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1. Introduction 

Test and confidence set procedures for dynamic regression models are typi- 
cally based on large-sample approximations whose reliability can be quite poor; 
see, for instance, Nankervis and Savin (1987) and Kiviet and Phillips (1993). 
A major problem in this context comes from the fact that usual test statistics 
have an indeterminate null distribution, since the latter depends on the values of 
unknown nuisance parameters. This is true, for example, even for tests of linear 
restrictions in a linear dynamic regression with one lagged dependent variable, 
a few exogenous regressors and Gaussian errors. Consequently, it is not surpris- 
ing that to date finite-sample tests against the presence of structural change were 
not available for such models. 

In this paper, we exploit recent results from Dufour (1989, 1990), Kiviet and 
Phillips (1990, 1992), and Dufour and Kiviet (1993) to derive exact finite-sample 
structural change tests in a basic linear dynamic model. Specifically, the model 
we shall consider is 

y, = iy,_ 1 + x;j + u,, u, ?! N(0, o*), t = 1, . . . , T, (1.1) 

where y, is the dependent variable (at time t), x, is a k x 1 vector of fixed (or 
strongly exogenous) regressors, ul, . . . ,uT are mutually independent random 
disturbances following a N(0, a”) distribution, and y, is either fixed or random 
but independent of ul, . . . ,uT; the parameters A, p, and a2 are unknown, and 
1 E JZ#*, where g1 g [w is a nonempty set of admissible values for 1. Depending 
on the context, the set g1 may be [w itself, the open interval ( - 1, l), the closed 
interval [ - 1, 11, or any other appropriate subset of [w. It will be convenient to 
write model (1.1) in matrix form: 

y = ly- 1 + Xp + u, u - N(0, a21T), (1.2) 

where y = (y1,y2, . . . ,YT)I, Y-l = (Yo, Yl, ‘.. ,YT-l)l, x = [Xl, x2, ... ,%-I’, 
and u = (ul, u2, . . . ,uT)‘. 

In order to derive exact structural change tests for model (1.2), we will 
consider in turn two distinct cases, depending on whether the autoregressive 
parameter ;1 is assumed to be constant under the alternative or not. In the first 
case, we study two categories of tests: (1) generalizations of standard analysis-of- 
covariance (AOC) tests in static linear regressions (Kullback and Rosenblatt, 
1957; Chow, 1960; Dufour, 1982a), which are built against alternatives where 
/? may change at m known breakpoints (m 2 2), and (2) generalizations of the 
CUSUM and CUSUM-of-squares tests (proposed by Brown, Durbin, and 
Evans, 1975), which are built against more general alternatives. In the second 
case, we study again two types of tests: (a) predictive tests which generalize those 
proposed by Chow (1960) and Dufour (1980, 1982~) for static linear regressions, 
and (b) AOC-type tests against alternatives where A may change at a known 
breakpoint. 
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The tests suggested are obtained by adapting to structural change problems 
the exact inference procedures proposed in Dufour and Kiviet (1993) for model 
(1.2), which are themselves generalizations of the approach suggested in Dufour 
(1990) for making exact inference in a linear regression with AR(l) errors. The 
basic building block in our approach is the possibility of finding exact confi- 
dence sets for the coefficient ,?, from the full sample or from subsamples. In 
particular, this can be done by applying least squares to an extended regression, 
as set out in Kiviet and Phillips (1990, 1992) where two procedures are sug- 
gested. These confidence sets are similar and have the desired size, i.e., for any 
confidence level 1 - a, with 0 < c( < 1, the probability that 2 be contained in the 
set is precisely 1 - a. The confidence set for 3, is then combined with ‘condi- 
tional’ tests on the other coefficients (which assume il to be known) to obtain 
(unconditional) ‘generalized bounds tests’. These bounds tests are exact in the 
sense that the probability of rejecting the null hypothesis does not exceed the 
chosen level. Concerning the definition of the level of a test or confidence set (as 
opposed to its size), the reader may consult Lehmann (1986, Sec. 3.1, p. 69). 
Finally, when the distribution of a test statistic (for given A = 2,) is not well 
tabulated or is not analytically%actable, we suggest using a ‘randomized’ (or 
Monte Carlo) version of the test which remains exact irrespective of the number 
N of replications and becomes equivalent to the original nonrandomized test as 
N -+co. 

In Section 2, we give two lemmas which will be useful in later developments: 
the first one provides a simple way of deriving exact generalized bounds tests, 
while the second one shows how a genuinely exact test can be obtained when the 
distribution of a (similar) test statistic is simulated with an arbitrary number of 
replications. In Section 3, we show how an exact confidence set for 1 can be built. 
Sections 4 and 5 describe the analysis-of-covariance and CUSUM tests, against 
alternatives where A is assumed to be constant. Section 6 proposes predictive 
tests and analysis-of-covariance tests against alternatives where 1 may change. 
In Section 7, the various procedures are illustrated with both artificial data and 
a dynamic trend model for U.S. real gross domestic private investment in 
nonresidential structures. Section 8 concludes. 

2. Nuisance parameters, bounds procedures, and randomization 

The most basic difficulty one meets in deriving finite-sample inference proced- 
ures for a dynamic model of the form (1.2) comes from the fact that usual 
inference procedures (such as Wald, likelihood ratio, or Lagrange multiplier 
tests) involve nuisance parameters: the null distribution of a test statistic for 
;1 = &, typically depends on the the unknown parameter 1 (and possibly a’), 
while the null distribution of a test statistic for some restriction on fi depends on 
the unknown value of A. Even though this dependence may tend to disappear in 
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large samples, it does not in finite samples. In particular, the dependence on 
1 appears to be especially difficult to alleviate. 

Recently, however, Kiviet and Phillips (1990, 1992) showed that exact tests 
and confidence sets for 1 can be derived by extending appropriately the matrix 
X of fixed regressors in (1.2). The purpose of using an extended regressor matrix 
is precisely to eliminate nuisance parameters. We will describe in the next 
section how an exact confidence set for 1 can be obtained. 

Given an exact confidence set for I, it is possible to obtain finite-sample tests 
and confidence sets for the vector j3 (or subvectors of it) by using the union- 
intersection approach proposed in Dufour (1990) for linear regressions with 
AR(l) errors; see Dufour and Kiviet (1993). In the present paper, we apply this 
approach to obtain exact structural change tests in the context of model (1.2). 
For that purpose, we will repeatedly exploit the following lemma, which general- 
izes some of the basic ideas used in Dufour (1990) and Dufour and Kiviet (1993). 

Lemma 1. Let y be a random vector whose distribution depends on a parameter 
y E A, where A is a nonempty subset of W’, let Q( y; y) be a real-valued statistic and 
let C(y) G A be a conjdence set for y. Dejine also 

QL(y) = inf{Q(x 70): YO E C(Y)>, (2.1) 

Q”(Y) = sup{(y; 70): YO E C(Y)>, (2.2) 

where we set QL(y) = - CO and Q”(y) = + co when C(y) is empty. Then,for 
any x E R and for any y1 E A, we have the two following inequalities: 

PCQJY) 2 xl d PCQCY; YI) 2 xl + PCYIW(Y)I, (2.3) 

PCQLJ(Y) G xl d f’CQ(y; ~1) 6 xl + PCYIWY)I- (2.4) 

Proof: By definition 

YI E C(Y) * QL(Y) G Q(Y; YI) d Qu(Y), 

where the ‘event’ yi E 0 is interpreted as an ‘impossible event’ having probability 
zero, while yi $0 is a ‘sure event’ having probability 1 (0 is the empty set). Then 

PCQL(y) > xl = PCQL(y) 2 x and y1 E C(y)1 + PCQL(Y) 2 x and YIMY)I 

< PCQL(Y) 2 x and YI E C(Y)] + PCYIWY)I 

G PCQ(YV; YI) B xl + PCYI#C(Y)I, 

PCQdyV) G xl = PCQdy) G x and YI E C(Y)] + PCQUCY) G xandy~Wy)l 

d PCQdy) G x and YI E C(Y)] + ~‘CYIWYII 

< PCQOI; ~1) < xl + PCYIWY)I. Q.E.D. 
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This lemma will be applied as follows. Consider the case where 

(i) y1 = y, where y is the true value of the parameter vector, 

(ii) Q(y; y) has a unique known distribution, 

(iii) P[y E C(y)] 2 1 - a,, with 0 < CI~ < 1, 

and let C(U) be a point such that 

P[Q(y; Y) 2 ~(41 = u, (2.5) 
whereO<cr<l.Then 

PCQL(Y) 2 441 d ~12 + ~1, (2.6) 

P[Q,(y) < ~(a;)] G 1 - a; + c11 = 1 - (~1; - ai). (2.7) 

Let us now interpret Q(y; y,,) 2 c(a) as a critical region for testing a hypothesis 
Ho, which usually concerns parameters other than y and has size c( when y = yO. 
Taking 

O<a,<a<l, a2=a-al, a;=a+a,<l, 

we then have 

(2.8) 

PCQLCY) 2 441 < a, (2.9) 

PCQdyV) < c(aidl d 1 - a. (2.10) 

This suggests the following (unconditional) generalized bounds test with level 
a for H,: 

reject H,, when QL(y) B c(aJ, 

accept H,, when Qc(y) < c(a& 

consider the test inconclusive otherwise. 

