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ABSTRACT

In this paper, we propose several finite-sample specificagists for multivariate linear regressions
(MLR). We focus on tests for serial dependence and ARCH &ffadth possibly non-Gaussian
errors. The tests are based on properly standardized aridtig residuals to ensure invariance to
error covariances. The procedures proposed provide: &¢tevariants of standard multivariate
portmanteau tests for serial correlation [Hosking (198@)ell as ARCH effects [Duchesne and
Lalancette (2003)], and (ii) exact versions of the diagicegiresented by Shanken (1990) which are
based on combining univariate specification tests. Spatiifiave combine tests across equations
using a Monte Carlo (MC) test method so Bonferroni-type lafsucan be avoided. The procedures
considered are evaluated in a simulation experiment: ther Ishows that standard asymptotic pro-
cedures suffer from serious size problems, while the MG tesgigested display excellent size and
power properties, even when the sample size is small reltdithe number of equations, with nor-
mal or Student-errors. The tests proposed are applied to the Fama-Frereghfédctor model. Our
findings suggest that thd.d. error assumption provides an acceptable working framewade
we allow for non-Gaussian errors within 5 year subperiodseneas temporal instabilities clearly
plague the full-sample data set.

Key words : capital asset pricing model; CAPM; non-normality; multiede linear regression;
exact test; Monte Carlo test; bootstrap; nuisance parametailtivariate specification test; multi-
variate diagnostics; ARCH effects; multivariate varianago test.

Journal of Economic Literature classification: C3; C12; C33; C15; G1; G12; G14.
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1. Introduction

The multivariate linear regression (MLR) model is one of thest widely used models in statis-
tics, econometrics and finance; see Stewart (1997), Dufudikéalaf (2008) and the references
therein. Well-known financial applications include: (iste of market portfolio efficiency in the
context of the capital asset pricing model (CAPM) [see Skanld986), MacKinlay (1987), Gib-
bons, Ross and Shanken (1989), Affleck-Graves and McDord&89), Zhou (1993), Fama and
French (1993, 1995), Shanken (1996), and Beaulieu, Dufodikdalaf (2007)]; (ii) spanning tests
[see De Roon and Nijman (2001) and the references thereid](ig) event studies [Binder (1985),
Schipper and Thompson (1985)]. This paper focuses on ditignarocedures designed to check
the statistical assumptions underlying such tests. Indeedmmon feature of MLR models con-
sists in assuming that the disturbances in different egusitare correlated across equations, but
otherwise constitute independent identically distribdu@ei.d.) random vectors. Violation of the
latter condition can affect the inferences based on the h{sdeh as mean-variance efficiency or
spanning tests). This underscores the importance of peirigrdiagnosticdeforeimplementing
the tests.

As emphasized by Kroner and Ng (1998), the existing liteeattn multivariate diagnostics is
sparse compared to the univariate case. Perhaps becauss, afidagnostics in empirical MLR-
based financial studies — such as Engle’s ARCH test (Engle2j)9the Ljung-Box [Ljung and
Box (1978)] and variance ratio [Lo and MacKinlay (1988, 1886sts — are often conducted on an
equation by equation basis. Although univariate tests cavigle some guidance, contemporaneous
correlation of disturbances entails that statistics fradividual equations are not independent, so
combining test decisions over all equations raises jostirtg problems; for insights and empirical
evidence on the importance of multivariate diagnostidnigsn finance, see.g. Richardson and
Smith (1993) and Shanken (1990).

In this context, joint diagnostics are typically based @itbn asymptotic approximations or
on Bonferroni-type bounds. The procedures suggestedwimitpthe first approach involve test
statistics which formally incorporate cross-sectionglet@ence, yet are asymptotically free of nui-
sance parameters; see Godfrey (1988), Richardson and §rfiR), and the recent literature on
multivariate GARCH which may be traced back to Bollerslengle and Wooldridge (1988) [see
Engle and Kroner (1995), Kroner and Ng (1998) and the sunv®&auwens, Laurent and Rombouts
(2006)]. Although this may lead to convenient test procedumncluding the well known portman-
teau serial-correlation test [Hosking (1980)] and its ARE@Hensions [Duchesne and Lalancette
(2003), Ling and Li (1997)], the fact remains that crossagmun correlations can still affect the
null distributions of the test statistics in finite samplessystems with many equations.g, many
portfolios), the number of correlations can be quite lagjative to the sample size, leading to seri-
ous degrees-of-freedom losses and size distortions. Asu#i,rasymptotic approximations perform
poorly in finite samples; see Shanken (1996), Campbell, ldoMacKinlay (1997, Chapter 5), and
Dufour and Khalaf (2002 2002, 2003). Alternatively, Bonferroni-based bound joint sestquire
one to divide the significance level of each individual tgstie number of tests [see Dufour (1990),
Shanken (1990), Dufour and Torres (1998), Dufour and KHa®2)]. While this guards against
spurious rejections, it can also lead to severe power lob&s number of equations is large. De-



spite the above problems, very few finite sample exact spatidin tests have been proposed for
MLR models!

In this paper, we consider the problem of testing the spatific of MLR models. We focus
on: (1) detecting the presence of ARCH-type heterosketigstand (2) detecting (linear) serial de-
pendence. We propose procedures based on least squadesiegdience computationally simple.
In order to avoid the nuisance parameter problem raised éoyitknown error covariance matrix,
we apply a multivariate rescaling transformation whiclmétiates the unknown covariance matrix
from the residual distribution. In this way, we get multizde standardized residuals which are
location-scale invariant, hence do not depend on the (wmRjcegression coefficients or the error
covariance matrix.

The tests against ARCH effects include multivariate extsrssof the univariate procedures
proposed by Engle (1982) and Lee and King (1993), as well astesariants of the multivariate
procedures studied by Duchesne and Lalancette (2003). eBleefor linear serial dependence are
multivariate versions of the univariate portmanteau Ljdux [Ljung and Box (1978)] and variance
ratio [Lo and MacKinlay (1988, 1989)] tests, and exact vagaof the multivariate diagnostics
proposed by Hosking (1980). All these tests are applied apgnty standardized residuals. None
of the exact procedures is based on a Bonferroni boued fhey do not require one to divide
the significance level by the number of equations], with obsi consequences on test power. To
overcome multiple-test difficulties as well as the fact tinat test statistics have distributions which
are difficult to evaluate analytically, we obtain exact testalues via the Monte Carlo (MC) test
technique [Dwass (1957), Barnard (1963), Dufour and Kiyi€96, 1998), Dufour (2006)].e.,
the level condition is satisfied for any given sample siz&éaia finite (possibly small) number of
MC replications.

The proposed multivariate procedures also constitute tneisting contribution to the theory
of simulation-based testing. We show that the MC technidjogva one to use asymptotjgvalues
in the construction of an exact test, even though thesalues could lead to highly inaccurate
inference if used in the conventional way. Indeed, our jo@st procedure involves converting
all individual tests to an approximagevalue form, in order to combine there.§, through their
minimum). When the overall procedure is simulated, thetta&t approximate or asymptotic distri-
butions are used to obtain the individyalalues does not precludactlycontrolling the level of
the test.

Our methodology also deals, from a finite-sample perspectith non-normal errors. For-
mally, this allows one to test for time varying varianceshwfat-tailed error distributions, such as
the Student-with possibly unknown degrees of freedom. The latter patarigpically affects the
null distribution of the diagnostic test statistic. To aahtthe significance level given such diffi-
culties, we apply a “maximized MC” (MMC) test, where the M&salue for the tested hypothesis
(which depends on the nuisance parameter) is maximizedtleaelevant nuisance parameter set
[Dufour (2006)].

