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Résumé/abstract  

 

This paper suggests Monte Carlo multiple test procedures which are provably valid in finite 

samples. These include combination methods originally proposed for independent statistics and 

further improvements which formalize statistical practice. We also adapt the Monte Carlo test 

method to non-continuous combined statistics. The methods suggested are applied to test serial 

dependence and predictability. In particular, we introduce and analyze new procedures that account 

for endogenous lag selection. A simulation study illustrates the properties of the proposed methods. 

Results show that concrete and non-spurious power gains (over standard combination methods) can 

be achieved through the combined Monte Carlo test approach, and confirm arguments in favour of 

variance-ratio type criteria. 
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1 Introduction

Combining multiple non-independent tests is a common problem in statistics and econo-
metrics. Indeed, econometric models often suggest to test several hypotheses or the same
hypothesis using several tests, all from the same data. The first problem is typically asso-
ciated with the construction of simultaneous confidence regions (simultaneous inference),
while the second one involves combining different tests which are valid under the same
hypothesis, but with power properties that vary depending on the alternative hypothesis.
Tests obtained by combining several separate tests are called induced tests (or combined
tests). Although different, these two problems raise related difficulties and require sim-
ilar techniques. For general discussions of these issues, see Miller (1981), Folks (1984),
Savin (1984), Dufour (1989), and Dufour and Torrès (1998); for econometric applications,
see Dufour and Khalaf (2002), Dufour, Khalaf, and Beaulieu (2003), Dufour, Khalaf,
Bernard, and Genest (2004), Bernard, Idoudi, Khalaf, and Yelou (2007), Dufour, Khalaf,
and Beaulieu (2010), Bennett (2012b), and Bennett and Thompson (2012).

In the case of induced tests, the problem consists in controlling the global level of the
procedure in a situation where the distribution of each test statistic is usually known or
relatively easy to compute, but the joint distribution is unknown or difficult to establish.
Relying on critical points that control the level of each test individually leads to a global
Type I error which can exceed by far the level of the individual tests. For example, if
the level of each one of 10 tests is equal to 0.05, the probability that at least one of these
tests is significant is typically much higher (up to 0.50). It is therefore imperative to
account for the relationship between the different statistics. In the case of simultaneous
tests for different hypotheses, the problem is to control the probability of rejecting at least
one true hypothesis in a set which may be large (possibly infinite). This problem is a
generalization of the former where several distinct hypotheses are examined rather than
one, so again we must take into account the joint distribution of the statistics. In addition,
it is well known that rejection using a joint procedure can be difficult to interpret as its
constituents can react differently to different alternatives. An important further question
is thus to determine what aspect of a joint hypothesis results in its rejection, for example,
for model specification purposes.

Specification testing is one of the basic problems which motivate multiple tests. For
example, autocorrelation and goodness-of-fit tests typically suggest one to consider sev-
eral moments via portmanteau methods which combine transformations of asymptotically
uncorrelated individual criteria, for example: (i) normality tests which combine skewness
and kurtosis [(Jarque and Bera, 1980, JB), Kiefer and Salmon (1983), Dufour, Farhat,
Gardiol, and Khalaf (1998), Dufour, Farhat, and Khalaf (2004)]; (ii) portmanteau serial
correlation tests [Box and Pierce (1970)] or their variance-ratio counterparts, proposed
by Cochrane (1988) and Lo and MacKinlay (1988) to test market efficiency (also called
predictability tests); see also Lo and MacKinlay (1989), Chou and Denning (1993), Fong,
Koh, and Ouliaris (1997), Whang and Kim (2003), Wright (2000), Yilmaz (2003), Kim
(2006) and Charles and Darne (2009). Such tests are justified asymptotically, but it is
well known that their finite-sample performance can be very unsatisfactory. Tests on mul-
tivariate models are another typical example. Dimensionality difficulties arise in this case.
For example, we can transform an m-dimensional test of normality or heteroskedasticity
into a series of m univariate tests. In this case as well, finite-sample methods are scarce,
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while the available asymptotic methods often behave poorly in finite samples; see Bewley
and Theil (1987), Deschamps (1996), Zhou (1993), Kilian and Demiroglu (2000), Dufour
and Khalaf (2002), Dufour, Khalaf, and Beaulieu (2003), Bernard, Idoudi, Khalaf, and
Yelou (2007), and Dufour, Khalaf, and Beaulieu (2010).

Overall, the distributional issues raised by using several statistics are difficult. A
common method in such contexts consists in using bounds (e.g., bounds based on Boole-
Bonferroni inequalities), but these are typically conservative and can have a negative
effect on power. Reflecting advances in computer technology, simulation-based resampling
techniques have recently been used when the derivation of exact (for a given sample size)
or asymptotic distributions is complex. These include the bootstrap [see, e.g., Hall (1992),
Efron and Tibshirani (1993), Davison and Hinkley (1997), Horowitz (1997), Chernick
(2008)] and the Monte Carlo (MC) test method [Dwass (1957), Barnard (1963), Dufour
and Kiviet (1996), Dufour and Khalaf (2001), Dufour (2006)]. For testing hypotheses,
these methods typically improve level control in finite samples. In addition, for some
non-standard problems [e.g., when certain parameters are not identified under the null
hypothesis], simulation-based approaches are not only more reliable, but may be easier to
implement than available asymptotic counterparts; see Dufour and Khalaf (2001), Dufour,
Khalaf, Bernard, and Genest (2004), and Bernard, Idoudi, Khalaf, and Yelou (2007).