(2.11) 

For further discussion of such procedures, see Dufour (1989, 1990). 
A second problem one meets in deriving exact tests in the context of model 

(1.2) comes from the fact that the test statistics used may have fairly complex 
forms, even though their distribution under the null hypothesis does not depend 
on nuisance parameters. In such cases, the analytical evaluation of the distribu- 
tion of a test statistic can be quite difficult, but the same distribution may be easy 
to simulate by Monte Carlo methods. In such cases, it is possible to consider 
a ‘randomized’ version of the test that can have any desired level. Even though 
the basic property used to derive such tests is well-known (see Dwass, 1957; 
Barnard, 1963; Birnbaum, 1974; Edgington, 1980; Foutz, 1980; Jockel, 1986), we 
state it here in a lemma for future reference (for a proof, see Dufour and Kiviet, 
1993). 
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Lemma 2. Let Zj, j= 1, . . . , N, be independent and identically distributed (i.i.d.) 
real random variables with a continuous distribution, and let Rj be the rank Of Zj 
when Z1, . . . , ZN are ranked in nondecreasing order (j = 1, . . , N), i.e., 

N 

Rj = C U(Zj - Zi), 
i=l 

(2.12) 

where U(x) = 1 ifx > 0 and U(x) = 0 ifx < 0. Then,for j = 1, . . . , N, 

P[Rj/N B X] = 1, if x d 0, 

= (I[(1 - x)N] + 1)/N, if 0 <x < 1, (2.13) 

= 0, if x>l, 

where I [x] is the largest integer less than or equal to x. 

This lemma will be used in the following way. Let ZN be the value of a test 

statistic computed from an observed sample, let Zr , . . . , ZN- 1 be i.i.d. random 
variables which are distributed like ZN under Ho, and let 0 < tl < 1. Then, by 
selecting cN(a) to be a positive real number such that 

Z[(l - c,(a))N] + 1 6 Na, (2.14) 

the critical region RN/N 3 cN(c() has size not larger than a. Thus, RN/N may be 
viewed as a modified test statistic for Ho. From (2.13) it is easy to see that the 

critical point 

Z[Na] 1 
c&) = 1 - 7 + YN (2.15) 

yields a test of size Z[Na]/N, so that CI - (l/N) 6 P[RN/N > cn(cr)] d a, and 
thus provides the desired result; in particular, when Na is an integer, we get 
P[RN/N > cN(cx)] = c( by taking C~(CI) = 1 - CI + (l/N). With CN(CI) defined as in 
(2.15) the critical region RN/N > cN(u) can be rewritten in the intuitively 
attractive form PN < I[Na]/N, where 

pN=l_~+l 
N 

(2.16) 

can be interpreted as a ‘randomized’ or ‘Monte Carlo’ p-value. Because the 
function I[ .] is discrete, several values of C~(CI) may yield the same critical 
region: all critical points c such that {I[(1 - c)N] + 1)/N = a correspond to the 
same test with size ~1. The only levels for which the equality in (2.14) can hold 
exactly are j/N, j = 0, 1, . . . , N - 1, but it is easy to find a critical point +(a’) 
such that we have both P[RN/N 2 ~~(a’)] < c( and [a’ - a] < l/N: clearly, by 
taking N sufficiently large, the difference 1 a’ - a 1 can be made arbitrarily small, 
and, if aN is an integer, we can have P[RN/N 2 cN(a)] = a. Note also that the 
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test RN/N 2 cN(a) is not equivalent to the nonrandomized test ZN 2 C(U) where 
P[ZN 2 c(a)] = a. But, as N + 00, the two tests become equivalent under weak 
regularity conditions. For further discussion, see Birnbaum (1974), Dwass 
(1957), Foutz (1980), and Jiickel(l986); for applications of Monte Carlo tests in 
time series contexts, see Dufour and Hallin (1987, p. 426) and Theil and 
Shonkwiler (1986). 

3. Exact confidence sets for 3, 

To apply Lemma 1, we will need an exact confidence set for ,I. For this 
purpose, we shall use the approach developed in Kiviet and Phillips (1990,1992), 
which is based on deriving first exact similar tests for the hypothesis i = ,I,,. 
Dufour (1990) also proposed a related approach to obtain an exact confidence 
set for the autoregressive parameter in a linear regression with AR( 1) errors from 
an exact test. 

Kiviet and Phillips (1990, 1992) give two procedures for testing the null 
hypothesis A = lo exactly in model (1.2); a third one is given in Dufour and 
Kiviet (1993). The null distributions of these test statistics are free of the nuisance 
parameters /I and a; moreover, they are invariant with respect to the value and 
the (stochastic) nature of y,. However, the null distribution of these tests does 
depend on both &, and X, and so it is not feasible to produce general tables of 
exact critical values. The actual application of these tests requires considerable 
computational efforts, but by. adapting them in the form of simulation tests 
according to Lemma 2, these procedures are operational and relatively easy to 
execute. Exact confidence sets for I can be constructed by ‘inversion’ of these test 
procedures for 1 = A,,. These three particular exact tests are based on straight- 
forward least-squares results in a regression model which corresponds to (1.2) 
augmented by a number of redundant strongly exogenous regressors: 

y = AY - 1 + x@,)p* + u, (3.1) 

where X(2,) is a full column rank matrix whose columns span the same space as 
the space spanned by the columns of [X ! r&) i J&,)X], and 

ZT(4 = 

1 

1 

12 

AT-1 I? J,(n) = 
Ai-2 

. . . . . . . 0 

0 

1. 0. 
._ ., 

. ‘. ‘_ 

. . . . -. 
‘_.. : 

. . ‘_ 

-. . . ., 

‘..A ‘) ‘(j 

(3.2) 
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Extending a model by including particular redundant regressors in order to 
achieve test invariance has also been suggested in Dagenais and Dufour (1985) 
to test serial correlation with missing observations, and Dufour and King (199 1, 
p. 125) with respect to testing hypotheses about the autocorrelation coefficient in 
a linear regression with AR(l) errors. 

For the least-squares estimator of 1 in (3.1) we have 

n^(&) = (Y’-l~CX(~o)lY-l-lY’-l~CX(~o)IY. (3.3) 

where M[X(&)] = I - X(&)[X(&J’X(&)] - ‘X(1,)‘. In order to test I = lo 
exactly, Kiviet and Phillips (1990, 1992) have suggested the following statistics: 

cW0) = fi(&) - &, (3.4) 

and the t-ratio 

CVCJ = cX@o)l~C~(~o)l~ (3.5) 

where 

c+[iqT(no)]” = 
1 CY - f@o)Y - Il’wx(~o)l CY - Wo)Y- 11 

T - rank [X(&J] Y’,MC-wo)lY-I 

(3.6) 

is the estimated variance of fi(&). In addition to those, we shall also consider 
here two other statistics suggested in Dufour and Kiviet (1993) which have the 
nice feature of being derived as monotonic transformations of particular likeli- 
hood ratio statistics, namely, 

where 

G(M = yen Cy(Ao) - X(~~)KJ’CY(~~) - x@o)iLl~ 

~o@o) = mjn CY@O) - xPl’Cy(~0) - x/U, 

WO) = pin CY - AY-, - X(~o)P,l’C~ - AY-, - X(~o)P,ll 
. l 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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with ~(1,) = y - 10y_,. It is easily verified that 

Ctn*(&)12 = (T - rankCX(&Jl) C=%W - 11. 

