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Abstract

In the context of multivariate linear regression (MLR) models, it is well known that com-
monly employed asymptotic test criteria are seriously biased towards overrejection. In this paper,
we propose a general method for constructing exact tests of possibly nonlinear hypotheses on
the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact
distributional invariance results concerning several standard test criteria. These include Wilks’
likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality as-
sumption is not necessary for most of the results to hold. Implications for inference are two-fold.
First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be
applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the
invariance property of the latter statistic is exploited to derive general nuisance-parameter-free
bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be
difficult to compute these bounds analytically, they can easily be simulated, hence yielding ex-
act bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds perform
well. Our findings illustrate the value of the bounds as a tool to be used in conjunction with
more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be
applied when the bounds are not conclusive.
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1. Introduction

Testing the validity of restrictions on the coefficients of a multivariate linear regres-
sion (MLR) model is a common issue which arises in statistics and econometrics. A
serious problem with the MLR model is the fact that, except for very special cases,
the distributions of standard test criteria are either intractable or unknown, because of
the presence of nuisance parameters. In general, only asymptotic approximations are
operational. These however may be highly unreliable, especially in systems with large
numbers of equations. In view of this, the development of finite-sample procedures
appears to be particularly important.

Exact results are available in the literature only for specific test problems. Early refer-
ences can be found in connection with multivariate analysis of variance (MANOVA);
see, for example, Rao (1973, Chapter 8), Anderson (1984, Chapters 8 and 13) and
Kariya (1985). However, most of the existing exact results in this area are limited to
a very specific class of hypotheses, namely the uniform mixed linear (UL) class (see
Berndt and Savin, 1977). Examples of UL hypotheses include: (i) the case where iden-
tical transformations of the regression coefficients (within or across equations) are set
to given values, and (ii) the hypothesis that a single parameter equals zero. For some
recent exact results on tests of UL hypotheses, see Stewart (1997). Note however not
all linear hypotheses can be put in UL form. Further, except for even more restricted
classes of UL hypotheses (for which tables are available), the existing results on gen-
eral UL hypotheses are difficult to exploit and approximate distributions are usually
suggested.

Thus far less restrictive testing problems have not apparently been considered from
a finite sample perspective, with perhaps the exception of Hashimoto and Ohtani’s
(1990) exact test for general linear restrictions. However, the authors recognize that
this test involves complicated computations and has low power. Further, the test relies
on a non-unique transformation of the OLS residuals. These observations suggests that
this test has limited practical interest.

Asymptotic Wald, Lagrange multiplier and likelihood ratio tests are available and
commonly employed in econometric applications of the MLR model; see Berndt and
Savin (1977), Evans and Savin (1982), and Breusch (1979). It has been shown, how-
ever, that in finite samples, these asymptotic criteria are seriously biased towards over-
rejection when the number of equations relative to the sample size is large (even
moderately). Well-known examples, including homogeneity and symmetry tests in de-
mand systems and multivariate capital asset pricing tests, are discussed by
Stewart (1997). Attempts to improve asymptotic approximations in this context in-
clude, in particular: (i) Bartlett-type corrections, and (ii) bootstrap methods. Bartlett
corrections involve rescaling the test statistic by a suitable constant obtained
such that the mean of the scaled statistic equals that of the approximating distri-
bution to a given order. Formulae explicitly directed towards systems of equations
are given in Attfield (1995). Overall, the correction factors require
cumulants and joint cumulants of first- and second-order derivatives of the log-
likelihood function, and, outside a small class of problems, are complicated to
implement. Furthermore, simulations studies (e.g. Ohtani and Toyoda, 1985; Hollas,
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1991; Rocke, 1989) suggests that in many instance Bartlett adjustments do not work
well.

The use of bootstrap methods for MLR models has been discussed by several au-
thors, e.g. Williams (1986), Rocke (1989), Affleck-Graves and McDonald (1990),
and Atkinson and Wilson (1992). The bootstrap typically provides refinements for
the precision of asymptotic tests; see, for example, Hall (1992), Efron and
Tibshirani (1993), Shao and Tu (1995), and Davidson and MacKinnon (1999). When
the null distribution of the test statistic involves nuisance parameters, level control is
however not guaranteed by bootstrap arguments. The literature on MLR applications
of the bootstrap provides examples where the method: (i) works well in finite sam-
ples (e.g. Rilstone and Veall, 1996), or (ii) fails to achieve size control (e.g. Dufour
and Khalaf, 1998). In a different vein, randomized tests have been suggested in the
MLR literature for a number of special test problems and are referred to under the
name of Monte Carlo tests; see Theil et al. (1985, 1986) and Taylor et al.
(1986). However, these authors do not supply a distributional theory, either exact or
asymptotic.

In this paper, we propose a general exact method for testing arbitrary—possibly
non-linear—hypotheses on the coefficients of a standard MLR. We first prove a num-
ber of finite sample results dealing with the UL case. While the normality assumption
underlies the motivation for the statistics we consider, this is not necessary for most
of the results obtained. More precisely, an important feature of the MLR model is
the fact that several test criteria derived under the Gaussian assumption (including the
likelihood ratio (LR), the Lawley—Hotelling and Bartlett—-Nanda—Pillai trace criteria,
and Roy’s maximum root criterion) are all functions of the eigenvalues of a charac-
teristic determinantal equation which involves the restricted and unrestricted residual
sum-of-squares matrices. Further, for UL hypotheses, we show these eigenvalues have
a distribution that does not depend on nuisance parameters under the null hypothesis,
as soon as the error distribution is parametrically specified up to an unknown linear
transformation (or covariance matrix, when second moments exist). This general in-
variance property does not appear to have been pointed out in the earlier literature
on inference in the MLR model, especially for non-Gaussian settings. It is quite re-
markable in view of the fact that the residuals themselves have distributions which
do depend on the parameters of the disturbance covariance matrix (across equations),
even under the null hypothesis.

