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ABSTRACT

We study two linear estimators for stationary invertible VARMA models in echelon form (for
identification), with known Kronecker indices. Such linear estimators are much simpler to compute
than Gaussian maximum likelihood (ML) estimators often proposed for such models, which are
highly nonlinear. The first estimator is an improved two-step estimator which canbe interpreted
as a generalized least squares (GLS) of the two-step least-squares estimator considered in Dufour
and Jouini (2005), for a more general model which allows for the presence of drift parameters.
The second estimator is a new relatively simple three-step linear estimator which isasymptotically
equivalent to ML, hence efficient, when the innovations of the process are Gaussian. The proposed
asymptotically efficient estimator is based on using modified approximate residuals which better take
into account the truncation error associated with the approximate long autoregression used in the first
step of the method. We show that both estimators are consistent and asymptoticallynormal under the
assumption that the innovations are a strong white noise, possibly non-Gaussian. Explicit formulae
for the asymptotic covariance matrices are provided. The proposed estimators make it relatively easy
to estimate the parameters of VARMA models in echelon form, and the distributionaltheory does not
rely on a Gaussian assumption, like maximum likelihood or the estimators considered by Hannan and
Kavalieris (1984b) and Reinsel, Basu and Yap (1992). We present simulation evidence which indicate
that the proposed three-step estimator typically performs better in finite samplesthan the alternative
multi-step linear estimators suggested by Hannan and Kavalieris (1984b), Reinsel et al. (1992), and
Poskitt and Salau (1995).

Keywords: Three-Step Linear Estimation; GLS; Three-Step Linear Estimation; Stationary;
Invertible; Echelon Form; Kronecker Indices; Nonlinear GLS; Simulation;ML; Asymptotically
Efficient.
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1 Introduction

Modelling multivariate time series using vector autoregressive (VAR) models has received
considerable attention, especially in econometrics; see Lütkepohl (1991, 2001, 2005), Hamilton
(1994, Chapter 11) and Dhrymes (1998). This popularity is due to the fact that such models are easy
to estimate and can account for relatively complex dynamic phenomena. However, VAR models often
require very large number of parameters in order to obtain good fits. Further, the VAR specification
is not invariant to many basic linear transformations. For example, instead ofsatisfying a VAR
scheme, subvectors follow vector autoregressive moving average (VARMA) processes. Temporal
and contemporaneous aggregation lead to mixed VARMA models [see Lütkepohl (1987)]. Similarly,
trend and seasonal adjustment also lead to models outside the VAR class [Maravall (1993)].

The VARMA structure includes VAR models as a special case and can reproduce in a
parsimonious way a much wider class of autocovariances and data generating processes (DGP). Thus,
they can yield improvements in estimation and forecasting as has been pointed out in recent works [see
Lütkepohl (2006), Izquierdo, Hernández and Del Hoyo (2007), Athanasopoulos and Vahid (2008b)
and Kascha and Mertens (2008)]. VARMA modelling has been proposedyears ago [see Hillmer and
Tiao (1979), Tiao and Box (1981), Lütkepohl (1991), Boudjellaba, Dufour and Roy (1992, 1994),
Reinsel (1993, 1997)], but it has received little attention in practice. Although building VARMA
models remains similar to the procedure associated with the univariate case, thetask is compounded
by the multivariate nature of the data.

At the specification level, several procedures ensuring a unique parameterization have been
proposed; see Hannan (1969b, 1970, 1971, 1976, 1979, 1980, 1981), Deistler and Hannan (1981),
Deistler (1983), Hannan and Deistler (1988, Chapter 2), Lütkepohl (1991, Chapter 7) and Reinsel
(1997, Chapter 3). In view of achieving parsimonious parameterization and efficiency, several
methods have been considered. The main ones include: (1) techniques based on canonical analysis
[Akaike (1974, 1975, 1976), Cooper and Wood (1982), Tiao and Tsay (1985, 1989), Tsay and
Tiao (1985), Tsay (1989a), Paparoditis and Streitberg (1991) and Min and Tsay (2005)]; (2)
the Kronecker index approach, which specifies an echelon-form VARMA representation [Deistler
and Hannan (1981), Hannan and Kavalieris (1984b), Solo (1986), Tsay (1989b), Nsiri and Roy
(1992, 1996), Poskitt (1992, 2003), Lütkepohl and Poskitt (1996) and Bartel and Lütkepohl (1998)];
(3) the scalar-component model (SCM) approach [Tiao and Tsay (1989), Tsay (1989b, 1991) and
Athanasopoulos and Vahid (2008a) in a recent extension of the Tiao and Tsay (1989) method].

Once an identifiable specification has been formulated, different estimation methods have
been considered. But the most widely studied estimation method is ML for independent and
identically distributed (i.i.d.) Gaussian innovations; see Hannan (1969a), Newbold (1974), Box and
Jenkins (1976), Hillmer and Tiao (1979), Nicholls and Hall (1979, 1980), Hannan, Kavalieris and
Mackisack (1986), Kohn (1981), Tiao and Box (1981), Solo (1984), Shea (1989), Ḿelard, Roy and
Saidi (2002), Mauricio (2002, 2006), Jonasson and Ferrando (2008) and recently Gallego (2009).
See also Metaxoglou and Smith (2007) on ML estimation of state space VARMA models using
expectation-maximization (EM) algorithm. However, maximizing the exact likelihoodin stationary
invertible VARMA models is computationally burdensome since for each autoregressive and moving
average order (sayp andq) a non-quadratic optimization with respect to inequality constraints must
be performed using iterative algorithms. As noted by Tiao and Box (1981),it is much easier to
maximize a conditional likelihood, although in higher dimensional systems numerical problems still
occur due to the lack of suitable initial values even with known (p, q). Further, with weak white noise
innovations, quasi-maximum likelihood estimates may not be consistent.

From the viewpoint of making VARMA modelling practical, one should have estimation methods
that are both quick and simple to implement with standard software. Another reason for putting
a premium on such estimation methods is that large-sample distributional theory tends to be
quite unreliable in high-dimensional dynamic models, so that tests and confidence sets based on
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asymptotic approximations are also unreliable. This suggests that simulation-based procedures—such
as bootstrap techniques—should be used. However, simulation may be impractical if computing the
estimator is difficult or time consuming.

In the univariate case, Hannan and Rissanen (1982) have proposeda recursive method which
only requires linear regressions; see also Durbin (1960), Hannan and Kavalieris (1984a), Zhao-Guo
(1985), Hannan et al. (1986), Poskitt (1987), Koreisha and Pukkila(1990a, 1990b, 1995), Pukkila,
Koreisha and Kallinen (1990), Allende and Heiler (1992), Galbraith and Zinde-Walsh (1994, 1997)
and Kavalieris, Hannan and Salau (2003). This approach is based on estimating (by least squares)
the innovations of the process through a long autoregression. The resulting residuals are then used
as regressors to estimate the VARMA parameters. Thereafter, new residuals are filtered and a linear
regression on transformed variables is performed to achieve efficiencyunder Gaussian assumptions.
Note that this linear estimation method (in its first two steps) has been introduced for model selection
and obtaining initial values. Then using other estimation procedures, such as ML, is typically
suggested.

These methods have been extended to VARMA models. For stationary processes Hannan and
Kavalieris (1984b) have proposed four-step linear procedure for specifying and estimating ARMAX
systems. The first three steps of their procedure were devoted to specifying and obtaining initial
estimates using Toeplitz regressions based on Levinson-Whittle algorithm. However, it has been
shown that the latter tend to deliver coefficient estimates suffering from substantial bias, especially
when the ratio of the autoregression-order to the sample size is not sufficiently small [see Hannan and
Deistler (1988)]. Then, they suggested in their fourth stage a GLS estimationcorresponding to what
should be an asymptotically efficient estimate of the system parameters. (Thatis to what would be
true under Gaussian errors.) In line with this, Reinsel et al. (1992) analyzed the ML estimation of
VARMA models from a GLS viewpoint. In particular, they considered Gaussian innovations without
assuming any identification scheme. Further, after ignoring some error termin their linear regression,
they have shown that the remaining error term follows a moving average process. Thus showing
the equivalence between the resulting GLS and the ML estimation. However, one can see that the
computational burden of this method is heavy since the inversion of a high dimensional weighting
matrix is frequently involved, even in small and moderate samples dealing with big systems. Also,
Poskitt and Salau (1995) have investigated the relationship between the GLSand Gaussian estimation
for echelon form VARMA models by extending the three-stage linear estimationmethod proposed
by Koreisha and Pukkila (1990a) for the univariate case, to the multivariate framework. Although,
asymptotically equivalent to ML, these estimates suffer of substantial finite sample bias due partly to
the weighting matrix used in the computation.

Furthermore, De Frutos and Serrano (2002) suggested a new GLS procedure for estimating
VARMA models. It explicitly considers the stochastic structure of the approximation error that arises
when the innovations are replaced with the residuals obtained from a long VAR. From a simulation
study, they have shown that their method outperforms the double regression proposed by Koreisha and
Pukkila (1989). However, although consistent, their procedure not only did not consider any form of
identification but also found asymptotically inefficient. The same also holds forthe iterative ordinary
least squares (IOLS) procedure proposed by Kapetanios (2003),even though it has been shown
from a simulation study that such a procedure compares favorably with ML method. More recently,
Koreisha and Pukkila (2004) have proposed a three-step linear estimationprocedure for specifying
and estimating VARMA models without assuming any form of identification. While in the first two
stages of their method they suggested a new identification approach based on the multivariate version
of the residual white noise autoregressive (RWNAR) criterion through atesting procedure (with
strong Gaussian innovations), their third-stage estimation procedure relieson the GLS estimation
procedure suggested by Poskitt and Salau (1995). Finally, in a comparative simulation study over
selected existing linear methods, based on selected criteria such as the qualityof the estimates, and
the accuracy of derived forecasts and impulse response estimates, Kascha (2007) highlighted the
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overall superiority of the fourth-stage linear estimation procedure of Hannan and Kavalieris (1984b),
while noting situations where the investigated methods do not perform very well.

Other linear methods have been limited rather to two-stage LS estimation procedures for
identifying and getting preliminary estimates of the VARMA model parameters. Thereafter,
recommending the use of fully efficient methods, such as ML, to obtain efficient estimates [see;
Koreisha and Pukkila (1987, 1989), Poskitt (1992) and Lütkepohl and Poskitt (1996)]. This strategy
also has been extended to cointegrated VARMA systems [see; Huang and Guo (1990), Poskitt (2003),
Poskitt and L̈utkepohl (1995), L̈utkepohl and Claessen (1997) and Bartel and Lütkepohl (1998)]. In
particular, for nonstationary ARMAX models, Huang and Guo (1990) have stressed that the estimated
residuals obtained from a long-autoregression are still good estimates of the true innovations. They
also have shown that the VARMA orders can be consistently estimated using model selection criteria
such as Schwarz criterion (SC) and Hannan-Quinn criterion (HQ).