Clearly, tests based on _YT*(&,) are likely to be more powerful than those based 
on Yt(&) because Zi”:*(&) takes into account a wider set of restrictions 
entailed by 2 = & in the extended model (3.1). 

Under 2 = &, the three residual sums of squares defined in (3.9)-(3.11) reduce 
to 

G(&) = u’MCX(&)l% (3.12) 

&(I,) = u’M[X]u, (3.13) 

s:(n,) = u’M[y_ 1 ; X(&)]u 
(3.14) 

= u’M[X(I,)]u - {~‘~CX(&)I JT(M42 
~‘J&J)‘~CX(&)l JT(AJ~ . 

For the derivation of the latter result, see Dufour and Kiviet (1993). It is 
important to note here that, under I = &, the coefficient vector p and the 
start-up value y, do not appear in the residual sum of squares. Further, the 
statistics .P~(&) and .Y~*(&,) are then functions of ratios of quadratic forms in 
u, so that their null distributions do not depend on 0 either. 

An exact confidence set with level 1 - c1 for A can be built by ‘inverting’ either 
one of the above tests. To see how this is done, let us focus on the construction of 
a confidence set obtained (for example) from the _!Zt*(&) test procedure and by 
making use of the simulation procedure set out in Lemma 2. We first generate 
N - 1 mutually independent T x 1 vectors qj, j = 1, . . . , N - 1, with 
qj N N(0, IT). For particular values lo E gA, to be determined below, we can 
calculate 

Tj(J-0) = 
rl>“CXIYlj (3.15) 

?J”Cx(&l)l?j - 
{VJ”Cx(nO)l JT(&)Vj12 

?J JT(AOYMCX(&)I JT(AO)rlj 

forj= 1, . . . , N - 1, and set TN(&) = 2’49:*(&) which is obtained by formula 
(3.8) from the actual data. If cN(cL) is defined as in (2.15) and RN(&) is the rank of 
TN(&) among Tj(&), j = 1, . . . , N, then the set 

(3.16) 

is a confidence set for il with size 1 - (I[Na]/N). In particular, if NM is an 
integer, the size of the confidence set is precisely 1 - a. The actual establishment 
of such a set requires iterative numerical procedures such as grid search, 
bi-section, etc. First, Tj(n,), j = 1, . . . , N, are calculated for a series of il, values; 
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for each & value, the same [vi, . . . ,qN_i] vectors are used and RN(&) is 
determined. This provides an initial location of the confidence set. The set is not 
necessarily compact, but if it is, the confidence bounds are rather straightfor- 
wardly obtained after a series of further refinements by which one checks 
whether or not particular & values belong to the confidence set. 

4. Analysis of covariance tests when I is constant 

In this section and the next one, we study the problem of testing the stability 
of model (1.2) against alternatives where 1 and a2 are assumed constant. We will 
consider in turn two cases: (1) m possible breakpoints for changes in /I are known 
(or assumed), and (2) the form of the structural changes is unknown. In the first 
case, we will propose generalizations of analysis-of-covariance tests similar to 
those proposed in Kullback and Rosenblatt (1957), Chow (1960) and Dufour 
(1982a). In particular, we will extend to model (1.2) the general analysis-of- 
covariance tests given in Dufour (1982a). In the second case, which we consider 
in the next section, we will propose analogues of the CUSUM tests suggested by 
Brown, Durbin, and Evans (1975). 

Let us consider the following partitions of y, y _ i, X, and u defined in (1.2) into 
m subvectors or submatrices (m > 2): 

Y(l) y”\ 

Y(2) Y’-‘\ 
Y= Ll Ll > y-1= . ) x= 

Y(m) Y”-“‘l 

U(l) 

U(2) Ll 9 (4.1) 

%) 

where y~i), y!i, and u(i) are Ti x 1 vectors, X(i) is a Ti x k matrix, Ti > 1, and 
ri = rank(X(,) 2 0, i = 1, . . . ,m,and T=CY”=,Tiam>2. Wedonotassume 
here that the matrices Xo,, . . , X,,,, X have full column ranks. As the alterna- 
tive to model (1.2), we consider the extended model 

Y(i) = ~Y(‘)I + X(i)Bi + U(i), U(i) ?!! N(0, c~‘IT,), i = 1, . . . ,m, (4.2) 

where pi is a k x 1 vector of unknown coefficients and y. is independent of u. 
Thus, the ith regression in (4.2) represents a model of the form (1.2) for the 
observations Ti_ 1 + 1, . . . , Ti (i = 1, . . . , m, where To = 0). PI, . . . , /I,,, may 
differ but we will assume that I and rr remain constant across the m subsamples. 
We want to test 

Ho: pi = p2 = ... = Pm. (4.3) 
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To develop a test of Ho, it will be convenient to rewrite (4.2) in the more 
compact form: 

y = Ay_ I + RF + u, u - N(0, a2ZT), (4.4) 

where X is a T x (mk) matrix and fl is a (mk) x 1 vector defined by 

X = diag(X(i,) = [ x[ +) _# j, fl=[ !I. (4.5) 

Let us now suppose that 1 = IO, with & known. Then the model 

YGI) = 8P + & (4.6) 

where ~(1,) = y - &y_ 1 satisfies all the assumptions of the classical linear 
model (conditional on X and yO), without possibly the assumption that R has 
full column rank. The problem of testing Ho then has the form considered in 
Dufour (1982a), and the generalized Chow statistic for testing Ho is 

(4.7) 

where S&I,) and S,(&) are the restricted and unrestricted minimum sum of 
squares, i.e., 

SO(&) = mjn CY(&) - XPI’CY(&) - X/U, (4.8) 

SI(&) = min CY(&) - ~BI’CY&J - 881, (4.9) 
zf 

while v and v. are the appropriate degrees of freedom: 

V = ~ (Ti - Ti), 
m 

Vo= 1 li-ro, 

i=l i=l 

(4.10) 

with r. = rank(X) and ri = rank(X& i = 1, . . . ,m. Under Ho (with 1 = Ao), 
&I,) is distributed like F(vo, v), a Fisher random variable with (vo, v) degrees of 
freedom, and the critical region II > F(a; vo, v) has level a, where 
P[F(v,, v) B F(a; vo,v)] = a and 0 < a -c 1; see Dufour (1982a). When the 
matrices Xcl), . . . , Xc,,,) all have full column rank, the restricted and unrestricted 
minimum sum of squares correspond to unique least squares estimates of /? and 
fl respectively, and the degrees of freedom are 

v = T - km, v. = (m - 1)k. (4.11) 
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The basic difficulty now is that 1 is unknown. Let Cl(al) be an exact 
confidence set for A with level 1 - a, (at least) where 0 < c1i < c1 < 1: 

P[A E C,(Q)] B 1 - cxi. (4.12) 

We saw in Section 3 that we can in fact construct an exact similar confidence set 
with size 1 - ~i, i.e., such that P[A E Ci(al)] = 1 - c~i irrespective of the values 
of 1, /I, cr, and J+,. Consider now the two following statistics: 

D&i) = inf {NH,; &): A0 E CA)}, (4.13) 

D”(Q) = sup (D(&; 20): 10 E C&i)). (4.14) 

Taking CQ = tl - txi and c& = M: + c~i < 1, we see easily from Lemma 1 that, 
under H,,, 

P[D,(a,) B F(crz; vo, $1 d a2 + @l = a, 

PCD”(cQ) < F(& vo, v)] < 1 - a; + c(i = 1 - a. 

We thus have the following level-cc generalized bounds test for Ho: 

reject Ho when &(a,) > F(a,; vo, v), 

accept Ho when Du(c(i) < F(a;; vo, v), 

consider the test inconclusive otherwise, 

where ~1, c~i, CI~, and cc; satisfy (2.8). Defining the tail area function 

G(x; vo, 4 = P[F(vo, v) 3 xl, 

the above procedure is also equivalent to: 

reject Ho when G[D,(a,); vo, v] < m2, 

accept Ho when G[Du(ai); vo, v] > a;, 

consider the test inconclusive otherwise. 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

The probability ~1~ E G[D,(cc,); vo, v] can be interpreted as a ‘conservative’ 
p-value for testing Ho, while a c E G[D,(a,); vo, v] is a ‘liberal’ p-value for I-&,. It 
is easy to see how equality restrictions between subvectors of pi, i = 1, . . . , m, 
can be tested in a comparable way. 