The procedures considered are evaluated in a simulatioariexgnt. Our results reveal that
standard multivariate procedures including Bonferrcgddal ones suffer from serious size prob-

*One exception includes work on testing the independeneedeet the disturbances in different equations [see Dufour
and Khalaf (2008)]. But this problem is relatively simple, for the null hypeisis sets the error covariances to zero.



lems. In contrast, our MC and MMC tests display excellen¢ simd power properties, even when
the sample size is small relative to the number of equations.

The tests proposed are applied to the Fama-French three-faodel, using monthly data for
the period 1965-2000. We analyze the model over the full $arap well as over 5-year subperiods.
Our results reveal temporal instabilities for the full-gdendata set. In general however, significant
departures from thei.d. hypothesis are less evident over the subperiods, once o &l non-
Gaussian errors. These results, in view of our simulatioiys{which illustrates the power of
our tests for sample designs compatible with our subpeniadyais], suggest that tha.d. error
assumption provides an acceptable working framework ferRama-French model, within 5 year
subperiods, but not over a longer time span.

The paper is organized as follows. In Section 2, we deschbestatistical framework studied
and derive the relevant invariance results which undetlie fmite-sample testing approach. In
Section 3, we present the test criteria considered and Hueiased testing strategy. The simulation
study is reported in Section 4. Section 5 presents our etapeinalysis. We conclude in Section 6.

2. Framework and distributional theory

Many asset pricing models take the multivariate regresision

Y=XB+U (2.1)
whereY = [y1, ..., y,] is @aT x n matrix of observations on dependent variables is an
T x k full-column rank matrix,B is ak x n matrix of unknown coefficientd/ = [uy, ... , u,] =
[Ui, ..., Up|'isaT x n matrix of random errors with; = (u;1, ..., uip)’,i=1, ..., n. For

instance, an-factor asset pricing model can be written as

S
rit:ai+2bijfjt+uit, t=1,...,T,1=1,...,n, (2.2)
7j=1
wherer;; = Ry —Rf, Tjp = Rjt—@f, Ry, i=1, ..., n,arereturns om portfolios (over period
t), R is the riskless rate of retur®;;, j = 1, ..., s are returns os benchmark factors, and; is

a random disturbance. Clearly, this model is a special ceé&z1l) where

Y = [r,.c.,m], =0, ., mr),i=1, ..., n, (2.3)

X = [LT,fl,...,fs],Tj:(fjl,...,ij)/,jzl,...,S, (24)

k = s+ 1, vy is a vector of ones, and is theT x n matrix which includes the errors;.
We assume we can condition ofi i.e. we can takeX as fixed for statistical analysis. Further-
more, we restrict the error distribution as follows:

U=JW, t=1,...,T, (2.5)

where.J is an unknown non-singular lower triangular matrix, andwhetorvec(Wy, ... , Wr)



has a distribution which is either: (i) fully specified, or) @pecified up to an unknown nuisance
parameter. LetW = [wy, ..., w,] = [W1, ..., Wp|', w; = (w1, ..., wir) so (2.5)
entails that

W=U(J . (2.6)

This restriction aims to sort-out the following two chaexddtics of the error distribution: (i) the
random termi¥; so the joint distribution obec (W7, ... , Wr) gives the fundamental data gener-
ating process [DGP]; and (ii) the matrikwhich sets the “scale”, defined as

S=JJ,

i.e. J sets both variance parameters and coefficients repregamtiss-equation correlations. Spe-
cial cases of (2.5) [considered in Section 5] includeithe. Gaussian assumption:

Wh ey WT szd N[07 In] ’ (27)
and the case whefé’, ... , Wy arei.i.d. Student,
Wi, ..., Wy & (k) (2.8)

where the degree-of-freedom parametés either: (i) known hence, the fundamental DGP is free
of nuisance parametdrsor (i) unknown and needs to be estimated from the dats p nuisance
parametel.

The least squares estimate®fs B = (X’X )1 X'Y with corresponding residuals

U=lig, ..., 0, =01 ..., 0r], @=/,...,d%r) (2.9)
Note that the Gaussian-based quasi maximum likelihoochesti's for this model ar& and
o= Lo (2.10)
=7 ) .
The statistics we consider are based on the multivariatelatdized residual matrix

W = 0551 (2.11)

whereS;; is the Cholesky factor o 10'U , i.e. Sy, is the (unique) upper triangular matrix such
that

~ 21 A, A —1 —1 —1\/
S=8.8,, S =0U/T) " =5 (5" (2.12)
For presentation clarity, we use the following notatiét: = [, ... , ¥,] = [W1, ... , Wr]',
W = (Wi, - .., W), SO (2.11) implies
W, = (S;1)'T, (2.13)



The validity of our proposed diagnostics relies on the fuitay representation dfi’.

Theorem 2.1 INVARIANCE OF CHOLESKY-STANDARDIZED MULTIVARIATE RESIDUALS. Un-
der (2.1), and for all error distributions compatible witk2.5), the standardized residual matrix
defined in(2.11) satisfies the identity

W=US"'=Wws_! (2.14)

whereW = MW, M =1 - X(X'X)~! X’ andSy, is the Cholesky factor & 11/, and thus
follows a distribution which does not depend Brand J.

The proofs of the theorems appear in Appendix A. Equatichd(2eexpresses the standardized
residuall¥ as a function ofii’ = MW, which implies that the distribution dfi’ is completely
determined by the distribution &% given X. Under assumption (2.5), the distribution16f does
not depend orB nor J. For example, under (2.7, ... , Wy arei.i.d. N[0, I,], while under
(2.8) the distribution ofiy, ... , Wr is defined by the degrees-of-freedom parameteil his
entails thatB andJ (and thusX) are simply evacuated from the distribution1df. This invariance
result holds for all statistics which depend on the data tmyugh?V, when the MLR is estimated
in the (2.1) form?

Theorem?2.1 has crucial implications for diagnostic tests associatétt wodel (2.1)-(2.5)
[which becomes, in this case, the null hypothesis]. Inddleed,recent theory of MC test meth-
ods [Dufour (2006)] allows to make use of such invarianceperties to derive valid tegt-values.
The MC method is an exact simulation-based procedure widtisyan empiricap-value [denoted
pn ()] for the considered test statistic, based on the rank of iserved statistic relative to a set
of N simulated ones. The latter are drawn imposing the null tgxis. The MC procedure thus
relates to the parametric bootstrap, in the sense thatatlestmulating the null distribution of the
test statistic.

When the latter simulated distribution does not involve nown parameters, the MC test
method perfectly controls the size of the test for giiéand N. For the problem under consid-
eration, this occurs wherec(Wy, ... , Wr) has a fully specified distribution. In this case, exact
p-values can be obtained as long as the statistic considsagd; = S(U), can be rewritten as a
function of W and X :

S=SU)=8W, X). (2.15)
As in Theoren®.1, the latter notation implies that the functiéh(W, X) evacuates3 and.J (and
thus X)) out. In view of Theoren?.1, this leads to consider statistics — presented below, itidec
3 — which depend on the data only through

Whenvec(Wy, ... , Wrp) has a distribution which depends on an unknown parametany
relevant [.e. conforming with the null hypothesis] value for can lead to an empirical-value
[based on the rank of the observed statistic relative to afsAt simulated ones, drawn given the

2This invariance result may not hold H}]SU is replaced by another “plausible” factorizationﬁf for example,

the appropriate invariance does not occur if the Choleskiofes;; is replaced by the usual square raot/? [for the
definition of the square root of a matrix, see Harville (1985Gtion 21.9)]. This is easy to check numerically.



value ofv in question]; this leads to gvalue “function”, denotegh (- | ). In this case, standard
bootstrap methods rely on a consistent point estirhatker which imposes the null hypothesis; the
associated approximagevalue f.e. pn(-|7)] would lead, under standard regularity conditions,
to an asymptotically [for infinitel” and V] valid test. We rather rely on a sup-type MC procedure
[introduced by Dufour (2006) and denoted maximized MC (MMhich controls the significance
level by construction, for finitd” and V. The associated critical region corresponds to refertieg t
supremunsup,, [pn(-|v)] to a given leveh.