In this paper, we propose a consistent and efficient three-step linear estimation method for
stationary invertible VARMA models in echelon form, with known Kronecker indices. Our approach
can easily be adapted to VARMAX models and extended to integrated and cointegrated VARMA
models as well. The estimation method focuses on the echelon form as the latter tends to deliver
relatively parsimonious parameterizations. Further, our estimation method is simple and more general
than any other existing procedure, as it yields echelon form estimates with a general standard form
much easier to obtain than other existing methods, such as in Hannan and Kavalieris (1984b),
while remaining valid to other identifying procedures, such as final equations [see Dufour and
Pelletier (2008) for new forms of identification using final equations], or any possible overidentifying
restrictions that might be considered for inference purpose.

In particular, we extend the results of Dufour and Jouini (2005) to include a constant among
the regressors—which is realistic in practice—and consider consistent two-stage generalized least
squares (GLS) estimators. More especially, we derive a new third-stagegeneralized linear regression
that yields fully efficient estimators that are asymptotically equivalent to Maximum Likelihood (ML)
under Gaussian errors. This provides an appealing and intuitive interpretation of nonlinear estimation
procedures such as Maximum Likelihood (ML) and nonlinear generalizedleast squares (NGLS),
as we justify the implementation of the third-stage estimation without any prior knowledge of the
actual distribution of the errors—unlike Hannan and Kavalieris (1984b), and Reinsel et al. (1992).
In particular, we show that our third-stage GLS estimator is different fromthose proposed in the
literature and corresponds exactly to a one iteration of the Gauss-Newton algorithm starting from
the consistent two-stage GLS estimator. Moreover, simulation evidence shows that the finite sample
properties of our third-stage estimators are comparatively better in most cases than those suggested
by Hannan and Kavalieris (1984b), Reinsel et al. (1992), and Poskitt and Salau (1995), respectively
(although asymptotically equivalent). This is mainly because we propose a new recursive method
to filter the new residuals—necessary to the third-stage GLS estimation—that are function of the
first-stage long-autoregression residuals and the second-stage residuals as well. Then using lagged
values of these residuals as regressors in the computation of our estimates.Thus, considering different
regressors compared to other alternative methods. This is with the fact thatour efficient estimators and
those proposed by Hannan and Kavalieris (1984b), Reinsel et al. (1992), and Poskitt and Salau (1995)
do not use the same weighting covariance matrix. We particularly show that our weighting matrix has
a rate of convergence towards the true innovation covariance matrix faster than those considered in
Hannan and Kavalieris (1984b) and Poskitt and Salau (1995), respectively. Moreover, unlike Reinsel
et al. (1992), and Poskitt and Salau (1995) procedures, our estimators are not time consuming since
we don’t have to deal with the inversion of high dimensional matrices. Furthermore, we provide
the asymptotic distribution of the two-stage as well as the third-stage GLS estimators under the
assumption of strong WN, since, to the best of our knowledge, they have not been stated anywhere,
and show under general conditions that these distributions are asymptotically normal. Finally, we
give their respective covariance estimators. The latter are relatively simpleto use, for example, for
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building finite sample simulation-based inference on the echelon form model parameters, including
the use of bootstrap methods.

The paper proceeds as follows. Section2 shows how the echelon VARMA representation
is used to ensure a unique parameterization. Section3 describes the two-step GLS procedure
(allowing for intercepts) and derives the estimators’ properties such as convergence and asymptotic
distribution. Section4 provides a heuristic derivation of the third-stage estimators, then demonstrates
its asymptotic efficiency under i.i.d. Gaussian innovations. Section5 shows a simulation study on the
finite sample performance of our proposed procedure compared to selected methods. Finally, section
6 concludes. The proofs of the lemmas, propositions and theorems are supplied in AppendixA.

2 Framework

We consider ak-dimensional stochastic process of the autoregressive moving-average(VARMA) type
with known order(p, q). We first define the standard VARMA representation entailing identification
problems. Then, among the representations ensuring parameter uniqueness in VARMA models, we
proceed with the echelon form. Finally, we formulate the basic regularity assumptions we shall
consider in the sequel.

2.1 Standard form

Let {yt : t ∈ Z} be ak-dimensional random vector process with the VARMA representation

yt = µA +

p
∑

i=1

Aiyt−i + ut +

q
∑

j=1

Bjut−j (2.1)

whereyt = (y1,t, . . . , yk,t)
′, µA = A (1) µy, A (1) = Ik − ∑p

i=1 Ai, µy = E (yt), p and q are
non-negative integers (respectively, the autoregressive and movingaverage orders),Ai andBj are
k × k fixed coefficient matrices,{ut : t ∈ Z} ∼ WN(0, Σu), i.e. ut is a (second order) WN process,
such thatΣu = E (utu

′
t), whereΣu is ak × k positive definite symmetric matrix. Under stationarity

and invertibility conditions the coefficientsAi andBj satisfy the constraintsdet {A (z)} 6= 0 and
det {B (z)} 6= 0 for all |z| ≤ 1, wherez is a complex number,A (z) = Ik −

∑p
i=1 Aiz

i andB (z) =
Ik +

∑q
j=1 Bjz

j . Thenyt has the infinite-order autoregressive and moving average representations,
respectively:

yt = µΠ +
∞

∑

τ=1

Πτyt−τ + ut, and yt = µy + ut +
∞

∑

v=1

Ψvut−v (2.2)

whereΠ (z) = B (z)−1 A (z) = Ik − ∑∞
τ=1 Πτz

τ , Ψ (z) = A (z)−1 B (z) = Ik +
∑∞

v=1 Ψvz
v,

with det {Π (z)} 6= 0 anddet {Ψ (z)} 6= 0 for all |z| ≤ 1, andµΠ = Π (1) µy whereΠ (1) =
Ik − ∑∞

τ=1 Πτ . Further, there exist real constantsC > 0 andρ ∈ (0, 1) such that

‖Πτ‖ ≤ Cρτ , ‖Ψv‖ ≤ Cρv. (2.3)

Hence,
∑∞

τ=1 ‖Πτ‖ < ∞ and
∑∞

v=1 ‖Ψv‖ < ∞, where‖.‖ stands for Schur’s norm [see Horn and
Johnson (1985, Section 5.6)],i.e. ‖M‖2 = tr [M ′M ] for any matrixM .

2.2 Echelon form

The standard VARMA(p, q) representation (2.1) is not unique. The coefficient matricesAi andBj

are not uniquely determined by the covariance structure (althoughΠτ and Ψv typically are). To
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ensure a unique parameterization of (2.1) we consider the stationary invertible VARMA(p, q) process
in echelon form

Φ(L) yt = µΦ + Θ (L)ut (2.4)

whereΦ(L) = Φ0 − ∑p̄
i=1 ΦiL

i, Θ (L) = Θ0 +
∑p̄

j=1 ΘjL
j , L denotes the lag operator,µΦ =

Φ(1) µy, p̄ = max (p, q), Θ0 = Φ0, andΦ0 is a lower-triangular matrix whose all diagonal elements
are equal to one. The VARMA representation (2.4) is in echelon form ifΦ(L) = [φlm (L)]l,m=1,...,k

andΘ (L) = [θlm (L)]l,m=1,...,k satisfy the following conditions: given a vector of Kronecker indices

(p1, . . . , pk)
′, the operatorsφlm (L) andθlm (L) on any given rowl of Φ(L) andΘ (L) have the same

degreepl and

φlm (L) = 1 −
pl
∑

i=1
φll,iL

i if l = m,

= −
pl
∑

i=pl−plm+1
φlm,iL

i if l 6= m,
(2.5)

θlm (L) =

pl
∑

j=0

θlm,jL
j , with Θ0 = Φ0, (2.6)

for l, m = 1, . . . , k, where

plm = min(pl + 1, pm) for l ≥ m,
= min(pl, pm) for l < m.

(2.7)

Note thatpll = pl is the number of free varying coefficients on thel-th diagonal element ofΦ(L)
as well the order of the polynomials on the corresponding row ofΘ (L), while plm specifies the
number of free coefficients in the operatorφlm (L) for l 6= m.

∑k
l=1 pl is the McMillan degree and

P = [plm]l,m=1,...,k is the matrix formed by the Kronecker indices. This leads to
∑k

l=1

∑k
m=1 plm

autoregressive andk
∑k

l=1 pl moving average free coefficients, respectively. Obviously,p̄ =
max (p1, . . . , pk). Moreover, this echelon-form parameterization of VARMA(p, q) models [hereafter
VARMA (p1, . . . , pk)], ensures the uniqueness of left-coprime operatorsΦ(L) andΘ (L). Among
other identifiable parameterizations, such as the final equations form, the echelon form has been
preferred for parsimony and gain efficiency criteria. For proofs of the uniqueness of the echelon form
and other identification conditions, the reader should consult Hannan (1969b, 1970, 1976, 1979),
Deistler and Hannan (1981), Hannan and Deistler (1988), and Lütkepohl (1991, Chapter 7).

The implied stationarity and invertibility conditions in (2.4) are:det {Φ(z)} 6= 0 and
det {Θ (z)} 6= 0 for all |z| ≤ 1, whereΦ(z) = Φ0 − ∑p̄

i=1 Φiz
i, Θ (z) = Θ0 +

∑p̄
j=1 Θjz

j ,

with Π (z) = Θ (z)−1 Φ(z) andΨ (z) = Φ (z)−1 Θ (z). Let alsoΘ (z)−1 =
∑∞

τ=0 Λτ (η) zτ where
by invertibility ‖Λτ (η)‖ ≤ Cρτ ,

∑∞
τ=0 ‖Λτ (η)‖ < ∞, with η (as it will be specified further) the

vector of all free varying parameters implied by the echelon form. Now, setvt = yt − ut. We can see
that

vt = Φ−1
0

[

µΦ +

p̄
∑

i=1

Φiyt−i +

p̄
∑

j=1

Θjut−j

]

. (2.8)

Obviously,vt is uncorrelated with the error termut and (2.4) takes the form

yt = µΦ +
(

Ik − Φ0

)

vt +

p̄
∑

i=1

Φiyt−i +

p̄
∑

j=1

Θjut−j + ut. (2.9)
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Set

β = vec
[

µΦ, Ik − Φ0, Φ1, . . . ,Φp̄, Θ1, . . . ,Θp̄

]

, (2.10)

Xt =
[

1, v′t, y
′
t−1, . . . , y

′
t−p̄, u

′
t−1, . . . , u

′
t−p̄

]′
(2.11)

whereβ andXt are vectors of sizesk2h + k andkh + 1, respectively, withh = 2p̄ + 1. Under
the echelon form restrictions (2.4) – (2.7), the representation (2.9) implies aunique

(

k2h + k
)

× rp̄

full rank columns matrixR formed byrp̄ selected distinct vectors from the identity matrix of order
k2h + k such thatR′R = Irp̄ andβ = Rη, whereη is anrp̄-dimensional vector of free varying
parameters, withrp̄ <

(

k2h + k
)

. Hence (2.9) can be restated as

yt =
[

X ′
t ⊗ Ik

]

Rη + ut (2.12)

where
[

X ′
t ⊗ Ik

]

R is ak × rp̄ matrix. Further, the echelon form ensures thatR′
[

Xt ⊗ Ik

]

has a non
singular covariance matrix, so that

rank
{

R′
[

ΓX ⊗ Ik

]

R
}

= rp̄ (2.13)

whereΓX = E
[

XtX
′
t

]

. Now, let y =
[

y′1, . . . , y
′
T

]′
, X =

[

X1, . . . , XT

]

andu =
[

u′
1, . . . , u

′
T

]′
.