The confidence set for I can be obtained from at least two different models: 
the restricted model (1.2) or the unrestricted model (4.4). Both, of course, yield 
valid confidence sets for 1 as well as valid bounds tests under I$,. On the other 
hand, the confidence set based on (1.2) is not generally valid under the alterna- 
tive (4.4), and this may deflect the power properties of such a procedure. Finding 
which one is preferable is left to further research. 



J.-M. Dufour, J.F. KivietlJournal of Econometrics 70 (1996) 39-68 51 

5. CUSUM tests 

Analysis-of-covariance tests are built against specific alternatives where the 
breakpoints of the changes in /I are specified a priori. To get tests against less 
specific structural change alternatives, we now consider generalizations of 
the well-known CUSUM and CUSUM-of-squares tests proposed by Brown, 
Durbin, and Evans (1975), henceforth BDE. For this purpose, we will make the 
additional rank assumption: 

rank(Xk) = k, (5.1) 

whereX, = [xl, x2, . . . ,x,1’ is the r x k matrix of regressors for the first r obser- 
vations (1 6 r < T). Note that (5.1) implies 

rank(X,)=k, r=k,k+l,..., T. (5.1’) 

As we did for analysis-of-covariance tests, let us suppose first that 1 = ,I,,, with 
1, known. Then, model (1.2) can be written 

y(&) = Xp + u, u - N(0, c?Z,J, (5.2) 

where all the assumptions of the classical linear model are satisfied. The 
CUSUM test against the presence of structural change is based on the statistic 

CS(&) = max{I@r(&)I: r = k + 1, . . . ,T), (5.3) 

where 

(5.4) 

(5.5) 

w,(&), t = k + 1, . . . , T, are the recursive residuals based on model (5.2), and 

WJ* = CT=,+ 1 w,(&)*/(T - k). The recursive residuals are defined by 

w(&) = CY,&) - x3,- ,&,)1/4&d, t = k + 1, . . . > T, (5.6) 

where 

WCJ = GGW ‘X y&d, t=k, . . ..T. 

d,(&) = [l + x;(X;_~X,_~)-‘x,1”*, t = k + 1, . . . , T, 

and Y&I,) = [yI(&), y,(&,), . . . ,y,(&)]‘. Under model (5.2), the residuals 
w&I,), t = k + 1, . . . , T are i.i.d. N(0, 0’). The CUSUM test rejects the null 
hypothesis of stability at level o! when CS(&) > cl(a), where C~(GI) is selected so 
that P[CS(&,) 2 cl(a)] = 0: when wk+l(&), . . . ,wT(&) are i.i.d. N(0, a*). 
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BDE (1975) only provided approximate (although quite accurate) critical 
values for the CUSUM statistic. However, when il = ilo, we have 

w&)/c ‘2 N(0, l), t = k + 1, . . . , T. If we define the random variable 

CS, = max{lkV,l: r = 1, . . . ,n}, (5.7) 

where @, = {C:=lvt)/{(C:=1~12/n)‘iz d(r, $1, r = 1, . . . ,n, and ul, . , v, are 
i.i.d. N(0, 1) variables, then we see immediately that CS(&) is distributed like 
CST-L when 1 = &. Further, it is straightforward to simulate the distribution of 
CSr-,_ so that an exact Monte Carlo CUSUM test can be performed as 
described at the end of Section 2. 

To obtain a procedure valid without knowing I, we consider again a confi- 
dence set for 1 that satisfies (4.12) and define the statistics: 

CSL(al) = inf{CS(&): & E Cl(al)}, 
(5.8) 

CS”(fx!,) = sup{CS(&): ;lo E Ci(cc,,}. 

Then, provided (2.8) holds, we get from Lemma 1: 

P[CS,(c(,) b Cl@Z)l d 4 P[CS”(‘d d CIK?)l < 1 - 4 (5.9) 

which yields the bounds test: 

reject stability if CSL(~i) 3 cl(clJ, 

accept stability if CS”(oli) < cl(&), (5.10) 

consider the test inconclusive otherwise. 

Similarly, for 1 = & given, the CUSUM-of-squares test based on model (5.2) 
has the form CQ(&,) > c~(M) for a test of level ~1, where 

CQ(&) = max &+,(A,) - & : t = 1,2, . . . , T - k , (5.11) 

where 

S,(&) = i W(&)2 r = k + 1, . . , T; 
t=k+l 

see BDE (1975) and Dufour (1982b, 1986). Again, computation of the distribu- 
tion of the CUSUM-of-squares statistic is discussed by BDE (1975), who 
provided an approximation based on the earlier results of Durbin (1969). 
Further, as for the CUSUM test, it is easy to see that CQ(&) is distributed like 
the variable CQTPL defined by 

CQ,=max , 
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with n = T - k, where S, = (~~,,u~)/(~~,,u~), r = 1, . . . ,n, and zil, . . . ind 
,O” - 

N(0, 1). Clearly, it is quite easy to simulate CQTmL and thus to perform an exact 
Monte Carlo version of the test. 

By applying Lemma 1, we see that 

PICQL(al) > Cal < Q, PCCQ&) < c~(a91 Q 1 - a, (5.13) 

where 

CQ&d = inf{CQW & E C~h)), (5.14) 

CQ&d = su~{CQ(hd 10 E C&d), 

and (2.8) holds, which yields a generalized bounds test analogous to the one in 
(5.10). 

6. Tests against changes in 3, 

The tests described in Sections 4 and 5 are built against alternatives where the 
dynamic parameter J is assumed constant. This does not mean that they have no 
power against alternatives where J changes: shifts in 2 will clearly affect the 
distributions of the analysis-of-covariance and CUSUM test statistics pre- 
viously described. However, since these tests do not explicitly allow for the 
possibility of changes in 1, they can easily be biased against such alternatives. In 
this section as well as the following one, we describe two tests that consider in 
a more explicit way the possibility of changes in 1. The first one is a predictive 
test which looks at ‘prediction errors’ for the observations in the second sample 
obtained after estimating regression coefficients from the first sample. The 
second one is an AOC-type procedure which considers the difference between 
‘estimators’ of 1 based on the two samples and chosen so that the null distribu- 
tion of the difference between the two estimators does not depend on nuisance 
parameters. 

We consider a partition of y, y_ i, X, and u into two subvectors or submatri- 
ces, giving the following extension of model (1.2): 

y(i) = niY(i’l + X(i)Bi + u(i), u(i) - i”d N[O, &,], i = 1,2, (6.1) 

where y~i), Y’?~, and X,n are defined as in (4.1) with m = 2, T1 + Tz = T, Ti 2 1, 
ii E QA, i = 1,2, ga, is the set of admissible values for 1, and 

1 < ri = rank(X(,,) = k < T1; (6.2) 

no rank condition is imposed on XcZj. We want to test 

Hb: /I1 = j&, Ai = &, o1 = c2 (6.3) 

against an alternative in which all parameters (including 2) may change. 
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Suppose now that ir = A,,. Then, under Hb, a natural way of testing 
Hb against (6.1) consists in testing whether the elements of the vector of 
prediction errors 

u”(2)(&) = Y(2)(&) - X(2$1(&) (6.4) 

have mean zero, where y,(&) = y(i) - &,y?,, i = 1,2, and flr(&) = (X;,,X,,,)-’ 
x X;,,y,,,(&) is the least-squares estimate of fir obtained from the regression 

Y&3) = -ql,Bl + U(l). (6.5) 

This yields the well-known predictive Chow statistic (assuming A1 = A2 = 1,) 
which can be written in two alternative forms: 

pc(l ) = 7-1 - k fi&M’ [IT, + X,,,P&X,d- %I - 14z)(~o) 
0- 

T2 Sl PO) 

_ TI - k sotno) - ~I@o) 

T2 

where S,(A,) is the minimum sum of squares (4.8) from the estimation of the 
complete regression (4.4) with 1 = lo, while $,(A,) is the minimum sum of 
squares from the estimation of the first regression in (6.1) also with I = lo, i.e., 

(6.7) 

Under Hb and A1 = lo, PC(lo) - F(T2, T1 - k) so that the appropriate level-cl. 
critical region is PC(ilo) B F(a; T,, T1 - k). 

