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(CIREQ), and Groupe de recherche en économie de l’énergie, de l’environnement et des ressources naturelles
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ABSTRACT

We propose two system-based identification-robust methods for structural models including

DSGEs that are valid whether identification is weak or strong, and whether identification is

theory-intrinsic and/or data specific. The first one is a full-information method, which relies on

restrictions strong enough to allow the existence of a rational-expectations solution, while the

second one is a limited-information approach that relies on weaker assumptions even though it

remains system-based. We apply the proposed methods to a standard New Keynesian model for

the U.S. We impose and relax a unique rational expectation solution, maintaining similar lag-

restrictions on regression disturbances in both cases. In the latter case, we also compare single-

equation to multi-equation estimation and fit. We find that when a unique stable equilibrium is

imposed to complete the model, it is rejected by the data. In contrast, limited-information multi-

equation inference produces informative results - that cannot be reached via single-equation

methods - regarding the importance of forward-looking behavior in the NKPC, and precise

conclusions on the feedback coefficients in the reaction function which are not at odds with the

Taylor principle.

JEL classification: C52, C53, E37
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1 Introduction

Optimization-based macroeconomic models, and, in particular, dynamic stochastic general equi-

librium (DSGE) setups, are routinely used for analyzing a multitude of macroeconomic issues,

such as studying the effects of alternative policies and conducting welfare analysis. In this re-

spect, the solutions of the log-linearized versions of these models are frequently taken to the data

in order to obtain realistic quantitative answers to the questions studied. Classical and Bayesian

estimations have both been used for this purpose, including methods that consider jointly all

model restrictions (full-information [FI] approaches), and methods that focus on matching only

some aspects of the data (limited-information [LI] approaches). However, it is becoming increas-

ingly clear from the literature that finding reliable estimates for the parameters of such models

is a challenging problem, regardless of the estimation strategy. In a recent survey, Schorfheide

(2010) discusses, among others, two important (and related) reasons for the above: (i) the lack

of identification or weak identification, and (ii) assumptions - for example on disturbances, or

arising from the model solution - that are subsidiary to the theory yet necessary to complete

a model. This paper studies both problems, proposes econometric tools designed to overcome

their consequences, and applies these tools to the New Keynesian model.

Identification, which is a long-known econometric concept, relates to the ability of making

inferences on theoretical model parameters from observed data.1 Sometimes, we may face situ-

ations where it is theoretically difficult (if not impossible) to determine structural parameters of

economic interest from observed data. Identification failure occurs, for example, when the ob-

jective function does not respond to some structural parameters, and weak identification arises

when the objective function is multi-modal or does not display sufficient curvature in certain

parameter regions. Both problems have profound negative implications for usual asymptotic

estimators and for the conduct of meaningful inference. Moreover, as emphasized by Canova

and Sala (2009), calibrating troublesome parameters or conducting Bayesian estimation and

inference do not necessarily overcome these difficulties, and may indeed exacerbate them.2 In

addition, rank and order identification conditions for linear simultaneous equations that were

developed in past decades do not apply in the DSGE context; see Komunjer and Ng (2011).

A number of studies document identification problems or failures in well-known estimated

macroeconomic models. These include building block equations derived from DSGE setups.

For instance, the New Keynesian Phillips Curve (NKPC) has been examined among others by

Dufour, Khalaf, and Kichian (2006, 2010a, 2010b), Ma (2002), Mavroeidis (2004, 2005), Nason

1For early references see, for example, Koopmans (1950), Hannan (1971) and Zellner and Palm (1974).
2See also Guerron-Quintana, Inoue, and Kilian (2009) and Rios Rull, Schorfheide, Fuentes-Albero, Kryshk,

and SantaEulalia-Llopis (2011) with regards to Bayesian method.
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and Smith (2008), and Kleibergen and Mavroeidis (2009). The results indicate that the NKPC is

weakly identified. Similarly, Mavroeidis (2010) and Inoue and Rossi (2011) report identification

concerns in Taylor-type monetary policy rules such as the one used by Clarida, Gaĺı, and Gertler

(2000). Cochrane (2011) raises further concerns with such rules related to determinacy. The

Euler equation for output has also been examined and identification problems documented,

notably by Fuhrer and Rudebusch (2004) and Magnusson and Mavroeidis (2010).

As for multi-equation macroeconomic models, studies reporting identification concerns in-

clude Ruge-Murcia (2007) who examines a one-sector real business cycle model, Canova and

Sala (2009) who consider a DSGE model based on the Smets and Wouters (2003) and Chris-

tiano, Eichenbaum, and Evans (2005) setups, Iskrev (2010) who finds issues with the Smets

and Wouters (2007) model, Komunjer and Ng (2011) who examine a model considered by An

and Schorfheide (2007) and Magnusson and Mavroeidis (2010) who document identification

difficulties in a two-equation model that is derived from the fundamental three-equation New

Keynesian system. Concerns have also been raised by for example Beyer and Farmer (2007),

Cochrane (2011), Kim (2003), Chari, Kehoe, and McGrattan (2009), Fernandez-Villaverde,

Rubio-Ramirez, Sargent, and Watson (2007) and Consolo, Favero, and Paccagnini (2009), in

multi-equation models with regard to observational equivalence, proper recovery of macroeco-

nomic dynamics from structural VARs, and the role of added ad-hoc measurement errors in

DSGE setups.

Broadly speaking, macroeconomists are rarely dogmatic in favour of a fully specified model

as an end in itself. Rather, models are viewed mainly as quantitative benchmarks for the eval-

uation of various substantive objects of interest. While there is some consensus that certain

models3 are in principal useful for this purpose, there is less agreement on how such models

should be parametrized when taken to the data. Ideally, one would like to focus on implications

of interest conforming with micro-founded structures while allowing the data to speak freely on

the dimensions along which these may lack fit. Examples of the latter dimensions that have

been pointed out in the literature particularly with regard to DSGE models include the follow-

ing.4 First, an important challenge in DSGE modeling is to minimize the effects of subsidiary

assumptions required to complete a model. For instance innovations arising from measurement

errors are usually non-fundamental. Alternatively, in some models, the existence of a unique

rational expectation solution challenges theory [see Cochrane (2011) with regard to the New

Keynesian model]. Second, a typical DSGE-VAR approach raises truncation problems. The

3These include for example the New Keynesian model we consider in this paper for concreteness.
4See e.g. Del Negro, Schorfheide, Smets, and Wouters (2007), Ruge-Murcia (2007), Guerron-Quintana (2010),

Schorfheide (2010), Rios Rull, Schorfheide, Fuentes-Albero, Kryshk, and SantaEulalia-Llopis (2011) and the

references therein for a general discussion with concrete examples.
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finite order VAR representation of the solved model will only be exact if the endogenous state

variables are observable and included in the VAR [see, for example, Ravenna (2007)]. Third,

DSGE-VAR methods broadly assess the structural form against an unrestricted VAR where -

regardless of its statistical fit - the variables that are included in the latter are exactly deter-

mined by those that enter the former. The literature is witnessing a growing awareness among

applied researchers about the possibility of misspeficiying the benchmark and its consequences.

More general specifications for benchmarks are thus gaining popularity, including for example

dynamic factor models and VARs augmented by factors.5 Variable omission is a recognized

difficulty, since by construction and because of their specificity, DSGE models may exclude em-

pirically relevant data.6 For all these reasons, the consequences of spuriously completing models

are of obvious concern.

The above shows that identification problems are likely to be prevalent in DSGE models.

Indeed, they seem to be almost inherent to the DSGE structure since additionally they partly

stem from the presence of forward-looking terms in the model and from the presence of multiple

parameter nonlinearities. These can affect both the “population and sample identification”

(using the terminology of Canova and Sala (2009)).7 More importantly, and as will be explained

later, identification problems are not necessarily detectable when traditional estimation and test

methods are applied.

Authors, such as Canova and Sala (2009), Iskrev (2010) and Komunjer and Ng (2011), pro-

pose different approaches to checking identification ex ante, suggesting ways to improve the

objective function with respect to identification that is intrinsic to the theory. Komunjer and

Ng (2011) and Iskrev (2010) develop, under alternative assumptions, formal conditions for ver-

ifying the identification of DSGE models. Canova and Sala (2009) focus on estimation using

impulse-response matching, and recommend examining the sensitivity of impulse responses to

different parameter values through graphic and numerical means. These works constitute impor-

tant steps in DSGE modeling since they guide model builders away from parameter subspaces

5See e.g. Del Negro, Schorfheide, Smets, and Wouters (2007) and discussions by Christiano L. J., Gallant A.

R., Sims C. A., Faust J. and L. Kilian. See also Boivin and Giannoni (2006), Consolo, Favero, and Paccagnini

(2009), and Paccagnini (2011).
6Convincing examples are discussed in e.g. Consolo, Favero, and Paccagnini (2009). These include fiscal policy

variables in a DSGE model focusing on monetary policy, or foreign sector variables in a DSGE model for a closed

economy, or model irrelevant financial indicators, term structure variables or variables such as the commodity

price index that nevertheless affect the decision of policy makers.
7Population identification concerns the mapping between the DSGE and its solution, which - given that it

is intrinsic to the theory - is relevant even if we had infinite amounts of observed data. Sample identification

concerns the informational link between the structural parameters and the objective function, which is specific to

a particular dataset and sample size.
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for which objective functions may be non-identified or weakly-identified. In this manner, DSGE

solutions are given the best ‘fighting chance’ before conducting structural estimation and infer-

ence. However, there still remains the issue of sampling variability, i.e., the particular dataset

and sample size that the applied macroeconomist is confronted with, and where sample identifi-

cation problems intervene. Given the sample sizes and data qualities that are typically available

to macroeconomists, the latter problems can be quite severe, distorting parameter estimates

and significantly hampering meaningful inference. For example, Canova and Sala (2009) us-

ing a simulation exercise and moment-matching, show that estimation biases are large even

with sample sizes of 5000 observations, and conclude that confidence bands obtained around

impulse-responses are not informative in the presence of weak-identification.8

In this paper, we propose so-called identification-robust estimation and test methods, both

full-information-based and limited-information-based, for multi-equation DSGE setups. The

methods are just as valid and just as reliable whether identification is weak or strong, and

whether identification problems arise from issues intrinsic to the theory and/or from sample

variability.9 Therefore, applying these, rather than traditional estimation and inference meth-

ods, provides the assurance to the empirical researcher that the obtained quantitative answers

from the considered models are always statistically meaningful. In addition, our proposed meth-

ods show ‘automatically’ the extent to which each structural parameter is identified, and, in the

event of weak or non-identification, quantify properly the amount of estimate uncertainty (com-

pared to ones obtained from traditional inference methods). Additional advantages include, for

example, built-in identification-robust specification tests and, in the limited-information method

case, robustness of the applied tests to missing instruments. The latter are variables that contain

useful information for identifying one or more structural parameters but that are neither con-

sidered in the structure of the DSGE, nor in its econometric counterpart. Finally, the methods

are relatively easy to implement.