Then the stacked form of (2.12) is

y =
[

X ′ ⊗ Ik

]

Rη + u (2.14)

where
[

X ′ ⊗ Ik

]

R is a(kT ) × rp̄ matrix. In the following, we shall assume that

rank
{[

X ′ ⊗ Ik

]

R
}

= rp̄ with probability1. (2.15)

Under the assumption that the process is regular with continuous distribution,the latter statement
must hold.

2.3 Regularity assumptions

Assumptions on the innovation process and the truncation lag of the long autoregression are needed
to establish the consistency and asymptotic distribution of the linear estimators defined below. We
shall consider in the sequel the following.

Assumption 2.1 The vectorsut, t ∈ Z, are independent and identically distributed(i.i.d.) with mean
zero, covariance matrixΣu and continuous distribution.

Assumption 2.2 There is a finite constantm4 such that, for all1 ≤ i, j, r, s ≤ k,

E |ui,tuj,tur,tus,t| ≤ m4 < ∞ , for all t.

Assumption 2.3 nT is a function ofT such that

nT → ∞ andn2
T /T → 0 asT → ∞ (2.16)

and, for somec > 0 and0 < δ1 < 1/2,

nT ≥ cT δ1 for T sufficiently large. (2.17)
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Assumption 2.4 The coefficients of the autoregressive representation(2.2) satisfy

n
1/2
T

∞
∑

τ=nT +1

‖Πτ‖ → 0 asT, nT → ∞. (2.18)

Assumption 2.5 nT is a function ofT such that

nT → ∞ andn3
T /T → 0 asT → ∞ (2.19)

and, for somec > 0 and0 < δ2 < 1/3,

nT ≥ cT δ2 for T sufficiently large. (2.20)

Assumption 2.6 The coefficients of the autoregressive representation(2.2) satisfy

T 1/2
∞

∑

τ=nT +1

‖Πτ‖ → 0 asT, nT → ∞. (2.21)

Assumption 2.7 The coefficients of the autoregressive representation(2.2) satisfy

T δ3

∞
∑

τ=nT +1

‖Πτ‖ → 0 asT, nT → ∞ (2.22)

for some1/2 < δ3 < 1.

Assumption2.1 implies a strong VARMA process, while Assumption2.2 on moments of order
four ensures that the empirical autocovariances of the process have finite variances. Assumption2.3
states thatnT grows to infinity at a rate slower thanT 1/2; for instance, the assumption is satisfied if
nT = cT δ with 0 < δ1 ≤ δ < 1/2. Assumption2.4 describes the rate of decay of autoregressive
coefficients relatively tonT . While Assumptions2.5 and2.6 are stronger versions of Assumptions
2.3and2.4, respectively. Assumption2.7states that for any constant1/2 < δ ≤ δ3 (with δ3 < 1) the
truncated sumT δ

∑∞
τ=nT +1 ‖Πτ‖ converges to zero asT andnT go to infinity.

Although the above assumptions are sufficient to show consistency of the two-step linear
estimator, another assumption is needed to show the asymptotic normality of its distribution.

Assumption 2.8 nT is a function ofT such that

nT → ∞ andn4
T /T → 0 asT → ∞. (2.23)

The latter assumption means thatnT grows to infinity at a rate slower thanT 1/4; for example, it
is the case ifnT = cT δ with 0 < δ̄ ≤ δ < 1/4. It is easy to see that (2.23) entails (2.19) and (2.16).
Finally, it is worthwhile to note that (2.18) holds for VARMA processes whenevernT = cT δ with
c > 0 andδ > 0, i.e.

T δ
∞

∑

τ=nT +1

‖Πτ‖ → 0 asT → ∞, for all δ > 0. (2.24)

This follows from the exponential decay of‖Πτ‖ for VARMA processes.
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3 Generalized two-step linear estimation

We propose a two-step generalized linear regression method for obtainingconsistent estimates of
echelon-form VARMA models with known Kronecker indices.

Let
{

y−nT +1, . . . , yT

}

be a random sample of sizenT + T wherenT is a sequence function of
T such thatnT grows to infinity asT goes to infinity. Now, consider the “long” multivariate linear
autoregressive model of lag-ordernT :

yt = µΠ (nT ) +

nT
∑

τ=1

Πτyt−τ + ut (nT ) (3.1)

whereµΠ (nT ) =
(

Ik − ∑nT
τ=1 Πτ

)

µy and

ut (nT ) =
∞

∑

τ=nT +1

Πτ

(

yt−τ − µy

)

+ ut. (3.2)

Setting Yt (nT ) =
[

1, y′t−1, . . . , y
′
t−nT

]′
and Π (nT ) = [µΠ (nT ) , Π1, . . . ,ΠnT ] , then the

corresponding multivariate least squares (LS) estimator is:

Π̃ (nT ) =
[

µ̃Π (nT ) , Π̃1 (nT ) , . . . , Π̃nT (nT )
]

= W̃Y (nT ) Γ̃Y (nT )−1 (3.3)

whereW̃Y (nT ) = T−1
∑T

t=1 ytYt (nT )′ andΓ̃Y (nT ) = T−1
∑T

t=1 Yt (nT )Yt (nT )′. This estimator
can be obtained by runningk separate univariate linear regressions, one for each componentyk,t. The
Yule-Walker estimates of the theoretical coefficientsΠτ could also be considered. SetΓY (nT ) =
E
[

Yt (nT )Yt (nT )′
]

. Also, let‖.‖1 such that, for any given matrixA, ‖A‖1 is the largest eigenvalue

of A′A, so that‖A‖1 = sup
x 6=0

{‖Ax‖
‖x‖

}

.

Proposition 3.1 Let{yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VAR representation(3.1). Then, under the Assumptions2.1 to 2.3, we have

∥

∥ΓY (nT )−1
∥

∥ = Op

(

1
)

, (3.4)
∥

∥Γ̃Y (nT )−1 − ΓY (nT )−1
∥

∥ =
∥

∥Γ̃Y (nT )−1 − ΓY (nT )−1
∥

∥

1
= Op

(

nT /T 1/2
)

. (3.5)

If Assumption2.4 is also satisfied, then the following theorem is the extension to the drift case of
Theorem1 of Lewis and Reinsel (1985) and Theorem2.1of Paparoditis (1996).

Theorem 3.1 Let {yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VAR representation(3.1). Then, under the Assumptions2.1 to 2.4, we have:

∥

∥Π̃ (nT ) − Π (nT )
∥

∥ = op

(

1
)

. (3.6)

If, furthermore, Assumption2.6holds, then

∥

∥Π̃ (nT ) − Π (nT )
∥

∥ = Op

(

n
1/2
T /T 1/2

)

. (3.7)

Now, let lnT be a sequence ofk2nT + k-dimensional vectors such that

0 < M1 ≤ ‖lnT ‖2 ≤ M2 < ∞ for nT = 1, 2, . . . (3.8)
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Set also

S̃Y (nT ) = T 1/2l′nT
vec

[

Ω̃Y (nT ) Γ̃Y (nT )−1 ]

, SY (nT ) = T 1/2l′nT
vec

[

ΩY (nT ) ΓY (nT )−1 ]

,
(3.9)

with Ω̃Y (nT ) = T−1
∑T

t=1 ut (nT )Yt (nT )′ andΩY (nT ) = T−1
∑T

t=1 utYt (nT )′. Then we have
the following asymptotic equivalence.

Proposition 3.2 Let{yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VAR representation(3.1). Then, under the Assumptions2.1, 2.2, 2.5and2.6, we have:

∥

∥S̃Y (nT ) − SY (nT )
∥

∥ = op

(

1
)

. (3.10)

If, furthermore, Assumption2.7holds, then

∥

∥S̃Y (nT ) − SY (nT )
∥

∥ = Op

(

n
3/2
T /T 1/2

)

. (3.11)

The next theorem shows that asymptotic normality holds as an immediate consequence of
Proposition3.2. This proposition and the following theorem are generalizations to the drift case
of Theorems2 and4 of Lewis and Reinsel (1985), respectively.

Theorem 3.2 Let {yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VAR representation(3.1). Then, under the Assumptions2.1, 2.2, 2.5, 2.6and2.7, we have:

T 1/2l′nT
vec

[

Π̃ (nT ) − Π (nT )
]

{

l′nT
QY (nT ) lnT

}1/2

d−→
T→∞

N
[

0, 1
]

(3.12)

where
QY (nT ) = ΓY (nT )−1 ⊗ Σu. (3.13)

A possible choice fornT to satisfy both assumptions2.5 and2.6 is nT = T 1/ε with ε > 3. On
the other handnT = ln lnT , as suggested by Hannan and Kavalieris (1984b), is not a permissible
choice because in generalT 1/2

∑∞
τ=nT +1 ‖Πτ‖ does not fade asT → ∞. Let

ũt (nT ) = yt − µ̃Π (nT ) −
nT
∑

τ=1

Π̃τ (nT ) yt−τ (3.14)

be the LS residuals of the long autoregression (3.1), and let

Σ̃u (nT ) =
1

T

T
∑

t=1

ũt (nT ) ũt (nT )′ (3.15)

be the corresponding innovation covariance matrix estimator. Then we havethe following.