We also consider a modified version of the MMC technique [seflr (2006) and Dufour and
Kiviet (1996)] denoted confidence-set-based MMC (CSMMCjahllinvolves two stages: (1) an
exact confidence set is built for, and (2) the MCGp-valuepy (.|v) is maximized over all values of
v in the latter confidence set. For an overallevel, the confidence set and the CSMMC test should
be applied with levelsd — a1 anda — a1, respectively. Detailed algorithms for all the statistios
consider is provided in Section 3.

There are no theoretical arguments which favor either MMC8MMC methods. While the
MMC method may appear relatively conservative (since thegM@lue is considered over all val-
ues ofv irrespective of the sample information on this parametegall that the CSMM@-value
(which, in contrast, uses estimated valueg'pheeds to be referred @ — «;. Nevertheless, it is
intuitively appealing to consider a CSMMC procedure whéee underlying confidence set incor-
porates information on the goodness-of-fit (GF) of the higpsized error distribution. In this way,
we formally deal with the joint characteristic of the nullgothesis which imposes distributional
constraints, in addition to the properties under test (haveserial correlation, no ARCH effects).

Note finally that the invariance result of Theoré&n holds for multivariate linear models and
does not necessarily apply to nonlinear models. Extengmssich models may be feasible — for
example, through an exploitation of the MMC method — butdjuies beyond the scope of this paper.

3. Multivariate specification tests

In this section, we use the above results to derive multtarspecification tests. The proposed
tests are formally valid for any parametric null hypothesisype (2.5). In Section (5), we focus on
assumptions (2.7) and (2.8) with unknown

3.1. Combined equation-by-equation tests

Standard diagnostics may be applied to the residuals of eqation in (2.1). We focus on serial
dependence tests based on the popular Ljung-Box [Ljung axdB278)] statistic (applied to the
i-th equation)
G .2 T AN
Pi R Zt: +1 WitUit—g
LB; =T(T+2)) =%, py=""L—
g=1 T-yg ! =1 U3

(3.1)




and the variance ratio [Lo and MacKinlay (1988, 1989)] stati

VR, _1+2Z( )ng, (3.2)

where(G refers to the maximum number of lags used. We also consistesrftr ARCH effects based
on Engle-type procedures [Engle (1982), Lee and King (1993)e Engle statistic for equation
(denotedE;), is given byT' x (the coefficient of determination in the regression of theatign’s
squared OLS residualg’, on a constant anth g9 =1 .., G). Lee-King's (one-sided)

statistic [for equation] wheres? = T thl ug, is:

(-0, 3 @ -1 S, b 3 e e}
e h - - (3.3)
{(T_G) i (Z Us 1 — g>2 ( i ia%t—g)Q}l/?
t=G+1 ‘g= G 19=1

In view of Theoren®.1, we obtain standardized versions of these test statisrsted respec-
tively LB;, VR;, E; and LK ;, replacingi;; by w;, [the elements of the matril’ from (2.11)] in
the formula for these statisticd.B;, VR;, E; andLK;,i = 1, ... , n, satisfy the conditions of
Theorem?2.1 by construction. Hence, under (2.5), thgimt dlstrlbution does not depend on the
regression coefficien® nor the scale parametér. We next construct the combined statistics:

LB = 1- 1I§nzl§nn [p([fB,)} , VR=1- 1rgnllgl [p(VRZ)] (3.4)
o= 1-— 1r§nzl£n [p(EZ)}, LK =1-— llélzléln [p(Lki)], (3.5)

wherep(VR;), p(LB;), p(E;) andp(LK;) are individualp-values associated withB;, VR;, E;
and LK ;; these may be derived via the MC method, or using approximaliedistributions. In
Section 5, we use (respectively) the asymptotic distrimsti (VR; — 1) X' N[0, 2(2G — 1)(G —
1)/3G], LB; ¥ x2(Q), E; ¥ x2(G) and LK ; ¥ N[0, 1].

While several alternative combination procedures arelavai® we focus on the forn(1 —
min; <;<, [p( - )]) which extends Tippett's procedure [Tippett (1931)] to tbe+independent tests
context. This procedure is intuitively appealing for thééddwing reasons: the combined test rejects
the null hypothesis if at least one of the individual (staxdaed) tests is significant. This is closely
related to a Bonferroni-type procedure (as considexgdby Shanken (1990) in the context of an
asset pricing problem similar to the one we study in Sectipnwgh the following fundamental
difference: by the Boole-Bonferroni bound, the joint tessignificant at levek, if at least one
individual p-value is less than or equal to/n (« divided by the number of tests). In contrast, we

obtain a jointp-value, using the MC test method, for each of the combindissts, so that such a

3Seee.g. Dufour and Khalaf (2008), Dufour, Khalaf, Bernard and Genest (2004), Dufour and&®(1998), Westfall
and Young (1993), Savin (1984), Folks (1984) and Dufourh&gand Khalaf (2004).



level adjustment is no longer required; this yields obvipawer advantages.

The following algorithm summarizes the MC procedure we user. presentation clarity, we
focus on the combined Engle tést of course, the same procedure is applied to all criteriagpites!
so far. Under théi.d. normal hypothesis (2.7), we proceed as follows.

1. From the observed data, compute the valug @fising (3.5)] and denote £(?.

2. Obtain N draws from the distribution ofV’ [here (2.7)]; denote the drawn variatés(@),
j=1,...,N.

3. For each draw, calculat&’ () = MW (), Sf/{), the Cholesky factor o ~2 W U)W () and
WO =W (s = [@9) a0 (3.6)
whered?) = (¢, ... @9 i=1,... n.

4. The simulated Engle criterion for equatiband the MC drawj, which will be denotecEfj),
obtains asl’ x (the coefficient of determination in the regression of thaassqdzbgf) on
their G lags). Compute??) = 1 — min;<;<, [p(EY))], using the same distribution for
approximatingp(EfJ)) —such as thg?(G) —as in step 1.

5. (}ivenE(j), j=1,..., N, compute the number of simulated values greater than ot &mua
E©) [denotedN Gy (E(©)]. The MCp-value is

pn(E) = [NGy(ED) + 1]/(N +1). (3.7)
The null hypothesis is rejected at levelvhenp (E) <a.

Provideda(N + 1) is an integer, the above test procedure has siféor finite 7 and N),
becauseE(®), EM ... EW) are exchangeable under the null hypothesis; see Dufou6}200
The similarities and differences between our test as destiand a naive bootstrap can be explicitly
seen from the latter algorithm. Indeed, underithd. normal hypothesis (2.7), a naive parametric
bootstrap could be implemented replacing step 3 by thevitig.

3*, For each drawi}¥), j = 1, ..., N, and conditional on the observed regressor matrix, the
MLR form (2.1), the Cholesky factorS];] of the observed (calculated from the observed
data) matrix and the observed OLS estima‘%orreconstruct

y () :XB—}-WU)SU, j=1,...,N.

For eachj, regressy’”) on X and obtain the associated residual mati¥), £ =
T-106 76 and its associated Cholesky factﬁ%’), which leads to a series d¥ simu-

lated standardized residudig() = U(j)(Sg))*l, j=1,...,N.



Now in view of Theoren®.1, we see that the latter can be drawn equivalently as desciibe
step 3 (this is also easy to check numerically). So whetiiV, ... , Wr) has a fully specified
distribution J.e., no unknown parameter needs to be specified to obtaifithe, j = 1, ..., N
draws], the MC test method is closely related to the naivarpatric bootstrap. Exactness (for finite
N andT') under our assumptions requireg-galue function as defined in (3.7) [notice the division

by N+1]and a choice ofV such thatV+1 is an integer. In contrast, whewac(W1, ... , Wr)hasa
distribution which depends on an unknown parameteur method differs markedly from the naive
bootstrap because we do not use a point estimatetofobtain the draw$?’ @), j = 1, ..., N.