Let CA,(al) be an exact confidence set for A1 with level not smaller than 
1 - al, which is valid at least under Hb: 

PC4 E C,,(q)] B 1 - al. (6.8) 

Such a confidence set can be constructed by applying the methods of Section 
2 to the first sample (yt, t = 0, 1, . . . , T,). Let also 

PCL(al) = inf{PC(R,): A0 E Cl,(al)}, 

PCdaA = sw(PC(~0): 20 E C~,W). 

Then, provided (2.8) holds, we have 

(6.9) 

PIPCL(al) 2 F(a2; T2, TI - k)] < a, (6.10) 
P[PC,(a,) < F(a;; T2, Tl - k)] d 1 - a, 
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which yield the bounds test 

reject Hb if PCL(al) 3 F(cQ; T2, T1 - k), 

accept Hb if PC,l(al) < F(cr;; T2, T1 - k), 

consider the test inconclusive otherwise. 

(6.13) 

It is interesting to note that PC(&) is the Fisher statistic for testing model (1.2) 
against an extended model where a dummy variable has been added for each 
observation in the second period (t = T1 + 1, . . . , T): 

T 

~0,) = x;P + c YA + ut, t = 1, . . . , T, (6.14) 
s=T,+l 

where D,, = 1 if t = s and D,, = 0 if t # s; see Dufour (1980, 1982c).’ Further, 
we can look at the r-statistics for each element of the vector y = 

bT,+l,YT,+2, ... >YT)‘: 

ab) = &s(&v~s(&) 

ys - x:81&) 
= sr(&)[l + x:(x;,,x(,,)-1xsl”2’ 

(6.15) 

s = T, + 1, . . . , T, where .~i(l,)~ = S,(&)/(T, - k), each of which follows 
a Student distribution t(T, - k) under Hb (when Ai = A,). As suggested in 
Dufour (1980) these statistics provide a simple way of analyzing the form and 
timing of possible structural changes over the second period. To get tests valid 

without knowing 1,, , we consider the statistics: 

Fk(ai) = inf{ts(E,0))2: Lo E Cl,(al)}, s = T, + 1, . . , T, (6.16) 

Fp(ccr) = s~p{(t@~))~: & E C&)}, s = T, + 1, . . . , T. (6.17) 

Clearly again, 

P[F:(c(,) 3 F(Q; 1, Tr - k)] d a, 

P[F:(LYJ < F(a;; 1, Tl - k)] < 1 - 01, 
(6.18) 

so that we have a sequence of bounds tests for each observation in the second 
sample: 

reject Hb when Fk(ol,) b F(az; 1, T, - k), 

accept Hb when Fp(oli) < F(a;; 1, T1 - k). 
(6.19) 

Predictive tests like those just defined may be viewed as portmanteau 
tests aimed at detecting any form of structural change that could affect the 

’ For the related (asymptotic) generalization to dynamic possibly nonlinear models, see Dufour, 

Ghysels, and Hall (1994). 
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coefficients of the model (A, ,!?, or C-I). Since it would also be of interest to have 
a procedure for detecting change in 1, irrespective of whether /I or CJ has changed, 
we now derive an AOC-type test for changes in 2 which is insensitive to changes 
in p and CJ of the form allowed in (6.1). More precisely, we again take model (6.1) 
and we consider the problem of testing 

R,: A1 = & against HI: A1 # AZ, (6.20) 

where it is not assumed that /?r = p2 nor or = g2 under R,. Further to allow 

one to estimate the model separately on the two subperiods considered, we 
replace (6.2) by the stronger assumption 

1 < ri = rank (X(i)) = k < Ti, i = 1,2. (6.21) 

To derive a test of RO, we consider first the more restrictive hypothesis 

I&&J: 11 = & = 20, (6.22) 

where A0 E gl. For each & E &??A, we can compute estimates 1, (A,,) and fi,(&) of 
,I1 and & based on extended regressions such as (3.1), i.e., 

y(i) = I&iy”)r + X(i)(1a)bi* + U(i), i = 192, (6.23) 

where X(,(1,) has full column rank and spans the same space as that spanned by 
the columns of the matrix [X,,, f rT,(&) ! J,,(~,)X,i,]. When 1i = lo, 

Ii( = 1i + Qi(drJ, U(i)), i = 1,2, 

where 

(6.24) 

Qd&, u(i)) = 
U;i,J,,(~,)‘MCx,,,(n,)l u(i) 

U;i,J,,(~,)‘MCX~i,(~o)l JT,(AO)u(i) 

V;i~JT,(~o)‘MCX~i)(~o)l u(i) 
= U;i,JT,(~o)‘MCX~i)(~~o)l JT,(2Cl)U(i) ’ 

where V(i) = Uci)/‘ci - N[O, IT,]. 
Clearly, the distribution of Qi(Ao, u(i)) does not _ 

i = 1,2, 

depend on any nuisance 

parameter. Now to test H,(&), it is natural to consider the difference 
A(&) = I,(&) - &(&). When ,I1 = ,Iz = ,I,,, 

d(&) = QI(&, ~IJ - Qz(&, qzJ = J(&, u), (6.26) 

where v = (vi,,, uizJ - N[O, I,], a random variable whose distribution involves 
no nuisance parameter. Let 

G&; 2,) = pCIJ(&, $1 B xl&(&)1 (6.27) 

be the probability of the event 16(&, u)l B x when 1, = A2 = ilo, and let A(&) be 
the observed value of A(&). Then the test which rejects I?,(&,) when 

‘&(l&Ml; &I d ci (6.28) 
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has level ~1. Further, it is easy to obtain a randomized version of the test in (6.28) 
by using Lemma 2. 

Given the function Gd(x; A,), there are at least two ways of getting exact tests 
of the less restrictive hypothesis 8,. First, it is straightforward to see that the test 
which rejects R,, when 

sup{GA&,)l; 4,): A, E 9J G a (6.29) 

has level CI. Second, when a confidence set CA(al) with level 1 - &I (at least under 
R,) is available, i.e., 

P[n E C,(cl,)l > 1 - Ml, (6.30) 

the following procedures is a valid generalized bounds test at level CI: 

reject Ho when sup {Gd(ld(&)l; &): &E Cl(orl)) < a*, 

accept Ho when inf {Gd(lJ(&,)l; &,): &E CA(orl)} > cr;, (6.31) 

consider the test inconclusive otherwise, 

where (2.8) holds. A simple way to get an appropriate confidence set for 2 is to 
build one by the KiviettPhillips procedure from either one of the two sub- 
samples considered. The validity of the bounds test follows again from Lemma 
1. Correspondingly, randomized bounds tests can be obtained in the same way 
after replacing the test in (6.28) with its randomized analogue. Note that the 
same set of artificial replications should be used for all values of l,,. 