Proposition 3.3 Let{yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VAR representation(3.1). Then, under the assumptions2.1 to 2.4, we have:

∥

∥Σ̃u (nT ) − Σu

∥

∥ =
∥

∥Σ̃u (nT )−1 − Σ−1
u

∥

∥ = Op

(

nT /T 1/2
)

. (3.16)

The asymptotic equivalence stated above suggests that we may be able to estimate consistently
the parameters of the VARMA model in (2.9) by replacing the unobserved lagged innovations
ut−1, . . . , ut−p̄ with their corresponding first stage estimatesũt−1 (nT ) , . . . , ũt−p̄ (nT ). Hence,
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(2.9) can be rewritten as

yt = µΦ +
(

Ik − Φ0

)

ṽt (nT ) +

p̄
∑

i=1

Φiyt−i +

p̄
∑

j=1

Θj ũt−j (nT ) + et (nT ) (3.17)

or equivalently,
yt =

[

X̃t (nT )′ ⊗ Ik

]

Rη + et (nT ) (3.18)

where

ṽt (nT ) = yt − ũt (nT ) , et (nT ) = ũt (nT ) +

p̄
∑

j=0

Θj

[

ut−j − ũt−j (nT )
]

, (3.19)

X̃t (nT ) =
[

1, ṽt (nT )′ , y′t−1, . . . , y
′
t−p̄, ũt−1 (nT )′ , . . . , ũt−p̄ (nT )′

]′
. (3.20)

Recall that running OLS on (3.17) or (3.18) corresponds to the third-stage and the second-stage
estimators of Hannan and Kavalieris (1984b) and Dufour and Jouini (2005) methods, respectively.
In the other hand, the second-stage estimator of Poskitt and Salau (1995)procedure is obtained by
running OLS on a variant of (3.17), say

yt − ũt (nT ) = µΦ +
(

Ik − Φ0

)

ṽt (nT ) +

p̄
∑

i=1

Φiyt−i +

p̄
∑

j=1

Θj ũt−j (nT ) + ξt (3.21)

whereξt =
∑p̄

j=0 Θjεt−j , with εt−j = ut−j − ũt−j (nT ). In this paper, we consider the explicit
echelon form two-step GLS estimator ofη,

η̃ = arg min
η

T
∑

t=1

et (nT )′ Σ̃u (nT )−1 et (nT ) . (3.22)

This estimator has the form
η̃ = Q̃X (nT ) W̃X (nT ) (3.23)

where

Q̃X (nT ) =
{

R′Υ̃X (nT )R
}−1

, Υ̃X (nT ) = Γ̃X (nT ) ⊗ Σ̃u (nT )−1 , (3.24)

Γ̃X (nT ) =
1

T

T
∑

t=1

X̃t (nT ) X̃t (nT )′ , W̃X (nT ) =
1

T

T
∑

t=1

R′
[

X̃t (nT ) ⊗ Ik

]

Σ̃u (nT )−1 yt.(3.25)

Setting

Ω̃X (nT ) =
1

T

T
∑

t=1

R′
[

X̃t (nT ) ⊗ Ik

]

Σ̃u (nT )−1 et (nT ) , (3.26)

one can see that
η̃ − η = Q̃X (nT ) Ω̃X (nT ) . (3.27)

Using the inequality‖AB‖2 ≤ ‖A‖2
1 ‖B‖2, for any two conformable matricesA andB, we get

‖η̃ − η‖ ≤
∥

∥Q̃X (nT )
∥

∥

1

∥

∥Ω̃X (nT )
∥

∥. (3.28)
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Now, define

ΥX = ΓX ⊗ Σ−1
u , QX =

{

R′ΥXR
}−1

, ΩX =
1

T

T
∑

t=1

R′
[

Xt ⊗ Ik

]

Σ−1
u ut. (3.29)

Obviously, by the regularity assumptionQ−1
X is positive definite, and to study the convergence and

distributional properties of(η̃ − η) we need first to establish the following proposition.

Proposition 3.4 Let{yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in echelon form given by(2.4)-(2.7). Then, under the assumptions2.1 to 2.4,
we have:

∥

∥Q̃X (nT ) − QX

∥

∥

1
= Op

(

nT /T 1/2
)

. (3.30)

The latter proposition shows that the regressor matrixX̃t (nT ) as well as the covariance matrix
Q̃X (nT )—based on approximate innovations—are all asymptotically equivalent to theiranalogous
based on true innovations, according to the ratenT /T 1/2. This suggests that̃η converges toη. The
next theorem establishes the appropriate rate of such convergence.

Theorem 3.3 Let {yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in echelon form given by(2.4)-(2.7). Then, under the assumptions2.1 to 2.8,
we have:

‖η̃ − η‖ = Op

(

T−1/2
)

. (3.31)

To derive the asymptotic distribution for̃η, we shall first establish the asymptotic equivalence
between the following random vectors

S̃X (nT ) = T 1/2Q̃X (nT ) Ω̃X (nT ) , SX = T 1/2QXΩX . (3.32)

Proposition 3.5 Let{yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in echelon form given by(2.4)-(2.7). Then, under the assumptions2.1 to 2.8,
we have:

∥

∥S̃X (nT ) − SX

∥

∥ = Op

(

n2
T /T 1/2

)

. (3.33)

The next theorem provides the asymptotic distribution of the two-step GLS estimators.

Theorem 3.4 Let {yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in echelon form given by(2.4)-(2.7). If the assumptions2.1 to 2.8 are
satisfied, then

T 1/2
(

η̃ − η
) d−→

T→∞
N

[

0, QX

]

, T 1/2
(

β̃ − β
) d−→

T→∞
N

[

0, VX

]

(3.34)

whereβ̃ = Rη̃ andVX = RQXR′.

Further,
{

R′
[
∑T

t=1 X̃t (nT ) X̃t (nT )′ ⊗ Σ̃u (nT )−1 ]

R
}−1

is a consistent estimator of its

covariance matrix. It is worth noting that the GLS estimator suggested by De Frutos and Serrano
(2002), although different from what we consider in (3.27), has the limiting distribution established
in the above theorem for the strong WN case. A result they have mentioned intheir paper for the pure
vector moving-average processes but did not show for the VARMA case. Now set

Σ̃e (nT ) =
1

T

T
∑

t=1

ẽt (nT ) ẽt (nT )′ (3.35)
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where
ẽt (nT ) = yt −

[

X̃t (nT )′ ⊗ Ik

]

Rη̃. (3.36)

Then, we have the following proposition.

Proposition 3.6 Let{yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in echelon form given by(2.4)-(2.7). Then, under the assumptions2.1 to 2.4,
we have:

∥

∥Σ̃e (nT ) − Σu

∥

∥ =
∥

∥Σ̃e (nT )−1 − Σ−1
u

∥

∥ = Op

(

nT /T 1/2
)

. (3.37)

4 Asymptotic efficiency

The two-step linear estimator derived above is not efficient under Gaussian innovations. To allow for
asymptotic efficiency [as in the fourth-stage of Hannan and Kavalieris (1984b)], one may perform a
third-stage linear estimation that we shall describe below.

Unlike Hannan and Kavalieris (1984b) who assumed Gaussian errors in order to suggest their
fourth-stage estimators, we show, rather, how such estimators can be derived without any prior
knowledge of the actual distribution of the innovations. This will be useful toestablish the
asymptotic efficiency of these estimates under Gaussian assumption. In line withtheir procedure
at the specification level which is heavy to implement even in small systems, the fourth stage
estimation they suggested to achieve asymptotic efficiency does not explicitly show the echelon form
zero-restrictions. In contrast, we give simple, compact and efficient echelon-form estimators that can
easily be computed by running a simple linear regression. Thus, one might consider further linear
regressions as they are costless. Moreover, we provide a simple estimatorof its covariance matrix.

Now, recall that the main problem is to minimize an objective function that is nonlinear in the
parameter vectorη: we have to solve

min
η

T
∑

t=1

u′
tΣ

−1
u ut (4.1)

whereut =
∑∞

τ=0 Λτ (η)
[

Φ0

(

yt−τ − µy

)

− ∑p̄
i=1 Φi

(

yt−i−τ − µy

) ]

. Setting

ut (η) =
t−1
∑

τ=0

Λτ (η)
[

Φ0

(

yt−τ − µy

)

−
p̄

∑

i=1

Φi

(

yt−i−τ − µy

)

]

, (4.2)

one can see that‖ut − ut (η)‖ = Op

(

ρt
)

, as it can be shown that

E ‖ut − ut (η)‖ ≤
∞

∑

τ=t

‖Λτ (η)‖ ‖Φ(p̄)‖E
∥

∥Y a
t−τ (p̄)

∥

∥ = O
(

ρt
)

(4.3)

whereΦ(p̄) = [Φ0,−Φ1, . . . ,−Φp̄], Y a
t (p̄) =

[

ya′
t , ya′

t−1, . . . , y
a′
t−p̄

]′
with ya

t =
(

yt − µy

)

; see the
proof of Theorem3.1. This suggests replacing the problem (4.1) with

min
η

T
∑

t=1

ut (η)′ Σ−1
u ut (η) . (4.4)

Also, note that (3.36) can alternatively be expressed as in (3.19), as

ẽt (nT ) = ũt (nT ) +

p̄
∑

j=0

Θ̃j

[

ũt−j − ũt−j (nT )
]

, (4.5)
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so that, using the second-stage estimateη̃, the estimated model

yt =
[

X̃t (nT )′ ⊗ Ik

]

Rη̃ + ẽt (nT ) (4.6)

takes the form

yt = µ̃Φ +
(

Ik − Φ̃0

)

ṽt +

p̄
∑

i=1

Φ̃iyt−i +

p̄
∑

j=1

Θ̃j ũt−j + ũt (4.7)

whereṽt = yt− ũt with

ũt =
∞

∑

τ=0

Λτ (η̃)
[

Φ̃0

(

yt−τ − µ̃y

)

−
p̄

∑

i=1

Φ̃i

(

yt−i−τ − µ̃y

)

]

, (4.8)

µ̃y = Φ̃ (1)−1 µ̃Φ, Φ̃ (1) = Φ̃0 − ∑p̄
i=1 Φ̃i and

∑∞
j=0 Λτ (η̃) zτ = Θ̃ (z)−1, whereµ̃Φ, Φ̃i andΘ̃j

stand for the second-stage estimates ofµΦ, Φi andΘj , respectively. In view of (4.7) and (4.8), it is
obvious that the second-stage estimatorη̃ may be used as initial value in the minimization algorithm
when seeking the nonlinear GLS estimator. As forut andut (η), we can approximatẽut with

ut (η̃) =
t−1
∑

τ=0

Λτ (η̃)
[

Φ̃0yt−τ −
p̄

∑

i=1

Φ̃iyt−i−τ − µ̃Φ

]

. (4.9)

This also can either be determined recursively as suggested in the literature[including Hannan and
Kavalieris (1984b) and Reinsel et al. (1992)] using

ut (η̃) = yt − Φ̃−1
0

[

µ̃Φ +

p̄
∑

i=1

Φ̃iyt−i +

p̄
∑

j=1

Θ̃jut−j (η̃)
]

, (4.10)

with initial valuesut (η̃) = 0, t ≤ 0. Instead of the above recursive filtering scheme, we propose a
new one. In particular, one may consider

ut (η̃) = Φ̃−1
0 ẽt (nT ) +

(

Ik − Φ̃−1
0

)

ũt (nT ) +

p̄
∑

j=1

Φ̃−1
0 Θ̃j

[

ũt−j (nT ) − ut−j (η̃)
]