The concept of identification-robustness will be discussed in some detail in the methodology

section, but some intuition can be gleaned about it from the following: when some structural

parameters of a given model are non-identifiable or only identifiable on a subset of the parameter

space (identification here can be either in the population- and/or sample-identification sense), for

confidence sets of estimates to be valid, they should allow for the possibility of being unbounded.

That is, if objective functions are flat (or almost flat), all (or practically all) parameter values

in the parameter space should be equally admissible as estimates and should therefore show

8Useful simulation results on finite sample statistical problems can also be found in Ruge-Murcia (2007) and

Jondeau and Le Bihan (2008); see also Guerron-Quintana (2010) on data related difficulties.
9For surveys regarding identification difficulties and identification-robust methods in limited-information con-

texts see, for example, Dufour (2003), Stock, Wright, and Yogo (2002) and Kleibergen and Mavroeidis (2009).
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up in the confidence set, thus reflecting the identification status of the examined parameters.

Identification-robust methods feature this desirable property. In contrast, any method that,

by construction, leads to a confidence interval with bounded limits, will necessarily have poor

coverage under weak-identification (Dufour (1997)). Therefore, intervals of the form {estimate

± (asymptotic standard error) × (asymptotic critical point)}, including the delta-method, are

fundamentally wrong and cannot be size-corrected. Furthermore, identification difficulty does

not necessarily imply that asymptotic standard errors are excessively large. Indeed, the opposite

may occur, with tight confidence intervals concentrated on wrong parameter values.

To a certain extent, identification-robust procedures have been gaining credibility in macroe-

conomics within the context of single-equation models.10 Yet, despite the considerable associ-

ated econometric literature, identification-robust methods for multi-equation systems are still

scarce.11 We propose two system-based identification-robust methods which can address either

all of the restrictions implied by the considered model [that is, provide FI inference], or only

some of those restrictions [that is, provide LI inference]. Our identification-robust (yet system-

based) LI method is predicated on orthogonality conditions that are implied by the model,

and is, in some respects, related to the S-sets from Stock and Wright (2000). This paper is

among the first to propose a FI method, based on the econometric specification defined by the

closed form rational-expectations-consistent solution of the DSGE model.12 Thus, as well as

being identification-robust, it provides the usual features model builders typically seek from

full-information contexts. Both our methods rely on transforming the task of estimation and

testing from a world where identification difficulties will distort and invalidate the latter to a

fully standard context where there is no need to worry about identification issues. Notably, in

the full-information case, this is done while maintaining all of the DSGE constraints reflected in

the VAR solution. Both methods also rely on ‘inverting’ identification-robust tests, discussed in

the next sections.

We apply these tools, using U.S. data, to an illustrative three-equation New Keynesian

model. This fundamental structure has been extensively studied in the literature and forms the

10Studies using such approaches include Ma (2002), Dufour, Khalaf, and Kichian (2006, 2010a, 2010b), Mavroei-

dis (2004, 2005, 2010), Nason and Smith (2008), Kleibergen and Mavroeidis (2009) and Chevillon, Massmann,

and Mavroeidis (2010).
11Work focusing on identification (from other perspectives than the methods presented here) in multi-equation

set-ups include Moon and Shorfheide (2010), Granziera, Lee, Moon, and Schorfheide (2011), Guerron-Quintana,

Inoue, and Kilian (2009), Magnusson and Mavroeidis (2010) and Andrews and Mikusheva (2011).
12Guerron-Quintana, Inoue, and Kilian (2009) propose, in addition to a Bayesian method, an alternative

likelihood-based method that requires identifying some though not all deep parameters in a model. Andrews

and Mikusheva (2011) also examine weak identification in maximum likelihood, with specific focus on adequate

estimation of Fisher Information.

7



building block of many other more complex models.13 On the substantive side, we address three

features of the New Keynesian model. First, we study inflation persistence within the NKPC,

given the on-going debate in this regard [see, for example, the survey by Schorfheide (2008)].

Second, we analyze the coefficient of the output gap in the NKPC and of the real interest rate in

the output equation, since [as argued by Schorfheide (2010)] available results on their estimates

suggest conflicting conclusions about their impact. For clarity, we refer to these coefficients

throughout the paper as the coefficients on each equation’s forcing variable. Third, we revisit

the implications of imposing a unique rational expectations solution on the feedback coefficients

in the Taylor rule, in light of serious issues arising from determinacy reported by, for example,

Mavroeidis (2010) and Cochrane (2011). Comparisons between our full-information and limited

information assessments of these questions are discussed. Further comparisons between these

and the application of existing univariate identification-robust methods are also discussed, where

each method integrates and assesses, to different degrees, the model’s structural restrictions.

Our findings can be summarized as follows. When a stable and unique equilibrium is imposed

to complete the model, it is rejected by the data. Assumptions underlying a unique solution are

restrictive enough to make the complete statistical model easier to reject. This is an important

sense in which our analysis can be seen as an exploration of the pervasiveness of subsidiary FI

assumptions. In contrast, and although insignificant forcing variables in the NKPC and the

output curve cannot be ruled out, our LI multi-equation results allow us to formulate realistic

conclusions on the nature of the NKPC, and to obtain precise predictions for feedback coefficients

that are not at odds with the Taylor principle. We show that such conclusions cannot be reached

via single-equation methods. Taken collectively, results suggest that a multi-equation estimation

of the considered model (even when FI assumptions are - and must be - relaxed) can still utilize

the information in the contemporaneous relationship between output, inflation, and interest

rates, which positively affects identification and inference.

The paper is organized as follows. In section 2, we introduce our general estimation frame-

works as well as our representative empirical model. Our methodology is discussed in section

3. Data and empirical results are presented in section 4. We conclude in section 5. A technical

Appendix complements the methodology section.

13Refer for example to Clarida, Gaĺı, and Gertler (1999), Woodford (2003), Christiano, Eichenbaum, and Evans

(2005), Linde (2005), Fair (2008), Benati (2008), Del Negro, Schorfheide, Smets, and Wouters (2007), to mention

a few.
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2 Framework

This section presents and motivates our econometric set-up. We first discuss a general case that

covers standard (linearized) DSGE models. For concreteness, we next consider a prototypical

application based on a variant of the New Keynesian model. The latter, extensively studied by

Clarida, Gaĺı, and Gertler (1999), is still used in policy circles, and its reported early successes

and failures have been the engine behind the development of the various rich DSGE structures

that are currently available in the literature. The considered application is also tractable enough

to easily illustrate our estimation and test approaches.

2.1 The general set-up

Consider the general structural form

Γ0Xt = Γ1Xt−1 + C + ωνt + ψηt (2.1)

where Xt is vector of m∗ variables, C is a vector of constants, νt is an exogenous random shock,

ηt is a vector of expectations errors (not given exogenously) such that Et(ηt+1) = 0. Typically,

only a subset [denoted Yt] n
∗ of the m∗ variables included in Xt is observable. The model may

be forward looking, in which case time-t expectations for some of the variables would also be

included in Xt. For further reference, collect all of the parameters of (2.1) in the vector ϑ.

Full Information estimation requires a complete model, which in turn requires specifying the

dynamic structure and the distribution of the model’s exogenous disturbances, for example as

i.i.d. or auto-regressive Gaussian processes.

Most standard DSGE models can fit - or can be completed to fit - within this framework.

Specifically, available theoretical models can be log-linearized around steady states leading to the

(2.1) structure, often with subsidiary assumptions about some of its components. As a matter of

fact, general equilibrium theory rarely dictates complete probabilistic structures. So in practice,

theoretical structures are completed into the (2.1) form, imposing auxiliary assumptions mainly

on exogenous shocks.14

2.1.1 Fully specified models

Viewed as a complete structure, (2.1) can be solved forward and its solution has a state-space

form that can be expressed as a VARMA model in the observables. The latter can be approxi-

mated by a finite-order VAR model whose coefficients are nonlinear functions of the parameters

of interest. Specifically, using standard numerical techniques and conventional restrictions on

14For a recent survey, see e.g. Schorfheide (2010).
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ϑ [denoted as ϑ ⊂ Θ], (2.1) can be solved into Xt = C1Xt−1 + C0 + Gνt, where C0, C1 and G

are convolutions of ϑ.15 The solved model admits a restricted VAR approximation in which the

number of shocks is equal to the length of the vector of observable variables Yt:

Yt = B0 (ϑ) +B1 (ϑ)Yt−1 + ... +Bp (ϑ)Yt−p + Σ(ϑ)ut (2.2)

with ut ∼ Normal (0, In∗). Indeed, focusing on parameters that lead to a unique stable rational

expectations solution,Yt is an infinite VAR that can be approximated via (2.2). The coefficients

B0 (ϑ) , ..., Bp (ϑ), viewed as a function of ϑ, may be constructed by truncation of the infinite VAR

or by population regression as in e.g. Del Negro, Schorfheide, Smets, and Wouters (2007).16

Special cases of (2.1) may also admit finite-order VAR representations for which (2.2) holds

exactly. We express the associated unrestricted VAR as

Yt = B0 + B1Yt−1 + ... + BpYt−p + Σuut. (2.3)

2.1.2 Limited Information Representations

If one trusts (2.1) as a fully specified structure, FIML is typically recommended. Conformably,

we first propose an identification-robust full information method. We also propose an alterna-

tive approach that overcomes three limitations of FIML: (i) the need to solve the model and the

associated constraints; (ii) restrictive and in some dimensions non-model-based dynamic struc-

tures; (iii) limited information sets. To be clear, we are not proposing these two methods as

necessarily mutually exclusive. Rather, we see our full-information method as providing a useful

specification check, and our incomplete-model alternative as allowing a researcher to robustify

inferences against auxiliary model assumptions.

