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ABSTRACT

In this paper, we use identification-robust methods to agbesempirical adequacy of a New Key-
nesian Phillips Curve (NKPC) equation. We focus on the Gadi &ertler's (1999) specification,
on both U.S. and Canadian data. Two variants of the modeltadéed: one based on a rational-
expectations assumption, and a modification to the lattechwtonsists in using survey data on
inflation expectations. The results based on these twofggmns exhibit sharp differences con-
cerning: (i) identification difficulties, (ii) backward-b&ing behavior, and (i) the frequency of price
adjustments. Overall, we find that there is some supportihybrid NKPC for the U.S., whereas
the model is not suited to Canada. Our findings underscoradéd for employing identification-
robust inference methods in the estimation of expectafi@sed dynamic macroeconomic rela-
tions.

Key words: macroeconomics; inflation dynamics; New Keynesian RisliCurve; identification
robust inference; weak instruments; optimal instruments.

JEL classification: C12, C13, C3, C52, E3, E31, ES5.



RESUME

Dans cet article, nous employons des méthodes robustes rablemes d’identification afin
d’évaluer la valeur empiriqgue d'une nouvelle équation derkbe de Phillips keynésienne (NKPC).
Nous concentrons notre analyse sur la spécification de G&ledler (1999), en considérant des
données américaines et canadiennes. Nous étudions déanteardu modele: une premiére fondée
sur une hypothése d’attentes rationnelles et une secontls @ltentes sont mesurées a partir de
données d’enquéte. Les résultats basés sur ces deux siriBadifferent de maniére notable sur
plusieurs points: (i) les problémes liés a l'identificatidii) les comportements rétrospectifs, (iii)
la fréquence des ajustements. En fin de compte, nos réssitatscompatibles dans une faible
mesure avec un modeéle NKPC hybride, tandis que le modélemblesgas compatible avec les
données canadiennes. Nos résultats soulignent I'impmetafutiliser des méthodes robustes a
l'identification dans I'analyse empirique de relations nagconomiques ou interviennent des at-
tentes.

Mots-clefs: macroéconomie; dynamique de l'inflation; nouvelle courkePdhillips keynésienne;
inférence robuste a I'identification; instruments faiblestruments optimaux.

Classification du Journal of Economic Literature: C12, C13, C3, C52, E3, E31, E5.
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1. Introduction

A standard feature of macroeconomic policy models is an tegualescribing the evolution of
inflation. Nowadays, this process is typically modelled dnylarid New Keynesian Phillips curve
(NKPC). This specification results from recent efforts tod@lathe short-run dynamics of inflation
starting from optimization principles; see, for exampleyatiford (2003) and the references therein.
Inits basic form, the NKPC stipulates that inflation at titngea function of expected future inflation
and the current output gap. With its clearly-elucidatedtbtcal foundations, the NKPC possesses
a straightforward structural interpretation and therefpresents, in principle, a strong theoretical
advantage over traditional reduced-from Phillips curwesi¢h are only statistically justified).

However, given the statistical failure of the basic NKPCniatation when confronted with
data, the curve has since evolved into its more empirica#iiple hybrid form. In particular, it was
noted that: (i) adding lagged inflation to the modeyl§rid NKPQ corrects the signs of estimated
coefficients [see Fuhrer and Moore (1995), Fuhrer (1997)Rwiderts (1997)], and (ii) using a
measure of real marginal cost derived from a given prododiimction instead of the output gap
yields a better statistical fit according to GMM-based eatas and tests [see, for example, Gali and
Gertler (1999) and Gali, Gertler and Lopez-Salido (200¥gt the question of which production
function (.e., which marginal cost measure) is empirically preferabl@ads yet resolved, as the
choice for the marginal cost proxy seems to affect evidemctne weight of the backward-looking
term; see Gagnon and Khan (2005). In addition, there arerdiit theoretical ways of incorporating
backward-looking behavior in the curve, and they yieldatiéht outcomes; see Fuhrer and Moore
(1995), Gali and Gertler (1999) and Eichenbaum and Fisigg42

Discriminating between competing alternatives calls fidiable econometric methods. Full-
information models are typically nonlinear and heavilygraetrized So, in practice, these models
are often estimated by applying standard limited-infofarafLl) instrumental-variable (IV) meth-
ods to first-order conditions of interest. Indeed, the papiyl of NKPC models stems in large part
from studies such as Gali and Gertler (1999) and Gali et @DXPwho found empirical support for
their version of the curve using the generalized method aherds (GMM), and the fact that the
model is not rejected by HansernJstest.

But even as the popularity and usage of the curve has grovwticjsans have been raised with
respect to its empirical identifiability. The main issue hsttlV methods such as GMM are not
immune to the presence of weak instruments; see, for exampleur (1997, 2003), Staiger and
Stock (1997), Wang and Zivot (1998), Zivot, Startz and Nel&098), Stock and Wright (2000),
Dufour and Jasiak (2001), Stock, Wright and Yogo (2002)j#degen (2002), Khalaf and Kichian
(2002, 2005), Dufour and Khalaf (2003), and Dufour and Taam@005, 2006, 2003 2003).
These studies demonstrate that standard asymptotic presefivhichimpose identification away
without correcting for local almost-nonidentificationedundamentally flawed and lead to spurious
overrejections, even with fairly large samples. In patticuthe following fundamental problems
do occur: in models which may not be identified over all theapaster space, (i) usuatype tests

1For example, Gali and Gertler (1999) appeal to the assumtiat a proportion of firms never re-optimize, but that
they set their prices using a rule-of-thumb method; Eichenband Fisher (2004) use dynamic indexing instead.
2In this literature, some of the parameters are typicallibcaled while others are estimated.



have significance levels that may deviate arbitrarily frbwitnominal levels since it is not possible
to bound the null distributions of the test statistic, anyg\ald-type confidence intervals [of the
form: estimatet (asymptotic standard error) (asymptotic critical point)] have dramatically poor
coverage irrespective of their nominal level because theyaunded by construction; see Dufour
(1997)3