(4.11)

initiating with ut (η̃) = ũt (nT ) for 0 < t ≤ p̄. The latter has the feature of yielding filtered
residuals that are function of the first-stage long-autoregression and second-stage residuals as well.
Our argument is the following; since the error termset (nT ) in (3.17) or (3.18) are function of the true
innovationsut, as shown in (3.19), it follows that by simply estimatinget (nT ) one is about implicitly
estimating the true innovationsut. This is exactly described in (4.5) that we can see is satisfying
(4.7). So one can obtain the new estimates of the true innovations corresponding to the second-stage
echelon form parameter estimates, by solving forut (η̃) in (4.5). Hence,

ũt = ũt (nT ) +
∞

∑

τ=0

Λτ (η̃)
[

ẽt−τ (nT ) − ũt−τ (nT )
]

. (4.12)

These residuals can then be approximated with

ut (η̃) = ũt (nT ) +
t−1
∑

τ=0

Λτ (η̃)
[

ẽt−τ (nT ) − ũt−τ (nT )
]

(4.13)

sinceũt (nT ) andẽt (nT ) are not available fort ≤ 0 andt ≤ p̄. Hence, setting̃ut (nT ) = 0 for t ≤ 0,
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andẽt (nT ) = 0 for t ≤ 0 andẽt (nT ) = ũt (nT ) for 1 ≤ t ≤ p̄, respectively. Finally, one can see that
the above expression can be rewritten as in (4.11). However, it is worth noting that the convergence
of the above two recursive schemes (4.10) and (4.11) to each other in finite sample—while remaining
asymptotically equivalent—is fast only when the Kronecker indices are all equal. Let

Σ̃u (η̃) =
1

T

T
∑

t=1

ut (η̃) ut (η̃)′ . (4.14)

To establish the rate of convergence ofΣ̃u (η̃) to Σu, we need the following lemma.

Lemma 4.1 Let η̆ be a
√

T -consistent estimator forη, i.e.

T 1/2 ‖η̆ − η‖ = Op (1) ,

where‖.‖ denotes the Schur norm. Then there exists a real constantκ > 0 such that

T 1/2(1 + κ−1)τ ‖Λτ (η̆) − Λτ (η)‖ = Op (1) , ∀τ ∈ Z. (4.15)

Proposition 4.1 Let{yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in echelon form given by(2.4)-(2.7). Then, under the assumptions2.1 to 2.4,
we have:

∥

∥Σ̃u (η̃) − Σu

∥

∥ =
∥

∥Σ̃u (η̃)−1 − Σ−1
u

∥

∥ = Op

(

T−1/2
)

. (4.16)

Further, consider the following lemma.

Lemma 4.2 Letη0 andη1 be two distinct values ofη. Then

ut(η
1) − ut(η

0) = −Z◦
t (η1, η0)′

(

η1 − η0
)

(4.17)

where

Z◦
t (η1, η0) =

t−1
∑

τ=0

R′
[

Xt−τ (η
1) ⊗ Λτ (η

0)′
]

, (4.18)

Xt(η
1) =

[

1, vt(η
1)′, y′t−1, . . . , y

′
t−p̄, ut−1(η

1)′, . . . , ut−p̄(η
1)′

]′
andvt(η

1) = yt − ut(η
1).

Therefore, one can show that

ut (η̃) − ut (η) = −Z◦
t (η̃, η)′

(

η̃ − η
)

(4.19)

where

Z◦
t (η̃, η) =

t−1
∑

τ=0

R′
[

Xt−τ (η̃) ⊗ Λτ (η)′
]

, (4.20)

with Xt (η̃) =
[

1, vt (η̃)′ , y′t−1, . . . , y
′
t−p̄, ut−1 (η̃)′ , . . . , ut−p̄ (η̃)′

]′
andvt (η̃) = yt − ut (η̃). Hence

(4.19) can be rearranged to obtain the linear regression:

wt (η̃) = Zt (η̃)′ η + ǫt (η̃, η) (4.21)

where

wt (η̃) = ut (η̃) + Zt (η̃)′ η̃, Zt (η̃) =
t−1
∑

τ=0

R′
[

Xt−τ (η̃) ⊗ Λτ (η̃)′
]

, (4.22)

ǫt (η̃, η) = ut (η) +
[

Zt (η̃) − Z◦
t (η̃, η)

]′(
η̃ − η

)

. (4.23)
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By Theorem3.3 and Lemma4.1, one easily shows that
∥

∥ǫt (η̃, η) − ut (η̃)
∥

∥ = Op

(

T−1/2
)

. This

suggests obtaining a third-stage multivariate GLS estimatorη̂ of η by regressing̃Σu (η̃)−1/2 wt (η̃)

on Σ̃u (η̃)−1/2 Zt (η̃)′. Hence
η̂ = Q̃X (η̃) W̃X (η̃) (4.24)

where

Q̃X (η̃) =
{ 1

T

T
∑

t=1

Zt (η̃) Σ̃u (η̃)−1 Zt (η̃)′
}−1

, W̃X (η̃) =
1

T

T
∑

t=1

Zt (η̃) Σ̃u (η̃)−1 wt (η̃) .

(4.25)
In view of (4.22), one can see that

η̂ = η̃ + Q̃X (η̃) Ω̃X (η̃) (4.26)

where

Ω̃X (η̃) =
1

T

T
∑

t=1

Zt (η̃) Σ̃u (η̃)−1 ut (η̃) . (4.27)

Obviously, our third-stage GLS estimators differ from those previously suggested in the literature
[including Hannan and Kavalieris (1984b), Reinsel et al. (1992) and Poskitt and Salau (1995)] since
we use different regressors in their computation. In particular, Hannanand Kavalieris (1984b) and
Reinsel et al. (1992) use lagged values of the residuals filtered from (4.10) as regressors, while
Poskitt and Salau (1995) use those associated with the first-stage residuals obtained from a long
autoregression. Another feature making our efficient estimators different from that of Hannan and
Kavalieris (1984b) is that, in Q̃X (η̃) and Ω̃X (η̃), they usedΣ̃e (nT ) instead ofΣ̃u (η̃), which
corresponds to their third-stage covariance estimator of the innovations. So one can see from
Propositions3.6 and4.1 that the weighting matrix we use has a faster convergence rate. This also
holds for Poskitt and Salau (1995) as they use the fist-stage covarianceestimator of the errors in the
computation of their GLS estimator [see Proposition3.3]. Moreover, it is worth noting that, under

Gaussian errors,̂η is asymptotically equivalent to ML estimator, since∂ut(η)
∂η′

∣

∣

∣

η=η̃
= −Zt (η̃)′; see

(4.19). Further, in view of (4.26), the estimatorη̂ corresponds to one iteration of Gauss-Newton
algorithm.

Now, let

Q̃◦
X (η̃) =

{ 1

T

T
∑

t=1

Z◦
t (η̃, η) Σ̃u (η̃)−1 Z◦

t (η̃, η)′
}−1

, (4.28)

Ω̃◦
X (η̃) =

1

T

T
∑

t=1

Z◦
t (η̃, η) Σ̃u (η̃)−1 ut (η̃) , Ω̃•

X (η̃) =
1

T

T
∑

t=1

Z◦
t (η̃, η) Σ̃u (η̃)−1 ut (η) , (4.29)

QX (η) =
{

E
[

Zt (η) Σ−1
u Zt (η)′

]

}−1
, ΩX (η) =

1

T

T
∑

t=1

Zt (η) Σ−1
u ut, (4.30)

Zt (η) =

∞
∑

τ=0

R′
[

Xt−τ ⊗ Λτ (η)′
]

. (4.31)

Using Lemma4.2, equation (4.26) can be rewritten as

η̂ − η = Q̃X (η̃) Ω̃X (η̃) + Q̃◦
X (η̃)

[

Ω̃•
X (η̃) − Ω̃◦

X (η̃)
]

. (4.32)
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Further,QX (η) can be expressed as

QX (η) =
{

R′ΥX (η)R
}−1

(4.33)

where

ΥX (η) =
∞

∑

τ1=0

∞
∑

τ2=0

[

ΓX (τ1 − τ2) ⊗ Λτ1 (η)′ Σ−1
u Λτ2 (η)

]

, (4.34)

with ΓX (τ1 − τ2) = E
[

Xt−τ1X
′
t−τ2

]

. By constructionQX (η)−1 is positive definite, and to study
the convergence and distributional properties ofη̂ − η, we first establish the following asymptotic
equivalences.

Proposition 4.2 Let{yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in echelon form given by(2.4)-(2.7). Then, under the assumptions2.1 to 2.4,
we have:

∥

∥Q̃X (η̃) − Q̃◦
X (η̃)

∥

∥

1
=

∥

∥Q̃◦
X (η̃) − QX (η)

∥

∥

1
= Op

(

T−1/2
)

. (4.35)

Then, we can give the rate of convergence of the third-stage estimatorη̂.

Theorem 4.1 Let {yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in echelon form given by(2.4)-(2.7). Then, under the assumptions2.1 to 2.4,
we have:

‖η̂ − η‖ = Op

(

T−1/2
)

. (4.36)

Now, set

S̃X (η̃) = T 1/2

{

Q̃X (η̃) Ω̃X (η̃) + Q̃◦
X (η̃)

[

Ω̃•
X (η̃) − Ω̃◦

X (η̃)
]

}

, (4.37)

SX (η) = T 1/2QX (η) ΩX (η) . (4.38)

These two vectors satisfy the following asymptotic equivalence.

Proposition 4.3 Let{yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in echelon form given by(2.4)-(2.7). Then, under the assumptions2.1 to 2.4,
we have:

∥

∥S̃X (η̃) − SX (η)
∥

∥ = Op

(

T−1/2
)

. (4.39)

Finally, we establish the asymptotic normality of the third-stage GLS estimator.

Theorem 4.2 Let {yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in echelon form given by(2.4)-(2.7). Then, under the assumptions2.1 to 2.4,
we have:

T 1/2
(

η̂ − η
) d−→

T→∞
N

[

0, QX (η)
]

, T 1/2
(

β̂ − β
) d−→

T→∞
N

[

0, VX (η)
]

(4.40)

whereβ̂ = Rη̂ andVX (η) = RQX (η)R′.