Specifically, for the case of (2.8) whetés an unknown nuisance parameter, we proceed as follows.
For each acceptable value ©f we consider integer values ranging fr@ano 7" — 2 — n (our

effective sample size) — applying steps 2-4 above Withi) according to the Studentdistribution

[as in (2.8)], leads to a series of empirigalalues we denotg (E|/-@). Clearly, our notation

implies thatpy (E|/-@) defines a M(p-value function [an empirical-value, as a function of]. The

MMC procedure involves relying on the maximalalue, so the MMC critical region for a test with

level ais

sup (PN (EK)] < o

We also consider the CSMMC maodification to the latter techajgvhich involves two stages: (1)
an exact confidence set denot€d(«), with level ay, is built for x [the procedure, introduced in
Dufour, Khalaf and Beaulieu (2003), which we apply for thigose is summarized in Appendix
B], and (2) the MCp-valuepy(E|x) is maximized over all values of in the latter confidence set.
Because of the pre-estimation stage, if an ovesditvel test is desired, then a CSMMC critical
region obtains as )
sup [pn(E|R)] < a—aj.

KECS (k)
In Section 5, we consider; = 0.025. The MMC [or CSMMCl]p-values so obtained will be referred
to « [or to a« — 1] and not toa/n [or to (o« — 1) /n]. Itis evident that whem is large (we consider
n = 25 portfolios in Section 5), this leads to sizeable power improents relative to Bonferroni
procedure$.

3.2. Multi-equation portmanteau criteria

In addition to the above combined criteria, we propose eiittests based on (standardized, when
necessary) multi-equation portmanteau statistics. Taeédfiese statistics we use the following
notation: for a giveld’ x n matrixZ = [Z, ... , Z7], let

T
Czlg)=T7' > ZZ , g=0,1,...,G.
t=g+1

“The combined procedure presented here remains exact espprifximate individuap-values are used in the for-
mulae for the combined statistics. Indeed, our joint testedure starts by converting all individual test statsstic
somep-value form, in order to combine them through their minimven if the latter "conversion” is performed using
asymptotic distributions, the test’s global level is colied exactlywhen the overall procedure is simulaté&, when
the MC technique is applied to the combined statistic.



We consider the serial-dependence statistic of Hoskin8Q(,.9

G
HM =T (T - g)"'r{Cys(0) "' Cyy(9)Cyy (0) " Cyy(9)'} (3.8)
g=1

and the extension aimed at detecting ARCH effects propogd&alibhesne and Lalancette (2003),

G
HMp = T? Z(T —9) " tr{Cp2(0) ' Cpa(9)Cpr2(0) " Cp2(9)'} (3.9)
g=1

whereU2 is the matrix of squared residu&ldiVe first observe thal/M depends on the data Vi&
only and is thus location-scale invariant.

Theorem 3.1 INVARIANCE OF HOSKING'S STATISTIC. Under(2.1), and for all error distribu-
tions compatible witt{2.5), the Hosking statistic defined {13.8) satisfies the identity

G

HM =T%) (T — 9) 1t {C, (01 Cy (9) i (0) 1 Cir (9)'} (3.10)
g=1

wherelV is the standardized residual matrix defined 2111).

The latter invariance result is not satisfied by i/, statistic. In contrast, the statistic proposed
by Ling and Li (1997) and studied by Duchesne and Lalanc2@63) is location-scale invariant.

Theorem 3.2 INVARIANCE OF LING-LI’S STATISTIC. Under(2.1), and for all error distributions
compatible with(2.5), the Ling-Li ARCH test statistic

T T
R= S (01570 —n) (05 0 g —n)) S (015710, — n)?

t=G+1 t=1
satisfies the identity

~ T ~ ~ ~ ~ T ~ ~

R=Y" (WiW—n)(W_cWig —n)/ > (WW; —n)* (3.11)

t=G+1 t=1

wherel = [W7, ... , Wy is the standardized residual matrix defined&11).

The above invariance results obtain because residualsasargesdized before they are squared,;
in contrast, to obtainHM>, residuals are first squared then standardized. We thuosoihe

Note that Duchesne and Lalancette (2003) proposed to @arsigiares and cross-products of residuals. In view of
our small sample [relative to the number of equations], dtket test is not always feasible, so we focus on squares only
Our exact approach can be extended (allowing for a largegineample) to account for squares and cross-products of
residuals.
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following modification to the HM, statistic which consists in standardizing residuals le=taking
their squares:

G
HS, = T2 Y (T = g)'tr { € (0)Cyp2(9)C 4 (0)Cia ()} (3.12)
g=1

whereW2 is the matrix of squared residuals. The following standadveptotic null distributions
hold: HM ' 2(n2G), HM, % x2(n?G) andR %’ y2(G). We obtain exact MC versions of
the latter tests, by applying the algorithm presented ini@e8.1, using the pivotal representations

(3.10), (3.11) and (3.12) for the observed (step 1) and sitedi(step 4) statistics.

4. Simulation study

We now present a small-scale simulation experiment to agbesperformance of the proposed
tests. The model considered is (2.1) with= 60, n = 12, 20 or 40 equations, where the regressor
matrix includes a constant and a standard normal variatevfdonly once). The sample size was
fixed to match our empirical application reported in the reedtion. The tests are implemented
with 2 and 12 lags. In all designsN' = 999 replications are used to implement MC tests, and
the number of simulations in each experiment is 1000. Becafisocation-scale invariance, all
tests are applied to the residuals generateti as M1V, hence there is no need to specify values
for the regression coefficients and error covariances. A#ystormal and-errors with unknown
degrees-of-freedom, so the rowsl&fare generated respectively as in (2.7) and (2.8). We seb

to draw the “observed” samples, but the tests were appligatiigg this information: formally is
considered unknown and the MMC test method is applied oeesplace < x < 10.° To study the
power of the tests considered, we introduce, in turn, ARGHEARCH(1,1) and AR(1) and AR(2)
effects in the firsin = n/3, n/2 and3n/4 equations. This is done as follows; first, tHé matrix

is drawn, conforming with either (2.7) or (2.8); followingionotational framework, if we denote
by w;; the elements of the latter matrix, then

1
Ujp = withft, hig =1+ (51U)Z42¢71 + (52) hi7t,1, i=1,..., m t=1, ..., T, (4.13)

give the errors of then equations with ARCH. We consider: (&) = d5 = 0 [the null hypothesis];
(2)61 = 04,55 =0;(3)61 = 0.9, 95 = 0; (5) 61 = 0.4, o = 0.5; (6) 61 = 0.25, 6 = 0.65.
Following the same notation,

Uip = PrUit—1 + Pollip—2 +wi, t=1,... ,m, t=1,..., T

give the errors of then equations with serial correlation (with 1 = u; o = 0). We consider: (a)
p1 = po = 0 [the null hypothesis]; (bp, = 0.5, p, = 0; (C) p; = 0.9, py = 0; (d) p; = 0.5,
py = 0.2;and (e)p; = 0.1, p, = —0.2. For all configurations, the tests are applied with= 2 or 12

A wider range was allowed in our empirical application; ie tase of the MC study, this restriction was adopted to
keep execution time within manageable ease: the MMC tegbhaes applied 1000 times, for all chosen designs.
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Table 1. Size of diagnostic tests

Normal errors
n G| E FEg LK LKg LB LBg VR VRg HM HM HM, HS,
12 2| .034 .024 .048 .037 .052 .049 .057 .042 .032 .043 .054 .052