Second, even though the entailed (nuisance-parameter-free) null distributions of the
test statistics are typically non-standard, we observe that finite-sample (randomized)
tests of UL hypotheses may then easily be obtained by applying the technique of
Monte Carlo (MC) tests [originally proposed by Dwass (1957) and Barnard (1963)]
to the test statistics considered. MC tests may be interpreted as parametric bootstrap
tests applied to statistics whose null distribution does not involve nuisance parameters,
with however the central additional observation that the randomized test procedure so
obtained can easily be performed in such a way that the test exactly has the desired
size (for a given, possibly small number of MC simulations); for further discussion,
see Jockel (1986), Dufour and Kiviet (1996, 1998), Kiviet and Dufour (1997), and
Dufour et al. (1998).
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Thirdly, for the problem of testing general possibly nonlinear hypotheses, we use
the above invariance results to construct nuisance-parameter-free bounds on the null
distribution of the LR criterion. A very remarkable feature of these bounds is the
fact that they hold without imposing any regularity condition on the form of the
null hypothesis, something even the most general asymptotic theories do not typically
achieve. The bounds proposed are motivated by the propositions in Dufour (1997)
relating to likelihood-based inference in MLR settings: using an argument similar to
the one in Dufour (1989) for a univariate regression, we show that LR statistics have
null distributions which are boundedly pivotal, i.e. they admit nuisance-parameter-free
bounds. Here we extend this result, e.g. by allowing for non-Gaussian models, and
outline a general procedure to construct typically tighter bounds. Note however that
the bound implicit in Dufour (1997)’s demonstrations may be obtained as a special—
although non-optimal—case of the bounds presented here.

To be more specific, the bounds test procedure for general restrictions can be de-
scribed as follows. First, we introduce a UL hypothesis which is a special case of
the restrictions to be tested. Then we argue that the LR criterion associated with the
suggested UL hypothesis provides the desired bound. The result follows from two con-
siderations. First, since the UL constraints in question were constructed as a special
case of the tested hypothesis, it is evident that the LR statistic for the UL hypothesis
(UL-LR) is larger than the LR test statistic of interest, and thus the UL-LR distribution
yields an upper bound (and conservative critical points) applicable to the LR statis-
tic. Second, the pivotal property which characterizes the UL-LR statistic (established
below) guarantees invariance with respect to nuisance parameters. The null distribu-
tions so obtained are non-standard, so it may be difficult to compute analytically the
corresponding conservative p-values. However, the bounding UL-LR statistics can be
easily simulated, hence yielding exact bounds MC tests.

We conduct a simulation experiment to assess the performance of the bound on a set
of linear and nonlinear parameter restrictions—for which no alternative finite-sample
procedure appears to be available. The results indicate that the bounds proposed do
not yield overly conservative tests and provide powers close to the ones of the other
procedures considered (without the risk of being over-sized). These findings illustrate
the usefulness of the bounds in this context—to be used possibly in conjunction with
more traditional methods (e.g. the parametric bootstrap) and not necessarily as an
alternative to these methods. Finally, we refer the reader to Dufour and Khalaf (1998,
2002) for extensions to the SURE and simultaneous equations models.

The paper is organized as follows. Section 2 describes the notation and definitions.
Section 3 discusses the distributional results pertaining to uniform linear hypotheses.
Section 4 discusses the testing of general hypotheses in the MLR model and establishes
bounds on the significance points for these statistics. Simulation results are reported in
Section 5, and Section 6 concludes.

2. Framework

The MLR model can be expressed as follows:
Y=XB+ U, 2.1)
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where Y =[Y1,...,Y,] is an n X p matrix of observations on p dependent variables,
X is an n x K full-column rank matrix of fixed regressors, B=[by,...,b,] isa K x p
matrix of unknown coefficients, and U:[Ul,...,Up]:[Ul,...,U,,]’ is an n X p matrix
of random disturbances. For further reference, let b;=(b;,byj,...,bx—1;), j=1,..., p.
We also assume that the rows U ;, i=1,...,n, of U satisfy the following distributional
assumption:

U,=JW;, i=1,...,n, (2.2)
where the vector w = vec(W1,...,W,) has a known distribution and J is an unknown,

non-singular matrix. In this context, the covariance matrix of U ; is 2 =JJ', where
det(X) # 0. For further reference, let W = [Wy,...,W,] = U(J~'). In particular,
assumption (2.2) is satisfied when

WiNN(0,1,),  i=1,....n. (2.3)
An alternative representation of the model is

y=U,0X)b+u, 2.4)

where y = vec(Y), b= vec(B), and u = vec(U). The least-squares estimate of B and
the corresponding residual matrix are