Its covariance matrix can then be estimated consistently with
{

∑T
t=1 Zt (η̃) Σ̃u (η̃)−1 Zt (η̃)′

}−1
. Further, the third-stage residualsut (η̂) can either recursively

be filtered using

ut (η̂) =
t−1
∑

τ=0

Λτ (η̂)
[

Φ̂0yt−τ −
p̄

∑

i=1

Φ̂iyt−i−τ − µ̂Φ

]

(4.41)
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or

ut (η̂) = yt − Φ̂−1
0

[

µ̂Φ +

p̄
∑

i=1

Φ̂iyt−i +

p̄
∑

j=1

Θ̂jut−j (η̂)
]

, (4.42)

initiating with ut (η̂) = 0, t ≤ 0, so that they satisfy

Φ̂ (L) yt = µ̂Φ + Θ̂ (L)ut (η̂) , t = 1, . . . , T, (4.43)

whereµ̂y = Φ̂ (1)−1 µ̂Φ andΦ̂ (1) = Φ̂0 −
∑p̄

i=1 Φ̂i. Again, we would suggest filtering the residuals
using

ut (η̂) = ǫt (η̃, η̂) −
[

Zt (η̃) − Z◦
t (η̃, η̂)

]′(
η̃ − η̂

)

, (4.44)

initiating with ut (η̂) = ut (η̃), for 0 < t ≤ p̄, since the latter tends to deliver well behaved residuals
in finite sample as they rely on the former [unlike (4.41) or (4.42)]. Hence, the third-stage innovation
covariance matrix estimator is

Σ̃u (η̂) =
1

T

T
∑

t=1

ut (η̂) ut (η̂)′ . (4.45)

Its rate of convergence toΣu is given in the following proposition.

Proposition 4.4 Let{yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in echelon form given by(2.4)-(2.7). Then, under the assumptions2.1 to 2.4,
we have:

∥

∥Σ̃u (η̂) − Σu

∥

∥ = Op

(

T−1/2
)

. (4.46)

5 Simulation study

In this section, we consider a Monte Carlo (MC) simulation to illustrate the finite sample performance
of the proposed estimation method. We restrict our attention only to analyzing thefinite sample
properties of the fully efficient estimates, since the major contribution of the paper stands at that level.
In particular, we consider a comparative study between our third-stage GLS estimator, described in
(4.26), and those suggested by Hannan and Kavalieris (1984b), Reinsel et al. (1992) and Poskitt and
Salau (1995), respectively. More especially, two variants of the proposed third-stage estimator were
considered. The first one uses the two-stage GLS estimator, given in (3.23), as initial estimate, and the
second one is based on the two-stage OLS estimator (using equationwise OLSestimation) considered
in Dufour and Jouini (2005). The latter also has been used as initial estimator to obtain the GLS
estimators described in Hannan and Kavalieris (1984b) and Reinsel et al. (1992), respectively, but,
as mentioned earlier, using an alternative scheme for residual filtering. Clearly, the above two linear
two-stage estimators are identical when the Kronecker indices characterizing the echelon canonical
form are all equal. Further, to obtain the GLS estimator of Poskitt and Salau (1995) we have
implemented their three-step procedure in full. It is worth noting that the considered GLS estimators
in this simulation study are all asymptotically equivalent to ML estimates since they correspond to
one iteration of Gauss-Newton algorithm starting from a

√
T -consistent estimator. Finally, we did not

consider the ML estimation in the simulation for two reasons. First, its finite sample properties have
been extensively studied in the literature and were found more or less satisfactory given the model
in hand. Second, since the paper deals with efficient linear methods for estimating VARMA models,
we attempted to investigate the finite sample performance of the main ones existing compared to the
procedure suggested in this paper.

We simulate two bivariate stationary invertible Gaussian ARMA processes with constant terms
and Kronecker indices(1, 2) and (2, 1), respectively, for sample sizes 100 and 200. Tables 1
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to 4 report simulation results on the empirical means, the average errors andthe mean squared
errors (MSE) for each procedure. Moreover, these tables show theMSE ratios of the alternative
efficient GLS estimators over the suggested third-stage GLS estimator TS1 [see tables’ notes for more
description]. These results are based on 1000 replications using GAUSSrandom number generator
(version 3.2.37), and to avoid numerical problems that might be caused by the initialization effect,
extra first 100 pseudo-data were generated then discarded. The trialsassociated with noninvertible
processes are thrown and replaced with other ones. For all simulations, the rate of replacement did not
exceed 5% in the worst case. [For how to obtain an invertible moving-average operator for echelon
form VARMA model see Hannan and Kavalieris (1984b).] Further, the second-stage echelon form
VARMA model parameters were estimated from models using, as regressors, the residuals obtained
from a long-autoregression with lag-order fixed to two values; namely, theinteger parts oflnT
andT−1/2 (since it has been recommended in the literature to choose the autoregression lag-order
between these two extreme values). More specifically, the latter strategy hasbeen considered to
draw the effect of the choice of the long-autoregression lag-order onthe finite sample quality of
the echelon form estimates. In this simulation study, the error covariance matrixwith σ11 = 0.49,
σ22 = 0.29 andσ11 = σ11 = −0.14, is used for both models. Finally, the true parameter values
of the simulated echelon form VARMA models as well as their related eigenvalues (describing their
respective stationarity and invertibility conditions) are reported in the tables.

Simulation evidence shows for both models that, unlike TS1, TS2, and RBY methods where the
estimates are characterized with small to moderate bias, HK and PS procedures provide estimates with
substantial bias for sample sizeT = 100 [see upper panels of Tables 1 and 3]. These biases disappear
with increasing sample size and/or lag-order of the first-stage long-autoregression [see lower panels of
Tables 1 and 3, and Tables 2 and 4 for sample sizeT = 200]. It is suspected that the bias associated
with PS procedure is attributed to the weighting matrix used in the computation of the estimates.
Poskitt and Salau (1995) argued that the error term in the linear regression they considered follows
a moving-average process of orderp̄, sayξt =

∑p̄
j=0 Θjεt−j with T−1

∑T
t=1 εtε

′
t = Op

(

nT /T
)

Σu

[see Hannan and Kavalieris (1986) and Poskitt and Salau (1995)], but instead, they explicitly used
T−1

∑T
t=1 εtε

′
t = Op

(

1
)

Σu. The bias associated with HK procedure is due to two reasons. First,
the weighting matrix used in the computation of the estimates does not correspondto what should
be in the one iteration of the Gauss-Newton algorithm starting from the two-stage OLS estimates. In
particular, they used the residual covariance estimator obtained at the third-stage of their procedure
rather than the covariance estimator obtained from the new filtered residualsnecessary for their
fourth-stage estimation. Note that the latter has a convergence rate faster than the former. Second, as
mentioned above, the new residuals are more or less satisfactory in finite sample given the way they
are filtered. The RBY procedure uses the same filtering approach, however, compared to HK method,
it delivers estimates with satisfactory finite sample properties. This is perhapsbecause it uses the right
covariance matrix estimator (from the ML viewpoint) for the residuals in their GLS linear regression.

It is common knowledge that approximating VARMA models characterized with high persistence
in their MA operators usually require long autoregressions with large number of lags, and vice versa.
More especially, increasing the lag ordernT of an autoregression when approximating a VARMA
model with less persistent MA operator would result in estimates with higher biasand/or MSE. This
is exactly what we get with TS1 and TS2 procedures for the echelon formVARMA model with
Kronecker indices(2, 1) [see Tables 3 and 4]. For the same model and from the same tables, HK
and PS procedures show that increasing the lag-ordernT , for a given sample size, seems to reduce
the large bias and obtain parameter MSE that are decreasing for HK procedure and increasing for
PS method. Further, one can see a slight increase in the bias characterizing RBY estimates, whereas
the MSE of these estimates is exhibiting a mixed tendency. The same tendency characterizes all
procedures when considering the echelon form VARMA(1, 2) model as its largest eigenvalue, that
is 0.813 (in norm), cannot be considered too high to consider the model as highly persistent in its
MA part [see Tables 1 and 2]. Simulation results show that, overall, TS1, TS2 and PS procedures
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outperform those of HK and PS by far. To have a better idea on which procedure is providing estimates
with better finite sample properties—as we may report that those of RBY procedure behave in a way
similar to those associated with our suggested methods—we compute the ratios of the MSE of the
parameters for each procedure with respect to those obtained with TS1 procedure. Obviously, with
the exception of PS procedure all alternative methods provide estimates with MSE ratios greater than
one. One should note that for the PS procedure the cases where the MSEratios of the parameters are
significantly less than unity are often matched with relative substantial bias. More precisely, these
ratios are generally increasing with the sample sizeT and the lag-ordernT . Nevertheless, it is worth
noting that TS1 has a slight advantage over TS2. So, choosing either TS1or TS2 would have no big
effect on the finite sample properties of the echelon form parameter estimates.

6 Conclusion

In this paper, we have proposed a new three-step linear estimation procedure for estimating stationary
invertible echelon-form VARMA models. Our approach can easily be adapted to VARMAX models
and extended to integrated and cointegrated VARMA models as well. The estimation method focuses
on the echelon form as the latter tends to deliver relatively parsimonious parameterized models.
Moreover, our procedure remains valid to other identifying issues such as final equations or any
other restricted model for inference purposes.

Our proposed method allows for the presence of intercepts among the regressors—which, in
contrast to previous works, looks more realistic—and provides a simplified general and compact
standard form for the echelon-form parameter estimates that are easier tocompute than those of
Hannan and Kavalieris (1984b). This may be more advisable and tractable in practice. Further, we
have extended the results of Dufour and Jouini (2005) for the two-stepestimation method to derive
the asymptotic distribution of the GLS estimators in the case of strong WN, since to our knowledge
it has not been stated yet anywhere. Moreover, we gave its covariance estimator. In addition, we
have proposed a new recursive linear method to filter the new residuals necessary to our third-stage
GLS estimation. These residuals are function of the first-stage long-autoregression and second-stage
residuals as well. Hence, taking into account the truncation error associated with the approximate
long autoregression used in the first stage. Also, we have provided a theoretical justification for
implementing a third-stage linear regression without any prior assumption of theactual distribution
of the errors, unlike preceding works. We have shown that the resultingGLS estimators, for which we
have derived its asymptotic distribution under strong WN and gave its covariance estimator, provide
an appealing and intuitive interpretation of nonlinear estimation methods such asNGLS and ML.
Thus, achieving efficiency with Gaussian errors. This shows the asymptoticequivalence between
our third-stage and ML estimators. However, the finite sample properties of our estimates are not
the same as those of ML estimators. Although our three-step estimation procedure is asymptotically
equivalent to that of Hannan and Kavalieris (1984b), the estimates of the asymptotic covariances of
the echelon-form parameters we have given for the second and third stages as well, are simple and
easy to use for inference purposes, especially with simulation-based techniques such as bootstrap
methods.