20 .050 .038 .055 .039 .040 .041 .044 .028 .025 .048 .042 .041
40 .048 .044 051 .042 .056 .055 .054 .031 .003 .050 .002 .056
12 12| .050 .000 .036 .041 .056 .159 .040 .026 .117 .047 .153 .044
20 .052 .003 .051 .057 .052 .184 .045 .043 .179 .056 .243 .050
40 .048 .004 .064 .074 .052 .259 .049 .065 .551 .050 .485 .053

Studentt errors
12 2| .035 .057 .041 .037 .044 .049 .040 .032 .039 .013 .126 .014

20 .022 .048 .038 .034 .032 .042 .042 .033 .034 .012 .106 .009
40 .035 .062 .040 .038 .034 .041 .041 .025 .007 .019 .044 .025
12 12| .014 .017 .038 .034 .035 .132 .035 .035 .130 .017 .153 .025
20 .014 013 .034 .036 .036 .172 .039 .043 .238 .020 .272 .027
40 .017 .009 .039 .044 .037 .210 .046 .067 .499 .019 .418 .021

Note — Numbers shown are empirical rejectionsirnominal significance test levels when errorsiard.,

n is the number of equations in the systéftis the sample size an@ is the number of lags used for each test.
MC tests witht(x) errors are MMC tests, maximized oveK « < 10. E and LK refer to our generalized
Engle and Lee-King joint tests defined in (3.8); and LK g are (respectively) their Bonferroni counterparts
based on referring the minimupavalue to a(5/n)% level. LB and VR refer to our generalized Ljung-Box
and Variance ratio joint tests defined in (3.4 g and VRg are their Bonferroni counterpart&}/ denotes
Hosking’s multivariate asymptotic portmanteau test defime(3.8), andHM is its MC counterpartHM; is
the Hosking-type multivariate asymptotic ARCH test ciiterdefined in (3.9), and/S; is its standardized
MC counterpart defined in (3.12).

lags. Results are reported in tables 1-3. We report empiegections (over the 1000 replications)
for a nominal level 06%.’

Results on test sizes (reported in Table 1) can be summaizémlows. Bonferroni-type tests
can over-reject; this occurred in particular with the LjeBgx combined test using 12 lags, even
with normal errors. On recalling that we have relied on asgtip individual equatiorp-values
to derive the Bonferronp-values, this result is driven by the poor performance ofititevidual
equation tests. In other words, despite the important lewmekction required here (a division by
wheren = 12, 20 and40), the Bonferroni procedure is not exact and remains urnlelia

The size of the asymptotic Hosking type tests can deviatieatilty from the nominal one; size
distortions increase with the number of equatiomsand the number of lags used in the tes#3.
Over-rejections can be very severe: empirical sizes ngafift (for a nominal level ob6%) were
observed for large andG. This observation is worth noting, given that availabledition studies

"For space considerations, since we find (as also observediblyeBne and Lalancette (2003)) that the Ling-Lee
statistic is dominated by the Hosking-type variant, we repesults onH M, and its MC exact counterpafs’,.
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Table 2. Power of ARCH tests

Normal n=20, G=2 | n=20, G=12 | n=40, G=2 | n=40, G=12
m & 6| E LK HS:| E LK HS,| E LK HS.| E LK HS,
5 40 0| 528 503 .084| .173 .089 .066| .625 569 .093| .216 .093 .062

90 0| .906 .886 .196| .510 .157 .144| .961 .954 .105| .671 .229 .096
25 65| .422 549 .083| .239 .334 .083| 479 .637 .072| .287 .374 .063
40 50| .638 .761 .114| .366 .341 .108| .747 .867 .080| .442 .386 .680
10 .40 0| .711 690 .167| 276 .126 .124| .776 .704 .109| .258 .118 .090
90 0| .986 .986 .472| .734 262 .428| .996 .992 .260| .799 .313 .260
25 65| .601 .748 .140| .353 530 .197| .608 .766 .084| .368 .510 .085
40 50| .841 913 .231| 548 521 .272| 879 .949 .110| 599 .531 .108
15 40 0| .808 .791 .239| .316 .154 .255| .793 .765 .132| 295 .142 .105
90 0| .992 994 .706| .813 .331 .735| .996 .998 .430| .860 .410 .373
25 65| .677 .826 .267| .412 599 .398| .659 .818 .094| .427 546 .145
40 50| .900 .973 .412| .607 .601 .529| .904 .972 .146| .645 .601 .189

Student n=20, G=2 | n=20, G=12 | n=40, G=2 | n=40, G=12
5 40 0| 552 543 .076| .126 .086 .057| .689 .661 .059| .163 .099 .040
90 0| .853 .866 .137| .341 .175 .092| .949 .943 .103| .517 .231 .059
25 65| .432 617 .040| .264 423 .051| 536 .730 .035| .348 .502 .034
40 50| .623 .808 .061| .341 .421 .063| .775 .900 .047| .466 .502 .039
10 .40 0| .769 .782 .181| .181 .130 .097| .842 .828 .128| .212 .140 .070
90 0| 971 977 .414| 541 283 .279| .995 .997 .271| .666 .354 .121
25 65| .615 .820 .133| .343 .653 .156| .710 .872 .064| .415 .655 .045
40 50| .831 .948 .201| 482 .626 .220| .921 .976 .103| .596 .665 .062
15 40 0| .874 .868 .367|.189 .156 .190| .793 .765 .193| .213 .175 .082
90 0] .993 .999 .760| .608 .379 .493| .996 .998 .551| .697 .418 .300
25 65| .732 .902 .361| .404 .756 .386| .734 .899 .197| 452 .739 .156
40 50| .907 .981 .505| .573 .736 .477| .916 .985 .282| .630 .746 .194

Note— Numbers shown are empirical rejections 36t nominal significance test levels when errors
are noti.i.d., n is the number of equations in the systéfis the sample size ar@ is the number
of lags used for each test. MC tests with Studert) errors are MMC tests, maximized over

< k < 10. ARCH effects are introduced in the first = n/3, n/2 and3n /4 equations.j; andds
are the parameters of the ARCH process postulated for aditems. £ and LK refer to the joint
tests defined in (3.5)45 is the standardized multivariate criterion defined in (3.12
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Table 3. Power of serial-correlation tests

Normal n=20, G=2 n=20, G=12 | n=40, G=2 | n=40, G=12
m p, p, | LB VR HM | LB VR HM | LB VR HM | LB VR HM
5 5 0|.989 .995 .347| .730 .789 .241| .995 .998 .183| .736 .821 .112

9 0|100 1.00 .999( 1.00 1.00 .973| 1.00 1.00 .736/ 1.00 1.00 .475
5 2100 1.00 .692| .986 .996 .579| 1.00 1.00 .292| .994 .999 .165
1 -2|.121 .035 .076| .091 .041 .074| .145 .060 .074| .075 .053 .066
10 5 0] 100 .999 .823| .826 .907 .859| .998 .998 .557| .752 .883 .557
9 0|100 1.00 1.00[ 1.00 1.00 1.00 1.00 1.00 .997| 1.00 1.00 .985
5 .2|100 1.00 .984| .997 .999 .991| 1.00 1.00 .718| .993 1.00 .588
1 -2|.204 .053 .140( .115 .035 .152| .201 .077 .113| .120 .040 .091
15 5 0].999 100 .985| .847 .935 1.00/ .999 1.00 .913| .779 .881 .867
9 0|100 1.00 1.00[ 1.00 1.00 1.00 1.00 1.00 1.00[ 1.00 1.00 1.00
5 .2|100 1.00 1.00[ .999 1.00 1.00 1.00 1.00 .942| .994 1.00 .915
1 -2|.204 .047 .209| .144 030 .338| .203 .078 .166| .124 .046 .180