7. Illustrations 

We will show now that the inference procedures developed here are opera- 
tional by applying them to an empirical first-order dynamic autoregressive 
model for the logarithm of U.S. gross private domestic investment in non- 
residential structures (1982 dollars, quarterly, 1952:1-1986:4). But before we do 
that, we will first illustrate the tests on some artificial data sets. In these 
calculations, we can choose and change the specification and the parameter 
values of the model in such a way that some interesting features of the various 
tests can be demonstrated. So, we perform a few controlled experiments. These, 
of course, cannot (and are not meant to) replace a full scale Monte Carlo 
analysis from which the power performance of the tests would be assessed 
(which goes beyond the scope of the present paper). We just examine a few single 
realizations of particular data-generating processes in order to show that our 
exact procedures are feasible and behave reasonably well. Note also that for the 
model studied in the previous sections, no alternative jnite-sample structural 
change test appears to be available. 
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We focus on a model with one lagged dependent variable, an intercept, and 
possibly a linear trend with various forms of structural breaks and shocks to the 
system. First, we examine a first-order autoregressive process with nonzero 
mean and a unit root (i.e., a random walk with drift). The data were generated 
according to 

Y, = 11 Y,- 1 + PI + 43 t = 1, . . . ,Tl, 
(7.1) 

y,=&~+1+/3~+6dt+ut, t=T,+l,..., T, 

where y,, = 1 and uIr . . , uT independent and normally distributed with mean 
zero. For the first T1 observations of the sample, we invariably have 

T, = 30, A, = 1, PI = 0.02, g1 = 0.01, 

var(u,) = a: for t = 1, . . . , T1. (7.2) 

For the second part of the sample, consisting of T2 = T - T1 observations, we 
have 

T2 = 20, d, is a dummy variable, var(u,) = a: for t = T1 + 1, . . , T; 

(7.3) 

moreover, we consider six distinct cases: 

A (no structural change): A2 = 1.0, b2 = 0.02, 6 = 0, rs2 = 0.01; 

B (change in fi only): & = 1.0, p2 = 0.03, 6 = 0, 62 = 0.01; 

C (change in 2 only): I.2 = 0.95, p2 = 0.02, 6 = 0, 02 = 0.01; 

D (change in 0 only): & = 1.0, 82 = 0.02, 6 = 0, cr2 = 0.02; 

E (isolated shocks): 22 = 1.0, /?2 = 0.02, 6 = 0.05, c2 = 0.01, 
with d, = 1 for t = 35,45 and d, = 0 otherwise; 

F (jump in drift): ;12 = 1.0, p2 = 0.02, 6 = 0.02, 62 = 0.01, 
with d, = 1 for t > 40 and d, = 0 otherwise. 

For the six data sets so generated, we estimated the model 

Y, = AY,-I + P1 + 49 (7.4) 

and applied the various exact structural change tests described in the previous 
sections of this paper.2 The least-squares estimates of the parameters for 

‘The six data sets are obtained from one and the same realization of ~,/a,, ___ , ~+,/a,, 
uT, + ,/cT*, , uT/u2. The samples used in these illustrations are available from the authors upon 
request. 
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Table 1 
Simple AR(l) models: OLS estimates and exact i, confidence sets 

Sample ;2^ BI s 

First subsample (T, = 30) 0.980 (0.010) 0.048 (0.014) 0.011 

Second subsample (Tz = 20) 
A 
B 
C 
D 
E 
F 

0.972 (0.018) 0.071 (0.032) 0.008 
0.983 (0.012) 0.063 (0.022) 0.008 
0.961 (0.008) 0.006 (0.010) 0.009 
0.929 (0.037) 0.149 (0.067) 0.016 
0.969 (0.03 1) 0.082 (0.058) 0.019 
1.034 (0.013) - 0.034 (0.024) 0.010 

Complete sample (T = 50) 
A 
B 
C 
D 
E 
F 

0.991 (0.005) 0.034 (0.008) 0.010 
1.005 (0.005) 0.016 (0.007) 0.011 
1.016 (0.021) - 0.023 (0.027) 0.033 
0.989 (0.007) 0.037 (0.010) 0.014 
0.998 (0.007) 0.025 (0.011) 0.015 
1.012 (0.005) 0.006 (0.008) 0.011 

Exact confidence sets for I (from first subsample) 

Level 0.99 0.975 0.95 0.925 

Based on U: CO.8660, 1] CO.8713, l] CO.8745, 1] cO.8785, 1] 
Based on _Y:* co.9370, 1] co.9414, 1] co.9445, 1] co.9473, 1] 

OLS standard errors appear in parentheses. The exact confidence sets for i, are randomized with 
N - 1 = 499 Monte Carlo samples. s is the estimated disturbance standard error. 

both the complete sample (1 < t < T) and the relevant subsamples 
(1 d t d T1, T1 + 1 Q t < T) appear in Table 1, while the p-values of the 
structural change tests are presented in Table 2. We also present exact (random- 
ized) confidence sets for 1 at various levels (1 - CQ = 0.999, 0.975, 0.95, 0.925) 
based on the LR-type statistics _‘?*(A,) and _Y’**(&). Each of these confidence 
sets is obtained from the first sample (1 d t < 30) under the restriction llz] d 1, 
and the randomization uses N - 1 = 499 artificial replications of Y*(&) or 
_!Z’**(llo) under the null hypothesis [see (3.16)]. We see from these results that 
the confidence sets based on _Y**(&) are typically shorter than those based on 
_??*(A,), which illustrates the fact that the statistic Y’**(&) takes into account all 
the restrictions implied by 1 = I, on the extended model (3.1) (see the dis- 
cussions in Section 3). Furthermore, the confidence sets appear to be rather 
insensitive to the level selected (at least for this data set). For the structural 
change tests, we will use the confidence set CO.9445 l] based on A?**(&) with 
c(1 = 0.05. 
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Table 2 
Simple AR(l) models: Exact tests for structural change (p-values) based on the U:* confidence set 
from the first subsample; c( = 0.10, cur = 0.05, Q = 0.05, cc; = 0.15 (‘r’ indicates rejection at level 0.10; 
‘a’ indicates acceptance at level 0.10) 

(A) Global tests 

Test A B C D E F 

AOC+’ 

BL 
Bu 

CUSUM” 

CSL 
CS” 

CUSUM-of-squares” 

:;Lu 
Predictive test 

PCL 
PC” 

AOC-I 

Pi 
Pj 

0.927 0.006 I 0.000 r 0.949 0.425 0.005 r 
0.000 0.000 0.000 0.000 0.000 0.000 

0.952 0.664 0.006 r 0.998 0.966 0.660 
0.002 0.002 0.002 0.002 0.002 0.002 

0.762 0.602 0.002 r 0.050 r 0.012 r 0.194 
0.008 0.002 0.002 0.004 0.002 0.002 

0.873 0.530 0.000 r 0.014 r 0.004 r 0.191 
0.003 0.000 0.000 0.000 0.000 0.000 

0.922 0.956 0.608 0.058 0.292 0.714 
0.006 0.004 0.002 0.002 0.064 0.168 a 

(B) Individual predictive tests (conservative p-values) 

Predicted observation A B C D E F 

31 0.115 0.018 I 0.001 r 0.002 r 0.115 0.115 

32 0.988 0.476 0.000 r 0.976 0.988 0.988 
33 0.532 0.138 0.000 r 0.187 0.532 0.532 
34 0.997 0.981 0.000 r 0.897 0.997 0.997 
35 0.573 0.154 0.000 r 0.229 0.000 r 0.573 
36 0.989 0.703 0.000 r 0.992 0.996 0.989 
37 0.973 0.564 0.000 r 0.975 0.999 0.973 
38 0.945 0.343 0.000 r 0.822 0.945 0.945 
39 0.706 0.212 0.000 r 0.402 0.706 0.706 
40 0.969 0.983 0.000 r 0.974 0.990 0.536 
41 0.989 0.386 0.000 r 0.951 0.989 0.086 
42 0.737 0.227 0.000 r 0.449 0.737 0.042 r 
43 0.976 0.956 0.000 r 0.980 0.969 0.472 
44 0.915 0.325 0.000 r 0.763 0.915 0.068 
45 0.869 0.298 0.000 r 0.677 0.000 r 0.060 
46 0.975 0.970 0.000 r 0.989 0.988 0.500 
47 0.974 0.974 0.000 r 0.959 0.961 0.548 
48 0.529 0.137 0.002 r 0.183 0.529 0.022 r 
49 0.964 0.965 0.000 r 0.980 0.983 0.481 
50 0.691 0.205 0.002 r 0.380 0.691 0.037 r 

(C) Some tests with I known 

Test A B C D E F 

AOC$ 
CUSUM 
CUSUM-of-squares 
Predictive test 

0.600 
0.344 
0.416 
0.868 

0.006 r ~ 0.604 0.425 0.005 r 
0.436 0.556 0.744 0.540 
0.602 0.050 r 0.012 r 0.194 
0.530 0.014 r 0.004 r 0.191 

“Randomized p-values based on N - 1 = 499 Monte Carlo samples. 
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To assess the significance of the structural change tests, we shall use a 0.10 
level (a = 0.10). As expected, none of the tests is significant under the null 
hypothesis (data set A), while the alternative tests appear differently sensitive to 
various alternatives. The analysis-of-covariance test for /?(AOC-b) easily detects 
permanent changes in b1 (sets B and F), a type of alternative against which it is 
designated, as well as 1 (set C). The change in 1 is also detected by the CUSUM, 
the CUSUM-of-squares and the predictive tests. The variance shift (set D) and 
the two isolated shocks (set E) are detected by the CUSUM-of-squares and the 
predictive test, which illustrates the fact that these tests are quite sensitive to 
heteroskedasticity. It is also of interest to note that the individual predictive tests 
both detect and allow one to date the isolated shocks (E). The jump in the 
intercept (F) leads to a series of low p-values. The AOC test for ;1 (AOC-1) does 
not detect any of the structural shifts considered here, which suggests that this 
test has rather low power. For the sake of comparison, we also present in Table 
2 (part C) tests obtained under the assumption that 2 is known and constant (i.e., 
the autoregressive part of each equation is eliminated by subtracting it from the 
dependent variable, under each model considered). We see from these results 
that the inferences are not affected by the estimation of /1. In fact, we note that 
the infima for the CUSUM-of-squares and predictive test statistics are often 
obtained when ;1 is equal to one. 