To circumvent the difficulties associated with weak insteimts, the above cited recent work
on IV-based inference has focused on two main directions fse surveys of Dufour (2003) and
Stock et al. (2002)]: (i) refinements in asymptotic analystich hold whether instruments are
weak or not .g, Staiger and Stock (1997), Wang and Zivot (1998)), Stock\ahijht (2000),
Kleibergen (2002), Moreira (2003, and (ii) finite-sample procedures based on proper pivots
i.e. statistics whose null distributions do not depend oisance parameters or can be bounded
by nuisance-parameter-free distributiobsndedly pivotal functiongDufour (1997), Dufour and
Jasiak (2001), Dufour and Khalaf (2002), and Dufour and Ta&an(2005, 2006, 20043 200&)].
The latter include methods based on Anderson and Rubin&9(18R) pivotal F'-statistic which
allow unboundedonfidence sets.

Identification difficulties have led to re-examinations dfIRC models, and in particular of the
Gali and Gertler NKPC specification, by several authors eEigflly relevant contributions on this is-
sue include Linde (2001), Ma (2002), Nason and Smith (2088)Fauhrer and Olivei (2004). Linde
(2001) performs a small-scale simulation study based onlieG&atler-type model and documents
the superiority of full-information maximum likelihood (ML) over GMM. In particular, GMM
estimates appear sensitive to parameter calibrations. 20@2] applies the asymptotic methods
proposed by Stock and Wright (2000) to the Gali and GertdK$C in view of getting confidence
sets that account for the presence of weak instruments.eTdets are much too large to be infor-
mative, suggesting that the parameters of the curve arednolet well-identified. Nason and Smith
(2003) study the identification issue of the NKPC in limiiedbrmation contexts analytically, solv-
ing the Phillips curve difference equation. They show thipidal GMM estimations of such curves
have parameters that are not identifiable (or nearly so) falhthformation methods (FIML) can
make identification easier. Applications to U.S. data y@MM estimates that are comparable to
the values obtained by Gali and Gertler (1999). In contitagtr FIML estimates (which the au-
thors feel are more reliable) point to a greater role for baukl-looking behavior. For Canada,
the authors report that the NKPC is poorly identified, whetBMM or FIML estimation is used.
Finally, Fuhrer and Olivei (2004) consider improved GMMiesttion, where the instrumentation
stage takes the constraints implied by the structure fdynratb consideration. They demonstrate
the superiority of their approach through a Monte Carlo $ation. In addition, they estimate an
inflation equation using U.S. data, and obtain a large faM@wking component with conventional
GMM, but a much lower value for this parameter with “optim@&@MM and maximum likelihood.

In this paper, we reconsider the problem of estimating iftatlynamics, in view of recent

3Poor coverage (which implies that the data is uninformagtveut the parameter in question) is not really due to large
estimated standard errors, or even to poorly approximatedf€points. The problems stem from the method of building
the confidence set as an interval which is automatically fided". Any valid method for the construction of confidence
sets should allow for possibly unbounded outcomes, wheadhessible set of parameter values is unbounded (as occurs
when parameters are not identifiable on a subset of the ptagaspace). In this case, a bounded confidence set would
inevitably "rule out" plausible parameter sets, with olagdmplications on coverage.



econometric findings. Our aim is to produce more reliablerigfice based on identification-robust
tests and confidence sets. A characteristic feature ofifabation-robust procedures is they should
lead to uninformative (e.g., unbounded) confidence setwine parameters considered are not
identified [see Dufour (1997)]. We focus on two types of pthges: the AR procedure and a
method proposed by Kleibergen (2002). The AR procedure riscparly appropriate from the
viewpoint of validating a structural model, because it lsust not only to weak instruments, but also
to missing instruments and more generally to the formutadica model for endogenous explanatory
variables [see Dufour (2003) and Dufour and Taamouti (22086)]. A drawback, however, of the
AR procedure comes from the fact that it leads to the inctusiba potentially large humber of
additional regressors (identifying instruments), hencedaiction in degrees of freedom which can
affect test power in finite samples. To assess sensitivityisaype of effect, we also apply a method
proposed by Kleibergen (2002), which may yield power gaynseblucing the number of “effective”
regressors (although at the expense of some robusthess).

Our applications study U.S. and Canadian data using: (ip&mehmark hybrid NKPC of Gali
and Gertler, which uses a rational expectations assumpdiod (i) a modification to the latter
which consists in using survey-based measures of expetfiatian. Our analysis allows one to
compare and contrast both variants of the model; this ivaalebecause available studies imply
that the specification of the expectation variable mattergigcally. For instance, Gali and Gertler
(1999) suggest that, when the model is conditional on lalsogts, under rational expectations,
additional lags of inflation are no longer needed. In cottrB®berts (2001) argues that those
results are sensitive to the specification of labour cosid tlat the need to include additional lags
could reflect the fact that expectations are not rationad;adso Roberts (1997, 1997, 1998). Our
results reveal sharp differences between the two spedaiinsator U.S. and Canada.

In section 2, we review the Gali and Gertler's (1999) NKPC iylspecification. In section
3, we describe the specific models and the methodology ustdsipaper. Section 4 discusses
our empirical results, and section 5 concludes. Detailshendata and a formal treatment of the
statistical procedures we apply are presented in Appesdicnd B.