The proposed partial specification approach is analogous to generalized method of moments.

We thus adopt the following representation. Select n orthogonality conditions of interest compat-

ible with the theoretical model of interest, or with (2.1). Formally, define ǫti (Y, θ), i = 1, ..., n,

where Y denotes observable data on endogenous and exogenous variables and θ the parameters

of interest, such that if (2.1) holds then ǫti (Y, θ) is orthogonal to a vector of ki instruments

Zti at the true parameter vector.17 Collecting all different variables from each of the Zti into a

15See, for example, Anderson and Moore (1985), King and Watson (1998), Sims (2002), Anderson (2008),

Komunjer and Ng (2011) and the references therein.
16On underlying conditions and truncation costs, see e.g. Fernandez-Villaverde, Rubio-Ramirez, Sargent, and

Watson (2007) and Ravenna (2007). See also Ruge-Murcia (2007) for simulation evidence on problems associated

- among others - with a model’s solution. Unique solutions typically rule out unstable equilibria; see Cochrane

(2011) for a critical assessment of the implications of this practice on the Taylor rule.
17θ may be equal to ϑ, a subset of ϑ or some transformation of the latter.
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k-dimensional vector Zt so that Zti = AiZt where Ai is a ki × k selection matrix, we propose

to map the n orthogonality conditions into estimating and testing the multivariate regression

of ǫti (Y, θ) on Zt. Expressed differently, the orthogonality restrictions considered imply that at

the true parameter vector

AiΠi = 0 (2.4)

where Πi
′ is the ith row of Π, the coefficient of the instruments in the following regression

ǫt (Y, θ) = ΠZt + Vt, ǫt (Y, θ) = (ǫt1 (Y, θ) , ..., ǫtn (Y, θ))′ , Π =









Π′
1
...

Π′
n









. (2.5)

The latter auxiliary n-equation multivariate regression, imposing (2.4), provides a convenient

expression for most standard multi-equation and DSGE based structural limited information

macroeconomic models. Our notation emphasizes the dependence on θ. The error vector Vt

may be i.i.d. with possibly non-diagonal variance/covariance matrix. Serial dependence of un-

known form may also be considered. Instruments may or may not be lags of the endogenous

variables which intervene in ǫt (.). In practice, instruments most often include lagged endoge-

nous variables, as well as a few other variables that are not part of the model and are assumed

predetermined or exogenously evolving. The auxiliary system (2.5) is thus most often a VAR,

possibly with unequal lags and augmented with non-model explanatory variables. Instruments

may also be common to all equations, in which case the Seemingly Unrelated Regression [SURE]

type exclusion restrictions [in the sense that exclusion restriction differ across the equations of

the system] from (2.4) simplify to Π = 0. Although limited-information-based, our strategy

nonetheless treats the n equations as a system.

2.2 A prototype empirical model

Whereas our methodology is general, we focus on a prototypical New Keynesian application

with three equations, based on Linde (2005): a hybrid NKPC equation, an aggregate demand

equation and an interest rate rule. Specifically, the model is

πt = ωfEtπt+1 + (1 − ωf )πt−1 + γyt + επ,t ,

yt = βfEtyt+1 +
4
∑

j=1

(

1 − βf

)

βy,jyt−j − β−1
r (Rt − Etπt+1) + εy,t , (2.6)

Rt = γπ



1 −
3
∑

j=1

ρj



πt + γy



1 −
3
∑

j=1

ρj



 yt +
3
∑

j=1

ρjRt−j + εR,t ,
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where, for t = 1, ..., T , πt is aggregate inflation, yt is the output gap, Rt is the nominal interest

rate, (επ,t, εy,t, εR,t)
′ = Ωεt and εt is a zero-mean disturbance with identity variance-covariance

matrix. For further reference, let

θ =
(

ωf , γ, βf , βr, γπ, γy, ρ1, ρ2, ρ3

)′
, (2.7)

φ =
(

θ′, βy,1, βy,2, βy,3, βy,4

)′
, (2.8)

refer to vectors of the model’s “deep” parameters, and let Θ and Φ denote the associated

parameter spaces. We next present further modeling assumptions (all viewed as illustrative)

comparing our FI case to its LI counterpart. For clarity, and as defined above, we refer to γ and

β−1
r as the coefficients on the forcing variable in the NKPC and the output equation respectively.

2.2.1 Full Information assumptions

Our FI method assumes (επ,t, εy,t, εR,t)
′ iid
∼ N(0,Ω) with Ω invertible but not necessarily diagonal.

Model (2.6) may be represented as in (2.1) for example by replacing expectations of variables

with actual values of the same variables, while adding expectation error terms to the equation.

From there on, the model can be solved into the form (2.2) with Yt = (πt, yt, Rt)
′, p = 4,

B1 (ϑ) = B1 (φ) , ..., Bp (ϑ) = Bp (φ) and Σ (ϑ) = Σ (φ,Ω) where the error terms are three-

dimensional i.i.d. multivariate standard normal.

Despite a broad consensus on a common theoretical basis, there is less consensus in this

literature on how to complete the model’s probabilistic structure for estimation purposes. Our

assumptions on (2.6) are considered prototypical. Specific dimensions along which model (2.6)

is viewed as illustrative [with reference, for example, to the above cited works on the New

Keynesian model] are discussed in Section 4.

2.2.2 Limited information assumptions

Model (2.6) implies that the vector (ǫπ,t (Y, θ) , ǫy,t (Y, θ) , ǫR,t (Y, θ))′ with elements defined as

ǫπ,t (Y, θ) = πt − ωfπt+1 − (1 − ωf )πt−1 − γyt, (2.9)

ǫy,t (Y, θ) = yt − βfyt+1 + β−1
r (Rt − πt+1) ,

ǫR,t (Y, θ) = Rt −



1 −
3
∑

j=1

ρj





(

γππt + γyyt

)

−
3
∑

j=1

ρjRt−j ,

and reflecting expectational error - coming from the replacement of expected terms with their

observed future values plus an error term - which we refer to as a three-dimensional ‘Structural
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Residual’ (akin to Euler errors in the context of GMM) is uncorrelated with available instruments

for the true value of θ ∈ Θ. In our notation,Y refers to the observed data on Yt = (πt, yt, Rt)
′,

t = 1, .., T , conforming with our general set-up. We thus have testable orthogonality conditions

which can be taken to the data. For later reference, we also define

Żt = (πt−1, Rt−1, Rt−2, Rt−3)
′ , Z̈t = (yt−1, yt−2, yt−3, yt−4)

′ . (2.10)

The elements of Żt and Z̈t are the predetermined variables in the system and which we refer to

hereafter as “intra-model” instruments.

The assumption that Żt and Z̈t are the only relevant instruments for the consider model

seem implausible as descriptions of policy-maker behavior. We thus expand the information set

using (lags of) non-modelled variables as extra instruments, and group them in a vector denoted

Z̃t.
18 Specific dimensions along which our considered information set is viewed as illustrative

are discussed in Section 4.

3 Methodology

Both estimation strategies have advantages and disadvantages, none restricted to the models

under consideration in this paper.19 However, both methods share the following difficulty. If the

confidence intervals and hypothesis tests that result from these estimation strategies are, as is

typically the case, validated through the use of standard asymptotic arguments, they can easily

become unreliable when there are identification difficulties.20 Instead, the methods that we

propose are identification-robust. Thus, they are valid whether identification is weak or strong,

and whether identification problems arise from issues intrinsic to the theory and/or from sample

variability. This section provides a mostly descriptive discussion of our approaches; complete

formulae and further references are relegated to the Appendix.

18For supportive evidence on the worth on extra-model instruments in identification-robust instrumental re-

gressions, refer e.g. to Dufour, Khalaf, and Kichian (2010b). In estimating four structural inflation equations [two

specifications based on Eichenbaum and Fisher (2007) and the Blanchard and Gali (2007, 2010) specifications],

Dufour, Khalaf, and Kichian (2010b) find that inference on the Calvo parameter sharpens importantly when

rather than restricting instruments to the lags of each model’s endogenous variables, the lags of the endogenous

variables from all considered models are used as instruments for each model.
19For a general discussion, the reader may refer to Canova (2007, Chapters 4-6).
20The econometric literature is extensive on the topic. Refer, for example, to Dufour (1997, 2003), Staiger and

Stock (1997), Wang and Zivot (1998), Zivot, Startz, and Nelson (1998), Dufour and Jasiak (2001), Kleibergen

(2002, 2005), Stock, Wright, and Yogo (2002), Moreira (2003), Dufour and Taamouti (2005, 2007), Andrews,

Moreira, and Stock (2006), Hoogerheide, Kaashoek, and van Dijk (2007), Bolduc, Khalaf, and Moyneur (2008),

Bolduc, Khalaf, and Yelou (2010), Chaudhuri, Richardson, Robins, and Zivot (2010) and Kleibergen and Mavroei-

dis (2010).
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3.1 Test Inversion and identification robustness

What makes our methods identification-robust can be explained by first noting that both our FI

and LI approaches share the following fundamental premise: whereas in traditional estimation

methodology a point estimate is found first and confidence intervals are then constructed, we

proceed in reverse. That is, first we build a confidence region, then we obtain a point estimate

from it. The confidence region, at level (1 − α) (say, 95%), is obtained by “inverting” a test

specifically designed so that, whatever the identification situation of the considered model, its

significance level remains at α (in this case, 5%). A test that satisfies this property and its

associated confidence region are referred to as being “identification-robust”.