Further, simulation evidence has shown that our proposed GLS estimation methods outperform
in most cases those proposed in the literature. Also, the finite sample properties of the echelon
form VARMA estimates are sensitive to the lag-order of the first-stage long-autoregression when
approximating the true innovations. This would suggest that more investigationshould be made
on this issue to provide more efficient algorithms in specifying the lag-order of the first-stage long
autoregression. This lag-order may have an effect on the finite sample quality of the echelon form
parameter estimates, and thus on their implied forecasts and impulse response functions subject of
interest in most applied researchers.
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Table 1: Estimated echelon VARMA model with Kronecker indices (1,2) and sample size T=100: A comparative simulation study on the finite sample
properties of alternative fully efficient GLS estimators

Empirical mean Average error Mean Squared Error MSE ratio
Coeff Value TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2HK RBY PS

µΦ,1 0.00 -0.004 -0.004 -0.007 -0.005 -0.004 0.004 0.004 0.007 0.005 0.004 0.200 0.201 0.267 0.197 0.187 1.003 1.337 0.985 0.935
µΦ,2 0.00 -0.004 -0.004 -0.005 -0.003 -0.003 0.004 0.004 0.005 0.003 0.003 0.151 0.152 0.177 0.152 0.124 1.007 1.174 1.006 0.820
φ11,1 1.20 1.177 1.177 1.192 1.180 1.189 0.022 0.022 0.007 0.019 0.010 0.056 0.056 0.078 0.056 0.052 1.001 1.378 1.004 0.930
φ12,1 0.24 0.239 0.239 0.242 0.240 0.248 0.000 0.000 0.002 0.000 0.008 0.048 0.048 0.060 0.048 0.045 1.003 1.263 1.005 0.941
φ22,1 0.40 0.400 0.396 0.375 0.398 0.532 0.000 0.003 0.024 0.0010.132 0.111 0.104 0.127 0.116 0.121 0.943 1.144 1.049 1.096
φ21,2 -0.90 -0.906 -0.909 -0.916 -0.905 -0.811 0.006 0.009 0.016 0.005 0.088 0.078 0.075 0.088 0.079 0.085 0.960 1.133 1.019 1.086
φ22,2 -0.27 -0.267 -0.265 -0.256 -0.264 -0.315 0.002 0.004 0.013 0.005 0.045 0.067 0.065 0.080 0.070 0.066 0.969 1.204 1.055 0.996
θ11,1 0.80 0.786 0.786 0.774 0.789 0.589 0.013 0.013 0.025 0.0100.210 0.094 0.095 0.104 0.097 0.058 1.008 1.109 1.0360.615
θ21,1 0.50 0.507 0.503 0.476 0.506 0.584 0.007 0.003 0.023 0.0060.084 0.090 0.090 0.103 0.096 0.081 0.990 1.135 1.0600.891
θ12,1 0.40 0.383 0.385 0.303 0.376 0.188 0.016 0.0140.096 0.023 0.211 0.115 0.118 0.144 0.128 0.110 1.021 1.250 1.1080.953
θ22,1 0.40 0.374 0.380 0.358 0.383 0.238 0.025 0.019 0.041 0.0160.161 0.131 0.123 0.145 0.145 0.141 0.943 1.108 1.104 1.077
θ21,2 0.34 0.313 0.320 0.348 0.315 0.012 0.026 0.019 0.008 0.0240.327 0.162 0.152 0.168 0.170 0.172 0.937 1.034 1.049 1.062
θ22,2 0.85 0.774 0.781 0.653 0.770 0.444 0.075 0.0680.196 0.079 0.405 0.143 0.140 0.154 0.147 0.105 0.979 1.072 1.0230.731
µΦ,1 0.00 0.002 0.003 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.206 0.208 0.266 0.211 0.199 1.009 1.291 1.025 0.970
µΦ,2 0.00 0.005 0.005 0.002 0.004 0.003 0.005 0.005 0.002 0.004 0.003 0.169 0.168 0.210 0.169 0.155 0.994 1.241 1.003 0.919
φ11,1 1.20 1.175 1.174 1.175 1.176 1.117 0.024 0.025 0.024 0.023 0.022 0.056 0.057 0.076 0.060 0.055 1.008 1.337 1.055 0.981
φ12,1 0.24 0.239 0.239 0.236 0.240 0.240 0.000 0.000 0.003 0.000 0.000 0.046 0.047 0.073 0.050 0.046 1.007 1.562 1.068 0.988
φ22,1 0.40 0.393 0.396 0.403 0.403 0.420 0.006 0.003 0.003 0.003 0.020 0.105 0.102 0.110 0.111 0.105 0.969 1.047 1.057 1.001
φ21,2 -0.90 -0.914 -0.912 -0.905 -0.907 -0.896 0.014 0.012 0.005 0.007 0.003 0.079 0.077 0.087 0.079 0.078 0.964 1.098 0.995 0.986
φ22,2 -0.27 -0.266 -0.267 -0.271 -0.270 -0.277 0.003 0.002 0.001 0.000 0.007 0.064 0.064 0.075 0.070 0.063 0.997 1.175 1.091 0.985
θ11,1 0.80 0.787 0.790 0.775 0.799 0.746 0.012 0.009 0.024 0.000 0.053 0.099 0.100 0.099 0.103 0.091 1.010 0.998 1.039 0.926
θ21,1 0.50 0.499 0.498 0.505 0.506 0.509 0.000 0.001 0.005 0.006 0.009 0.090 0.090 0.096 0.095 0.093 0.999 1.064 1.048 1.031
θ12,1 0.40 0.388 0.390 0.374 0.396 0.359 0.011 0.009 0.025 0.003 0.040 0.121 0.124 0.159 0.135 0.127 1.020 1.310 1.113 1.046
θ22,1 0.40 0.371 0.371 0.367 0.373 0.343 0.028 0.028 0.032 0.026 0.056 0.122 0.119 0.122 0.129 0.113 0.972 0.997 1.052 0.925
θ21,2 0.34 0.320 0.317 0.300 0.313 0.273 0.019 0.022 0.039 0.026 0.066 0.159 0.154 0.156 0.170 0.177 0.972 0.981 1.072 1.117
θ22,2 0.85 0.799 0.798 0.773 0.816 0.759 0.050 0.051 0.076 0.0330.090 0.139 0.139 0.134 0.149 0.127 1.004 0.964 1.0770.913

Note – These estimates are obtained from 1000 replications. TS1, TS2 stand for the respective proposed third-stage GLS estimators based on the two-stage GLS and the two-stage OLS
estimators. While HK, RBY and PS stand for the fully efficient GLS estimatorssuggested by Hannan and Kavalieris (1984b), Reinsel et al. (1992) and Poskitt and Salau (1995), respectively.
The eigenvalues of the model are real 0.900, 0.400 and 0.300 for the autoregressive (AR) operator, and real 0.824 and conjugate -0.188+̄0.790i (0.813 in norm) for the moving-average (MA)
operator. Recall that the number of eigenvalues in each of the AR and MAoperators is equal to the McMillan degree of the model. That is, the sum of the Kronecker indices. In the upper panel
nT = [ln T ] was used, whereas is the lower panel a value ofnT = [T 1/2] has been used. Finally, [x] stands for the integer less or equal tox.
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Table 2: Estimated echelon VARMA model with Kronecker indices (1,2) and sample size T=200: A comparative simulation study on the finite sample
properties of alternative fully efficient GLS estimators

Empirical mean Average error Mean Squared Error MSE. ratio
Coeff Value TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2HK RBY PS

µΦ,1 0.00 0.001 0.001 0.003 0.001 0.000 0.001 0.001 0.003 0.001 0.000 0.114 0.114 0.177 0.116 0.110 1.001 1.547 1.016 0.961
µΦ,2 0.00 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.094 0.094 0.119 0.093 0.094 1.003 1.268 0.996 1.006
φ11,1 1.20 1.187 1.187 1.195 1.189 1.188 0.012 0.012 0.004 0.010 0.011 0.036 0.036 0.046 0.037 0.035 1.000 1.271 1.032 0.980
φ12,1 0.24 0.238 0.238 0.253 0.240 0.237 0.001 0.001 0.013 0.000 0.002 0.030 0.030 0.044 0.032 0.030 0.999 1.424 1.048 0.989
φ22,1 0.40 0.399 0.397 0.411 0.404 0.387 0.000 0.002 0.011 0.004 0.012 0.062 0.060 0.073 0.065 0.075 0.967 1.175 1.053 1.216
φ21,2 -0.90 -0.905 -0.906 -0.896 -0.901 -0.903 0.005 0.006 0.003 0.001 0.003 0.044 0.043 0.053 0.046 0.051 0.978 1.202 1.035 1.162
φ22,2 -0.27 -0.269 -0.268 -0.266 -0.271 -0.254 0.000 0.001 0.003 0.001 0.015 0.040 0.039 0.045 0.041 0.044 0.984 1.145 1.037 1.100
θ11,1 0.80 0.797 0.799 0.764 0.797 0.688 0.002 0.000 0.035 0.0020.111 0.060 0.061 0.070 0.063 0.053 1.019 1.164 1.0580.880
θ21,1 0.50 0.499 0.499 0.505 0.505 0.528 0.000 0.000 0.005 0.005 0.028 0.058 0.058 0.063 0.062 0.059 0.999 1.080 1.059 1.010
θ12,1 0.40 0.394 0.396 0.318 0.390 0.306 0.005 0.0030.081 0.009 0.093 0.075 0.076 0.107 0.085 0.090 1.009 1.427 1.127 1.194
θ22,1 0.40 0.388 0.391 0.370 0.388 0.376 0.011 0.008 0.029 0.011 0.023 0.072 0.069 0.075 0.080 0.077 0.965 1.041 1.110 1.064
θ21,2 0.34 0.331 0.334 0.298 0.323 0.276 0.008 0.005 0.041 0.016 0.063 0.097 0.094 0.111 0.103 0.120 0.968 1.140 1.058 1.236
θ22,2 0.85 0.819 0.821 0.731 0.818 0.643 0.030 0.0280.118 0.031 0.206 0.082 0.082 0.104 0.089 0.073 1.002 1.266 1.0820.896
µΦ,1 0.00 0.004 0.004 0.004 0.003 0.004 0.004 0.004 0.004 0.003 0.004 0.115 0.116 0.170 0.120 0.112 1.006 1.472 1.037 0.969
µΦ,2 0.00 0.005 0.005 0.005 0.004 0.004 0.005 0.005 0.005 0.004 0.004 0.093 0.093 0.115 0.097 0.090 1.000 1.233 1.036 0.968
φ11,1 1.20 1.188 1.188 1.187 1.188 1.189 0.011 0.011 0.012 0.011 0.010 0.037 0.037 0.051 0.038 0.037 1.005 1.376 1.045 0.994
φ12,1 0.24 0.239 0.239 0.238 0.239 0.240 0.000 0.000 0.001 0.000 0.000 0.031 0.031 0.045 0.033 0.032 1.001 1.432 1.057 1.012
φ22,1 0.40 0.400 0.400 0.400 0.401 0.413 0.000 0.000 0.000 0.001 0.013 0.062 0.060 0.063 0.063 0.066 0.975 1.017 1.020 1.061
φ21,2 -0.90 -0.905 -0.905 -0.905 -0.904 -0.897 0.005 0.005 0.005 0.004 0.002 0.047 0.046 0.048 0.048 0.049 0.985 1.029 1.029 1.042
φ22,2 -0.27 -0.270 -0.270 -0.271 -0.270 -0.275 0.000 0.000 0.001 0.000 0.005 0.039 0.039 0.043 0.041 0.040 0.985 1.084 1.029 1.004
θ11,1 0.80 0.801 0.804 0.800 0.811 0.780 0.001 0.004 0.000 0.011 0.019 0.063 0.064 0.064 0.066 0.058 1.013 1.018 1.047 0.923
θ21,1 0.50 0.498 0.498 0.497 0.502 0.505 0.001 0.001 0.002 0.002 0.005 0.060 0.059 0.064 0.062 0.063 0.997 1.076 1.035 1.052
θ12,1 0.40 0.400 0.402 0.397 0.408 0.382 0.000 0.002 0.002 0.008 0.017 0.079 0.079 0.086 0.083 0.081 1.004 1.095 1.050 1.034
θ22,1 0.40 0.389 0.391 0.389 0.393 0.379 0.010 0.008 0.010 0.006 0.020 0.071 0.070 0.074 0.072 0.068 0.983 1.032 1.010 0.959
θ21,2 0.34 0.330 0.331 0.329 0.334 0.309 0.009 0.008 0.010 0.005 0.030 0.095 0.094 0.097 0.100 0.105 0.983 1.014 1.045 1.097
θ22,2 0.85 0.828 0.829 0.822 0.840 0.811 0.021 0.020 0.027 0.009 0.038 0.085 0.084 0.082 0.089 0.080 0.985 0.961 1.037 0.935