B=X'X)"'X'Y, U=Y —XB=MY=MU, (2.5)

where M =I—X(X'X)~'X’. Note the distribution of U does not depend on B, although
it is affected by the value of J (or X=JJ"). In this model, it is well known that under
(2.3) the maximum likelihood estimators (MLE) of the parameters reduce to B and
=00 /n. The maximum of the log-likelihood function (MLF) over the unrestricted
parameter space is

__nr —Mnasy - P
rggxln(L)f 5 In(27) 2ln(\E|) > (2.6)

3. Uniform linear hypotheses in the multivariate linear model

In this section, we establish an exact finite-sample distributional invariance result for
several usual test statistics in the MLR model (2.1). Further, for the cases where it ap-
plies, we observe that it can be used to obtain finite-sample MC tests. This result obtains
irrespective of the disturbance distribution (whether it is Gaussian or non-Gaussian),
provided the latter is specified up to the unknown matrix J. Specifically, we show
that, for a wide class of linear hypotheses, the null distributions of the test statistics
are free of nuisance parameters. Here it is important to note that, even though least
squares residuals have distributions which do not depend on regression coefficients (B),
it is easy to see that the latter does involve the unknown disturbance covariance matrix
(or the J matrix). Thus we may expect that test statistics based on such residuals
will depend on J as a nuisance parameter, and the invariance with respect to the J
matrix (or the disturbance covariance matrix) is remarkable. Note also that standard
(finite-sample) results on hypothesis testing on the MLR model impose the assumption
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that the errors follow a Gaussian [see, e.g. Anderson (1984) and Rao (1973)] or an
elliptically symmetric distribution (see Kariya, 1981, 1985).!

The fundamental invariance property applies to the case where the constraints take
the special UL form

Ho: RBC =D, (3.1)

where R is a known r x K matrix of rank » < K, C is a known p X ¢ matrix of rank
c< p, and D is a known r X ¢ matrix. An important special case of this problem
consists in testing

H()ll ijzéj, j:1,...,p, (32)

which corresponds to Hy with C=1,,. In this context, the most commonly-used criteria
are: the LR criterion, the Lawley—Hotelling (LH) trace criterion, the Bartlett—Nanda—
Pillai (BNP) trace criterion and the maximum root (MR) criterion.? All these test
criteria are functions of the roots my,my,...,m, of the equation

\U'0 — mU,0| =0, (3.3)

Al A Al A . . .
where UyUy and U U are, respectively, the constrained and unconstrained sum
of squared errors (SSE) matrices. For convenience, the roots are reordered so that m;
= --- = m,. In particular, we have

P
LR=—nIn(L), L=|0"0//|0,0¢| =]]mi (3.4)
i=1
where L is the well-known Wilks statistic, and

P P
LH = (1—m)/my, BNP=> (1—-m), MR= max (1—m)/m. (3.5)

I<i<
i—1 i—1 SP

Now consider the following decomposition of the SSE matrix U U
U'0=UMU=JUJ YIM[UUT YT
=JW'MWJ', (3.6)

where the matrix W =U(J ") defined by (2.2) has a distribution that does not involve
nuisance parameters. In other words, U U depends on X only through J. Similarly,
U:) Uy can be expressed as

UgUo =JW MyWJ', (3.7)

! As shown by Kariya (1981), tests derived under the Gaussian distributional assumption usually remain
valid under the more general assumption of elliptical symmetry on U. Since elliptical symmetric precludes
independence between Uj,...,Up, except in the Gaussian case, assumption (2.2) considered here is not
covered by elliptical symmetry.

2 For references, see Rao (1973, Chapter 8) or Anderson (1984, Chapters 8 and 13). Note that the criteria
LH and BNP can be interpreted as Wald and Lagrange multiplier test statistics, respectively. For details of
the relationship, see Berndt and Savin (1977), Breusch (1979) and Stewart (1997).
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where My =M + X(X'X)"'R'[R(X'X)"'"R'1"'R(X'X)~'X’. These observations yield
the following basic distributional result.

Theorem 3.1 (Distribution of determinantal roots). Under (2.1), (2.2) and Hqi, the
vector (my,my,...,m,) of the roots of (3.3) is distributed like the vector of the
corresponding roots of

W' MW — mW'MyW| =0, (3.8)
where M is defined as in (2.5), My as in (3.7), W = U(J™") and the roots are put
in descending order in both cases.

Proof. From (3.6) and (3.7), we have

U'0=0w'Mwy’, UyUo=JW MyWJ'.

Consequently, the determinantal equation (3.3) can be expressed as

W' MWJ' — mJW' MyWJ'| =0,

hence
JI|W' MW —mW MW ||J'| =0
and
W' MW — mW'MoW| = 0.
Since the vector w=vec(W1,..., Wy ) has a completely specified distribution, the roots of

Eq. (3.8) have a joint distribution which does not involve any unknown parameter. [

The above result entails that the joint distribution of (my,...,m p)' does not depend
on nuisance parameters. Hence the test criteria obtained as functions of the roots are
pivotal under the null hypothesis and have a completely specified distribution under
assumption (2.2). Further, this distribution depends on the R matrix but not on the
constants d;, j=1,..., p, in (3.2). On the basis of this theorem, the distribution of the
Wilks’ L criterion can be readily established.

Corollary 3.2 (Distribution of Wilks’ statistic). Under the assumptions of Theorem
3.1, Wilks® L statistic for testing Ho, is distributed like the product of the roots
of |W'MW — mW'MyW| = 0.