Student n=2, G=2 n=2, G=2 | n=40, G=2 | n=40, G=12

5 5 0] .983 .992 .154| .691 .753 .070| .994 999 .095| .674 .798 .036
9 0100 100 976/ 1.00 100 .819| 1.00 1.00 .516( 1.00 1.00 .117
S5 21100 .999 427 980 995 .227| 1.00 1.00 .172| .989 .998 .050
1 -2 .119 .044 .024| 095 .039 .020| .120 .055 .033| .074 .038 .017
10 5 0| .998 1.00 .590| .768 .903 .461| .997 999 .321| .719 .842 .104
.9 0|100 1.00 1.00f1.00 1.00 1.00f 1.00 1.00 .983 1.00 1.00 .644
S5 2100 100 .939] 994 1.00 .259| 1.00 1.00 .502| .988 1.00 .164
1 -2].172 036 .038| .101 .029 .042| .131 .074 .051| .104 .042 .022
15 5 0| .998 1.00 .925| .832 .929 .955| 995 999 .735| .832 .929 .327
.9 0|100 1.00 1.00f 1.00 1.00 1.00f 1.00 1.00 1.00] 1.00 1.00 .975
S5 21100 100 .998| .998 1.00 1.00{ 1.00 1.00 .798| .988 .999 .372
1 -2 .18 .043 .071| .106 .022 .100| .159 .072 .081| .101 .032 .037

Note— Numbers shown are empirical rejections 56t nominal significance test levels, is the
number of equations in the systeffijs the sample size an@d is the number of lags used for each
test. MC tests with Studentx) errors are MMC tests, maximized oveK « < 10. AR effects are
introduced in the firstn = n/3, n/2 and3n/4 equations,p; andp, are the parameters of the AR
process postulated for all equatiorisB and VR refer to the joint tests defined in (3.4)M refers
to the MC test based on the multivariate criterion define®iB)(
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from the statistics literature typically consider a smaiimber of equations (relative to the sample
size). In the finance literature, one often relies on manyf@ars with monthly data over five to
ten years, which leads to a large number of equations {relaithe sample size).

The MC test procedure achieves level control. Size is cbett@erfectly with normal errors (as
expected, because the tests are nuisance parameter fhee ¢gage). In interpreting the empirical
size in the case of Student errors, recall that the maximized MC procedure satisfiedeel
condition, but its size may be lower than its level. We notmesaonservative performance, yet
of course this question must be evaluated under the alteenaypothesis, where one may check
whether under-rejections under the null hypothesis eifelgt translate into power problems.

We next turn to discussing the results of our power studyoftted in tables 2 and 3). Our
discussion only focuses on the level correct proceduresulRereveal the following.

Consider the ARCH experiment (Table 2). Over all configoragi considered, the procedures
which combine via the MC approach individual-equationerié outperform by far their Hosking-
type multivariate counterpart. As with all simulation segj results may relate to the alternative
considered. Here we have not considered time varying @aogsiations, yet the Hosking-type
procedure are applied conformably (see Section 3.2). Iditdrature on combined tests [seq).
Miller (1981), Folks (1984), Savin (1984), Dufour (1989)ufdur and Torrés (1998) and Dufour,
Farhat and Khalaf (2004)], mip-value-type (sup-type) procedures are often proposecoasiging
alternatives to their portmanteau (sum-type) countesphdwever available results on their relative
merits are typically non-conclusive. Our MC procedurestierihe size (at least in the case of the
normal distribution) of both procedures, or more exphgitorrect for their conservative character
which stems from test combination, so we are able to compaie éffective power reliabl§. Our
results provide an interesting case where one procedun®vap on the other.

Lee-King type statistics outperform their Engle-type deupart in the presence of GARCH,
whereas Engle-type criteria appear superior under the AR{@#inative. For criteria based on
either Engle or Lee-King statistics, using more lags (1atre to 2) reduces power for both ARCH
and GARCH directions. Power losses go, to some extent, sigakpectations in the latter case;
note however that using more lags reduces the effective Isasige, which seems to translate into
important power losses. In a few cases however, partigularllargem (the number of equations
with ARCH effects), Hosking-type procedures perform sotmaibetter with more lags, yet these
tests (irrespective of the lags used) remain largely doraihby our combined univariate ones. In
general, as expected, power improves with

Results of the AR experiment, concur, in many aspects wghARCH case, except that the
Hosking statistic performs somewhat better than its ARCthterpart. Overall, the variance ratio
based criterion displays the best performance, exceph®AR(2) alternative wittp; = .1 and

ps = —.2, Where either the Ljung-Box based or the Hosking criterierfgrms better. Lags typi-
cally cost power in this experiment as well, except in a fesesawith largen (as with the ARCH
case).

For both the AR and (G)ARCH experiments, results with Stixdl@nrors show excellent power
relative to the normal case. In some cases, the tests evantegeerform better with Studeit-

8In the case of the Studentdistribution which may remain conservative, size issuesrat due to combinations;
rather, they relate to the degrees-of-freedom nuisaneeger.
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errors. Our results also demonstrates the usefulness diNhe procedure.

5. Application to Fama-French three-factor model

Our empirical analysis focuses on the asset pricing mode) {2ith n = 25, s = 3 and different
distributional assumptions for stock market returns. Tdwdrs considered include: the return on
the market portfolio, the average return on three smalffplass minus the average return on three
large portfolios (SMB), and the average return on two valmgfplios minus the average returns on
two growth portfolios (HML).

We use Fama and French’s data base, on monthly returns of@sweighted portfolios from
1961-2000. The portfolios which are constructed at the éntline, are the intersections of five
portfolios formed on size (market equity) and five portfeliermed on the ratio of book equity to
market equity. The size breakpoints for yeaare the New York Stock Exchange (NYSE) market
equity quintiles at the end of June of yearThe ratio of book equity to market equity for June of
yearr is the book equity for the last fiscal year endrin- 1 divided by market equity for December
of yearr — 1. The ratio of book equity to market equity are NYSE quintil§he portfolios for
July of yearr to June of year + 1 include all NYSE, AMEX, NASDAQ stocks for which market
equity data is available for December of year 1 and June of year, and (positive) book equity
data forr — 1. The benchmark factors are defined as follows: (1) the exatgmron the market
is the value-weighted return on all NYSE, AMEX, and NASDAQ@adkts [from the University of
Chicago’s Center for Research in Security Prices (CRSR)limthe one-month Treasury bill rate
[from Ibbotson Associates]; (2) SMB is the average returnttmee small portfolios minus the
average return on three big portfolios, and (3) HML is therage return on two value portfolios
minus the average return on two growth portfolios. Fama aedd¢h benchmark factors, SMB and
HML, are constructed from six size/book-to-market benctknpartfolios that do not include ranges
and do not incur transaction costs. The portfolios for tHasers are rebalanced quarterly using
two independent sorts, on size (market equity, ME) and hoakiarket (the ratio of book equity to
market equity, BE/ME). The size breakpoint (which detemsithe buy range for the small and big
portfolios) is the median NYSE market equity. The BE/ME lizints (which determine the buy
range for the growth, neutral, and value portfolios) are3d#h and 70th NYSE percentiles.

Results are reported in tables 4-5. We report, in additiahdocasymptotig-values (denoted
Do) When available, the Bonferropivalues (denote@g) for each test combined, obtained as the
minimum p-value over all equations, and three M&ralues: (i) the Gaussian based Méralue
(denotedp,), (i) the Student- based MMCp-value (maximized over all relevant degrees of freedom
k > 2) (denotedy, ), and (ii) the Student-based CSMMC (denoteg}) (where the maximization is
restricted to the degrees of freedom not rejected by a poodgess-of-fit test; see Appendix B); the
associated confidence sets are reported in the last colugatbfTable. The tests use= 12 lags.