Inverting a test means assembling, analytically or numerically, the set of parameter values

that are not rejected by this test. A point estimate can be obtained by picking the least-rejected

parameters from within the confidence region, that is, by choosing those parameter values that

are associated with the largest test p-value.21 A built-in specification check, providing an overall

assessment of the structural model restrictions, is also available within such test-inversion-based

procedures. In particular, if the generated confidence region is empty, the model is rejected at

the considered test level.

While the above-cited econometric literature has documented the superiority of such methods

over traditional estimation and inference approaches, except for the few above-cited works,

multi-equation models have not been directly addressed. We propose two identification-robust

tests for inversion that are suited within the above described general and specific models [(2.1)

and (2.6)]. For convenience, we first discuss our LI method. This will help present the basic

identification-robustness principles we follow for both LI and FI methods.

3.2 The structural Limited Information method

In the context of (2.1)-(2.4), consider the null hypothesis

H01 : θ = θ0 (3.11)

where θ0 is a known value. We introduce an n-dimensional system of artificial regressions

ǫt (Y, θ0) = ΠZt + Vt, (3.12)

in which context we propose to assess

H∗
01 : AiΠi = 0 (3.13)

21These are the so-called Hodges-Lehmann point estimates; see Hodges and Lehmann (1963, 1983), and Dufour,

Khalaf, and Kichian (2006, 2010a, 2010b).
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where ǫt (Y, θ), Π and Ai conform with (2.5)-(2.4). Indeed, if the null (3.11) is true, then

(3.13) should hold. Therefore, once can simply test for H∗
01 within (3.12) to assess the hy-

pothesis (3.11). That is, if θ0 represents the true parameters, then additional information from

predetermined variables should be irrelevant. This is very convenient because the system rep-

resented by (3.12) does not require statistical identification (the right-hand side regressors are

not ‘endogenous’) so that usual statistics for testing the exclusion of regressors can be ap-

plied in a straightforward manner. In addition, since the left-hand-side of (3.12) is the stacked

n-dimensional structural residual that conforms with the structural model, the exclusion restric-

tions in H∗
01 represent orthogonality conditions as in GMM. Moreover, structural information

from the model is also captured by the contemporaneously-correlated disturbances within (3.12)

since they embed the correlation structure of the considered structural residuals. With model

(2.6), θ0 = (ω0
f , γ

0, β0
f , β

0
r , γ

0
π, γ

0
y, ρ

0
1, ρ

0
2, ρ

0
3)

′, ǫt (Y, θ0) = (ǫπ,t (θ0) , ǫy,t (θ0) , ǫR,t (θ0))
′ where

ǫπ,t (Y, θ), ǫy,t (Y, θ) and ǫR,t (Y, θ) are as in (2.9), n = 3, and if Zt =
(

Ż ′
t, Z̈

′
t

)′

with Żt and

Z̈t as in (2.10), then A1 and A3 should select all coefficients of the first and third equation of

(3.12), whereas A2 should select the coefficients in the second equation associated with Żt.
22 If

Zt = (Ż ′
t, Z̈

′
t, Z̃

′
t)
′ then for all equations the Ai matrices should also select the coefficients of the

extra-model instruments Z̃t.

3.2.1 Test procedure

To test the H∗
01 hypothesis, traditional criteria may be used in the framework of the artificial

regression (3.12), on recalling that the latter does not suffer from the endogenous regressor prob-

lem. Indeed, this is the intuition exploited by Stock and Wright (2000) leading to inverting the

GMM objective function; related arguments also underlie the procedures analyzed in Kleibergen

and Mavroeidis (2009) in the context of the single-equation NKPC. A weighting matrix, treated

as a function of θ, matters importantly here. An optimal weighting matrix and continuous

updating is required for some of the efficient methods proposed by Kleibergen and Mavroeidis

(2009).

Our test criterion differs from traditional GMM practices in the following ways: (i) we use

a weighting function that, while depending explicitly on the tested θ0 value of the parameter

for efficiency and identification-robustness purposes, avoids the iterative continuous updating

optimal GMM,23 and (ii) we embed the cross-equation restrictions from (2.6) into the test, via

22Note that, in this example, the coefficients on the output gap lags are free in the output equation, and thus

the exclusion of their coefficients is not tested within the second equation of (3.12).
23Our method does not require iterating the GMM objective function because we rely on the SURE artificial

regression framework. In this case it is well-known [see Dufour and Khalaf (2002a, 2002b, 2003) and the references
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analytically-tractable estimates of variance/covariance matrix of (3.12).

We use one of the most popular F-type Wald statistics in SURE analysis (see the Appendix

for details). The test, denoted W (θ0), has an approximate [imposing homoskedasticity] null

distribution given by F (m,n(T −k)), where n is the dimension of the structural residual vector,

k is the number of regressors per equation [the dimension of Zt] and m is the total number of

tested coefficients in (3.12). This null distribution is standard and does not depend on unknown

parameters even if instruments used are weak. In our empirical analysis, m = 2k+(4+q) where

q is the number of external instruments in Z̃t.

3.2.2 Test inversion

The test inversion itself must be conducted numerically. One can use, for example, a grid search

over the economically-meaningful set of values for θ. Thus, one can sweep, in turn, the choices for

θ0, and for each choice considered, compute the relevant test statistic, W (θ0), and its associated

p-value. The parameter vectors for which the p-values are greater than the level α collected

together constitute the identification-robust confidence region with level 1 − α.

Moving from the joint confidence region to individual confidence sets for each component

of θ is achieved by projecting this region, i.e. by computing, in turn, the smallest and largest

values for each parameter included in this region. A point estimate can also be obtained from

the joint confidence set. This corresponds to the model that is most compatible with the data,

or, alternatively, that is least-rejected, and is given by the vector of parameter values with the

highest p-value in the set.

Projection-based confidence sets are obtained numerically as follows. By definition, a set can

be obtained for any function g (θ) by minimizing and maximizing the function g (θ) over the θ

values included in the joint confidence region. We thus define each component of θ as a linear

combination of θ, of the form g (θ) = a′θ, where a is a conformable selection vector (consisting

of zeros and ones); for example, ωf = (1, 0, . . . , 0) θ. We then obtain the projection set by

numerical optimization of the associated a′θ function over θ such that W (θ) < Fα(m,n(T −k)).

We use Simulated Annealing (see Goffe, Ferrier, and Rogers (1994) for this purpose).

therein] that iterative GLS does not improve efficiency in practice. Moving from the GMM to the SURE-GLS

context via an artificial regression that nonetheless captures the same orthogonality restrictions thus greatly

decreases numerical burdens without efficiency costs.
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3.2.3 Specification Checks, dynamics and the information set

Note that the cut-off point for the W (θ0) statistic is the same for any value θ0 under test. Define

W = minθ0
W (θ0). Since it is the case that

min
θ0

W (θ0) ≥ Fα(m,n(T − k)) ⇔ W (θ0) ≥ Fα(m,n(T − k)), ∀θ0 (3.14)

where Fα (.) denotes the α-level cut-off point under consideration, then referring the latter

statistic to an F (m,n(T − k)) cut-off point (say at level α) provides an identification-robust

specification test. Indeed, this is a sort of identification-robust J-test.

Such a specification check can be carried out before the test inversion step to save computa-

tion time; if the outcome is not significant [i.e. if minθ0
W (θ0) < Fα(m,n(T − k))], then we can

be sure that the associated confidence sets for θ will not be empty. In view of the underlying

nonlinearity, the latter minimizations must be performed numerically. We again recommend a

global optimization procedure such as Simulated Annealing because there is no reason to expect

that W (θ0) is a smooth function of θ0.

Expectation errors resulting from the replacement of expected terms with observed future

values plus an error, may lead to MA effects when a LI method is considered; see Mavroeidis

(2004) and Kleibergen and Mavroeidis (2009). Serial dependence may also be required to fit

the data. We thus introduce a HAC-type version of our statistic to account for potential serial

dependence problems. Formally, we extend the popular multivariate method introduced by

MacKinlay and Richardson (1991) and analyzed by Ravikumar, Ray, and Savin (2000) to the

macroeconomic model under consideration (details are found in the Appendix). The statistic

we use, denoted J (θ0), has an approximate null distribution given by χ2(m) where m is, as

defined above, the total number of coefficients tested out within (3.12). This null distribution

is again standard, does not depend on unknown parameters even if instruments used are weak,

and leads to a cut-off point for the J (θ0) statistic that is, again, the same for any value θ0 under

test. The associated confidence region based on inverting the HAC statistic thus also admits the

possibility of being both empty [when minθ0
J (θ0) ≥ χ2

α(m)] and unbounded, with the former

indicating model misspecification, and the latter, lack of identification.

The statistic that we use and the continuously updated GMM-type objective function (as

in, for example, Stock and Wright (2000)) are asymptotically equivalent given certain regularity

conditions. Kleibergen and Mavroeidis (2009, 2010) propose an adjusted cut-off point that,

under specific assumptions, can lead to rejecting the model more liberally.24 For example,

instead of the χ2(m), these authors recommend using the χ2 approximate distribution with

24These can often be more restrictive than, for example, the assumptions of Stock and Wright (2000).

17



degrees-of-freedoms reduced to m minus the number of parameters tested (here, the dimension

of θ). However, recent econometric studies show that system-based HAC criteria suffer from the

curse of dimensionality as much as (and perhaps even more than) their i.i.d. counterparts, and

may thus perform poorly in finite samples.25 This suggests that one must interpret the results

of HAC tests [with and without the correction from Kleibergen and Mavroeidis (2009, 2010)]

with caution.