Next, we examine an AR(l) model with intercept and linear trend term for 
cases where the lagged dependent variable coefficient is high, but smaller than 
one. The data here were generated according to the model: 

Yf = by*-1 + PI1 + Bzl(tlloo) + 4, t = 1, . ,T1, 
(7.5) 

y, = &y,-, + /I12 + &(t/lOO) + 6d, + a,, t = T1 + 1, . . . , T, 

whereu,, . . . , uT are defined as in (7.1)-(7.3) and y. was generated independent- 
ly of ul, . . , uT according to the normal distribution N(po, G f/( 1 - 2 :)) with 
,uo = [/Iii/(1 - A,)] - [(/I,,/lOO) A,/(1 - ,?,)‘I (this choice avoids ‘warming- 
up’ problems in the simulation). For the first period, we have 

T1 = 50, ,$ = 0.9, flll = 1.0, p2r = 1.0, err = 0.02, (7.6) 

while the second period, we have T2 = 30 and rr2 = g1 = 0.02, and we consider 
again six cases: 

A (no change): E,, = 0.9, pi2 = 1.0, 822 = 1.0, 6 = 0; 

B (change in trend): & = 0.9, /3,2 = 1.0, p22 = 0.9, 6 = 0; 

C (change in intercept): & = 0.9, /3r2 = 1.2, flz2 = 1.0, 6 = 0; 

D (change in 1): & = 0.92, & = 1.0, fizz = 1.0, 6 = 0; 
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Table 3 

AR(l) with linear trend models: OLS estimates and exact 1 confidence sets 

First subsample (T, = 50) 0.871 (0.029) 1.286 (0.276) 1.236 (0.255) 0.0220 

Second subsample (Tz = 30) 
A 0.664 (0.146) 3.105 (1.306) 3.371 (1.457) 0.0198 
B 0.881 (0.071) 1.175 (0.704) 1.057 (0.552) 0.0207 
C 0.884 (0.019) 1.293 (0.130) 1.265 (0.310) 0.0205 
D 0.908 (0.015) 1.031 (0.061) 1.267 (0.333) 0.0205 
E 0.653 (0.149) 3.168 (1.311) 3.555 (1.540) 0.0333 
F 0.932 (0.039) 0.257 (0.228) 1.498 (0.642) 0.0538 

Complete sample (T = 80) 
A 0.888 (0.021) 1.114 (0.193) 1.095 (0.192) 0.02 13 
B 0.923 (0.028) 0.808 (0.272) 0.671 (0.240) 0.0263 
C 0.971 (0.011) 0.3 15 (0.098) 0.490 (0.135) 0.0470 
D 0.985 (0.009) 0.169 (0.077) 0.450 (0.131) 0.0640 
E 0.892 (0.023) 1.082 (0.220) 1.078 (0.221) 0.0271 
F 1.018 (0.012) - 0.119 (0.107) - 0.011 (0.124) 0.0415 

Exact confidence sets for I (from first subsample) 

Level 

Based on 9: 

Based on d;p:* 

0.99 0.975 0.95 0.925 

CO.6490, l] CO.6665, l] CO.6810, l] CO.6875, l] 

CO.7610, l] CO.7736, l] CO.7866, l] CO.7922, l] 

E (isolated shocks): AZ = 0.9, prz = 1.0, fizz = 1.0, 6 = 0.1, 
with d, = 1 for t = 60, 70 and d, = 0 otherwise; 

F (jump in intercept): 12 = 0.9, prz = 1.0, /322 = 1.0, 6 = 0.2, 
with d, = 1 for t > 65 and d, = 0 otherwise. 

Now, the results are based on estimating the equation 

yr = lY,- 1 + Bl + B,W00) + 4, (7.7) 

instead of (7.4). The parameter estimates appear in Table 3 and the p-values 
associated with the various structural change tests in Table 4. We see again that 
the AOC-/3 test detects the permanent changes in the trend coefficient (data set 
B), the intercept (C and F), and I. (D), but does not find the isolated shocks (E). 
The intercept and ,I shifts are also detected by the CUSUM-of-squares and 
predictive tests. While the two latter tests do not detect the shift in trend (B), they 
do find the two isolated shocks (E). Further, the individual predictive tests again 
provide useful information on the timing and form of the structural shifts 
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(especially in case D and F). The CUSUM and AOC-A tests do not detect any of 
the structural shifts considered. Finally, from part C of Table 4, we see that 
knowing the true value of i has little effect for the inferences based on the 
AOC-fi and CUSUM-of-squares tests. However, for these data, the CUSUM 

test appears to be more powerful for the cases B, C, and F, and the predictive test 
detects the change in trend (B) when /I is known. 

Finally, we examine U.S. gross private domestic investment in nonresidential 
structure (1982 dollars): 140 quarterly observations from 1952:l to 1986:4 
[source: Berndt (1991, p. 278)], which we divided into two roughly equal 

subperiods (1952:1-1969:4 and 1970:1-1986:4). Taking the logarithm of this 
variable, we find that the first half of the sample (1952:1-1969:4) can be 

described reasonably well by the just examined AR(l) model with intercept and 
trend: 

I, = ELI,-, + p1 + /3,(t/lOO) + a,, Ii/ d 1, (7.8) 

where I, is the logarithm of real gross domestic investment in nonresidential 

structures. Although the intercept and trend coefficients are not significant 
according to the usual asymptotic standards, we find that such a specification 

does not suffer manifestly from omitted higher-order lags/serial correlation, 
heteroskedasticity, or nonnormal errors. The OLS estimator for the two sub- 

samples and the complete sample, as well as some standard diagnostics, appear 
in part A of Table 5. 

Table 4 
AR(l) with linear trend models: Exact tests for structural change (p-values) based on the Yf* confi- 
dence set from the first subsample; CI = 0.10, a, = 0.05, rz = 0.05, r; = 0.15 (‘r’ indicates rejection at 
level 0.10; ‘a’ indicates acceptance at level 0.10) 

(A) Glohul tests 

Test A B C D E F 

AOC-/I 
DL 
Du 

CUSUM 
CSL 
csu 

CUSUM-of-squares 

:;: 
Predictive test 

PCL 
PCU 

AOC-i 
p’d 
PY 

0.953 
0.001 

1.000 
0.002 

0.982 0.380 a 

0.778 
0.327 a 

0.822 
0.326 a 

0.000 r 
0.000 

0.256 
0.002 

0.406 
0.022 

0.204 
0.002 

0.864 1 .oOCl 
0.326 a 0.684 a 

0.000 r 0.000 r 
0.000 0.000 

0.686 0.532 
0.002 0.002 

0.002 r 0.002 r 
0.002 0.002 

0.000 r 0.000 r 
0.000 0.000 

1.000 
0.596 a 

0.956 0.006 r 
0.000 0.000 

1 .OOo 0.584 
0.002 0.002 

0.028 r 
0.004 

0.002 r 
0.002 

0.016 r 
0.001 

0.000 r 
0.000 

0.916 0.766 
0.416 a 0.406 a 
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Table 4 (continued) 

(B) Individual predictive tests (conservative p-values) 