2. Gali and Gertler’s hybrid NKPC model

In Gali and Gertler's hybrid specification, firms evolve in amopolistically competitive environ-
ment and cannot adjust their prices at all times. A Calvetgpsumption is used to represent the
fact that a proportiord of the firms do not adjust their prices in periadin addition, it is assumed
that some firms do not optimize but use a rule of thumb whemgetiieir prices. The proportion
of such firms (referred to as the backward-looking pricéesg} is given byv. In such an environ-
ment, profit-maximization and rational expectations leadhe following hybrid NKPC equation
for inflation (r):
T = AS¢ + YV Eymier1 + -1, (2.1)

Tyl = Eymip1 + v (2.2)

“For further discussion of this issue, see Dufour and Taain@00%, 2003).
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E,m 41 1s expected inflation at timg s; represents real marginal costs (expressed as a percentage
deviation with respect to its steady-state value) angs unexpected inflation. The parameter
determines the forward-looking component of inflation apdts backward-looking parts is the
subjective discount rate.

Gali and Gertler rewrite the above NKPC model in terms of agtmality conditions. Two
different normalizations are used for this purp8sEhe first one [orthogonality specification (1)] is
given by

Ef{lom — (1 —w)(1 = 0)(1 — B0)s; — fOm1 —wm—a]z} =0 (2.5)

where¢p = (6 + w — wb + w(36), while the second one [orthogonality specification (2)] is
Et[(ﬂt — )\St — 7f7Tt+1 — 'yb7rt_1) Zt] =0. (26)

The vectorz; includes variables that are orthogonaktq ;, allowing for GMM estimation. Quar-
terly U.S. data are used, withh measured by the percentage change in the GDP deflator, dnd rea
marginal costs given by the logarithm of the labour incomarsh The instruments include four
lags of inflation, labour share, commodity-price inflatis@ge inflation, the long-short interest rate
spread, and output gap (measured by a detrended log GDP).

Gali and Gertler’s estimations yield the following values fw, 6, 3) : (0.27, 0.81, 0.89) for
specification (1), an).49, 0.83, 0.91) for specification (2). When the subjective discount rateis r
stricted to one, the estimates @024, 0.80, 1.00) and(0.52, 0.84, 1.00), respectively. The implied
slopes are all positive and deemed to be statistically fiigmit using IV-based asymptotic standard
errors, and the fact that the overidentifying restrictians not rejected by thé test. Accordingly,
Gali and Gertler conclude that there is good empirical stpfos the NKPC. Furthermore, the
forward-looking component of inflation is more importanaththe backward-looking parité. the
estimated value of is larger than the one foy).

However, given the severity of the size distortions indulbgdveak instruments, it is important
to ascertain that these results are not invalidated by suthgms® Ma (2002) uses corrected GMM
inference methods developed by Stock and Wright (2000) evateate the empirical relevance

®In Gali and Gertler (1999), the orthogonality conditions wuritten for the case = 0; see Gali et al. (2001) for the
general case.

®For a detailed discussion on weak instruments and theictsfi@s discussed in the introduction) see Nelson and
Startz (1996, 199(), Buse (1992), Choi and Phillips (1992), Maddala and Jed9§%), Angrist and Krueger (1994),
McManus, Nankervis and Savin (1994), Bound, Jaeger andrBa885), Cragg and Donald (1996), Hall, Rudebusch and
Wilcox (1996), Dufour (1997), Staiger and Stock (1997), Wand Zivot (1998), Zivot et al. (1998), Stock and Wright
(2000), Dufour and Jasiak (2001), Hahn and Hausman (20@3)2Rleibergen (2002), Moreira (20832003), Stock
et al. (2002), Kleibergen and Zivot (2003), Wright (2003)yeral additional papers are also cited in Dufour (2003) and
Stock et al. (2002).



of the NKPC specifications. The corrected 90 per cent confielesets (calleds-sets) that Ma
calculates are very large, including all parameter valoéise interval0, 3] for two of the structural
parameters, an@, 8] for the third one. Since all parameter combinations derivewh these value
ranges are compatible with the model, this suggests thatrgers are weakly identified. We will
now reassess the NKPC model using identification-robustvéak-instrument robust) methods.

3. Statistical framework and methodology

We consider here two econometric specifications in ordesgess Gali and Gertler's NKPC. These
are given by:
7rt:)\st+’yf7rt+1 + i1 F U, t=1,...,T, (3.2)

and
7rt:)\st+’yf7~rt+1 + i1 U, t=1,...,T, (3.2)

wherer; is a survey measure of inflation expectations. These two mddeer by their assumptions
on the formation of inflation expectations. In (3.1), expeecinflation E,7,,; is proxied by the
realized valuer,, 1, while in (3.2) it is replaced by the survey-based measurg of expected
inflation for m; 1. It is easy to see that both approaches raise error-in-Var@oblems and the
possibility of correlation between explanatory variatdes! the disturbance term in the two above
equations. Studies such as Roberts (1997, 1998, 2001) btae that the maintained specification
for how expectations are formed have important implicatifor the empirical validity of the curve.
That is, additional lags not implied by the NKPC under ragicexpectations may be required, even
if the model is conditional on labour costs.

The parameters, ~,, and+,, defined in equations (2.3), are nonlinear transformatafrtbe
“deep parametersiu, ¢, andd. The statistical details underlying our inference methoglp are
presented in Appendix B, where to simplify presentation.agept the following notationy is the
T-dimensional vector of observations on Y is theT x 2 matrix of observations og; and either
of 41 and741, X is the vector of observations on the inflation fag 1, X» is theT" x ky matrix
of the instruments (we use 24 instruments, see section 4) e T-dimensional vector of error
termsu;.

The methodology we consider can be summarized as followsbTan a confidence set with
level 1 — « for the deep parameters, we invert theest presented in Appendix B associated with
the null hypothesis

Hoiw:wO,ﬁ:ﬁO,HZHO (33)

wherewy, 3y, andé, are known values. Formally, this implies collecting theuesoy, 3,, andf
that are not rejected by the test (i.e. the values for whiehieht is not significant at level). Taking
equation (3.2) as an example, the test under consideratamegds as follows (further discussion
and references are provided in Appendix B).