The applied LI tests do not suffer (in the sense that size is not affected) from a further

complication that frequently arises in practice: the case of “missing instruments”. The latter

are variables (such as lags of endogenous variables or predetermined variables) that contain useful

information for identifying one or more structural parameters but that are neither considered

in the theoretical framework of the DSGE, nor in its econometric version. Details regarding

validity of our LI tests when such instruments are missing are discussed in the Appendix, for

concreteness, in the context of our empirical model.

3.3 Full-information method

Given (2.1)-(2.2), consider the null hypothesis given by

H02 : ϑ = ϑ0 (3.15)

where the parameter values with the zero superscript are assumed to be known, but unlike in our

LI method, are restricted so that an associated rational expectation solution exists. Following

the logic set out for the LI case, we introduce an n∗-dimensional artificial VAR

Ut (Y,ϑ0) = ΠZt +Wt (3.16)

Ut (Y,ϑ0) = Yt −B0 (ϑ0) −B1 (ϑ0)Yt−1 − ... −Bp (ϑ0) Yt−p (3.17)

in which Zt includes as many lags of each component of Yt as dictated by the structure. In this

context we propose to assess

H∗
02 : Π = 0. (3.18)

In addition, consider the special case where for which (2.2) holds exactly and ϑ can be

partitioned as ϑ = (φ′, φ̄
′
)′ so that the coefficients B1 (.) , ..., Bp (.) depend on φ but not on φ̄. In

this case, (2.2) simplifies to

Yt = B0 (φ) +B1 (φ)Yt−1 + ... +Bp (φ) Yt−p + Σ
(

φ, φ̄
)

ut. (3.19)

25For recent simulation evidence, see Ray and Savin (2008), Gungor and Luger (2009) and Beaulieu, Dufour,

and Khalaf (2010); these studies use simulation designs based on financial models where sample sizes may be

much larger than what is typically available in usual macroeconomic contexts.
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so we can focus on the partialled-out hypothesis

H02 : φ = φ0, (3.20)

leading to the artificial VAR

Ut (Y,φ0) = ΠZt +Wt, (3.21)

Ut (Y,φ0) = Yt −B0 (φ0) −B1 (φ0)Yt−1 − ... −Bp (φ0)Yt−p. (3.22)

This holds in the case of (2.6), with φ as in (2.8), and Zt =
(

Ż ′
t, Z̈

′
t

)′

with Żt and Z̈t as in (2.10).

Testing for H∗
02 within the artificial VAR [(3.16) or (3.21)] provides a test of H02 so long as

Ut (Y,φ0) exists. That is, we transform the task of estimation and testing from a world where

identification difficulties will distort and invalidate the latter to a fully standard context where

there is no need to worry about identification issues. This is done while maintaining all of the

DSGE constraints reflected in the VAR solution, and thus the method is full-information-based.

When (2.2) is an approximation, then the VAR residuals are not i.i.d. The magnitude of the

discrepacny decreases with large p, though a HAC version of the considered test statistic could

be used for each parameter value to be tested in the construction of the confidence set.

3.3.1 Test procedure

To test the exclusion restrictions in H∗
02 within the subspace restricted by the existence of

Ut (Y,φ0), we use one of the most popular likelihood-based test statistic in multivariate regression

analysis, which is a monotonic transformation of the likelihood ratio criterion (details can be

found in the Appendix). The statistic, denoted L (ϑ0) or L (φ0) in the partialled-out case, and

has an approximate [imposing homoskedasticity] null distribution of F (Kn∗ , µτ−2λ), where n∗

is the dimension of Yt, K is the dimension of Zt, and where µ, τ and λ are given in (C.32)-(C.34)

and depend only on n, T and K.

In our empirical application, n∗ = n = 3, Zt =
(

Ż ′
t, Z̈

′
t

)′

so K = 8. As with the LI case, this

null distribution is standard and does not depend on unknown parameters even if identification

is weak.

3.3.2 Test inversion

The test inversion procedure is similar to that presented in the previous section. Using, for

example, a grid search over the economically-meaningful set of values for φ, we sweep, in turn,

the choices for φ0. Choices for the latter are of course restricted to ensure that the above-defined

Ut (Y,φ0) exist. To do so, we check for the usual existence conditions for every candidate φ0
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value, using the Anderson and Moore algorithm. For each acceptable choice, we compute the

relevant test statistic, L (φ0) and its associated p-value. The parameter vectors for which the

p-values are greater than the level α constitute the identification-robust confidence set with level

1 − α.

Again, it is possible to construct the confidence region using projection-based methods. They

can be obtained for any function h(φ) by minimizing and maximizing the functions h(φ) over

φ such that L (φ0) < Fα(Kn , µτ − 2λ). One can then obtain point estimates and confidence

intervals as explained before.

3.3.3 Specification Checks

The cut-off points for the L (φ0) statistic are the same for any value φ0 under test. So if we

define L̄ = minφ0
L (φ0) , referring the latter to a F cut-off point (say at level α) with degrees-

of-freedom as in (C.32)-(C.34), provides an identification robust specification test. This follows

from the fact that

min
φ0

L (φ0) ≥ Fα(Kn , µτ − 2λ) ⇔ L (φ0) ≥ Fα(Kn , µτ − 2λ), ∀φ0 (3.23)

where Fα (.) denotes the α-level cut-off point under consideration.

L̄ assesses the model as a complete specification, where assumptions are sufficiently strong to

ensure the existence of a unique model solution. It is important to stress that while such a feature

is valued by many model builders, complete model assumptions are restrictive. We expect that

this will make statistical relationships easier to reject and will constitute an important limitation

for empirical work. On the positive side, one can learn from a specification check - when as with

L̄, it is hardwired into FI estimation - on how to improve structures that are at odds with the

data.

4 Empirical analysis

We study model (2.6) as a concrete and well-known example of general structures consistent with

the literature. This analysis is viewed as illustrative in various respects. First, (2.6) includes

lags in the output and interest rate equations that are not strictly derived from New Keynesian

foundations. Typically, completing a New Keynesian model requires non-theory based choices

regarding, for example, the inclusion of auxiliary shocks or measurement errors, and assumptions

about the law of motion of the considered shocks. Various - reasonable although typically ad

hoc - options are considered for this purpose, and on balance, none emerges as a best choice.
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The assumption we make by adding lags to justify an i.i.d. Gaussian assumption on εt follows

Linde (2005).26

Second, model (2.6) imposes no cross-equation restrictions on regression parameters. Since

existing works provide no consensus view in this regard, our specification suggests a minimal set

of assumptions for estimation purposes.

Third, model (2.6) is a special case of (2.1) in which the number of structural shocks is

exactly equal to the number of endogenous variables.27 Furthermore, its solution [with reference

to (2.2)] satisfies B1 (ϑ) = B1 (φ) , ..., Bp (ϑ) = Bp (φ), that is B1 (.) , ..., Bp (.) depends on φ,

the model’s deep parameters of interest defined in (2.8) but does not depend on Ω. This allows

one to conveniently partial Ω out in estimation.28 The solution of (2.6) also imposes exclusion

restrictions on B1 (.) , ..., Bp (.) so although p = 4, the solved model in fact includes four lags

of yt, three lags of Rt and only one lag of πt. Conformably, these same exclusion restrictions

are imposed on the unrestricted benchmark VAR (2.3) considered. The natural question here is

how well does this benchmark represent the data.

Fourth, again conforming with the above cited literature, the solution we empirically main-

tain rules out sunspot equilibria. In other words, our closed model approach follows the usual

practice of restricting parameter values so that a unique rational expectations solution exists.

This can be quite restrictive [see, for example, King (2000) and Cochrane (2011)] and needs to

be pointed out as it may suggest an important interpretation to an eventual model rejection.

Finally, one of the criticisms routinely advanced against the considered model is that its par-

simony implies a limited information set that may lack credibility. Specifically, the intervening

variables are the output gap, inflation, and a short-term interest rate, which implies that lags

of these variables should suffice to adequately capture monetary policy. For modern macroe-

conomies, this is counterfactual. Rather than maintaining this restriction, a more flexible setup

would allow additional information, reflecting the data-rich environment within which policy

makers operate. One way to link equilibrium founded structures with relevant aggregates that

are not explicitly modeled is to consider additional instruments, which we refer to as ”extra-

model instruments”. Again as an illustrative example, as external instruments we consider lags 2

and 3 of both wage and commodity price inflation, conformable with the literature. Using these

26It is worth noting that Linde (2005) assumes a diagonal covariance matrix; see Curdia and Reis (2011) for

supportive evidence in favour of relaxing the usual uncorrelated shocks assumption.
27Recall that for general structures of the (2.1) form, lag truncation affects the accuracy of the VAR(p) solution

and the associated benchmark. The statistical solved form is a VAR exactly only when all the endogenous variables

are observable.
28Although details are not provided, this observation conforms with Linde (2005, footnote (20)) which suggests

that variance parameters have been partialled out in FIML.
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additional variables in the estimation may potentially sharpen inference about some structural

parameters of interest, in an econometrically convenient manner.

On balance, our illustrative framework does not depart from common practice: although

reasonable and substantiated in published empirical works, our assumptions remain strict and

will serve to illustrate the ability of our proposed methods to reject false models.

4.1 The data

We conduct our applications using U.S. data for the sample extending from 1962Q1 to 2005Q3.

We use the GDP deflator for the price level, Pt, and the Fed Funds rate as the short-run interest

rate.

Our LI estimations can be conducted using either intra-model instruments, or intra-model

instruments supplemented with external ones. As external instruments, we consider lags 2 and

3 of both wage and commodity price inflation conformable with the literature. Specifically,

commodity price inflation data may capture global factors.29 Finally, as in Linde (2005), all

our data is demeaned prior to estimation. Demeaning all variables, including instruments when

used, corresponds to allowing for unrestricted constants in the model studied (that is, it allows

to express explained variables in deviation with respect to (potentially non-zero) unknown equi-

librium values). Constraints on equation constants are evacuated by demeaning and thus are

not accounted for.30 The demeaning also allows for a fair comparison between our results and

Linde’s.