Resampling techniques can be exploited to solve multiple testing problems. Specifically,
the bootstrap can improve the quality of asymptotic approximations; see Westfall and
Young (1993), White (2000), Dudoit and van der Laan (2008), and Bennett (2012a, 2012b).
But asymptotic improvements or refinements may not be sufficient to solve finite-sample
size distortions. In this paper, we argue for MC multiple test procedures which are provably
valid in finite samples. More specifically, this paper makes two main contributions.

First, we propose a unified framework under which the MC test method solves the
combination problem in finite samples and thus avoids reliance on Bonferroni or other
bounds, with focus on induced tests. These include parametric possibly non-Gaussian
hypotheses and even non-parametric problems. This framework allows us to reinterpret
previously proposed procedures and to consider new applications. The latter include:
(i) combination methods originally proposed for independent statistics, specifically the
procedures suggested by Tippett (1931), Fisher (1932) and Pearson (1933); (ii) further
refinements which reflect statistical practice, and a number of alternative combination
methods previously not considered. We show analytically how the MC test technique
solves combination problems for any sample size. An attractive relationship between the
Fisher-Pearson and portmanteau tests also emerges. Further, we note that some of the
combined statistics which arise naturally in this framework are not continuous. To deal
with this issue, we adapt the MC test method conformably using the randomized tie-
breaking procedure from Dufour (2006).

Second, using this framework, we revisit some examples of induced tests which routinely
appear in time series analysis: serial dependence and predictability tests. We consider
autocorrelation Box-Pierce-type and variance-ratio statistics, and we study several exact
procedures based on such criteria. To do this, we propose new tests which: (i) formalize
the practice of analyzing correlograms, and (ii) allow data-based lag selection. We further
show that the MC test technique allows one to use asymptotic p-values in the construction
of an exact serial dependence or predictability test, even though these p-values could
lead to inaccurate inference when used in the conventional way. Formally, our joint test
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procedure involves converting all individual tests to an approximate p-value form, in order
to combine them. When the overall procedure is simulated, the fact that individual p-
values are approximated does not prevent controlling the global test level.

We present a simulation study to assess the usefulness of the proposed procedures.
Results can be summarized as follows. (1) Tests based on asymptotic distributions can be
either over-sized or under-sized. Their MC counterparts always have the correct size when
the form of the underlying distribution is correctly specified. For under-sized tests, this
can translate into notable power gains, e.g. for tests based on variance-ratio criteria. (2)
Whether sup- or Tippett-type, the proposed combined tests perform better than the MC
versions of available tests (such as portmanteau tests for serial correlation). (3) There is
little difference in the relative powers of different MC tests (power rankings), under normal
or fat-tailed distributions. Effective power improvements, due to the size correction, are
stronger with t-errors. (4) Variance-ratio tests exhibit better power than Box-Pierce-type
tests. This confirms existing arguments in favour of such criteria, once the size control
problem is solved by the MC test approach.

The plan of the paper is as follows. In Section 2, we present our unified test framework.
Section 3 discusses the serial dependence application. The simulation study is reported in
Section 4. We conclude in Section 5.

2 Framework and joint test methods

Consider m statistics Si, i = 1, . . . , m, which may not be independent, each designed
to test the null hypothesis H0i (where some of the hypotheses H0i may be identical). To
simplify the exposition (and without loss of generality), we assume the hypothesis H0i

is rejected at level α when Si is large, i.e. Si ≥ ci where ci is a critical point such that
P [Si ≥ ci] ≤ α when H0i is true. Equivalently, the test Si ≥ ci can be considered significant
at level α when pi ≤ α where pi is the marginal significance level of the test (p-value), i.e.

pi = Gi(Si) where Gi(x) = P[Si ≥ x] is the survival function of Si under H0i. We further
assume each statistic Si follows a continuous distribution under H0i. In this case, we easily
see that pi has a uniform distribution on the interval (0, 1) under the null hypothesis:

pi ∼ U(0, 1) under H0i . (1)

The problem of interest can be formulated as follows: how can we combine these tests to
assess the joint hypothesis

H0 : the hypotheses H01, . . . , H0m are all true (2)

in a way that controls the probability of rejecting the joint hypothesis H0?
To do this, we propose to apply the technique of MC tests, which can be summarized as

follows. First, we obtain a combined statistic, denoted S̄. Again, without loss of generality,
we assume the test based on the statistic S̄ rejects H0 when S̄ is large. Several combination
rules are considered:

1. tests based on the minimum p-value [Tippett (1931)]:

pmin = min
i=1, ... , m

{pi} , Smin = 1 − min
i=1, ... , m

{pi} ; (3)

H0 is rejected when pmin is small, or, equivalently, when Smin is large;
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2. tests based on the product of the p-values [Fisher (1932), Pearson (1933)]

p× =
m
∏

i=1

pi (4)

or one of the following transformations of this product

S× = 1 −
m
∏

i=1

pi , Sln = −2
m

∑

i=1

ln(pi) ; (5)

H0 is rejected when p× is small, or equivalently, when S× (or Sln) is large;

3. tests based on a weighted product of p-values (or a weighted sum of the logarithms
of the p-values):

S∗

×
= 1 −

m
∏

i=1

pwi

i , S∗

ln = −2
m

∑

i=1

wi ln(pi) , (6)

where the weights may reflect prior beliefs [Good (1955)] or depend on the p-values
[Wilkinson (1951)].