1. Solve (2.3)-(2.4) for the values of v, and+, associated withvy, 3y, andf, : we denote
these by\o, 7 o and-yy-



2. Consider the regression [which we will denote the AR-gsgion, in reference to Anderson
and Rubin (1949)] of

{m — Xost — o7t — Ypom—1} on{m_1 and theinstrument3. (3.4)

Under the null hypothesis [specifically (3.2)-(3.3)], theefficients of the latter regression
should be zero. Hence testing for a zero null hypothesis laespponse coefficients in (3.4)
provides a test of (3.3).

3. Compute the standaid-statistic for the exclusion of all regressors, namely,
{m¢—1 and theinstrument$

in the regression (3.4) [see (B.13) in Appendix B]. In thisiaxt, the usual classical regres-
sion framework applies, so the lattErstatistic can be compared referred to its usoair x>
cut-off points.

Tests of this type were originally proposed by Anderson andiRR(1949) for linear Gaussian
simultaneous equations models. The AR approach transfarstgictural equation such as (3.2)
into the regular regression framework as in (3.4), for whitdndard finite-sample and asymptotic
distributional theory applies. The required transforimmiis extremely simple, despite the complex-
ity of the model under test. Indeed, the basic test we usaferance oy, 3, andf, differs from
a standard IV-based Wald éitype one by the fact that it avoids directly estimating ttrectural
equation in (3.2), which faces identification difficultiek contrast, the AR-regression (3.4) sat-
isfies the usual classical regression assumptions (becausndogenous" variables appear on its
right-hand side). Whereas any statistical analysis of) (®Quires identification constraints, these
are no longer needed for inference on the regression (3gishAwn more rigorously in Appendix
B, the AR-regression provides information on the strudtpemameters because it is linked to the
reduced form associated with the structural equation (Bg)identification-robust, we mean here
that theF-test is valid whether the model is identified or riot.

Transforming the test problem to the AR-regression framkwowever comes at some cost:
the identification-robusk'-test requires assessing [in regression (3.4)] the exxiudin; | and the
24 available instruments (25 constraints), even thoughuhgber of structural parameters under test
is only 3. Instrument abundance thus leads to degrees-of-freedssadavith obvious consequences
on test power. It is possible to characterize what an “ogtimmatrument set looks like from the
viewpoint of maximizing test power: up to a nonsingular sfammation, the latter (sag) should
be the mean of the endogenous explanatory variables in tdelrog which is equivalent,

Xy x {the coefficient ofX; in the first stage regression, assumed known},

"We emphasize in Appendix B that the latter test will be exasite-correct exactly if we can strictly condition on
the regressors and particularly the instruments for sigdisanalysis; weakly exogenous regressors in our dynamoitel
with instruments orthogonal to the regression error termasat in accord with the latter assumption. Nevertheldgs, t
tests are still identification-robust. An exact test cat & devised for the NKPC model at hand despite its dynamic
econometric specification if one is willing to consider sty exogenous instruments.



where X (as defined above) refers to the matrix of availab&rumentssee Dufour and Taamouti
(2003) and Appendix B of this paper. Here, the first stage regrassidhe regression of the
left-hand side endogenous variables in (3.2) [margina and expected inflation] on the included
exogenous variable [the inflation lag] axd. More precisely, this involves applying steps 1-3 above
after replacing theénstrumentsby Z, whose dimension i§" x 2. So, the optimal identification-
robustF'-test requires assessing [in the regression (3.4)] thaisxel of7;_; and the two optimal
instruments (3 constraints); recall that the number ofcttinal parameters under test is indeed 3.
This provides optimal information reduction, which impesvthe power of the test (and thereby
may tighten the confidence sets based on these tests).

In practice, however, the coefficient of; in the first-stage regressiodl{ in Appendix B)
is not known, and estimates of this parameter must be "ptigge which of course only leads
to an “approximately optimal” procedure. As described infd@u (2003), many procedures that
aim at being identification-robust as well as improving the procedure from the viewpoint of
power rely on different choices df. In particular, if a constrained OLS estimator imposing the
structure underlying (3.2) is useoﬂf in equation (B.15)], then the associated procedure yields
Kleibergen’s (2002) K-test.In other words, Kleibergen’s (2002) test obtains on apg\steps 1-3
above, replacing thmstrumentsy

Zx = XoI19 .

To avoid confusion, the tests based¥nandZy are denoted by AR and AR-K, respectively. This
is the alternative “parsimonious identification-robustb@edure we shall consider here.

Finally, we invert these tests to get confidence sets aswsilaising a grid search over the
economically meaningful set of values tor 3, andd, we sweep the economically relevant choices
for wo, By, andé,.® For each parameter combination considered, we computeatigtiss AR and
AR-K as described above and their respectivealues. The parameter vectors for which he
values are greater than the lewetonstitute a confidence set with level «. Since every choice of
wo, By, andd, entails [using (2.3)] a choice fox, v, and-y,, this procedure also yields conformable
confidence sets for the latter parameters. These confidetseeslect the structure, and obtain
without further computations, although ~, and~, are transformations of the deep parameters.
Therein lies a significant advantage in using our approadcinaaternative to standard nonlinear
Wald-based techniques.

To conclude, it is worth to emphasize two points. First, & tonfidence set obtained by invert-
ing an AR-type test is emptye. if no economically acceptable value of the model deep paenne
is upheld by the data, then we can infer that the model is tegjeat the chosen significance level.
We thus see that the procedure used here may be seen as aficatamt-robust alternative to
the standard GMM-based test. In the same vein, utterly uninformative (too wide) fadence

8To correct for plug-in estimation effectsd. for estimatinglZ:), Dufour and Jasiak (2001), Dufour and Taamouti
(2003, 2003&) recommend split sample estimation techniques, whererdtestib-sample is used to estimafe and the
second sub-sample is used to run the optimal AR-test basttkdatter estimate. Results applying these versions of the
tests are available from the authors upon request.