For the output gap, we consider two measures. The first is a real-time measure of the output

gap, in the sense that the gap value at time t does not use information beyond that date. This

ensures that the lags of the output gap are valid for use as instruments. Thus, as in Dufour,

Khalaf, and Kichian (2006, 2010a, 2010b), we proceed iteratively: to obtain the value of the

gap at time t, we detrend GDP with data ending in t. The sample is then extended by one

observation and the trend is re-estimated. The latter is used to detrend GDP, and yields a value

for the gap at time t + 1. This process is repeated until the end of the sample. A quadratic

trend is used for this purpose. The second measure is the standard quadratically-detrended

output gap (that uses the full sample) as in Linde (2005), and which is included for comparison

purposes. We then take the log of both these output gap series.

29It has been argued [see e.g. Boivin and Giannoni (2009)] that international factors may be relevant in the

determination of the U.S. macroeconomy.
30Canova and Sala (2009) provide an illustrative example that discusses the consequences of such an empirical

practice. See also Cochrane (2011) for other issues with model intercepts.
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4.2 Substantive questions

On the substantive side, we use (2.6) to assess three features of the New Keynesian model. First,

we study intrinsic inflation persistence within the NKPC. Formally, we test whether values of

ωf less than 0.5 can be ruled out, that is whether the NKPC is conclusively more forward

than backward looking. We also check whether the pure forward looking case [that is ωf = 1]

can be refuted. For insights and perspectives on the importance of lagged inflation, refer to

Linde (2005), Benati (2008), Fair (2008), Nason and Smith (2008), Schorfheide (2008) and the

references therein. The surveys by Schorfheide (2008, 2010) confirm enduring disagreements in

this regard. We thus ask whether our systems approach can sharpen our inference on the nature

of the NKPC, relative to single equation methods.

Second, we check whether insignificant forcing variables in the NKPC and the output equa-

tion can be ruled out. Formally, we test whether the hypotheses γ = 0 and , β−1
r = 0 can

be conclusively refuted. As emphasized in Schorfheide (2010), reported estimates of forcing

variables coefficients [specifically of the NKPC] are ”fragile” across available studies and cover

[among others] values near zero, implying that changes in demand pressures have no impact

on inflation. The consequences of the researcher getting the slopes of the NKPC and IS curve

wrong are of obvious concern. In contrast to single-equation models, systems based estimation

utilizes the information in the contemporaneous relationship between output, inflation, and in-

terest rates, which may better capture the parameters describing transmission mechanisms. We

thus ask whether more realistic predictions are captured by our systems approach relative to

single equation methods.

Third, we ask whether a systems approach can recover any useful information on the feedback

coefficients in the Taylor rule (γπ and γy). Mavroeidis (2010) reports identification problems

for these parameters from a single-equation perspective. Fundamental issues with such rules -

arising from imposing unique rational expectations solutions when New Keynesian type models

are brought to data - have recently been pointed out by Cochrane (2011). Although a sole

reliance on γπ and γy to interpret such issues can be misleading, Cochrane (2011) provides a

motivation for assessing the worth of systems-based inference on the Taylor rule, which suggests

to check whether imposing stability on the considered system has any empirical support.

4.3 Results and discussion

Our systems inference produces a striking result. With both gap measures, the model is re-

jected at the 5% level using our FI method. Again, for both gap measures, the model is also

rejected at the 5% level using the multi-equation HAC statistic, with and without external in-
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struments. Formally, with both gap measures and using our above defined notation we have:

minφ0
L (φ0) ≥ F5%(Kn , µτ − 2λ), and minθ0

J (θ0) ≥ χ2
5%(m) with and without external in-

struments [degrees-of-freedom are given in subsections (3.2.1) and (3.3.1)]. Note that in what

follows and unless otherwise indicated, a 5% level is implied when we discuss test rejections.

With our multi-equation LI method and an i.i.d. errors assumption, we obtain an empty confi-

dence set [minθ0
W (θ0) < F5%(m,n(T −k))] when the standard quadratically-detrended output

gap is used. In contrast, the model is not rejected with the real-time output measure of the gap

using this same statistic.

It is worth comparing these results so far to those obtained by Linde (2005), since these

are quite different (despite our reliance on similar specifications). Linde argues, using Monte

Carlo experiments, that FIML methods are superior to GMM-type approaches at uncovering

the true values of the structural parameters, and his estimations on US data show that the

NKPC is preponderantly backward-looking, and moreover, that using either different measures

for the yt variable will yield qualitatively similar results. We find that FI actually leads us to

reject the model, and furthermore, that the proxies used for the gap have profound implications

for LI estimations. This last conclusion also contrasts with Kleibergen and Mavroeidis (2009)

who report using single equation weak-instruments robust methods that their estimations on

the NKPC are empirically invariant to the gap measure.

One possible reason for why we obtain conflicting outcomes with the different gap measures

using the systems LI statistic is the instrument validity problem discussed in Doko-Tchatoka and

Dufour (2008) (in the context of general IV-based inference) and Dufour, Khalaf, and Kichian

(2010b) (in the case of various empirical NKPC specifications): when some of the instruments

or lagged endogenous variables of the model are not truly predetermined, tests [including the

identification-robust procedures] that rely on them will yield spurious results. Given that the

standard output gap measure is obtained using all of the sample observations, its lags (t − τ)

may actually be correlated with the time t error terms, making them inappropriate for use as

predetermined variables or legitimate instruments.

More subtle arguments can be raised that question the validity of lags as instruments. For

example, in the context of the New Keynesian model, Cochrane (2011) argues that the interaction

of assumptions on disturbances with assumptions for determinacy may make lags of endogenous

variables inappropriate for use as predetermined regressors. With regards to assumptions on

disturbances, note that our model passes the LI test imposing i.i.d. regression errors and fails

when serial dependence is allowed. This observation has to be qualified given: (i) the risk of

spurious rejections since the systems HAC statistics are known to be oversized, and (ii) the
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Table 1. Multi-equation Inference - Real-Time Output Gap

Equation Coefficient Model-Consistent Instruments Intra and Extra-model Instruments

NKPC ωf 0.781 0.748

[0.577, 0.951] [0.657, 0.848]

γ 0.002 -0.011

[-0.016, 0.015] [-0.028, 0.005]

Output βf 0.373 0.471

[0.233, 0.456] [0.385, 0.556]

βr 28.57 30.0

[25.91, 30.0] [24.591, 30.0]

Taylor Rule γπ 1.296 1.326

[0.957, 1.578] [1.126, 1.560]

γy 0.417 0.417

[0.281, 0.512] [0.313, 0.544]

ρ1 1.042 1.064

[1.009, 1.154] [1.002, 1.125]

ρ2 -0.357 -0.424

[-0.533,-0.312] [-0.511,-0.337]

ρ3 0.207 0.248

[0.168, 0.312] [0.190, 0.305]

minθ0
W (θ0) 1.537 1.445

p-value 0.064 0.057

Note: The estimated model is (2.6), with the real-time output gap measure [refer to section

4.1]. Estimation applies the limited information method presented in section 3.2.
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specific lag structure adopted to justify i.i.d. errors.31 Perhaps more to the point is our model

rejection with the FI statistic, because FI is based on a solution that imposes more than just

model consistency: it imposes determinacy as well, and that may be an important factor driving

the rejection.

We do not claim that we formally test determinacy here. Our FI rejection may also be

linked to the usual culprits, that is, it may have more to do with unsuitable exogenous driving

processes than with the credibility of the New Keynesian model itself. Although related with

regard to their econometric implications on regression errors, the problems arising from ill-

fitted shock processes and determinacy are fundamentally different. One can always add lag-

length restrictions as approximations, yet a unique and stable rational expectation solution may

require more forceful assumptions. Our LI method is applied maintaining the same lag-length

restrictions on disturbances as the FI one, and in contrast to FI, the former method gives the

model a chance, which is interesting to point out.

One may object at any further analysis based on the considered structure when its underlying

equilibrium restrictions are empirically unsubstantiated. There is an active debate on the right

specification of the New Keynesian model, so despite a rejection with FI, we proceed with our

interpretation of (2.6) as an incomplete structure. Table 1 reports parameter estimates and

associated identification-robust projections for the elements of θ, for the cases where the model

is not rejected, that is with the real-time gap, and using our LI method. Tables 2 and 3 report

our confidence intervals with single equation identification-robust methods. These include the

Generalized Anderson-Rubin (GAR) methods [see Stock and Wright (2000)] used by Kleibergen

and Mavroeidis (2009), Mavroeidis (2010) and Dufour, Khalaf, and Kichian (2006, 2010a, 2010b)

that impose the structural constraints of each equation [Table 2], as well as the completely

unconstrained method proposed by Dufour and Taamouti (2005) [Table 3].

The point estimates in Table 1 are not at odds with the literature with regard to the models

estimated using the real-time gap. In particular, the coefficient on the expected inflation term

of the NKPC is high, indicating forward-looking behavior. Such a conclusion was arrived at

among others by Gaĺı, Gertler, and Lopez-Salido (2005) and Sbordone (2005), who examine

the closed-form version of the NKPC in a single-equation context, and by Smets and Wouters

(2007) who estimate a medium scale DSGE model using Bayesian methods; for a more global

perspective, see Schorfheide (2008). Similarly, the coefficients of the Taylor Rule are not far

from the numbers that Taylor (1993) had suggested and what other studies have found for the

post-Volcker era (see, for instance, Clarida, Gaĺı, and Gertler (2000)).

31Results without HAC remain more restrictive in the sense that they rule out MA errors and heteroskedasticity,

so there is a trade-off between robustness and finite-sample accuracy.
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Point estimates do not change much whether the full instrument set or the model-consistent

instrument subset are used. However, we find that outcomes are subtly different when we assess

the sensitivity of the confidence intervals to the considered information set. In particular, while

it is possible to ascertain that the NKPC is a forward-looking variable based on both instruments

sets [values of ωf below 0.5 are rejected], values near one for ωf and less than one for γπ are

ruled out with our full set of instruments, and are not rejected with its model-consistent subset.