We focus here on two variants of the weighted product procedures. In the first one, we
assign zero weight to non-significant individual p-values, which corresponds to (6) with

wi = 1, if pi ≤ α∗, j = 1, . . . , m, (7)

= 0, otherwise,

where α∗ is set as desired and may even be equal to the targeted overall significance level
α. In the second one, only the m̃ smallest p-values are included in the test statistic, where
m̃ < m is preset. Formally, if p(1) ≤ ... ≤ p(i) ≤ ... ≤ p(m) are the ordered individual
p-values, this corresponds to (6) with

wi = 1, if pi ≤ p(m̃), j = 1, . . . , m, (8)

= 0, otherwise,

where m̃ is set as desired. A basic advantage of our approach is that Bonferroni-type
bounds are no longer necessary to control the level of the combined test. As long as the
weighting index does not depend on nuisance parameters under H0, our method remains
applicable.

If the above proposed statistics are independent with continuous distributions, it is
easy to calculate their joint distribution under the null hypothesis. In this case, the
individual p-values are independent and identically distributed (i.i.d.) according to U(0, 1)
distributions, so we have:

P[pmin ≤ α0] = 1 − P[p1 > α0, . . . , pm > α0] = 1 −
m
∏

i=1

P[pi > α0]

= 1 − (1 − α0)
m . (9)
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We can then choose α0 = 1 − (1 − α)1/m to ensure that the critical region pmin ≤ α0 has
level α. Similarly, in this case,

p× ∼
m
∏

i=1

Ui where U1, . . . , Um
i.i.d.∼ U(0, 1) , (10)

a distribution which is easy to evaluate (and simulate). Note

Sln = −2 ln(p×) ∼ χ2(2m) under H0 , (11)

so critical values can be obtained from the χ2(2m) distribution.
When the Si statistics are not independent, these results are no longer valid, and deriv-

ing relevant distributions may be difficult. However, in many situations, this distribution
is easy to simulate under H0, which suggests the following bootstrap-type strategy. Denote
by S̄0 the statistic calculated from the observed sample where any choice within the above
defined criteria [(3), (5), or (6)] can be considered. For a given number of replications N ,
let S̄1 , ... , S̄N denote simulated counterparts of S̄ (for example, MC or bootstrap repli-
cations) which have the same distribution as S̄ under H0. Further details will be provided
on how these may be obtained in the next section, for a specific case.

We can then calculate an empirical p-value from the rank of S̄0 [denoted R̂N(S̄0)] in
the series S̄0 , S̄1 , ... , S̄N , which leads to the critical region:

p̂N(S̄0) =
NĜN(S̄0; S̄1 , ... , S̄N) + 1

N + 1
≤ α (12)

where

p̂N(x) =
NĜN(x) + 1

N + 1
, (13)

ĜN(x) =
1

N

N
∑

j=1

1[0,∞)(S̄j − x), 1A(x) =

{

1, if x ∈ A
0, if x /∈ A .

(14)

In (12), NĜN(S̄0; S̄1 , ... , S̄N) is the number of simulated statistics greater than or equal
to S̄0. In the following theorem, we establish the following property: if the distribution
of the statistics under the null hypothesis can be simulated and does not depend on any
unknown parameter, a critical region of the form (12) has level α, provided α(N + 1) is
an integer.

Theorem 1 Consider m (not necessarily distinct) hypotheses H0i, i = 1, . . . , m, and for

each hypothesis H0i a test statistic Si, where S1, . . . , Sm may not be independent. Let

S̄ = g(S1, . . . , Sm) be a test statistic of the form (3), (5) or (6) for the joint hypothesis

H0 : the hypotheses H01, . . . , H0m are all true,

S̄0 the observed value of S̄, and S̄1, . . . , S̄N additional real random variables. If, un-

der H0, the joint distribution (S1, . . . , Sm) is unique (free of nuisance parameters), and

S̄0, S̄1, . . . , S̄N are exchangeable with P[S̄i = S̄j] = 0 for i 6= j, then, for 0 < α < 1,

P
[

p̂N(S̄0) ≤ α
]

≤ α (15)
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and when N is chosen so that α(N + 1) is an integer,

P
[

p̂N(S̄0) ≤ α
]

= α , (16)

where p̂N(x) is defined by (13).

Proof . Let RN(S̄j) be the rank of S̄j when S̄0, S̄1, . . . , S̄N are ranked in increasing
order. Since the random variables S̄0, S̄1, . . . , S̄m are exchangeable and ties have zero
probability

(

P[S̄i = S̄j] = 0 for i 6= j
)

, all rankings are equally probable, and the vector
[RN(S̄0), RN(S̄1), . . . , RN(S̄N)]′ is random permutation of the vector [1, 2, . . . , N + 1]′.
Consequently, for each j = 0, 1, . . . , N, we have

P
[

RN(S̄j) = k
]

=
1

N + 1
, k = 1, 2, . . . , N + 1. (17)

and, with probably one,

RN(S̄0) = N + 1 − NĜN(S̄0) , p̂N(S̄0) =
N + 2 − RN(S̄0)

N + 1
(18)

Thus,

P
[

RN(S̄0) ≤ k
]

=
k

N + 1
, k = 1, 2, . . . , N + 1, (19)

P
[

RN(S̄0) ≥ k
]

= P
[

RN(S̄0) = k
]

+
[

RN(S̄0) > k
]

=
1

N + 1
+ 1 − k

N + 1

=
N + 2 − k

N + 1
, k = 1, 2, . . . , N + 1, (20)

hence

P

[

p̂N(S̄0) ≤
k

N + 1

]

= P
[

RN(S̄0) ≥ N + 2 − k
]

=
k

N + 1
, k = 1, 2, . . . , N + 1. (21)

If 0 < α < 1, this entails (15), and for α(N + 1) an integer (16). �

It is easy to see that the above theorem applies when the statistics S̄0, S̄1, . . . , S̄m are
i.i.d. with continuous distribution under H0. However, for the combined statistic (7), ties
have non-zero probability. In the examples considered below, we also propose other non-
continuous statistics. Nevertheless, the technique of MC tests can be adapted to discrete
distributions using the following randomized tie-breaking procedure; for proofs and further
references, see Dufour (2006).