*We allow the range (0, 1) as the admissible space for each @&fands. The values are varied with increments of
0.03 forw andé, and by 0.01 for3. The increment of 0.03 was chosen for the first two paramétatiser than 0.01) to
minimize the computational burden.



sets allow one to assess model fit, since unbounded confideteelo occur under identification
difficulties [see the discussion in Dufour (2003)]. Our mdare (which performs, for practical
purposes, the same specification checks conveyelitgge test) has a clear “built-in” advantage
over GMM-based-type confidence intervals, backed by a non-significatest°

Our procedure offers another important advantage notglgréhe latter standard approach. So
far, we have considered the estimation and test problenm giwpecific significance (or confidence)
level a. Alternatively, thep-value associated with the above defined tests, which peswvadformal
specification check, can be used to assess the empiricaltfie shodel. In other words, the values
(unigueness is not granted)©f, (5, andd, that lead to the largegtvalue formally yield the set of
“least rejected” models,e. models that are most compatible with the ddtén practice, analyzing
the economic information content of these least rejectedetsqassociated with the least rejected
“deep parameter” combinations) provides decisive and usejul goodness-of-fit checks.

4. Empirical results

We applied the above-defined inference methods to the hiKBC models in (3.1) and (3.2)
for both U.S. and Canadian data. One difference betweenpaaifications and those of Gali and
Gertler is that we use a real-time output-gap measure inghefsinstruments instead of a gap
detrended using the full sample. The latter measure doesppetar to be an appropriate instrument
since, when the full sample is used, lagged values of the ggbg construction, related to future
information. To avoid this, we proceed iteratively: to abt¢éhe value of the gap at timg we
detrend GDP with data ending in The sample is then extended by one more observation and the
trend is reestimated. This is used to detrend GDP and yielddug for the gap at time + 1.
This process is repeated until the end of the sample. Indisidn, the gap measure at timéoes
not use information beyond that period and can thereforeskd as a valid instrument. We also
considered a quadratic trend for this purp&se.

Regarding survey expectations, the Federal Reserve BaRkitzfdelphia publishes quarterly
mean forecasts of the next quarter's U.S. GDP implicit pdeBator. We first-difference this series
to obtain our inflation-expectations series for the &3 the case of Canada, the survey-based
inflation expectations series were obtained from CanadargeCence Board Survey; further details
on the Canadian data appear in Appendix A. For the remairanighles, other than the output gap,
we use the Gali and Gertler data and instrument set for the Bn8 the corresponding variables
in the case of Canada. Because of the expectations variablee data set, our samples start in
1970Q1. The data end in 1997Q4 for the U.S., and in 2000Q4 doa@a.

%ndeed, if the AR confidence set with level- « is empty, then the usual LIML over-identification test sttt will
exceed a specific bounds-based identification-robtigtvel critical point,i.e. the associated over-identification test is
conclusively significant at leveid.

This method underlies the principles of Hodges-Lehmarimesbrs; see Hodges and Lehmann (1963, 1983). Least-
rejected values may thus be interpreted as "point estithates

2\We repeated our estimations using a cubically-detrendakdtiree gap measure, as well the Christiano-Fitzgerald
one-sided band-pass filter, and obtained qualitativelyiaimesults.

B3source:http://www.phil.frb.org/econ/spf/index.html.



Table 1. Anderson-Rubin tests with rational expectations

Test Type Unrestricted model
Max p-value | Deep parameters Reduced-form parametelsFreq.
(W, 07 ﬁ) (A7 ’Yfa fo)
AR u.sS. 0.2771 (0.40,0.64, 0.96 (0.08, 0.60, 0.39) 2.78
Canada - - - -
AR-K u.s. 0.9993 (0.40,0.61,0.98 (0.09, 0.59, 0.40) 2.56
Canada| 0.9990 (0.01,0.37,0.21 (1.53,0.21,0.03) 1.59
6 =10.99
Max p-value | Deep Parameters Reduced-form ParametefsFreq.
(UJ7 07 6) (A7 ’Yfa fo)
AR u.sS. 0.2765 (0.37,0.64, 0.99 (0.08,0.63,0.37) 2.78
Canada - - - -
AR-K u.s. 0.9987 (0.37,0.64,0.99 (0.08,0.63,0.37) 2.78
Canada| 0.2900 (0.01,0.10,0.99 (7.30,0.91, 0.09) 1.11

Note - AR is the Anderson-Rubin test and AR-K refers to thelkdegen test. Freq. is the average frequency
of price adjustment, measured in quarters.

We first apply the AR test to the U.S. data, and for equatioh) (80 assess the Gali and Gertler
(1999) reported estimates. Specifically, we test whethér andg are(0.27, 0.81, 0.89) or (0.49,
0.83, 0.91), which correspond to those authors’ estimatesdon their orthogonality specifications
(1) and (2), respectively. We find all tests to be significant@ventional levels, so that their
estimated parameter values are rejected. We then ask whigththe same instrument set, there
exists a value of the parameter vector for which the hybridP@Ks not rejected. Interestingly, we
find some dramatically different results depending on wérefB.1) or (3.2) is used.

For the U.S. rational expectation solution, we find a bounideidfairly large confidence set.
This entails that there is a multitude of different parametembinations which are compatible
with the econometric model tested, although the set is moilsr than the S-sets constructed by
Ma.l* However, for the model using survey expectations the confideset is empty (at the 95%
level). Thus, not a single parameter value combination mepatible with this particular econo-
metric model, implying that with survey expectations, thedel is not appropriate. Regarding the
Canadian data, we find that the outcomes are reversed. Thsishé model with rational expec-

“There is a slight difference between our two instrument 9dtss set includes a constant and has no fourth lag for
any of the variables in levels.