This result, particularly in the case of ωf , is even more noteworthy when our multi-equation

estimates are contrasted with single equation ones.

The confidence intervals from Table 2 suggest that when cross-equation information is not

accounted for, the model-consistent instruments are weakly informative on the NKPC relative to

the expanded instrument set. While the confidence intervals for ωf tighten up importantly when

the instruments set is expanded and when the i.i.d. assumption is relaxed, in contrast with our

multi-equation based results, the pure forward looking case [that is ωf = 1] cannot be refuted.

It is also worth noting from Table 3 that the unrestricted confidence intervals for the forward

looking coefficient in the NKPC, treated as a reduced form [that is when the restriction that

the forward and backward looking terms sum up to one is relaxed], covers values exceeding one.

Furthermore, values less than 0.5 cannot be refuted with a single equation method except with

the HAC statistic and the standard gap measure (with which we rejected the model from a LI

yet multi-equation perspective). Aside from this exception, single equation confidence intervals

on the NKPC are much more sensitive to changes in the information set than to changes in the

gap measure.

Again from Table 2, single equation estimation of the output equation produces empty sets

whether structural restrictions are imposed or not, whether the i.i.d. assumption on errors is

imposed or not, and with both gap measures. The Taylor rule is rejected under all our single

equation assumptions with the standard gap measure. With the real-time gap measure, we find

quite fragile support for the rule, in the sense that results vary dramatically with the different

considered instruments and assumptions. For example, with model consistent instruments,

confidence intervals for γπ and γy imposing and relaxing i.i.d. disturbances are wide suggesting

the same identification difficulties as documented by Mavroeidis (2010). In contrast, expanding

the instrument sets leads to rejecting the equation except with an i.i.d. disturbance, in which

case we again find wide confidence sets revealing weak identification.

Focusing on the results with the real-time output measure, two points deserve notice when

single equation evidence is contrasted with our LI multi-equation inference. First, despite their

imperfections when considered on their own as single equations, including both output and

interest rate equations in the system sharpens our inference on the NKPC. In contrast to single-
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Table 2: Single Equation Structure-Restricted Confidence Sets

Inflation Equation; Intra-Model Instruments

Coefficient Standard Gap Real-time Gap

iid -GAR GAR-HAC iid -GAR GAR-HAC

ωf [0.200,1.0] [0.510,1.0] [0.045,1.0] [0.470,1.0]

γ [-0.100,0.050] [-0.070,0.010] [-0.095,0.055] [-0.050,0.015]

Inflation Equation; All Instruments

Standard Gap Real-Time gap

iid -GAR GAR-HAC iid -GAR GAR-HAC

ωf [0.315,1.0] [0.440,1.0 ] [0.310,1.0] [0.455,1.0]

γ [-0.10,0.055] [-0.055,0.010] [-0.09,0.060] [-0.040,0.015]

Output Equation; Intra-Model Instruments

Standard Gap Real-time Gap

iid -GAR GAR-HAC iid -GAR GAR-HAC

βf ∅ ∅ ∅ ∅

βr ∅ ∅ ∅ ∅

Output Equation; All Instruments

Standard Gap Real-Time gap

iid -GAR GAR-HAC iid -GAR GAR-HAC

βf ∅ ∅ ∅ ∅

βr ∅ ∅ ∅ ∅

Taylor Rule; Intra-Model Instruments

Standard Gap Real-time Gap

iid -GAR GAR-HAC iid -GAR GAR-HAC

γπ ∅ ∅ [0.700,1.950] [0.700,1.950]

γy ∅ ∅ [0.050,0.950] [0.000,0.950]

Taylor Rule; All Instruments

Standard Gap Real-Time gap

iid -GAR GAR-HAC iid -GAR GAR-HAC

γπ ∅ ∅ [0.700,1.950] ∅

γy ∅ ∅ [0.050,0.950] ∅

Note: The estimated model is (2.6), equation by equation, ignoring contemporaneous correlation

of disturbances. GAR refers to the single-equation generalized Anderson-Rubin method [refer to

Stock and Wright (2000), Kleibergen and Mavroeidis (2009) and Dufour, Khalaf, and Kichian

(2006, 2010a, 2010b)], which applies the same inference approach as the limited information

presented in section 3.2, equation by equation. HAC refers to the Newey-West serial dependence

correction.
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equation methods, systems based estimation reveals useful information regarding ωf , implying

that the NKPC is conclusively more forward than backward looking, and that the pure for-

ward looking case can be refuted. Such a conclusion cannot be reached with a single-equation

approach.

Second, despite its fragility as a single equation, our LI system inference on the interest rate

equation is quite informative. In contrast to the high estimate uncertainty we found with our

single equation approaches, our LI systems-based confidence intervals on γπ and γy are tightly

centered around values compatible with Taylor (1993), particularly when an expanded instru-

ment set is used. Recall that although systems-based, our LI method does not impose a unique

equilibrium, and the latter assumption when imposed leads to rejecting the structure. We do

not claim that ruling out estimation uncertainty on γπ and γy evacuates the deep interpretation

issues [see King (2000) and Cochrane (2011)] associated with these parameters within a New

Keynesian reaction function. Nevertheless, our LI method allows cross-equation variables to in-

teract contemporaneously with minimal assumptions about underlying dynamics, which delivers

precise estimates of feedback coefficients that are not at odds with the Taylor principle. Such a

conclusion, again, cannot be reached with a single-equation approach.

Another point that is important to raise is the insignificance [using confidence intervals based

on the statistics that have not led to model rejections] at the 5% level, of the parameter on the

output gap term in the NKPC. We also find [again, using confidence intervals based on the

statistics that have not led to model rejections] that the value of the parameter on the real

interest rate in the output equation is quite small, often hitting the lower bound of 0.03 (more

precisely, the elasticity of intertemporal substitution hits the maximal value of 30.00 allowed in

the estimation). This is not at odds with findings by, for example, Rudd and Whelan (2006) and

Benati (2008). Broadly speaking, the survey of Schorfheide (2010) also suggests that insignificant

coefficients are not unusual for forcing variables relative to available empirical studies.

While not uncommon, insignificant forcing variables in the NKPC and IS are an empirical

puzzle. So far, available identification-robust evidence is this regard is restricted to the NKPC.

Kleibergen and Mavroeidis (2009) apply partialled-out single equation statistics that under

specific conditions [for example, imposing that one has accounted for all relevant instruments]

may provide more powerful tests than projection-based methods, and yet cannot rule out a flat

NKPC even with such statistics.32 Magnusson and Mavroeidis (2010) also confirm this same

finding using the labor share, and an identification-robust minimum distance estimation method

based on a reduced-form VAR process for πt and yt. This result is noteworthy particularly

32We are not sure of the appropriateness of these statistics given our sample size; it can be verified that the

simulation study reported by Kleibergen and Mavroeidis (2009) uses a sample size of 1000 observations.

29



because they document, via an empirically relevant simulation study, that their reliance on an

underlying VAR provides more powerful inference than standard single-equation GMM, which

still does not address the puzzle. Our study adds credible structure to such a multi-equation

analysis and finds a similar outcome. Perhaps equally importantly, we also find that the same

puzzle plagues the IS equation.

While all issues raised by Schorfheide (2010) can be driving such findings, two possible

interpretations can be suggested. First, it is indeed the case that the NKPC and the IS equations

are flat, which is a dilemma that challenges New Keynesian theory. Second, the transmission

mechanisms in the considered model are incomplete or misspecified so the forward and backward

looking terms in the NKPC and the IS curve still absorb all information in the data, even when

the modeled variables are allowed to interact contemporaneously across equations. Using single-

equation methods, we find no empirical support for the considered output equation and very

fragile evidence supportive of the considered interest rate equation, which lends credibility to

the second interpretation. Our FI test suggests that the overall empirical model lacks support,

which may also be viewed as a plausible - although radical - escape from this dilemma.

On balance, our results can be summarized as follows. Recall that we are evaluating the New

Keynesian theory in conjunction with non-fundamental assumptions about underlying dynamics.

Results with FI are negative, establishing that one popular empirical specification lacks support.

In contrast, as our LI results suggest, there is still sufficient statistical information in the sample

that allows us to learn something useful about the nature of the NKPC, and about the feedback

terms in the Taylor rule regression.

With FI methods, assumptions exogenous to the theory must be taken as given, so it would

be desirable to impose as few subsidiary restrictions as possible. These include restrictions on

the regression disturbances, on the uniqueness of a rational expectation solution, and on the

underlying information set.33 Counterintuitively, complete-model based analysis of the New

Keynesian theory rely on very strict such assumptions. Our FI method embeds a specification

check, which formally rejects our FI assumptions, including the existence of a unique rational

expectation solution. The model fares better when stability restrictions are relaxed, yet one

important puzzle remains with the insignificance of forcing variables in the NKPC and the IS

curve. This [along with our rejection with FI] may be interpreted as a challenge to a popular

theory. Since our specification is illustrative in various dimensions, we prefer to interpret our

results as a motivation for further methodological improvements, with focus on LI.

33See Dufour and Taamouti (2007) on problems resulting from closing the information set on identification-

robust econometric methods. See also Stock (2010) for a recent perspective regarding ”whimsical assumptions”

in econometrics, defined as ”assumptions subsidiary to the empirical purpose at hand, but which affect inference

about the causal effect of interest”.
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Table 3: Single Equation Reduced-Form Confidence Sets

Inflation Equation

Intra-Model Instruments All Instruments

Coefficient of Standard Gap Real-time Gap Standard Gap Real-Time gap

Etπt+1 [0.892,1.379] [0.866,1.440] [0.891,1.230] [0.865,1.191]

yt [-0.137,0.026] [-0.095,0.082] [-0.115,0.026] [-0.090,0.054]

Output Equation

Intra-Model Instruments All Instruments

Standard Gap Real-time Gap Standard Gap Real-Time gap

Etyt+1 ∅ ∅ ∅ ∅

Rt − Etπt+1 ∅ ∅ ∅ ∅

Taylor Rule

Intra-Model Instruments All Instruments

Standard Gap Real-time Gap Standard Gap Real-Time gap

πt ∅ [0.062,0.234] ∅ [0.100,0.197]

Rt ∅ [0.016,0.079] ∅ [0.028,0.065]

Note: The estimated model is (2.6), equation by equation, ignoring contemporaneous correlation

of disturbances and relaxing within-equation restriction. Estimation applies the Anderson-Rubin

method from Dufour and Taamouti (2005).
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5 Conclusion

One can always add assumptions to complete models, as often occurs when models including

popular DSGE specifications are taken to data. The existence of a unique and stable rational

expectation solution is one key ingredient in this literature. Choices - that can have a substantial

impact on subsequent inference - regarding underlying shock processes and observables are other

examples of enduring concerns. But we must ask whether such assumptions are unduly strict,

for the case can often be made that some are way more restrictive than economic theory requires.

