared residuals of (2.15) and (2.17)
can be expressed as

(e M[Z(Ay,y)]y_ )
Yo MIZ(Ags vy

with Z(Ag, v9) =[Z 1 Z | (Xy) ! C(A)Zy,y | C(Ay)Z]. Under A = Ay, y=1, we find from (2.11) that
MIZ(Xg, YIy_ 1/ 0 =MI[Z(Xy, ¥)IC(Xg)e/a, and so both Z¥ (Ag,7,) and F¥F(Ag,v,) yield
pivotal test statistics. For test statistics (2.21) and (2.22), where Z'(Ag, vo) =[Z|Z |you(Ay) +
C(A)Zyy 1 C(ANZ), we find M[ZT(Ng, y)y_ /0 =MIZ (Ay, y)IC(Xp)e/a, where ZT(Ag,7v,)
depends on y,, but if y, is known and fixed, both 7. (Ag, vy) and %1% (A, v,) are pivotal. Q.E.D.

MW (A, v)le=eM[Z(Ay,vy)]e —

PROOF OF PROPOSITION 2: Since (A, y) € &, (e, &) implies y€ & (a;, a,), we have
Plye &, a,)]= Pl(A, y) €, (@, ;)] > 1 — . Define now the set

ZLl(ay, a)) = {yy :Irg € G(ay) such that (A, v)) €6, (a, @)},  if Gla) # T,
=R, if Zla,)=2.

This is the complement of %”VL( ay, a,) in the space of all admissible values of y, hence P[y€
ZHa, a)]=1-Plye ?}/L(al’ a,)]. We also define

G (e, @) = {(Ag, v0) : A € Zi(a)) and (Ng, vo) € %, , (), @)}
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Then
PI(A, y) €80 (ay, a))]=P[A€ G(a)) and y& B, ()]
>1l-o;—(0—ay)=a,— ay,
where %,,(a,) is defined by (3.2). Note that (A, 7) € & )(ay, ay) implies y € & (ay, a,), so that
Plye&F(a;, a)1 2 Pl(A,y) € &N (ay, )] = 0 — ;.

Combining the above, we find Ply € & (a;, @)l <1 — a, + ;. Consequently, a liberal confidence
set for y is found by replacing a, by a)=a+a;, giving Ply€®} (aj,ay)l <1~ a. Since
a;<a<aj, we have %, (o), ) 2%, ,(a;, a}), hence Zf(ay, a)) CFl(ay, ;) cZV(ay, ay).

Q.E.D.

PROOF OF PROPOSITION 3: From the definitions (4.4) and (4.7), it follows that S;(A) > S(A). If
(A, B'RY €T, then the infimum Sy(A,v,) is obtained over (A,yp) €I, where yo=7y=RS,
whereas S,()A) is obtained over all y,=RB, € R’ obeying (X, ) € Iy, hence Sy(A,v,) = Sp(A).
Thus, under the null hypothesis we have Sy(A)/S;(A) < Sy(A, v,)/S()), and so for any real x

So(A) ] [EO(A,«/O)
x| <

P[—gﬂr|)\(ro,01)>x]=P[m> S

>x] =P[.Z,,(vo) >x],
from which the conservative critical value easily follows. Q.E.D.
PROOF OF PROPOSITION 4: When A € Cy(a)) we have H+(Iy, 2,) <%, (I}, 2)), and thus, for
any real x,
Pl (T, 0y) >x]=P[H*(Ty, £2)) >x and A € C,(a))]
+ P[ZH (T, 2,) >x and A & Cy(e;)]
<P[Z (I}, 2)) >xand A € Cy(a] +P[A & Cy(ay)]
<P (Ty, ) >x] + ey

Hence, P[.%*(T,, 2)) >_‘2/M(a2; X,R)] < a, + a; = a. Similarly, A € C,(a;) implies
AUy, ) 2% (I, 2y), and

PLZY (T, 02)) >x] 2 PLAY (T, 2,) >x and A € Cy(a,)]
> P[%,(Ty, 2,) >x and A € Cy(ay)]
21— Pl (T, 2)) <x] - P[A & Cy(a))]
>1-P[%,(Iy, 2)) <x] - ay.
Hence, PLAY(Ty, ) >, \(ab; X, R = o) — a; = a. Q.E.D.
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