It may be useful, for simulation purposes, to restate Corollary 3.2 as follows.

Corollary 3.3 (Distribution of Wilks’ statistic as ratio). Under the assumptions of
Theorem 3.1, Wilks’ L statistic for testing Hoy is distributed like |W' MW |/|W'MyW|.

We now turn to the general UL hypothesis (3.1). In this case, the model may be
reparametrized as follows:

Y, = XB, + U,, (3.9)
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where Y. =YC,B.=BC and U,=UC. The corresponding null hypothesis takes the form
RB. = D. The proof then proceeds as for Theorem 3.1. Thus the null distribution of
Wilks” L criterion may depend on X, R and C (although not D), but does not involve
any unknown nuisance parameter. We emphasize again that the above results do not
require the normality assumption.

Eventually, when the normality hypothesis (2.3) holds, the distribution of the Wilks
criterion is well known and involves the product of p independent beta variables with
degrees of freedom that depend on the sample size, the number of restrictions and the
number of parameters involved in these restrictions. The reader may consult Anderson
(1984) and Rao (1973). For completeness sake, we restate this result in Appendix A.
To the best of our knowledge, Theorem 3.1 has not been stated in the earlier literature
on inference in the MLR model. 3

For non-Gaussian errors [i.e. when W; follows a known distribution which differs
from the N(0,/,) distribution], the null distribution of Wilks’ statistic may not be ana-
lytically tractable. However, the above invariance results can be used to obtain Monte
Carlo tests that are applicable given the distributional assumption (2.2). Such proce-
dures were originally suggested by Dwass (1957) and Barnard (1963). In Appendix B,
we briefly outline the methodology involved as it applies to the present context; for a
more detailed discussion, see Dufour (1995), Dufour and Kiviet (1996, 1998), Kiviet
and Dufour (1997), and Dufour et al. (1998).

To conclude, observe that even in the Gaussian case, it may be more convenient
to obtain critical points by simulation. Indeed, it is clear that the null distribution as
characterized by Anderson or Rao is not so suitable, in general, for analytical compu-
tations (except for specific cases reviewed in Appendix A). Finally, recall that not all
linear hypotheses can be expressed as in Hy; we discuss other types of hypotheses in
the following section.

4. General hypotheses in the multivariate linear model

In this section, we study the problem of testing general hypotheses on the coefficients
of the MLR model. Exact bounds on the null distributions of the LR statistic are
derived, which extend the results in Dufour (1989) to the multi-equation context. The

3 The distributions of various test criteria proposed in this area are almost invariably derived for Gaussian
(or elliptically symmetric) MLR models; see, for example, Rao (1973), Arnold (1981, Chapter 19), Anderson
(1984, Chapter 8), and Kariya (1981,1985). This holds, in particular, for the pivotal character of the roots of
(3.3). Although one may argue that some of these invariance results do not require the Gaussian (or elliptical
symmetry) assumption, the fact remains that normality is explicitly imposed and the way the methods can
be extended to general non-Gaussian parametric error distributions has not apparently been discussed in the
statistical literature. In the context of univariate linear regressions, Breusch (1980) has also provided some
interesting invariance results with respect to regression coefficients and one scale parameter (o). However,
these do not apply to multivariate regressions where one needs to show invariance with respect to the J
matrix which involves both scale parameters and coefficients representing dependence (e.g. correlations)
between disturbance terms in different equations.
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bounds are based on the distributional results of the previous section and can be easily
simulated. Formally, in the context of (2.4) consider the general hypothesis

H; : R*b € Ay, 4.1)

where R* is a ¢* x (pK) matrix of rank ¢*, and 4y is a non-empty subset of R7*.
This characterization of the hypothesis includes cross-equation linear restrictions and
allows for nonlinear as well as inequality constraints. The relevant LR statistic is

LR* =nln(A%), A" =|5,)/|2), (4.2)

where f:; and X are the MLE of ¥ imposing and ignoring Hj. In general, the null
distribution of LR* depends on nuisance parameters [see Breusch (1980) in connection
with the general linear case]. Here we show that LR* is a boundedly pivotal statistic
under the null hypothesis, i.e. its distribution can be bounded in a non-trivial way
by a nuisance-parameter-free function. To do this, we shall extend the methodology
proposed in Dufour (1989) in the context of single equation linear models. Furthermore,
we exploit the invariance result which we established above in the UL hypothesis
case. The method of proof we present next is likelihood based, in the sense that we
explicitly use the Gaussian log-likelihood function. However, as will become clear from
our analysis, it is trivial to rewrite proofs and results in the Least-Squares framework.

Consider the MLR model (2.4) and let L(Hy ) denote the unrestricted MLF. In the
Gaussian model, L(Hy ) is expressed by (2.6). Further, consider a set of UL restrictions
Hg* : RBC =D such that H* C Hi.* Now define L(H;), L(HZ*) to be the MLF under
H§ and H*, respectively. Under assumption (2.3),

N n n n n

L(H5) = ="LIn(2m) — 2 In(|£5) - =F, (43)
o np n ~ koK np

L(Hy*) = - In(2m) — 7 In(|%, ) — R 4.4)

where f);* is the MLE under Hg*. Then it is straightforward to see that

L(Hg™) < L(Hp) < L(Hyp). 4.5)
Using (4.3)—(4.5), we see that

A* < A, (4.6)
where

A7 = 5571112, (47)

It follows that P[A* = x] < P[A™" = x] Vx, where P[A** > x], as demonstrated in
Section 3, is nuisance-parameter free and may be used to obtain exact procedures in
finite samples on applying Monte Carlo test methods (see Appendix B).