Table 2. Anderson-Rubin tests with survey expectations

Test type Unrestricted model
Max p-value | Deep parameters Reduced-form parametersFreq.
(UJ7 07 6) ()‘7 foa ’Yb)
AR u.S. - - - -
Canada| 0.1009 (0.01,0.97,0.89 (0.00, 0.88, 0.01) 33.33
AR-K u.s. 0.9983 (0.01,0.61, 0.64 (0.38,0.63, 0.02) 2.56
Canada| 0.0890 (0.01,0.97,0.90 (0.00,0.89, 0.01) 33.33
8 =0.99
Max p-value | Deep parameters Reduced-form parametersFreq.
(UJ7 07 6) ()‘7 foa ’Yb)
AR u.S. - - - -
Canada| 0.0562 (0.01,0.97,0.99 (0.00, 0.98, 0.01) 33.33
AR-K u.s. 0.6057 (0.52,0.22,0.99 (0.40,0.29, 0.70) 1.28
Canada - - - -

Note - AR is the Anderson-Rubin test and AR-K refers to thelkdegen test. Freq. is the average frequency
of price adjustment, measured in quarters.

tations that generates the empty confidence set, while #@figation using survey data yields the
non-empty one. The latter is so small that there are only quanameter value combinations for
which the model is statistically valid.

Along with the identification-robust confidence sets, on¢hef great advantages of using the
Anderson-Rubin method is that it yields the parameter coathin that is least rejected, or, alterna-
tively, that has the highesgtvalue. Formally, as explained in the previous sectiors, ploint estimate
corresponds to the so-called Hodges-Lehmann estimateaamideccompared with point estimates
obtained using more conventional estimation methods (asdBMM). We report this estimate for
the U.S. and Canada in the upper panels of Tables 1 and 2ctespe From here, we can see
that, under rational expectations, the values of the degppetergw, 6, 3) that correspond to the
maximalp-value for the U.S. is given b§0.40, 0.64, 0.96). These translate into a value of 0.6 for
the coefficient of the forward-looking component on inflatie, ), and 0.39 for the coefficient of
the backward-looking componeft;). Furthermore, the coefficient on the marginal cost variable
is 0.08, and the average frequency of price adjustment &quarters.

Based on the Hodges-Lehmann estimates, the findings previgigort for the optimization-
based Phillips curve, and the notion that the forward-lngkiomponent of the U.S. inflation process
is more important than its backward-looking part. In addifithe estimate for the average frequency
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of price adjustment is fairly close to the value of 1.8 obeditbased on micro data [see, for example,
Bils and Klenow (2004)1> On the other hand, the graphs in the lower panel of Figure \igeca
qualification to the above statement.

The graph in the bottom panel, on the left, depicts 6% (solid line, p-value= 0.05) and
90% (dashed linep-value= 0.10) confidence sets based on the AR test, and for the case wieere th
subjective discount parameter is constrained to lie betve@5 and 0.99. An “X” marks the spot
corresponding to the highestvalue obtained (0.2797). Immediately, three featuresbeamoticed:

(i) the sets of parameter values that the test does not r@j¢loce 5 and 10% levels are fairly large,
(i) within these sets, there is more than an®alue that corresponds to a givénand vice-versa,
and (iii) the parameter combination that yields the highegalue is very close to points that have
a p-value of 0.10 only. In other words, even whgns constrained quite tightly, the uncertainty
regarding the estimated values of the other parameterta/edy high. This is seen more easily in
the adjacent graph which depicts the values corresponditiged5% confidence set in the, and

v, Space. Notice, in particular, that a value of 0.60 for thekinard-looking component of inflation,
and 0.37 for the forward-looking part is as likely to be ob&al as a value of 0.90 and 0.10 for the
forward and backward-looking components, respectively.

Turning now to Canadian data, recall that the model witloregi expectations is not compatible
with the data, but that the one with survey expectations gadd a non-empty set. The results
corresponding to the highegtvalue for the latter are reported in Table 2. In this case ntlaximal
p-value is 0.1009 while the deep parameters @#®61, 0.97, 0.89). Based on the fact that the
proportion of firms that follow a rule-of-thumb is practisarero (v = 0.01), we would conclude
that a purely forward-looking model is applicable to Canddawever, a look at the reduced-form
parameters and the average frequency of price adjustmdictata that the model is economically
not plausible. This is the case everpifs constrained to 0.99 in the estimatith.

Results based on Kleibergen'’s statistic are also repont@dldles 1 and 2. As for the AR tests,
two sets of outcomes are tabulated for each country: theypes values that yield the highest
testp-value for the unrestricted model appear in the upper pavtadle the lower one shows the
corresponding elements whgris constrained to 0.99.

Let us first examine the results for the U.S. with the ratiangdectations model. Whef is
used as the instrument set, the model is least rejected égpalameter combination (0.40, 0.61,
0.98), and thep-value is 0.9993. These values are extremely close to thegsmted for the cor-
responding restricted estimation (withconstrained to 0.99) case, and also, to those of the AR
tests.

With the model based on survey expectations (Table 2), adfnahe AR test yields an empty
confidence set for the U.S., the test that corresponds tbé&iigen’s K-test (the AR-K test) yields a
least-rejected parameter combination that suggestsgiyrirward-looking behavioury(; = 0.63,

v, = 0.02). In addition, when the subjective discount rate is comstdito 0.99, the AR-K test now
points to a much more important backward-looking compof@ninflation.

Our findings are somewhat similar with Canadian data. Alifinaihe AR-K test yields outcomes

5Gali and Gertler report average price adjustment freqasnaf roughly 5 quarters.
8For this reason, and because all of the admissiblalues in the AR-based confidence sets equal 0.01, no figiges a
provided for Canada.
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similar to those of the AR test for the unrestricted modehvgitirvey expectations, with rational
expectations, the AR-K yields parameter values that suggkess important forward-looking role
in inflation. In addition, the estimate for the average frey of price adjustment is 1.6, very much
in line with micro data [as in Bils and Klenow (2004)]. Thessults are nevertheless difficult to
reconcile with the value foi, which is essentially zero. In addition, once the subjectiiscount
rate parameter is constrained to 0.99, the conclusionseomational expectations specification from
the AR-K test point to a much more important forward-lookz@mponent of inflation~(, = 0.91,

v, = 0.09). The unusual feature in this case is the value of the coefficn the marginal cost
variable,\, which stands at 7.30.