All MC procedures are implemented wifli = 999 replications and the confidence set underlying
the CSMMC procedure is applied withy = 2.5%. Note that in the context of a MC test with 999
replications, the smallest possikjevalues are .001, .002 and so on and so forth. A discussion of
our results follows.

Recall that2.5% must be added to the CSMMgvalues (denoteg;) since2.5% was used to
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Table 4. Univariate and multivariate ARCH tests

Engle Lee-King Hosking-ARCH K
pB ﬁg Di Da DB ﬁg Di Da Poo ﬁg Di Pa
61-65| .110 .576 .590 .591 .079 .888 .879 .879 .879 1.00 1.00 1.00 8-34
66-70 | .179 .832 .848 .84 .017 .399 .385 .38 .125 .655 .638 .638 13-34
71-75| .056 .239 .280 .29 .018 .390 .380 .380 .580 .910 .904 .904 10-34
76-80 | .009 .012 .022 .101 .001 .026 .032 .032 1.00 .999 1.00 1.00 13-34
81-85| .031 .098 .132 .197 .035 .650 .646 .58 .832 .758 .733 .733 8-34
86-90 | .191 .853 .868 .879 .009 .298 315 .31§ .392 .402 .403 .403 23-34
91-95| .056 .242 .261 .339 .001 .080 .084 .084 .429 537 .544 544 16-34
96-00 | .003 .002 .014 .021 .002 .061 .070 .071] .000 .666 .634 .66 4-15
ALL | .000 .001 .001 .012 .000 .001 .001 .001 .000 .001 .001 .005 6-10

Note— Numbers shown arg-values, except for the last column which reports the contideset
for k, wherex denotes the degrees-of-freedom parameter of the hypadueStudent-distribution
(the method for constructing this confidence set is predantdppendix B).p., refers to the test
asymptotigp-value andp, is the Gaussian based M@value.p; is CSMMCp-value imposing ()
errors angp,, is the MMCp-value over all degrees of freedomiz is the minimump-value for each
individual equation test over all equations. The individeguation test statistics are: Englé@'s:?
and Lee-King's statistic (3.3) defined in Section 3.1; theint counterparts are defined in (3.5).
Hosking-ARCH is the multivariate criterion defined in (3[8) obtainp., ] and (3.12) [to obtain
the MCp-values]. To obtain an-level test,pp andp; as defined need to be referred (respectively)

to the cut-off levels ofv/25 anda — .025. The tests usé’ = 12 lags.
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Table 5. Univariate and multivariate serial-correlatiests

Ljung-Box Variance ratio Hosking K
PB_ Py Pi  Pa | PB Py Pi  Pa | Po By  Pi  Pa
61-65 | .003 .291 312 .312 .384 .963 .967 .974 .711 973 957 .957 8-34
66-70 | .000 .106 .119 .127 .347 .866 .881 .881 .354 .818 .786 .78 13-34
71-75 | .022 .619 .632 .632 .177 .285 .292 .292 .795 .956 .941 .941 10-34
76-80 | .014 546 565 .57¢ .132 .193 .206 .206 .978 1.00 1.00 1.0 13-34
81-85 | .010 .454 471 477 .099 .159 .167 .167 .205 .497 493 .493 8-34
86-90 | .001 .135 .145 .151 .182 .240 .241 241 619 .978 964 .964 23-34
91-95 | .000 .040 .049 .049 .070 .114 122 .124 432 .796 .774 774 16-34
96-00 | .013 529 541 542 .093 .142 .156 .154 .018 .088 .183 .185 4-15
ALL .000 .001 .003 .004 .182 .001 .001 .003 .000 .001 .001 .001 6-10

Note— Numbers shown angvalues, except for the last column which reports the confideset for
k , wherex denotes the degrees-of-freedom parameter of the hypadueSitudent- distribution
(the method for constructing the underlying confidenceaetie degrees of freedomis presented
in Appendix B).p, refers to the test asymptotievalue and, is the Gaussian based Mgvalue.
p; iIs CSMMC p-value imposingt(rx) errors.p, is the MMC p-value over all degrees of freedom.
pp is the minimump-value for each individual equation test over all equatiofitie individual
equation test statistics are: the variance ratio (3.2) had_jung-Box criteria (3.1); the joint tests
are defined in (3.4). Hosking is the multivariate criteriafided in (3.8). To obtain an -level test,
pp andp; as defined need to be referred (respectively) to the cuee#i$ ofa/25 anda — .025.

The tests usé/ = 12 lags.
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construct the underlying confidence set; in other wordsnibeerall level of5% is desired, the
cut-off level forp; is 5.0 — 2.5 = 2.5%. Furthermore, for a joint Bonferroni type procedure with
a level ofa = 5%, pp needs to be referred to a level @f25 = 0.2% [the system includes 25
equations here]. The joiptvaluesp,, p; or p, do not require any level adjustment. To illustrate the
implications of level corrections, consider for example ttase of tests based on Engle’s statistic
in the subperiod 1996-00: from a Bonferroni perspective &gint level of5%), the joint test is
not significant (thep-value is .003> .05/25); however, all MCp-values are less than their relevant
cutoffs which suggests significant ARCH effects. The sansentation holds for: (i) the full sample
tests based on the variance ratio statistic, and (ii) thts tessed on Engle’s statistic in the subperiod
1976-80; in this case however, the MMC test is not significrit% yet the CSMMCp-value is
.022 < .025 so the CSMMC test is significant.

In view of our simulation results (Section 4), outcomes @& Bonferroni and the Hosking-type
asymptotic procedures must be qualified because rejeatiaysbe spurious. Indeed, on compar-
ing the Bonferroni to the MG-values, we observe that rejection decisions are reverssévieral
instances, for example: (i) the tests based on Lee-Kingss$t, in the subperiods 1991-95 and
1996-00; and (ii) the tests based on Ljung-Box statistichésubperiods 1966-70, 1986-90 and
1991-95. In all these cases, the Bonferrpiialue is significant a5% whereas even the Gaussian
MC test is not significant at this level. A further decisioneesal also deserves notice, namely the
joint variance ratio case over the whole sample. In this,callieough all MC tests are highly sig-
nificant (thep-values range are .001), their Bonferroni counterpart isigmificant at conventional
levels (thep-values is .182). In the case of Hosking-type tests, on coimpahe asymptotic and
MC p-values, we also find that rejection decisions are revensegveral instances. Consider for
example: (i) the Hosking-ARCH test in the 1996-00 subpesjahd in the latter subperiod; and
(ii) the serial-correlation Hosking test in the 1996-00 gettiod. In all these cases the asymptotic
tests are significant &% whereas the M@-values exceed their relevant cutoffs even with normal
errors.

The MMC and CSMMC test approaches lead, in a few cases, toictorgl decisions. For
example, refer to the joint Engle-type test in 1976-80, whigr= .022 while p, = .101. In this
case, if degrees of freedom which are not compatible withdéta are allowed, ARCH effects
may end up undetected. In contrast, consider: (i) the jogg-King-type test in 1976-80, where
pi = Ppq = .032, and (i) the joint Ljung-Box-type test in 1991-95, wheie= p, = .049. Here, on
recalling that a level adjustment is required in the casg fthe cut-off level for an overall level of
ais a — 2.5], we see that the pre-estimation step may lead to power.2osts

Over the whole sample period, all tests are significari’at except the Bonferroni Variance-
Ratio test. In contrast, the various subperiod tests appield conflicting decisions. Indeed, the
Hosking-type MC tests are all not significant at &8 level, whereas a few rejections are noted
at this level using our combined tests. Examples includgth@ ARCH test based on Engle’s
statistic (allowing for normal ot-errors) in the 1976-80 and 1996-00 subperiods; (ii) the ARC
test based on Lee-King’s statistic (allowing for normalt-@rrors) in the 1976-80 subperiod; (iii)

°An exact multi-stage MC joint test which integrates theraation and testing steps in conceptually feasible. The
test would however involve several nested simulations thérecomputational burdens translate into consequerdiaép
advantages is an open question, which is beyond the scolpis piiper. On multi-stage MC tests, see Dufour et al. (2003).
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the serial-correlation test based on Ljung-Box’s statigillowing for normal ort-errors) in the
1991-95 subperiod. Nevertheless, in all cases where Hpsipe MC tests are significant &%
[which occurs only with tests applied over the full samptalr combined tests are also significant
at the same level. These findings are in line with our simaatesults (reported in Section 4).