4Such a set of UL restrictions does always exist. For example, in all cases, we can take R=Ix, C =1Ip,
and D equal to the true value of B, so Hg* takes the form B = D. However, we can get tighter bounds if
we choose the number of rows in R and the number of columns in C as small as possible.
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At this point, it is worth noting that normality [hypothesis (2.3)] by no way con-
stitutes a necessary assumption in this case. Indeed, inequality (4.6) follows from the
properties of least-squares estimation irrespective of the true density function. Further-
more, the critical values of the bounding statistic may still be determined using the
MC test method under the general assumption (2.2). For further reference, we call the
MC test based on the conservative bound a bounds Monte Carlo (BMC) test. We now
state our main result for model (2.4) given the distributional assumption (2.2).

Theorem 4.1 (Bounds for general LR statistics). Consider the MLR model (2.4) with
(2.2). Let A* be the statistic defined by (4.2) for testing R*b € Ay, where R* is a
q* x (pK) full column rank matrix and Ay is a non-empty subset of RY . Further,
consider any restrictions of the form RBC =D that satisfy R*b € Ay, where R and C
are r x K and p x ¢ matrices such that r = rank(R) and ¢ = rank(C). Let A** be
the inverse of Wilks criterion for testing the latter restrictions. Then under the null
hypothesis, P[A* = 2**(a)] < a, for all 0 < a <1, where 2**(a) is determined such
that P[A** = 1**(a)] = o.

For completeness, we proceed next to state our main conclusion for the Gaussian
model. Let ¥,(-) be such that

P[¥(v1,v2,03) = ¥o(v1,00,03)] =0, 0<a<, (4.3)

where W(vy,v;,v3) is distributed like the product of the inverse of v, independent beta
variables with parameters (%(vl — vy +1), %3), i=1,...,0;. Then, we have the following
theorem.

Theorem 4.2 (Bounds for general LR statistics: Gaussian model). Consider the MLR
model (2.4) with (2.2) and (2.3). Let A* be the statistic defined by (4.2) for testing
R*b € Ay, where R* is a ¢* x pK with rank q* and Ay is a non-empty subset of RY" .
Further, consider restrictions of the form RBC = D that satisfy R*b € Ao, where R
and C are r x K and p x ¢ such that r = rank(R) and ¢ = rank(C). Then, under the
null hypothesis, for all 0 < a <1, P[A* = V,(n — K, p,§)] < o, where § = min(r,¢)
and V,() is defined by (4.8).

The latter theorem follows on observing that the bounding statistic A** is distributed
like Y(n — K, p,q); see Theorem A.l1 in Appendix A. Then, using (4.6) and (4.8), we
have

PA*=2Y¥Y,(n—K,p,§)]=za, 0<a<l. (4.9)

Consequently, the critical value Q,=%,(n—K, p, §) is conservative at level a. Of course,
one should seek the smallest critical bound possible. This would mean expressing R
so that ¢ is as small as possible.

To conclude, we note that Theorems 4.1 and 4.2 have further implications on
LR-based hypothesis tests. The fact that the null distribution of the LR statistic can be
bounded (in a non-trivial way) implies that alternative simulation-based test techniques
may be used to obtain valid p-values based on the statistic in (4.2). See Dufour (1997)
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for further discussion of the boundedly pivotal test property and its implications on the
potential usefulness of standard size correction techniques.

Eventually, when the BMC p-value is not conclusive, alternative MC and/or boot-
strap type methods may be considered. However, we emphasize the fact that the BMC
procedure can be implemented in complementarity with such methods. Indeed, if the
BMC p-value is less than or equal to o, then it follows from Theorem 4.1 that the ex-
act p-value certainly rejects the null hypothesis at level «. Our point is that the bounds
are very easy to simulate, since they are based on UL-LR criteria; to see this, refer
to Corollaries 3.2 and 3.3. In contrast, alternative simulation based size corrections
procedures including the bootstrap require realizations of the test statistic at hand. It
is well known that general-restrictions-LR criteria typically require numerical iterative
procedures (even under certain non-UL linear constraints). In view of this, it is advan-
tageous to construct a BMC p-value first, to avoid costly constrained maximizations
and the associated numerical problems.

5. Simulation study

This section reports an investigation, by simulation, of the performance of the various
proposed statistics under UL constraints as well as more general contexts.

5.1. Design
We considered the following designs.

DI1. MLR system, within-equation UL constraints: Model: (2.1) with K = p + l;ﬁlojl:
0,1,...,1)B=0; p=15,7,8;n=20,25,40,50, 100.

D2. MLR system, cross-equation UL constraints. Model: (2.1); H)?: (3.1) with the
coefficients of R, B and C selected according to a N(0, 1) distribution; p=11,12,
13; K =12,13;r =12,13;¢c = 11,12,13; n = 25.

D3. MLR system, cross-equation constraints. Model: (2.1); H5? tbyj=bn,j=2,....p
and by =0,/ #k,jk=1,...,p; p=3,5n=25.