Draw N+1 uniformly distributed variates Z̃0, Z̃1, ... , Z̃N , independently of (S̄0, S̄1 , ... , S̄N),
and arrange the pairs (S̄j, Z̃j) following the lexicographic order:

(S̄i, Z̃i) ≥ (S̄j, Z̃j) ⇔
[

S̄i > S̄j or (S̄i = S̄j and Z̃i ≥ Z̃j)
]

. (22)

This leads to the MC p-value p̃N(S̄0), where

p̃N(x) =
NG̃N(x) + 1

N + 1
, (23)

G̃N(x) = 1 − 1

N

N
∑

i=1

1[0,∞)(x − S̄i) +
1

N

N
∑

i=1

1[0](S̄i − x) 1[0,∞)(Z̃i − Z̃0).
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The resulting critical region p̃N(S̄0) ≤ α has the correct level provided α(N + 1) is an
integer, i.e.

P
[

p̂N(S̄0) ≤ α
]

≤ P
[

p̃N(S̄0) ≤ α
]

=
I [α(N + 1)]

N + 1
, for 0 ≤ α ≤ 1 . (24)

The proposed joint test procedure can be summarized as follows. All individual tests
are converted to an approximate p-value form, and then combined into a joint criterion
whose distribution under H0 is free of nuisance parameters and can be simulated. When
the combined criterion is simulated, the fact that underlying p-values are approximate
does not prevent controlling the global test level, so we can get exact combined tests even
if the individual p-values are not themselves exact. In other words, provided the statistics
are nuisance-parameter-free under H0, (16) and (24) hold whether the individual p-values
pi, i = 1, ...,m [as in (3), (5), or (6)] are exact, approximate or asymptotic.

It is worth noting that N may be as small as 19 to get a level of 0.05. Power may
improve with more replications, but controlling test size does not depend on increasing
the number of replications, as in a standard bootstrap. For theoretical insights explaining
this feature for MC test methods in general, see Dufour (2006). Theorem 1 underscores
this property, for exactness obtains for given N . The simulation study in section 4 shows
good power with just 99 replications.

3 Joint serial correlation and predictability tests

To illustrate the usefulness of the above general procedure, this section focuses on serial
correlation and predictability tests 1 in the linear model:

yt = x′

tβ + ut, ut = σεt, t = 1, . . . , T, (25)

where xt = (1, xt2, . . . , xtk)
′, β is a k × 1 vector of unknown coefficients, σ is a scale

parameter (which may be random), ε = (ε1, . . . , εT )′ is a random error term with mean
zero, and the distribution of ε, conditional on X, is completely specified:

ε1, . . . , εT are i.i.d. following F0 , (26)

where F0 is a given distribution. For example, we could consider the Gaussian distribution

ε1, . . . , εT
i.i.d.
∼ N [0, 1] . (27)

Let y ≡ (y1, . . . , yT )′, X ≡ (x1, . . . , xT )′ and u ≡ (u1, . . . , uT )′. The problem of
interest consists in assessing

ρj = 0, forj = 1, 2, ..., (28)

where
E(εtεt−j) = ρj, t = j + 1, ..., T. (29)

The following assumptions will also be tested and/or maintained.

1Here the predicatbility tests refer to varaiance ratio tests. We mentain this terminology as it is widely
used in the finance literature. In particular, to evaluate return predictability, variance ratio test are
employed, hence the name of predictatbility tests was used.
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Assumption 1 The distribution of the random vector ε is continuous and completely

specified; the hypothesis of i.i.d. normal errors is of course a special case.

Assumption 2 The regressor matrix X is fixed or independent of the error term u.

To derive finite-sample tests for the above problem, we consider the OLS residuals:

û =
(

û1, . . . , ûT

)

′

, ût = yt − x′

tβ̂, t = 1, . . . T, β̂ = (X ′X)−1X ′y. (30)

The test statistics we shall use are functions of the standardized residual vector û/σ̂, where

σ̂2 =
T

∑

t=1

û2
t /T = û′û/T. (31)

Theorem 2 In the context of the linear regression (25) along with Assumptions 1 and 2,

the conditional distribution of the scaled residual vector û/σ̂, given X, only depends on the

distribution of (ε1, . . . , εT )′.

Proof. On observing that σ̂ = (û′û/T )1/2 and

û = MXu, MX = In − X (X ′X)
−1

X ′, (32)

it is easy to see that

û

σ̂
= T 1/2 MXu

(u′MXu)1/2
= T 1/2 MX (u/σ)

((u/σ)′ MX (u/σ))1/2
= T 1/2 MXε

(ε′MXε)1/2
(33)

which establishes the desired result (when X is fixed). This means that û/σ̂ has a known
distribution under all hypotheses which completely specify the distribution of the random
vector ε. �

Most commonly used serial correlation tests are based on residual empirical autocor-
relations:

ρ̂j =

∑T
t=j+1 ûtût−j
∑T

t=1 û2
t

, j = 1, . . . , m, (34)

where m is usually pre-set (given the size of the sample). Indeed, the well-known Ljung-
Box statistic [Ljung and Box (1978)] is

LB(J) = T (T + 2)
J

∑

j=1

ρ̂2
j

T − j
. (35)

In location-scale models, the asymptotic null distribution of LB(J) is χ2(J). In practical
applications, this limiting distribution is also informally used with regression residuals; see
Dezhbakhsh (1990).