Departures from thei.d. hypothesis are less evident with non-Gaussian errors. ethdie
Gaussian M(p-values are typically lower than the Studeritased ones. Overall, while the full
sample MC tests are all significant at usual levels, the sidipeiagnostics do not detect serious
deviations from the.i.d. assumption, particularly if Studenterror distributions are formally ac-
counted for. These results may suggest that serial depemdemegligible in the short run and
important over the long run so that temporal dependencerfaate slow moving, which is empiri-
cally intriguing. Such an interpretation may thus cast daubthe tests’ usefulness in modeling the
short run dynamics of conditional return distributions.

Skepticism about test power with sub-period data must bgheel against our simulation re-
sults which reveal that all tests perform well with samplé®® observations on as many as 40
equations. Admittedly, as with all simulation studiesutesmay relate to the experimental design
considered and power issues are not necessarily ruled aetertieless, our tests, as with most
diagnostics conducted on regression error distributipressume stable regression coefficients and,
for that matter, a constant degrees-of-freedom paranmiter.the test period. This hypothesis may
not hold over the long term and calls for caution in confrogtour sub-period to the full-sample
test outcomes. On balance, our results suggest the folipstimategies for empirical asset pricing
practice. While a regression of the form (2.2) with FamarEhefactors and given (2.8) seems ac-
ceptable as a working framework within subperiods, the tiyihg risk-return relationship may be
unstable over long time spans. Controlling for the long rynaics of conditional distributions
matters importantly, yet asset pricing tests with long spaEfrmonthly returns require searching for
stable factor structures.

6. Conclusion

Previous research typically assess MLR-based assetgustatistical models using tests based on
individual equations. Due to error cross-correlationafigtics from individual equations are not
independent, which raises simultaneous test problemsidrpaper, we consider a diagnostic test
procedure that accounts for cross-equation correlati@astly, in possibly non-normal contexts.
We consider tests for serial correlation and tests for AR@etts. The procedures proposed pro-
vide exact variants of the standard multivariate portmeauntests as well as exact diagnostics which
consist in combining univariate specification tests. Oststare invariant to MLR coefficients and
error covariances; since in typical financial models, theadance matrix is high dimensional,
invariance to these nuisance parameters is a very usefogyo with non-Gaussian errors, depen-
dence on further unknown parameters is circumvented byagpMMC test techniques. From
a theoretical perspective, our multivariate procedutdestiate the usefulness of the MC test pro-
cedure in combining non-independent tests exactly. IstExgly, we show that even if individual
p-values are obtained using asymptotic arguments, they mapimbined in a way which yields a
joint exact test.
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The procedures considered are evaluated via a simulatfmeriexent, with sample sizes match-
ing our empirical analysis. Our results reveal that avégélggnocedures including Bonferroni-based
ones suffer from serious size problems. In contrast, our MECMMC tests display excellent size
and power properties. We find that combining individual eiquecriteria (after standardizing resid-
uals) outperforms portmanteau approaches.

The tests proposed are applied to the Fama-French three-faodel, using monthly data.
We analyze the model over the full sample [1965-2000] and Bwear subperiods. Our results
indicate significant instabilities for the full-sample easlthough significant departures from the
i.i.d. hypothesis are less evident over the subperiods, once o &l non-Gaussian errors. Our
simulation study does not reveal any power problems. Viewalbctively, our findings suggest
that a multivariate regression with Studergrrors and Fama-French factors seems acceptable as a
working framework over the short term, yet the underlyingtda structure may be unstable over
long time spans.
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A. Appendix: Proofs

PROOF OFTHEOREM 2.1 Using(2.6), (2.9) and(2.14), we have:

W =U7Y)(J'S,") = MUY (J'S;) = MW ('S 1) (A.1)

S Sy = T WMW) = HT'U'MU Y = (I HO'U/T) (T
= [JOU/T) ) =[S SN T = (IS (78T
= [(s;H) (s (A.2)

On observing thal(J’Sgl)_1 is upper triangular, this means th(a.l?’S[T]l)_1 is the (unique)

Cholesky factor of~*(W'MW), henceJ/Sg1 = Sv_i/15 on the unicity of the Cholesky fac-
tor, see Harville (1997, Section 14.5c, p. 229). SubslithS‘;Vl into (A.1), we see that
W =MW ('S ') =Wws.!. O

PROOF OFTHEOREM 3.1 Using(2.11) and(2.13), we see that, foy = 0,1, ... , G :

T T
Cylg) = T7' > WaWi_,=T" > (81Tl 5"
t=g+1 t=g+1

T
— (551)/[T—1 > UU7_g)S;" = (351)’00(9)551
t=g+1
hence

0 Co(0) 7185 (S51) Co(9)S,H = SpCp (0) ' Cp(9)S !
— —1\/ — _
) 5 Cp(0) 71 SE(S51) Cpr(9)' St = SpCy (0) " Cp(g)' S,
O (0) 7' Cir(9) i (0) 1Oy (9) = SpCp(0) ™ Cpp(9)Cp(0) ™ Cp(9)'S
Since matrix multiplication commutes under the trace dperave have:
tr{Cy, (0) ' Cy (9)Cy, (0) ' Cy(9) } = tr{SpCy(0) ' Cpp(9)Cp(0) ' C(9)' S}
= tr{Cy(0) ' Cp(9)Cy (0)'Cp(9)'}
which establishes that Hosking's criterion obtained frém tesiduald’ is equal to the Hosking's
criterion based on the standardized residliEls O
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PROOF OFTHEOREM 3.2 Using(2.11), (2.12) and(2.13), we see that

WiW, = U1(5;1) (5,1) 0 = O(0°0/T) "' 0 = ;5710

hence
T

T
R= Y (WW,—n)(W_oWec—n)/ S (W/W, —n)”.
t=G+1 =1

B. Appendix: Monte Carlo goodness-of-fit tests

This appendix presents the set estimation method we usdama@bconfidence set for the nuisance
parameter associated with assumption (2.5). The set is obtained lefiimg” a goodness-of-fit
[GF] test, of levela; (we consideredv; = 2.5% here) for the error distribution underlying (2.5).
In other words, the confidence set corresponds to the setwalues that are not rejected (at the
level) by a GF test which assesses (2.5) imposing vy. We use the multivariate skewness and
kurtosis criteria introduced in Dufour et al. (2003) (sesodWlardia (1970) and Zhou (1993)):

ESK(rvo) = [SK—SK(vo)|, EKU(rg) = |KU-KU(ro)|, (B.1)
1 T T ) 1 T

SK = EZZdZ, KU:TZd?t, (B.2)
t=1 =1 t=1

whered,; are the elements of the matrx(U’U) 10U’ andSK(v¢) andKU(v) are simulation-
based estimates of the expectid andKU given (2.5). Conditional 08K (v) andKU(vy), these
tests satisfy the conditions of Theoré&rl Thus the MC test technique may be applied to obtain
their corresponding exagptvalues p(ESKj |vo), p(EKUg |vg). To obtain a joint test we consider:

CSK =1 — min {ﬁ(ESKO ‘1/0), ﬁ(EKUO |V0)} . (B3)

The MC technique is applied to &S K statistic.
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