D4. MLR system, nonlinear constraints. Model: (2.1) with K = 2;H5*:by; =y
(1—by), j=1,..., p, y unknown; p =40;n = 60.

Experiments DI and D2 illustrate the UL case. DI is modelled after the study in Attfield
(1995) whose purpose was to demonstrate the effectiveness of Bartlett adjustments.
However, the example analyzed there was restricted to a two-equations model. This
experiment may be viewed as an illustration of homogeneity tests in demand systems.
D2 studies the size of Rao’s F test when (A.1) in Appendix A is valid only asymp-
totically; in the subsequent tables, the latter test is denoted F, ;g‘o. Experiments D3 and
D4 consider more general restrictions and are designed to assess the performance of
the bounds procedure. Experiment D3 focuses on general linear restrictions, includ-

ing exclusion and cross-equation equality constraints. Experiment D4 is modelled after
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Table 1
Coefficients for the simulation experiments

0., j=1,...1[p/2,
D1 by = k=1,...,p—1
02, j=Ilp/21+1,....p,
by =545 bygs J= Lo,
12, j=1...1[p/2]
boj =
1.8, j=I[p2]+1,....p
D2 The elements of the matrices R, B, C were selected (once)
independently from the N(0, 1) distribution
D3 p=3 p=>5
r2 08 —11 19 —027
1.2 08 —1.1 0.1 0 0 0 0
0.1 0 0 0 0.1 0 0 0
B= B=
0 0.1 0 0 0 0.1 0 0
0 0 0.1 0 0 0 0.1 0
L 0 0 0 0 0.1 |
D4 7 =0.009 and by;, j=1,..., p, drawn (once) as NID (0,0.16)

multivariate CAPM tests (see Stewart, 1997). We considered 40 equations with 60
observations following the empirical example analyzed in Stewart (1997).

For each model, a constant regressor was included and the other regressors were
independently drawn (once) from a normal distribution; the errors were independently
generated as i.i.d N(0,2) with ¥ =JJ’ and the elements of J drawn (once) from a
normal distribution.® The regression coefficients are reported in Table 1. The power
of the tests in (D1,n =25, p=28), and D3 were investigated by simulating the model
with the same parameter values except for by;.

The statistics examined are the relevant LR criteria defined by (3.4) and (4.2). For
the purpose of the power comparisons conducted in D3 and D4, we performed: (i) the
standard asymptotic LR test (size corrected when needed, using an independent simu-
lation), and (ii) the parametric bootstrap test to which we refer as the “local” Monte
Carlo (LMC) test. The latter procedure is based on simulations that use a restricted ML
estimator. The subscripts asy, BMC, LMC and PMC refer, respectively, to the stan-
dard asymptotic tests, MC bounds tests, LMC tests (bootstrap), and MC tests based
pivotal statistics (in the case of uniform linear hypotheses). The BMC test performed
in D3 is based on the LR statistic which corresponds to the UL constraints setting all

5 The BMC and PMC invariant tests are do not depend on the choice for J. The results on standard tests
are conditional on the chosen value for J; the values of the regression coefficients also intervene in the
nonlinear example. We have performed several experiments with various parameter choices (not reported for
space considerations) with qualitatively similar results.
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Table 2
Empirical levels of various tests: experiment D1

n p=>5 p=7 p=
LRasy LR, LRpyvic LRusy LR, LRpmc LRasy LR, LRpyvic
20 0.295 0.100 0.050 0.599 0.250 0.042 0.760 0.404 0.051
25 0.174 0.075 0.045 0.384 0.145 0.036 0.492 0.190 0.045
40 0.130 0.066 0.052 0.191 0.068 0.045 0.230 0.87 0.049
50 0.097 0.058 0.049 0.138 0.066 0.041 0.191 0.073 0.054
100 0.070 0.052 0.050 0.078 0.051 0.049 0.096 0.052 0.053
Table 3
Test powers: experiment D1 n =25, p=28;Hp:b;; =0.1
by 0.2 0.4 0.8 1.0 1.4
LRysy 0.055 0.176 0.822 0.965 1.0
LRpmc (N =19) 0.054 0.165 0.688 0.881 0.991
LRpyc (N =99) 0.056 0.173 0.799 0.950 0.999
Table 4
Empirical levels of various tests: experiment D2
(p.K,r,c) LRasy F;RS‘;‘O LRpnvc
13,12,12,13 1.00 0.198 0.047
11,12,12,11 1.00 0.096 0.054
12,12,12,12 1.00 0.114 0.048
12,13,13,12 1.00 0.225 0.038

coefficients except the intercepts to specific values. In the case of D4, the BMC test
corresponds to the following UL restrictions: bg; =y(1 —by;), j=1,..., p,y known. In
D1 we have also considered the Bartlett-corrected LR test (Attfield, 1995, Section 3.3)
which we denote LR.. The MC tests were applied with 19 and 99 replications. We
computed empirical rejection frequencies, based on a nominal size of 5% and 1000
replications. All the experiments were conducted using Gauss-386i VM version 3.1.
Note here that the number of simulated samples used for the MC tests has no effect
on size, but it may affect power.