Another choice of test involves the variance-ratio statistic, proposed by Cochrane (1988)
and Lo and MacKinlay (1988) to test market efficiency. Heteroskedastic-robust versions
of this test are not of particular interest here, so we focus on the statistic

V R(J) = 1 + 2
J−1
∑

j=1

(1 − j

J
)ρ̂j (36)
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which can be viewed as an estimate of the ratio

VR(J) =
V (ût − ût−J)

JV (ût)

where V (ût − ût−J) is the variance of the lag differences ût − ût−J , and V (ût) is the
residual variance. Under the null hypothesis, V (ût − ût−J) is J times V (ût), for all J ,
hence deviations from a ratio of one can be viewed as evidence against the null hypothesis.
The asymptotic null distribution of V R(J) is given by

V R(J)
asy∼ N [1, 2(2J − 1)(J − 1)/(3J)]. (37)

Attempts to improve the latter approximation include the bootstrap-based algorithms of
Malliaropulos (1996), Politis, Romano, and Wolf (1997), and Kim (2006), and a subsam-
pling-based modification by Whang and Kim (2003). See Wright (2000) for an alternative
statistic based on signs and ranks, and Charles and Darne (2009) for a general overview.
Chou and Denning (1993), Fong, Koh, and Ouliaris (1997) and Yilmaz (2003) emphasize
the importance of the joint interpretation of the variance ratios for all relevant J .

Let us first observe that the empirical autocorrelations are indeed a function of the
standardized residual vector. To see this, let

û[1:T−j] =
(

û1, . . . , ûT−j

)

′

= A[j]û, û[j+1:T ] =
(

ûj+1, . . . , ûT

)

′

= A[j]û

where
A[j] = [IT−J , zeros(T − j, j)] , A[j] = [zeros(T − j, j), IT−J ]

are selection matrices with dimension (T − j) × T . Then, for all lags j, we have:

ρ̂j =
û′

[1:T−j]û[j+1:T ]

û′û
=

û′A′

[j]A[j]û

T σ̂2
= T−1 (û/σ̂)′ A′

[j]A[j] (û/σ̂) . (38)

On using Theorem 2, it follows that the joint distribution of the autocorrelations ρ̂j only
depends on the distribution of the vector ε. Under the null hypothesis (28) and the
Assumptions 1 and 2, (38) implies that the autocorrelations in question are jointly pivotal.
This property is shared with any statistic which depends on the data only through these
autocorrelations.

Among many statistics which may be used, we have considered the following ones.

1. The MC versions of the tests based on the Ljung-Box and variance-ratio statistics
[in (35) and (36)] with J = m.

2. The minimum p-value test, denoted ACmin, based on the individual autocorrelation
[see (3)]: here Si corresponds to ρ̂2

i , and pi is obtained using

√
T ρ̂i

asy∼ N [0, 1] , i = 1, . . . , m. (39)

3. The minimum p-value statistic, denoted V Rmin, based on a sequence of variance
ratios [see (3)]: Si corresponds to V R(i) as defined by (36), i = 1, . . . , m, and pi is
obtained using (37).
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4. The Ljung-Box statistic (35) with J = le and le is the lag which corresponds to
the largest significant [at the 5% level] autocorrelation (until a maximal lag length
as permitted by the data). To assess significance, we use ρ̂2

i , and the approximate
distribution (39). We denote this statistic LBe. If none of the autocorrelations is
significant, LBe is set to zero.

5. The variance-ratio in (36) where J = le, where le is the lag corresponding to the
largest significant [at level 5%] variance ratio. To assess significance we use |V R(J)|
and the approximate distribution (37). We denote this statistic V Re. If none of the
variance-ratio statistics is significant, V Re is set to zero.

6. The combined criterion [see (5)], denoted AC×, based on the product of the p-values
pi associated with ρ̂2

i , i = 1, . . . , m, each obtained using the approximate distribution
(39).

7. The combined criterion [see (6)], denoted AC∗

×
, based on the product of the signifi-

cant p-values [at level 5%] associated with ρ̂2
i , i = 1, . . . , m; the individual p-values

are computed from the approximate null distribution (39).

8. The combined criterion [see (5)], denoted V R×, based on the product of the p-values
pi associated with |V R(i)| as defined by (36), i = 1, . . . , m, using (37).

9. The combined criterion (6) based on the product of the significant [at the 5% level]
p-values associated with |V R(i)| as defined by (36) with i = 1, . . . , m, and obtained
using (37). We denote this statistic V R∗

×
.

Since the conditions of Theorem 1 hold for all these statistics, it follows that the MC
p-values provided by (16) or (23) would have the correct size for any sample size. Observe
we can set the individual significance levels underlying V R∗

×
, V Re, AC∗

×
and LBe, at 5%

and still obtain a test with global level 5%. Size control is achieved even if approximate
distributions are used to calculate the individual p-values. The MC test method achieves
size control as long as joint pivotality holds.

Three properties further explain why computational expense is not an issue for our
proposed combination methods. (1) The proposed joint tests are exact even if individ-
ual p-values are themselves not exact. Inexpensive standard asymptotic approximations
[for example normal or χ2] can be used for individual tests with no effect on the finite-
sample properties of the joint test. (2) Joint test criteria are the minimum or the (possibly
weighted) product of the individual p-values so obtained. These operations are also inex-
pensive. (3) While we must replicate (1) and (2) N times, both operations are inexpensive,
and N need not be very large as in a standard bootstrap. Our simulation study was con-
ducted with N = 99 to underscore this feature.