We contribute, via a concrete prototypical example based on the New Keynesian model, to this

debate.

On the methodology side, we propose econometric tools that can control statistical error

whether the considered model is complete or not, whether all or a subset of model equations

are involved, and whether the latter are statistically identified or not. Our FI methods are not

restricted to the considered model and are sufficiently general to cover any structure that can

be solved into an approximated VAR in observables. Our LI methods are even more general

requiring orthogonality conditions akin to GMM.

The approaches set forth in this paper also contribute to the literature on the New Keynesian

model. We estimate a standard three-equation model for the United States encompassing an

NKPC, an IS curve and a Taylor rule, from 1962Q1 to 2005Q3. We impose and relax a unique

rational expectation solution, maintaining similar lag-restrictions on regression disturbances in

both cases. In the latter case, we also compare single-equation to multi-equation estimation and

fit. We find that when a unique equilibrium is imposed to complete the model, it is rejected

by the data. In contrast, our LI method helps recover important information on structural

parameters that cannot be reached via single-equation methods. A key puzzling ingredient

remains regarding the forcing variables in the NKPC and the IS curve. Nevertheless, our LI

method generates realistic conclusions on the nature of the NKPC, and yields precise predictions

for feedback coefficients that are not at odds with the Taylor principle. These results suggest

that the unique rational expectations assumption is unduly restrictive for the considered model.

More broadly, we envision two possible uses for our proposed procedures. (1) Our FI method

is useful in that it provides a built-in check for whether complete modeling assumptions are coun-

terfactual. While FI approaches may be preferred by adept model builders, complete statistical

assumptions can be easier to reject, which may be unwarranted. Then again, one can learn from

our FI checks on how to overcome deficiencies in structures that lack fit. (2) Our LI method is

useful in that it can utilize cross-equation information on the modeled variables with as few re-

strictions as possible, which may have much more to tell about a model than its single-equation

counterparts when FI assumptions are - or must be - relaxed.
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Appendix

A Structural LI statistics

Consider the multivariate regression (3.12) rewritten in stacked form as

ǫ (θ0) = (In ⊗ Z)b+ v (A.24)

where Z is the T × k matrix of instruments with t-th row equal to Z ′
t, v is the nT -dimensional

vector that stacks Vt, t = 1, ..., T , b = vec(Π′) and

ǫ (θ0) = (ǫπ,1 (Y, θ0) , . . . , ǫπ,T (Y, θ0) , ǫy,1 (Y, θ0) , . . . , ǫy,T (Y, θ0) , ǫR,1 (Y, θ0) , . . . , ǫR,T (Y, θ0))
′

is the nT -dimensional vector of structural errors evaluated at θ0. In this context, the transformed

null hypothesis H∗
01 may be tested using the usual SURE-type F tests. We consider the statistic:

W (θ0) =

(

n(T − k)

m

)

(

Ab̂
)′ [

A
(

Σ̂v ⊗ (X ′X)−1
)

A′
]−1 (

Ab̂
)

(ǫ (θ0)−(In ⊗X)b̂)′
(

Σ̂−1
v ⊗ In

)

(ǫ (θ0)−(In ⊗X)b̂)
(A.25)

where b̂ and Σ̂v denote the unrestricted OLS coefficient and variance/covariance estimators from

(A.24) and A is the selection matrix that captures (2.4). Observe that b̂ and Σ̂v depend on θ0.
34

In our empirical model, n = 3, k = 8 + q when q extra-model instruments are used, and A is

the m× 3k selection matrix with m = 2k + 4 + q

A =







Aπ

Ay

AR






,

Aπ =
[

I(k) zeros(k, 2k)
]

Ay =
[

zeros(4 + q, k) Ā zeros(4 + q, k)
]

AR =
[

zeros(k, 2k) I(k)

]

, Ā =

[

I(2) 0 0

0 0 I(q+3)

]

.

The HAC statistic [see MacKinlay and Richardson (1991) and Ravikumar, Ray, and Savin

(2000)] we use is

J (θ0) = T d̂′D′

[

D

(

(

X ′X

T

)−1

⊗ In

)

ST

(

(

X ′X

T

)−1

⊗ In

)

D′

]−1

Dd̂, (A.26)

ST = Ψ0,t +
l
∑

j=1

(

l − j

l

)

[

Ψj,T + Ψ
′

j,T

]

, Ψj,T =
1

T

T
∑

t=j+1

(Xt ⊗ v̂t) (Xt−j ⊗ v̂t−j)
′

34The statistic W corresponds to equation (10.11) of Srivastava and Giles (1987, Chapter 10) and to equation

(49) in Dufour and Khalaf (2003, equation (49)).
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where for convenience, d̂ corresponds to b̂ reshaped such that d = vec(Π), D corresponds to a

conformable reshaping of the selection vector A, and v̂t is the three dimensional unrestricted OLS

residual from (A.24). Results reported use l = 4. The asymptotic distribution of this statistic

is χ2 with degrees-of-freedom equal to the number of restrictions in D (here, m = 2k + 4 + q as

above).

B Invariance of LI method to missing instruments

The econometric model underlying our LI estimation of (2.6) can be rewritten as

πt = [ωfπt+1 + (1 − ωf )πt−1 + γyt] + ǫπ,t

yt = [βfyt+1 +
∑4

j=1

(

1 − βf

)

βy,jyt−j − βr (Rt − πt+1)] + ǫy,t

Rt = [γπ

(

1 −
∑3

j=1 ρj

)

πt + γy

(

1 −
∑3

j=1 ρj

)

yt +
∑3

j=1 ρjRt−j ] + ǫR,t

(B.27)

where ǫt = (ǫπ,t, ǫy,t, ǫR,t)
′ is a zero-mean contemporaneously correlated disturbance vector that

integrates rational expectation error. By conducting the test of (3.13) in the context of (3.12)

as a test of (3.11), as described, we obtain a p-value that it is robust to the specification of

the fundamental DGPs under consideration, to measurement errors and excluded instruments.

Indeed, the test conducted in this framework only requires that the (unrestricted) reduced form

for the system is given, up to an error term, by some function of: (i) the predetermined variables

in the system [here, the considered lags of πt, yt and Rt], (ii) any extra instruments Z̃t used

in the test, and (iii) possibly a set of further explanatory variables, denoted Q̃t, which were

not used in the test; these may include further lags of the endogenous variables, and/or further

predetermined or exogenous variables that are omitted from the test, that is, are missing from the

multivariate regression (3.12). To see this, suppose that the reduced form takes the unrestricted

VAR specification

πt = aππt−1 +
∑3

j=1 bπ,jRt−j +
∑4

j=1 cπ,jyt−j +̟′
πQt + νπ,t,

yt = ayπt−1 +
∑3

j=1 by,jRt−j +
∑4

j=1 cy,jyt−j +̟′
yQt + νy,t,

Rt = aRπt−1 +
∑3

j=1 bR,jRt−j +
∑4

j=1 cR,jyt−j +̟′
RQt + νR,t,

(B.28)

where Qt =
(

Z̃ ′
t, Q̃

′
t

)′

. It is straightforward to check that substituting the right-hand of (B.28)

into the right-hand-side of (3.12) still leads, under the null hypothesis (3.11), to

ǫπ,t (θ0) = ǫπ,t, ǫy,t (θ0) =
4
∑

j=1

βy,j(1 − βf )yt−j + ǫy,t, ǫR,t (θ0) = ǫR,t, (B.29)

which justifies the tests we apply.
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C Full-information statistic

Consider the multivariate regression (3.21) rewritten in matrix form as

U (ϑ0) = ZΠ +W (C.30)

where U (ϑ0) is the T × n matrix with row U t(Y,ϑ0)
′, Z is the T ×K matrix of predetermined

variables in the system and W is the T × n matrix with row W ′
t . Let

Ŵ = U (ϑ0) − ZΠ̂, Π̂ = (Z ′
Z)−1

Z
′U (ϑ0) ,

Ŵ0 = U (ϑ0) ,

so Ŵ ′
0Ŵ0 and Ŵ ′Ŵ give the constrained [imposing Π = 0] and unconstrained sum of squared

errors matrices from (C.30). The statistic we use is

L (φ0) =

(

µτ − 2λ

Kn

) 1 −
(

|Ŵ ′Ŵ |/|Ŵ ′
0Ŵ0|

)1/τ

(

|Ŵ ′Ŵ |/|Ŵ ′
0Ŵ0|

)1/τ
. (C.31)

This statistic has been shown to perform well in the multivariate regression literature, with the

following approximate null distribution

L (φ0) ∼ F (Kn , µτ − 2λ) (C.32)

µ = T −K −
(n−K + 1)

2
, λ =

nK − 2

4
(C.33)

τ =

{

[(K2n2 − 4)/(K2 + n2 − 5)]1/2

1

, if K2 + n2 − 5 > 0

, otherwise.
. (C.34)

|Ŵ ′Ŵ |/|Ŵ ′
0Ŵ0| is the well known Wilks statistic; see Dufour and Khalaf (2002a, 2002b, 2003).

Observe that Ŵ and Ŵ0 depend on φ0. In our empirical analysis, n = 3 and K = 8.
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