5.2. Results and discussion

The results of experiments D1-D3 are summarized in Tables 2—6. The results of
experiment D4 are as follows. The observed size of the asymptotic test was 89.5%. In
contrast, the LMC and BMC tests show empirical type I error rates (0.047 and 0.038)
compatible with their nominal 5% level. Our results show the following.
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Table 5
Empirical levels of various tests: experiment D3
p=3 p=
LRasy LRy mc LRgmc LRasy LRy mc LRpmc
0.122 0.055 0.036 0.310 0.044 0.029
Table 6
Test powers: experiment D3 Hy: by = 0.1
N=19 N=99
p=3
b1 0.3 0.5 0.7 0.9 1.0 0.3 0.5 0.7 0.9 1.0
LRasy 0.140 0.522 0.918 0.995 1.0 0.140 0.522 0918 0.955 1.0

LRy mc 0.137 0.468 0.849 0.987 0.991 0.135 0.539 0.912 0.995 1.0
LRgmc  0.095 0.404 0.799 0.963 0.987 0.099 0.441 0.861 0.986 0.999

p=5

b1y 0.3 0.5 0.7 0.9 1.1 0.3 0.5 0.7 0.9 1.1
LRasy 0.128 0515 0904 0995 1.0 0.128 0515 0904 0995 1.0
LRimc 0138 0467 0937 0967 1.0 0.137 0537 0904 0994 1.0

LRgmc  0.120 0.427 0.792 0.958 0.995 0.110 0.484 0.877 0.990 1.0

5.2.1. Test sizes

First, it is evident that the asymptotic tests overreject substantially. Although this
problem is well documented, observe that in some cases empirical sizes ranged from
75% to 100%. Second, the Bartlett correction, though providing some improvement,
does not control the size in larger systems. From the results of D2, we can see that
the asymptotic F test—when applicable—performs better than the standard y? test, but
size correction is still needed. The size of the PMC test corresponds closely to 5%.
The LMC test works better then standard asymptotic approximations. This observation
is consistent with results showing (under appropriate regularity conditions) that the
bootstrap can deliver asymptotic refinements similar to Edgeworth expansions (see
Hall, 1992).° As predicted by theory, the levels of the BMC test are adequate in all
experiments.

5.2.2. Test powers
Experiment DI reveals that the PMC tests have good power (see Table 3) even with
N as low as 19. With N =99, we do not observe any significant power loss for tests

60Of course, there is no general theoretical guarantee that such as an approximation cannot lead to
over-rejections in finite samples for the MLR model considered here. For some illustrative evidence, in-
volving nonlinear restrictions on MLR models, see Dufour and Khalaf (1998).
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having comparable size, although the power study focuses on the eight-equations model
with just 25 observations. LMC tests provide substantial improvement over conventional
asymptotics: the procedure corrects test sizes with no substantial power loss. A striking
observation in the case of D3 is that the conservative bound exhibits power very close
to that of the other procedures. Increasing the number of equations does not have a
great effect on the relative performance of all MC methods proposed. An interesting
experiment that bears on this problem is reported in Cribari-Neto and Zarkos (1997) in
connection with MLR-based bootstrap tests for homogeneity and symmetry of demand.
These authors find that the standard bootstrap achieves size control at the expense of
important power losses.

Although the LMC test appears superior, which could be expected given that the
bound is conservative by construction, this experiment shows that the bound has rela-
tively good power. It is important to recall however that the LMC test may not always
satisfy the level constraint in finite samples; for illustrative evidence, see Dufour and
Khalaf (1998). We emphasize that LMC and BMC tests should be viewed as comple-
mentary rather than alternative procedures. As argued above, the bounds procedure is
computationally inexpensive and exact. In addition, whenever the bounds test reject,
inference may be made without further appeal to LMC tests. In this regard, our results
illustrate the usefulness of the proposed bounds.

6. Conclusion

In this paper we have shown that the LR test on the coefficients of the MLR model is
boundedly pivotal under the null hypothesis. The bounds we have derived for general,
possibly non-linear hypotheses are exact in finite samples and may easily be imple-
mented by simulation. The basic results were stated in terms of arbitrary hypotheses in
MLR contexts. No regularity condition is imposed on the form of restrictions tested,
which can be highly nonlinear and may not satisfy the conditions usually required for
deriving an asymptotic theory.

For the special case of linear hypotheses, which include many types of restrictions
important in practice, we studied both uniform and general linear hypotheses. In fact,
in the uniform linear case, we have shown that the LR statistic is pivotal even if the
normality hypothesis is not imposed. This result has provided the foundations for the
construction of the proposed general bounds. We have reported the results of a Monte
Carlo experiment that covered uniform linear, cross-equation and non-linear restrictions.
We have found that standard asymptotic tests exhibit serious errors in level, particularly
in larger systems; usual size correction techniques (e.g. the Bartlett adjustment) may not
be fully successful. In contrast, the bounds tests we have proposed displayed excellent
properties.