4 Simulation study

To illustrate the performance of the serial correlation tests, we consider the following
experiment. The base model is (25). The regressors are generated as i.i.d. standard
normal (kept fixed over the simulation). Sample sizes of T = 32, 60, are used and k (the
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number of regressors) is set as the largest integer less than or equal to
√

T . Under the
null hypothesis, the error terms ut, t = 1, . . . , T , are drawn as i.i.d., from the following
distribution: N(0, 1), χ2(2), U [−.5, .5], t(5) and Cauchy. For the power study, we assume
the AR(2) error process

ut = ρ1ut−1 + ρ1ut−2 + ηt, t = 1, . . . , T,

where the (fixed) initial values are zero and the error terms ηt, t = 1, . . . , T , are i.i.d.

N(0, 1) and t(5). We consider: (ρ1, ρ2) = (.5, .2), (.7, −.2), (1, −.2), (1.3, −.5). All
statistics defined in the previous section are studied. MC tests are applied with N =
99; randomized ranks are used for non-continuous statistics. Each study relies on 1000
replications.2 The results are summarized in Tables 1– 3. The main features of these can
be summarized as follows.

1. The performance of the asymptotic tests is unsatisfactory. In the presence of normal,
χ2 and uniform errors, the Ljung-Box test is oversized; the problem gets worse when
more lags are considered. This issue is important since practitioners tend to consider
as many lags as possible with these tests. When errors are Cauchy or t-distributed,
the Ljung-Box test seems undersized. Turning to the asymptotic variance ratio,
it is evident that the test is severely undersized, in all cases. In particular, no
rejections at all are observed under the null for T = 32 with Cauchy or t-distributed
disturbances. The sizes of the MC version of both the Ljung-Box and variance-
ratio tests are controlled in all cases. This clearly affects the power of the latter
test, which improves sometimes dramatically. For instance, for T = 32 and t(5)
errors, with ρ1 = .7 and ρ2 = −.2, empirical rejections increase from ≃19% (for the
asymptotic variance ratio) to ≃78% (for its MC version); see Table 3.

2. The Tippett-type autocorrelation tests tend to outperform the standard Ljung-Box
test, as more lags are used. The best test in this category is the one based on
the significant autocorrelations. Observe however that the ACmin statistic performs
equally well and sometimes marginally better in this example. The same holds for
the variance-ratio criteria, except for two observations: (i) the power advantage of
the Tippett-type tests is in general stronger; (ii) the V Rmin statistic performs as
well as but not better than its Tippet counterpart. The proposed combined criteria
perform better than the MC version of available test statistics. For example (see
Table 1), with T = 32 and normal errors, ρ1 = .7 and ρ2 = −.2, empirical rejections
increase from 18% (for the MC variance ratio) to ≃66% (for its min-p or Tippet MC
version); for the same values of ρ1and ρ2, with T = 60 and t(5) errors, the power
jumps from ≃40 to ≃ 97%.

3. There is no apparent difference in the MC tests power ranking, with normal or
t-errors. As outlined above, effective power improvements, which result from size-
correction, are more visible with t-errors, since the available asymptotic tests perform
worse in this case.

2As an example of execution time: one run, using 32 bit GAUSS with a 1.66 GHz CPU, for a sample
size of 62 along with N = 99, for all the considered statistics executed in one algorithm, ends in less than
17 seconds.
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4. The endogenous-lag criteria do not provide improvements over the tests based on
the min-p and p-value product statistics.

5. The variance-ratio tests appear preferable to the Ljung-Box-type tests. Though both
statistics are functions of the sample autocorrelations, the variance ratio exploits fur-
ther features of white-noise behavior, including variance linearity (over the sampling
interval); see Lo and MacKinlay (1988). This may confer a power advantage to these
tests, which is revealed in our results once test size is controlled by the MC test
method.

5 Conclusion

This paper suggests MC multiple test procedures which are provably valid in finite samples.
These include combination methods originally proposed for independent statistics and fur-
ther improvements which formalize statistical or econometric practice. We also adapt the
MC method for non-continuous combined statistics. These methods are applied to serial
dependence and predictability tests. We propose new tests which allow, among others,
endogenous lag selection. We conduct a simulation study to illustrate the usefulness of the
proposed procedures. In general, our results show that concrete and non-spurious power
gains (over standard combination methods) can be achieved through our multiple Monte
Carlo test approach, and confirms arguments in favour of variance-ratio type criteria.

To conclude, it is worth revisiting the above discussed fat-tailed case with Student-t
errors, and allow for the possibility of an unknown degrees-of-freedom parameter, denoted
ν. To deal with the latter as a nuisance-parameter, various procedures have been suggested
and applied [for different though related test problems] in Dufour, Khalaf, and Beaulieu
(2003), Dufour, Khalaf, Bernard, and Genest (2004), Bernard, Idoudi, Khalaf, and Yelou
(2007), Beaulieu, Dufour, and Khalaf (2007), Dufour, Khalaf, and Beaulieu (2010), and
Beaulieu, Dufour, and Khalaf (2012). These consist of maximizing the MC p-value for the
tested hypothesis (which depends on the nuisance parameter) over the relevant nuisance
parameter space. For the problem at hand, the joint distributions of the combined criteria
depend on ν. Any relevant [i.e. conforming with the null hypothesis] value for ν can lead
to an empirical p-value as outlined in section (2), given the value of ν in question. This
leads to a p-value “function”, denoted p̂N( · | ν). The maximized MC method introduced by
Dufour (2006) and applied in the above-cited works involves (numerically) maximizing the
p-value function p̂N( · | ν) over all relevant values of ν. The test critical region corresponds
to referring the supremum supν [p̂N( · | ν)] to a given level α.