Predicted observation A B C D E F 

51 0.792 0.338 r 0.000 r 0.000 r 0.792 0.792 
52 0.945 0.019 r 0.000 r 0.000 r 0.945 0.945 
53 0.999 0.058 0.000 r 0.000 r 0.999 1.000 
54 0.694 0.289 0.000 r 0.000 r 0.694 0.694 
55 0.997 0.019 r 0.001 r 0.000 r 0.997 0.997 
56 0.997 0.099 0.000 r 0.000 r 0.997 0.997 
57 0.489 0.002 r 0.07 1 0.000 r 0.489 0.489 
58 0.997 0.117 0.005 r 0.000 r 0.997 0.997 
59 0.997 0.293 0.004 r 0.000 r 0.997 0.997 
60 0.999 0.122 0.035 r 0.000 r 0.004 r 0.999 
61 0.549 0.785 0.003 r 0.000 r 0.810 0.549 
62 0.997 0.365 0.035 r 0.000 r 0.997 0.997 
63 0.944 0.004 r 0.989 0.047 r 0.993 0.944 
64 0.906 0.543 0.059 0.000 r 0.998 0.906 
65 0.996 0.012 r 0.969 0.072 0.996 0.996 
66 0.941 0.006 r 0.958 0.201 0.995 0.000 r 
67 0.970 0.013 r 0.979 0.208 0.995 0.000 r 
68 1 .oOO 0.352 0.409 0.010 r 0.998 0.000 r 
69 0.996 0.452 0.390 0.010 r 0.994 0.000 r 
70 0.996 0.344 0.594 0.026 r 0.005 r 0.000 r 
71 0.999 0.127 0.965 0.132 0.996 0.003 r 
72 0.997 0.124 0.982 0.181 0.995 0.011 r 
73 0.995 0.078 0.982 0.336 0.993 0.051 r 
74 0.994 0.157 0.992 0.237 0.998 0.050 r 
75 0.999 0.468 0.784 0.08 1 0.994 0.021 r 
76 0.993 0.134 0.961 0.378 0.992 0.195 
77 0.997 0.198 0.964 0.321 0.998 0.209 
78 0.993 0.049 r 0.983 0.842 0.990 0.744 
79 0.997 0.042 r 0.982 0.98 1 0.992 0.966 
80 0.999 0.119 0.965 0.662 0.993 0.719 

(C) Some tests with i. known 

Test A B C D E F 

AOC-fl 
CUSUM 
CUSUM-of-squares 
Predictive test 

0.799 
1.000 
0.416 
0.721 

0.000 r 0.000 r ~ 0.706 0.000 r 
0.018 r 0.002 r ~ 1 .OOo 0.004 r 
0.084 0.002 r ~ 0.004 r 0.002 r 
0.010 r 0.000 r - 0.005 r 0.000 r 

To perform structural change tests, we first obtained a confidence set for 

i (with size 0.95) based on the statistic _!Z:* and the first subsample, which 

yielded the interval CO.8744, 1.0].3 The p-values for the various test statistics are 

reported in parts B and C of Table 5 (for the individual predictive tests, in order 

3 Because of the relatively large sample size (T = 139). we only used N - 1 = 199 Monte Carlo 
samples in building the confidence set for i, and for assessing the significance of the relevant 
structural change tests. 
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Table 5 
AR(l) with linear trend model for logarithm of US gross domestic investment in nonresidential 
structures in 1982 dollars (I,); quarterly data, 1952:1-19864; Source: Berndt (1991, p. 278; series IS of 
file Kopcke) 

I, = AI,-, + p, + Bz(t/lOO) + u,, 111 < 1 

(A) OLS estimates 

Sample K 81 BZ s R2 

First subsample (T, = 71) 0.921 0.872 0.070 0.022 0.9878 
(0.046) (0.506) (0.044) 

Second subsample (T, = 68) 0.930 0.788 0.033 0.03 1 0.9443 
(0.049) (0.543) (0.032) 

Complete sample (T = 139) 0.956 0.503 0.018 0.027 0.9899 
(0.028) (0.309) (0.019) 

Diagnostics for 
first subsample First-order serial correlation: F(l, 67) = 2.54 

Fourth-order serial correlation: F(4, 64) = 1.72 

Heteroskedasticity: BreuschbPagan: x*(2) = 2.50 
Koenker: x’(2) = 1.92 

Nonnormal disturbances: x’(2) = 1.16 

p-value 
0.12 
0.16 

0.20 
0.38 
0.56 

(B) Global test _/or structural change (exact) 

Confidence set for I based on 6px* (G(, = 0.05): [0.8744, 1.001 

Test Conservative p-value (L) 

AOC-/J’ 0.788 
CUSUM” 0.785 
CUSUM-of-squares” 0.005 r 
Predictive 0.004 r 
AOC-I 0.840 

Liberal p-value (U) 

0.015 
0.580 a 
0.005 
0.001 
0.585 a 

(C) Individual predictive tests (exact) 

Quarter Conservative p-value 

19743 0.006 r 
1975:l 0.014 r 
1982:2 0.046 r 
1983:l 0.002 r 
1986:2 0.000 r 

a Randomized p-values based on N - I = 199 Monte Carlo samples. 

to economize space, we only report the conservative p-values which are lower 
than 0.05); the complete series of individual predictive tests (p-values) is also 
graphed in Fig. 1. Using CI = 0.10 as the critical level (with xl = a2 = 0.05), we 
see that the AOC and CUSUM tests do not show evidence of structural change, 
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Fig. 1. Individual predictive tests (exact); U.S. investment data, 1970: l-1986:4. 

while the CUSUM-of-squares and predictive tests provide rather strong evi- 
dence against it. Further, there are five individual predictive test statistics (out of 
68) with p-values of FL lower than 0.05 (1974:3, 1975:1, 1982:2, 1983:1, 1986:2), 

indicating clusters of low p-values near the end of 1974, in 1982283, and in 1986. 
These results suggest relatively short-lived deviations from the model although 

not permanent structural changes. 

8. Conclusion 

In this paper, we have described how finite-sample structural change tests can 
be obtained for a linear regression model with one lagged dependent variable 
and normal disturbances. The latter are based on combining three distinct 
techniques: first, using an extended regression, we build an exact confidence set 
for the autoregressive parameter A, which is valid at least under the null 
hypothesis of no structural change; second, after selecting a structural change 
test whose level can be established for any given i = iLo (which can typically be 
done by adapting a structural change test designed for static linear regression), 
we use a ‘union-intersection’ technique to combine these ‘conditional tests’ 
(for given A = &,) with the confidence set for %, and so produce valid 
‘unconditional’ tests; thirdly, when it is difficult to evaluate analytically the null 
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distribution of a test statistic (for given 1 = 1,) but the latter can be simulated, 
the test is replaced by a ‘randomized’ (or Monte Carlo) analogue which remains 
exact irrespective of the number N of replications and becomes equivalent to the 
original nonrandomized test as N + cc. The tests considered above include 
extensions of analysis-of-covariance (for p and A), predictive, CUSUM and 
CUSUM-of-squares tests. The feasibility of the approach suggested was also 
illustrated with both artificial data and a dynamic trend model for real gross 
domestic investment in the U.S. The artificial data suggest that alternative tests 
react differently to various structural-change alternatives, the AOC-fi test and 
(to a lesser extent) the CUSUM test being more sensitive to permanent shifts in 
coefficients, while the predictive and CUSUM-of-squares tests can detect more 
easily transitory shifts. Individual predictive tests also provide useful informa- 
tion on the form and timing of structural changes. The empirical results on the 
investment equation indicate the presence of some form of structural change but 
of a transitory nature. 

It is important to note that the general approach used here to obtain 
structural change tests for a dynamic linear regression is not limited to the 
particular tests described above: about any test designed for a static linear 
regression can be extended to the case of a first-order dynamic linear regression 
in the same way. Further, in addition to being exact for any full-column rank 
regressor matrix X (provided it is independent of the disturbance vector), the 
procedures proposed in this paper remain ‘asymptotically valid’ in the usual 
sense (i.e., the probability of type I error does not exceed the stated level as the 
sample size goes to infinity) under various assumptions of stochastic regressors 
and nonnormal disturbances, provided the structural change tests are themsel- 
ves asymptotically valid for given I = Lo under such assumptions. This can be 
shown easily by an argument similar to the one in Dufour and Kiviet (1993). 
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