Finally, even though the finite-sample validity of the proposed Monte Carlo test pro-
cedures only holds under parametric distributional assumptions on model disturbances,
it is straightforward to see that such tests will be asymptotically valid (in the usual
sense as the sample size goes to infinity) under much weaker distributional assumptions
as soon as two conditions are met: (1) the assumptions used to derive an asymptotic
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distribution include as special case the parametric distributional assumptions imposed in
order to perform the Monte Carlo tests (e.g. a Gaussian assumption); (2) the asymptotic
distribution of the test statistic does not involve unknown nuisance parameters (e.g. it
is a chi-square distribution with a known number of degrees of freedom). So there is
typically nothing to lose (and potentially much to gain in terms of finite-sample reliabil-
ity) in applying a finite-sample procedure of the type proposed here as opposed to only
an asymptotic approximation. For further discussion of this sort of generic asymptotic
validity of a finite-sample test, the reader may consult Dufour and Kiviet (1998).
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Appendix A. Wilks’ and Hotelling’s null distributions

We restate here known finite sample distributional results (see Anderson (1984) or
Rao (1973)) pertaining to the LR criteria for testing uniform linear hypotheses in the
context of the MLR model (2.1) under (2.3). The first result characterizes the exact
distribution of Wilks’ statistic under normality.

Theorem A.1 (Distribution of Wilks’ statistic under Gaussian models). Under (2.1)-
(2.3) and (3.2), Wilks’ L statistic for testing Hyy is distributed like the product
of p independent beta variables with parameters (%(n —rxy —p+i)3), i=1,...,p,
where ry is the rank of the regressor matrix and r is the rank of the matrix R.

This result has formally been derived for the case where the constraints take the
special form (3.2), although it is easy to see that it also holds under (3.1). For certain
values of » and ¢ and normal errors, the null distribution of the Wilks criterion reduces
to the F distribution. For instance, if min(r,c) < 2, then

pt—22\ 1 —L
< p” ) e~ F(re, pt —24), (A1)
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(PP =4+ =" if P+ —5>0,
T=
1 otherwise.

Further, the special case 7=1 leads to the Hotelling’s 7 criterion which is a monotonic
function of L. If » > 2 and ¢ > 2, then the distributional result (A.1) holds asymp-
totically (Rao, 1973, Chapter 8). Stewart (1997) provides an extensive discussion of
these special F' tests.

Appendix B. Monte Carlo tests

MC test procedures were originally suggested by Dwass (1957) and Barnard (1963).
In the following, we briefly outline the methodology involved as it applies to the present
context; for a more detailed discussion, see Dufour (1995).

Consider first the UL test case. We focus on the statistic A = L~!, where L is the
Wilks criterion, as defined in (3.4). Let A, denote the observed test statistic. By Monte
Carlo methods and for a given number N of replications, generate A;, j=1,...,N
independent realizations of the statistic in question, under the null hypothesis. This may
be conveniently implemented using Corollaries 3.2 and 3.3 While the level of the test
is controlled irrespective of the number of replications, the statistic typically performs
better in terms of power the larger the number of replications. Rank A;, j=0,...,N
in non-decreasing order and obtain the MC p-value p,(Ay) where

R NGy(x)+ 1
=27 B.1

Py(x) N1 (B.1)

with
N .
N 1 1 if z€ A,
Gy(x) == ) looo)(Ai —x),  Lu(z) = (B.2)
N ; f.oc] 0 ifzgA

Then the test’s critical region corresponds to

py(Ap) <o, O<a<l. (B.3)

In the pivotal statistic case, the latter critical region is provably exact, i.e. P[py(Ao)
< o] <o with P[py(Ap) < o] =o when there is an integer k such that a =k/(N +1).
Thus pn(Ag) provides an exact p-value. For example, for o = 0.05, the number of
replications can be as low as N =19, although of course one could use a larger number
(e.g. N=49, 99, 299, 999). Clearly, the fact that a small number of replications is
sufficient to achieve the desired level does not entail that a larger number of replications
is not preferable: raising the value of N will typically increase power and decrease the
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sensitivity of inference to the randomization inherent to any MC procedure.” However
(and somewhat surprisingly), our simulation results suggest that increasing the number
of replications only has a small effect on power at least for the cases considered.

We now turn to the case of the A statistic defined by (4.2) for testing (4.1). Denote

by 0 the vector of relevant nuisance parameters. From the observed data, compute: (i)
.. . . .. . . . A0
the test statistic which we will denote A, and (ii) a restricted consistent estimator 0,

. . ~0 . . .
of 0 [i.e. an estimator 0, of 0 estimator such that the data generating process associated

. A0 . A0 . A0 .
with =0, satisfies Hy, and 0,0 as n — oo under Hy). Using 0,, generate N simulated
samples and, from them, N simulated values of the test statistic: A7, j=0,...,N.

A0 _
Then compute py(A;|0,), where py(x|0) refers to py(x) based on realizations of A*
generated given 0 =0 and py(x) is defined in (B.1), replacing 4;, j=0,...,N by A}
in (B.2). A MC test may be based on the critical region

~0
Pn(Tol0,) <o, a<0<1.

This yields a parametric bootstrap or, in our notation an LMC p-value. Using the
results from Dufour (1995) on LMC tests, we have that under Hy,

Tim {P[py(4510,) < o] — PLpy(4]0) <21} =0, (B4)

which means that the LMC test has the correct level asymptotically (as » — o0). The
latter limiting result takes the number of simulated samples explicitly into account, i.e.
does not depend on N — oo. Furthermore, as shown by Hall (1992), or Davidson
and MacKinnon (1999) (among others), the bootstrap p-value so defined provides a
sizable refinement on the precision of asymptotic tests. Finally, to obtain a BMC test,
implement the PMC procedure based on realizations of the bounding statistic. These
realizations may be obtained applying Corollaries 3.2 and 3.3, where M, is chosen
conformably with Hg* which Should be constructed as outlined in Section 4.
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