An alternative method originally proposed by Dufour and Kiviet (1996) and denoted
the consistent set maximized MC [CSMMC] method involves two stages: (1) an exact
confidence set is built for ν, and (2) the MC p-value p̂N(.|ν) is maximized over all values
of ν in the latter confidence set. So far, the latter method was applied [in the above cited
works] using Bonferroni-type bounds over each stage. While extending our analysis to this
case is beyond the scope of this paper, it is intuitively appealing to treat the CSMMC
test, in turn, as a combined test, and re-sample the whole procedure. Results available
so far suggest that simulation-based combination methods to treat distributional nuisance
parameters is a promising avenue for further research.
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Table 1: Empirical rejections: Size and power of serial correlation tests; normal errors

AR(2) parameters ρ1, ρ2

T Lags (m) Statistic 0, 0 .5, .2 .7,−.2 1,−.2 1.3,−.5
32 5 LB∞ 6.6 51.2 52.2 89.3 96.6

LB 4.3 45.5 45.2 85.0 95.1
AC× 4.4 45.3 44.8 84.7 95.2
ACmin 3.9 45.6 55.1 89.9 97.2
V R∞ 1.5 66.3 45.3 90.6 95.2
V R 3.6 71.0 51.5 92.9 96.8
V R× 3.5 70.0 64.1 95.4 98.8
V Rmin 4.2 67.7 66.9 95.2 98.9

32 10 LB∞ 8.3 49.6 49.4 86.4 95.0
LB 4.5 38.5 35.4 76.5 90.2
AC× 4.9 39.0 35.9 76.8 89.9
ACmin 3.5 42.9 50.4 87.7 96.3
V R∞ 0.6 44.6 17.1 63.8 60.6
V R 3.7 57.9 29.4 74.2 73.6
V R× 3.5 70.6 51.5 92.7 97.0
V Rmin 4.1 69.4 66.6 95.3 98.9

32 15 LB∞ 9.8 48.3 48.7 83.4 93.9
LB 4.6 35.6 32.6 70.4 84.8
AC× 4.7 37.1 35.4 72.2 85.9
ACmin 3.5 42.6 50.1 87.2 96.3
V R∞ 0.3 27.1 7.0 41.0 35.2
V R 3.5 42.7 18.2 57.7 51.9
V R× 3.6 66.8 44.9 89.5 95.5
V Rmin 4.1 69.4 66.6 95.3 98.9

32 ≤ 15 AC∗

×
3.9 41.5 40.5 80.3 91.3

LBe 4.0 27.4 25.3 59.5 75.4
V R∗

×
3.6 72.3 66.2 95.8 98.7

V Re 7.4 31.1 27.8 23.0 16.8

Note – Frequencies are given in percentages (%). LB and KS are the MC Ljung-Box and
variance-ratio tests [see (35) - (36)] with J = m, where m is reported in column 2. LB∞

and KS∞ are their asymptotic counterparts, using the χ2(m) for the former, and (37) for
the latter. ACmin is (3) where Si corresponds to ρ̂2

i , i = 1, . . . , m, and pi is obtained using
(39); AC× is its product counterpart. V Rmin is (3) where Si corresponds to |V R(i)| with
i = 1, . . . , m, and pi is obtained using (37); V R× is its product counterpart. LBe is the
Ljung-Box statistic (35) with J = le and le is the lag which corresponds to the largest
significant [at the 5% level] autocorrelation. V Re is the variance-ratio (36) where J = le

and le is the lag which corresponds to the largest significant [at the 5% level] variance ratio.
AC∗

×
is (6) based on the product of the significant p-values [at the 5% level] associated

with ρ̂2
i , i = 1, . . . , m. V R∗

×
is (6) based on the product of the significant [at the 5% level]

p-values associated with |V R(i)| for i = 1, . . . , m.
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Table 1 (continued)

AR(2) parameters ρ1, ρ2

T Lags (m) Statistic 0, 0 .5, .2 .7,−.2 1,−.2 1.3,−.5
60 5 LB∞ 7.1 92.4 94.6 99.9 100

LB 4.4 91.0 91.2 99.9 100
AC× 4.5 90.1 88.6 99.9 100
ACmin 4.6 89.8 96.7 100 100
V R∞ 2.7 95.4 82.1 99.8 100
V R 3.7 95.8 82.3 99.8 100
V R× 3.9 96.7 95.9 100 100
V Rmin 3.6 96.5 98.6 100 100

60 10 LB∞ 8.2 89.0 87.8 99.8 100
LB 5.2 84.3 80.3 99.2 100
AC× 5.1 83.8 76.8 99.0 100
ACmin 4.2 88.5 95.1 100 100
V R∞ 1.7 86.9 45.2 93.9 91.4
V R 4.0 88.4 52.4 94.9 93.9
V R× 4.0 95.7 86.6 99.9 100
V Rmin 4.0 96.4 98.4 100 100

60 15 LB∞ 9.5 87.6 83.9 99.5 99.9
LB 4.8 82.0 71.8 98.6 99.9
AC× 4.3 81.0 70.4 98.1 99.8
ACmin 4.4 87.7 94.5 100 100
V R∞ 1.9 73.1 29.2 84.1 73.0
V R 5.4 80.0 38.0 89.0 80.5
V R× 3.9 94.4 79.8 98.1 98.3
V Rmin 4.1 96.4 98.3 100 100

60 ≤ 15 AC∗

×
4.6 85.0 75.6 99.6 99.9

LBe 4.3 70.3 54.0 96.9 99.2
V R∗

×
4.0 96.0 91.4 100 100

V Re 7.1 35.7 27.5 28.4 15.7
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Table 2: Empirical size of serial correlation tests with non-normal errors