Figures 1 and 2 present U.S. results for the AR-K test for #se evhergs is constrained to fall
between 0.95 and 0.99. Under rational expectations (Fibtbe confidence set based on inverting
the AR-K test is larger than that based on the AR but resudtsraline with each other, in the sense
that the 95% confidence sets are more skewed towards hightttan~,. Turning to Figure 2,
we find that the AR-K test produces strong support for a labgakward-looking component to
inflation.

Taken collectively, the results in this section point tolpems of weak identification in these
models. Nevertheless, we find that there is some suppottédmtbrid NKPC for the U.S., whereas
the model is not suited to Canada.

14



5. Conclusion

In this paper we used finite-sample methods to test the erapielevance of Gali and Gertler’s
(1999) NKPC equations, using AR tests as well as Kleibesgemdyre parsimonious procedure.
We focused on the Gali and Gertler's (1999) specificationpfith U.S. and Canadian data. Two
variants of the model were studied: one based on a ratioqedetations assumption, and a modi-
fication to the latter which consists in using survey datardiation expectations. In the U.S. case,
Gali and Gertler's (1999) original data set were used eximeghe output gap measure and survey
expectations where applicable.

First, we found some evidence of identification difficultyewrtheless, the maximalvalue
arguments point out those parameter values for which theehisdeast rejected — a very useful
feature of our proposed identification-robust techniquéscond, we found support for Gali and
Gertler's hybrid NKPC specification with rational expeatats for the U.S. Third, neither model
was found to be well suited to describe inflation dynamicsam#&ia. Fourth, we found that, for the
cases where the Anderson-Rubin test yields an empty cooBdsst, the AR-K procedure leads to
conflicting results for the restricted and unrestricted aisd

These results underscore the need for employing identdficadbust inference in the estimation
of expectations-based dynamic macroeconomic relations.
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Appendix

A. Data description for Canada

The inflation expectations series is obtained from the Genfse Board of Canada survey. Each
guarter, participants are asked to forecast the annuahgedGDP-deflator) inflation rate for the
current year. Let us denote], 74, 74, and7{, the annual average inflation forecasts made in
quarters 1, 2, 3, and 4 of a given year, respectively. Clegmgcasts that are made in the second,
third, and fourth quarters are likely to integrate realif@ad observed) inflation in quarters 1, 1 and
2,and 1, 2 and 3, respectively.

To obtain a “pure” quarterly expectations series, we pro@efollows: First, denote the fore-
casted quarterly inflation rate in quarters 1 to 4ds73, 74, and7}, respectively. Similarly, let
w, 73, 74 be the realized quarterly inflation rates in quarters 1, 8, Zrespectively. Then, the
forecasted quarterly inflation rates are calculated as\iali

7 = 79/4

75 = (73 —n1)/3

w5 = (75— 7] —73)/2
= (7 —ri—7d-7l)

The remaining data are quarterly time series from Stati€lignada’s database.
Any monthly data are converted to quarterly frequency.

Output gap is the deviation of real GDPy{ = InY;) from its steady state, approximated by
a quadratic trendj = 100(y; — y;), whereY; = 156001 — 156013 — 156018.

Price inflation is the quarterly growth rate of the total GDP deflator:
m¢ = 100(InP; — InP,_1) and P, = D15612

Wage inflation is the quarterly growth rate of compensation of employees:
wy = 100(InW; — InW;_1), whereW; = D17023/N;.
Ny = LFSA201 for 1970:1-1975:4 andV; = D980595 for 1976:1-2000:4

Labour income shareis the ratio of total compensation and nominal GDE: = InS;, and
s¢ = 100(ls; — s), the labour income share in deviation from its steady-statkere s =
InS, S = ZtT In(Sy)/T andS; = (D17023 — D17001)/(D15612 * ;).

avg

Average real marginal costs for a Cobb-Douglas functionrmc, 7 = s;.
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B. The AR test and related procedures
Consider the following structural equation:
y=Yo+ X1k +u, (B.1)

wherey is aT x 1 dependent variabl&] is aT x m matrix of endogenous variableX; is aT x k;

matrix of exogenous variables, amds an error term that satisfies standard regularity conutio

typical of IV regressions; see Dufour and Jasiak (2001). unapntext (see section 3), is the

T-dimensional vector of observations op Y is theT x 2 matrix of observations og, and ;1

[or 7441, depending on the contextk; is the vector of observations on the inflation &g 1, Xo

is theT x ko matrix of the instruments, andis theT-dimensional vector of error terms.
Suppose that the reduced form associated with the righd-bale endogenous regressors is

Y =Xq1I + Xollob +V (BZ)

whereV is anT x m matrix of error terms assumed to be cross-correlated andlated withu,
and.X, is the matrix of available instrument$.In this case, the reduced form associated with (B.1)
is

y = Xip1 +Xops +u+ V4, (B.3)
p1 = U15 + K, P2 = HQ(S. (B.4)

Identification constraints follow from (B.4) and amount i@ rank condition
rank(Ily) = m. (B.5)

Consider hypotheses of the form
H() S (50. (86)

In this case, the transformed model
y—Ydép=Y(d — o) + X1k + u,
has reduced form
y—Ydy = Xq[II1 (6 — 00) + k] + Xao[II2 (6 — 60)] +u+ V (6 — do) - (B.7)

In view of this, the AR test assesses the exclusioX o{of sizeT x k5) in the regression af — Y