Error distribution
T Lags (m) Statistic N(0, 1) χ2(2) U [−.5, .5] t(5) Cauchy
32 5 LB∞ 6.6 4.3 7.5 2.2 1.6

LB 4.3 4.1 4.8 3.8 4.9
AC× 4.4 4.6 4.9 3.2 4.6
ACmin 3.9 4.4 4.8 3.6 4.5
V R∞ 1.5 2.0 1.3 0.8 0.7
V R 3.6 4.4 4.2 4.0 4.2
V R× 3.5 4.7 7.7 3.9 4.8
V Rmin 4.2 5.2 4.8 3.1 5.2

32 10 LB∞ 8.3 5.8 8.1 2.7 2.6
LB 4.5 4.7 4.9 3.8 4.7
AC× 4.9 4.7 4.8 3.8 4.8
ACmin 3.5 4.1 4.9 4.0 4.5
V R∞ 0.6 0.3 0.8 0.2 0.3
V R 3.7 3.8 4.0 4.1 3.2
V R× 3.5 4.8 4.3 3.4 4.4
V Rmin 4.1 5.8 4.8 3.3 5.0

32 15 LB∞ 9.8 6.9 10.3 3.3 2.4
LB 4.6 3.7 4.0 3.6 4.9
AC× 4.7 4.5 4.5 4.2 4.8
ACmin 3.5 3.5 4.7 3.5 4.2
V R∞ 0.3 0.1 0.3 0.0 0.0
V R 3.5 4.3 4.2 4.1 3.5
V R× 3.6 4.3 4.5 3.5 3.5
V Rmin 4.1 4.7 4.8 3.3 5.0

32 ≤ 15 AC∗

×
3.9 4.4 4.0 4.0 4.4

LBe 4.0 5.3 4.7 3.5 4.2
V R∗

×
3.6 5.3 4.7 6.0 6.3

V Re 7.4 5.3 4.7 6.0 6.1

Note – For definitions, see Table 1.

15



Table 2 (continued)

Error distribution
T Lags (m) Statistic N(0, 1) χ2(2) U [−.5, .5] t(5) Cauchy
60 5 LB∞ 7.1 4.4 6.4 2.9 1.8

LB 4.4 3.7 4.6 4.3 3.2
AC× 4.5 3.8 4.4 4.7 3.3
ACmin 4.6 3.6 4.7 3.9 3.6
V R∞ 2.7 2.5 3.4 1.7 1.0
V R 3.7 4.2 4.3 4.4 4.3
V R× 3.9 4.1 3.8 3.5 3.7
V Rmin 3.6 3.7 4.1 4.3 3.5

60 10 LB∞ 8.2 6.2 7.5 2.9 2.0
LB 5.2 4.0 4.8 3.8 4.2
AC× 5.1 4.0 5.2 3.6 4.2
ACmin 4.2 3.9 4.0 4.3 3.8
V R∞ 1.7 1.1 1.8 0.8 0.3
V R 4.0 3.7 3.6 4.5 3.7
V R× 4.0 3.6 4.4 3.5 3.3
V Rmin 4.0 3.2 3.9 3.9 3.2

60 15 LB∞ 9.5 5.0 8.6 3.1 2.1
LB 4.8 3.7 4.2 3.9 4.4
AC× 4.3 3.4 4.7 4.3 4.4
ACmin 4.4 4.4 3.8 4.2 4.4
V R∞ 1.9 0.8 1.4 0.5 0.3
V R 5.4 4.6 4.3 4.4 3.1
V R× 3.9 3.5 4.4 3.9 3.3
V Rmin 4.1 3.4 4.0 4.1 3.2

60 ≤ 15 AC∗

×
4.6 3.6 4.4 4.3 4.7

LBe 4.3 4.4 3.8 4.2 4.4
V R∗

×
4.0 4.0 4.0 3.9 3.8

V Re 7.1 3.4 4.0 4.0 4.1
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Table 3: Power of serial correlation tests; t(5) errors

AR(2) parameters ρ1, ρ2

T Lags (m) Statistic 0, 0 .5, .2 .7,−.2 1,−.2 1.3,−.5
32 15 LB∞ 3.3 50.0 40.0 81.4 90.2

LB 3.6 52.4 42.7 82.5 90.4
AC× 4.2 55.0 43.4 83.9 90.9
ACmin 3.5 52.7 55.0 93.0 97.1
V R∞ 0.0 35.8 19.1 51.4 36.4
V R 4.1 56.0 77.7 67.7 55.5
V R× 3.5 77.3 52.7 95.1 97.5
V Rmin 3.3 80.5 79.7 98.0 99.4

32 ≤ 15 AC∗

×
4.0 52.7 55.7 93.0 97.1

LBe 3.5 56.3 55.3 90.8 96.2
V R∗

×
6.0 79.7 76.9 97.8 99.1

V Re 6.0 79.2 76.0 97.8 99.2
60 15 LB∞ 3.1 86.1 73.5 99.8 99.7

LB 3.9 86.4 76.8 99.8 99.7
AC× 4.3 86.4 74.3 99.5 99.5
ACmin 4.2 86.6 92.4 99.8 100
V R∞ 0.5 78.5 25.5 87.2 76.5
V R 4.4 85.8 39.9 93.0 85.9
V R× 3.9 97.8 87.3 99.7 99.7
V Rmin 4.2 98.7 98.9 100 100

60 ≤ 15 AC∗

×
4.3 86.6 92.4 99.8 100

LBe 4.2 89.2 86.1 99.8 100
V R∗

×
3.9 98.7 98.8 100 100

V Re 4.0 99.2 97.3 100 100

Note – For definitions, see Table 1.
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