YIn Dufour and Taamouti (2006) and Dufour (2003), we streas tfi) linearity of the latter reduced form is strictly
not necessary, (ii) further exogenous regressors (“erdUthstruments) may enter into the equation in additiorhto t
instrument set. To present the test in its simplest form, vaéntain the standard linear form (B.2) and refer the reader
to later references for disucussion of the more generahgetilote that the assumptions regarding the reduced form fo
Y do not affect the actual implementation of the test, so aupkfied presentation does not lack generality for prattica
purposes.
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on X; and X5, which can be conducted using a standBktest. LetX = (X7, X3), and define
M=I-XX'X)'X', M=I-X(X;X;)'X].
The statistic then takes the form

(y —Ydo) (My — M) (y — Ydo) /ke

AR = S M (g~ Y00) [ (T — by — k)

(B.8)

Under the null hypothesis, assuming strong exogeneity dextically, independently distributed
(i.i.d.) normal errors,
AR (6g) ~ F(ko, T — k1 — ko). (B.9)

Following the usual classical regression analysis, therlatrong hypotheses on the error terms can
be relaxed so that, under standard regularity conditions,

asy

ko AR (60) '~ x* (k2) . (B.10)

It is important to emphasize that identification constsnnot intervene. In other words (B.9) or
(B.10) hold whether (B.5) is verified or not; this is what “idification robustness” usually means.
The test can be readily extended to accommodate additiomatraints on the coefficients of (the
full vector or a any subset of) th¥; variables. For example, the hypothesis

Ho 10 = 50, K = Rq, (Bll)
can be assessed in the context of the transformed regression

y—YéO—Xmo = Xl[ﬂl(5—50)+(ﬁ—ﬁo)}
+X2[H2 ((5 — 50)] +u+V (5 - (50) (BlZ)

which leads to the following-statistic

(y - Y50 - leio)/ (I - M) (y - Y50 - Xllio) /(]Cl + ]{32)

AR (8¢, ko) = .
( 0 KO) (y—Y(so—Xlﬁo)/M(y—Y(So—Xlﬁlo)/(T—kl—]{JQ)

(B.13)

While the test in its original form was derived for the caseevehthe first-stage regression is
linear, we re-emphasize that it is in fact robust to: (i) thedfication of the model fo¥", and (ii)
excluded instruments; in other words, the test is validndigas of whether the first-stage regression
is linear, and whether the matriXs includes all available instruments. As argued in DufoulO@0
since one is never sure that all instruments have been aecbfor, the latter property is quite
important. Most importantly, this test [and several vatsagiscussed in Dufour (2003)] is the only
truly pivotal statistic whose properties in finite samples @bust to the quality of instruments.

Note that exactness strictly requires that we can conditioX (i.e. we can takeX as fixed
for statistical analysis). This holds particularly for timstruments. In the presence of weakly ex-
ogenous regressors, the test remains identification-tobe intuition underlying this result is the
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following: conducting the test via the Anderson-Rubin esgions (B.7) and (B.12Which con-
stitute statistical reduced forrheasily transforms the test problem from the IV-regresgishich
requires(B.5)] to the classical linear regression statistical fearark [which does not requiréB.5)].
This provides an attractive solution to identification difflities, a property not shared by IV-based
Wald statistics nor GMM-based J-tests.

Despite the latter desirable statistical properties, ¢isé &s presented above provides no guid-
ance for practitioners regarding the choice of instrumelmtsddition, simulation studies reported
in the above-cited references show that the power of AR-tgpts may be affected by the number
of instruments. To see this, consider the case of (B.1)}(Bhére, the AR test requires assessing
(in the regression off — Y §y on X7 and X,) the exclusion of thd” x k, variables inX5, even
though the number of structural parameters under test {ghe structural parameter under tést
is m x 1). On recalling that identification entails, > m, we see that over-identification (or al-
ternatively, the availability of more instruments) leadsdegrees-of-freedom losses with obvious
implication on power. To circumvent this problem, an opftimatrument (in the sense that it yields
apoint-optimaltest) is given by

Z = Xoll

wherell; is the coefficient ofX5 in the first-stage regression, i.e. the regression oh X; and Xs;
see Dufour and Taamouti (20803 Formally, this implies applying (B.9) or (B.13), replagi Xs by
7 (observe thak, intervene in these statistics vid = I— X (X’ X) "' X'/, whereX = (X1, X>)).
Clearly, the latter optimal instrument involves infornaattireduction, because the associated
AR-test amounts to testing for the exclusion of e m variables inZ, which preserves available
degrees-of-freedom even if the model is highly over-ideedi In other words, the optimal test can
reflect the informational content of all available instrurtgewith no statistical costs.
Unfortunately, I15 is unknown so the approximate optimal instruments need testienated,
with obvious implications on feasibility and exactness. dkserved in Dufour (2003), the OLS
estimator
I, = (XM X)) ' X5 MY (B.14)

of I15 in the unrestricted reduced form multivariate regressi®:2)is used in the construction of
Z, then the associated statistic coincides with the LM ddtedefined by Wang and Zivot (1998).
In addition, the K-statistic of Kleibergen (2002) may becshpireted as based on an approximation
of the optimal instrument [see Dufour and Khalaf (2003)]. tiis case,ll- is replaced by its
constrained reduced form OLS estimates imposing the snalddentification condition (B.5):

[y — Ydo] MY
[y —Ydo] M[y—Ydo]

119 = IT, — (XM X)) "' X5M, [y — Y o) (B.15)

Wang and Zivot (1998) show that the distribution of the LMtistic is bounded by the? (k2)
distribution; Kleibergen (2002) shows thaty@ (m) cut-off point is asymptotically identification-
robust for the K-statistic. To obtain &ni(m, .) or x? (m) cut-off point for both statistics correcting
for plug-in effects, split sample methods (where the firfisample is used to estimatg, and the
second to run the AR-test based on the latter estimate) rsayalexploited; see Dufour and Jasiak
(2001) and Dufour and Taamouti (208)3
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