Note – These estimates are obtained from 1000 replications. TS1, TS2 stand for the respective proposed third-stage GLS estimators based on the two-stage GLS and the two-stage OLS
estimators. While HK, RBY and PS stand for the fully efficient GLS estimatorssuggested by Hannan and Kavalieris (1984b), Reinsel et al. (1992) and Poskitt and Salau (1995), respectively.
The eigenvalues of the model are real 0.900, 0.400 and 0.300 for the autoregressive (AR) operator, and real 0.824 and conjugate -0.188+̄0.790i (0.813 in norm) for the moving-average (MA)
operator. Recall that the number of eigenvalues in each of the AR and MAoperators is equal to the McMillan degree of the model. That is, the sum of the Kronecker indices. In the upper panel
nT = [ln T ] was used, whereas is the lower panel a value ofnT = [T 1/2] has been used. Finally, [x] stands for the integer less or equal tox.
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Table 3: Estimated echelon VARMA model with Kronecker indices (2,1) and sample size T=100: A comparative simulation study on the finite sample
properties of alternative fully efficient GLS estimators

Empirical mean Average error Mean Squared Error MSE ratio
Coeff Value TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2HK RBY PS

µΦ,1 0.00 -0.001 -0.001 0.001 0.000 -0.001 0.001 0.001 0.001 0.000 0.001 0.158 0.159 0.237 0.166 0.164 1.007 1.503 1.053 1.040
µΦ,2 0.00 -0.004 -0.004 -0.006 -0.005 -0.001 0.004 0.004 0.006 0.005 0.001 0.187 0.189 0.199 0.190 0.180 1.006 1.059 1.015 0.958
φ21,0 0.50 0.496 0.495 0.505 0.494 0.496 0.003 0.004 0.005 0.005 0.003 0.033 0.033 0.062 0.035 0.033 1.016 1.876 1.087 1.004
φ11,1 1.80 1.797 1.798 1.830 1.799 1.810 0.002 0.001 0.030 0.000 0.010 0.034 0.034 0.054 0.039 0.033 1.010 1.586 1.136 0.960
φ21,1 -0.40 -0.362 -0.358 -0.383 -0.354 -0.361 0.037 0.041 0.016 0.045 0.038 0.089 0.091 0.178 0.102 0.087 1.021 2.002 1.147 0.973
φ22,1 0.80 0.735 0.730 0.761 0.724 0.732 0.064 0.069 0.038 0.075 0.067 0.129 0.131 0.249 0.148 0.125 1.017 1.931 1.143 0.966
φ11,2 -0.36 -0.365 -0.367 -0.517 -0.371 -0.413 0.005 0.0070.157 0.011 0.053 0.111 0.111 0.188 0.129 0.103 1.006 1.699 1.166 0.927
φ12,2 -0.90 -0.887 -0.884 -0.648 -0.878 -0.816 0.012 0.0150.251 0.021 0.083 0.168 0.168 0.288 0.195 0.155 1.000 1.708 1.1590.920
θ11,1 0.33 0.274 0.274 0.305 0.286 0.211 0.055 0.055 0.024 0.0430.118 0.117 0.119 0.213 0.137 0.109 1.012 1.811 1.1620.925
θ21,1 -0.18 -0.163 -0.163 -0.265 -0.180 -0.092 0.016 0.0160.085 0.000 0.087 0.107 0.108 0.191 0.128 0.098 1.009 1.777 1.1940.919
θ12,1 -0.20 -0.221 -0.222 -0.266 -0.214 -0.311 0.021 0.022 0.066 0.014 0.111 0.139 0.142 0.170 0.153 0.128 1.018 1.222 1.0980.917
θ22,1 -0.40 -0.327 -0.319 -0.273 -0.328 -0.211 0.072 0.0800.126 0.071 0.188 0.161 0.165 0.312 0.189 0.136 1.028 1.936 1.1760.849
θ11,2 -0.20 -0.261 -0.264 -0.101 -0.255 -0.270 0.061 0.0640.098 0.055 0.070 0.123 0.124 0.235 0.147 0.109 1.007 1.903 1.194 0.880
θ12,2 0.92 0.895 0.887 0.585 0.904 0.728 0.024 0.0320.334 0.015 0.191 0.203 0.208 0.335 0.243 0.165 1.022 1.647 1.1910.813
µΦ,1 0.00 0.000 0.000 -0.005 -0.000 0.001 0.000 0.000 0.005 0.0000.001 0.173 0.173 0.198 0.175 0.183 1.002 1.143 1.011 1.060
µΦ,2 0.00 -0.000 -0.000 0.002 0.000 -0.001 0.000 0.000 0.002 0.000 0.001 0.208 0.208 0.217 0.209 0.208 0.999 1.042 1.004 1.001
φ21,0 0.50 0.499 0.498 0.500 0.498 0.506 0.000 0.001 0.000 0.001 0.006 0.040 0.040 0.048 0.041 0.041 1.004 1.190 1.011 1.017
φ11,1 1.80 1.798 1.797 1.799 1.794 1.805 0.001 0.002 0.000 0.005 0.005 0.038 0.040 0.046 0.043 0.039 1.039 1.198 1.131 1.020
φ21,1 -0.40 -0.356 -0.352 -0.360 -0.352 -0.369 0.043 0.047 0.039 0.047 0.030 0.107 0.108 0.136 0.111 0.108 1.008 1.264 1.034 1.003
φ22,1 0.80 0.718 0.713 0.723 0.714 0.7300.081 0.086 0.076 0.085 0.069 0.151 0.152 0.193 0.157 0.154 1.007 1.277 1.041 1.020
φ11,2 -0.36 -0.382 -0.380 -0.394 -0.371 -0.416 0.022 0.020 0.034 0.011 0.056 0.113 0.117 0.141 0.127 0.114 1.036 1.248 1.129 1.011
φ12,2 -0.90 -0.853 -0.856 -0.833 -0.868 -0.801 0.046 0.043 0.066 0.031 0.098 0.167 0.171 0.208 0.184 0.168 1.026 1.246 1.107 1.007
θ11,1 0.33 0.268 0.268 0.278 0.277 0.254 0.061 0.061 0.051 0.052 0.075 0.124 0.127 0.173 0.136 0.130 1.020 1.394 1.093 1.048
θ21,1 -0.18 -0.166 -0.166 -0.183 -0.172 -0.179 0.013 0.013 0.003 0.007 0.000 0.123 0.122 0.162 0.133 0.123 0.993 1.321 1.082 1.000
θ12,1 -0.20 -0.231 -0.230 -0.232 -0.225 -0.245 0.031 0.030 0.032 0.025 0.045 0.145 0.149 0.165 0.155 0.151 1.027 1.136 1.072 1.043
θ22,1 -0.40 -0.304 -0.299 -0.302 -0.313 -0.3100.095 0.100 0.097 0.086 0.0890.191 0.194 0.239 0.207 0.193 1.017 1.249 1.081 1.012
θ11,2 -0.20 -0.262 -0.263 -0.240 -0.268 -0.234 0.062 0.063 0.040 0.068 0.034 0.129 0.134 0.183 0.142 0.128 1.038 1.420 1.103 0.993
θ12,2 0.92 0.848 0.846 0.812 0.876 0.797 0.071 0.0730.107 0.043 0.122 0.214 0.228 0.242 0.244 0.203 1.062 1.128 1.1360.946

Note – These estimates are obtained from 1000 replications. TS1, TS2 stand for the respective proposed third-stage GLS estimators based on the two-stage GLS and the two-stage OLS
estimators. While HK, RBY and PS stand for the fully efficient GLS estimatorssuggested by Hannan and Kavalieris (1984b), Reinsel et al. (1992) and Poskitt and Salau (1995), respectively.
The eigenvalues of the model are real 0.800 and a double root 0.900for the autoregressive (AR) operator, and real -0.530 and conjugate -0.350̄+0.584i (0.681 in norm) for the moving-average
(MA) operator. Recall that the number of eigenvalues in each of the AR and MA operators is equal to the McMillan degree of the model. That is, the sum of the Kronecker indices. In the upper
panelnT = [ln T ] was used, whereas is the lower panel a value ofnT = [T 1/2] has been used. Finally, [x] stands for the integer less or equal tox.
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Table 4: Estimated echelon VARMA model with Kronecker indices (2,1) and sample size T=200: A comparative simulation study on the finite sample
properties of alternative fully efficient GLS estimators

Empirical mean Average error Mean Squared Error MSE ratio
Coeff Value TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2HK RBY PS

µΦ,1 0.00 -0.000 -0.000 -0.002 -0.000 -0.000 0.000 0.000 0.002 0.000 0.000 0.078 0.079 0.103 0.080 0.081 1.002 1.306 1.019 1.028
µΦ,2 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.083 0.083 0.084 0.083 0.081 1.003 1.013 0.999 0.978
φ21,0 0.50 0.498 0.498 0.502 0.498 0.498 0.001 0.001 0.002 0.001 0.001 0.019 0.019 0.023 0.020 0.020 1.001 1.182 1.030 1.045
φ11,1 1.80 1.797 1.798 1.816 1.798 1.804 0.002 0.001 0.016 0.001 0.004 0.023 0.023 0.031 0.025 0.023 1.004 1.340 1.082 0.994
φ21,1 -0.40 -0.383 -0.382 -0.387 -0.382 -0.383 0.016 0.017 0.012 0.017 0.016 0.056 0.057 0.065 0.059 0.060 1.006 1.158 1.052 1.064
φ22,1 0.80 0.771 0.769 0.772 0.769 0.772 0.028 0.030 0.027 0.030 0.027 0.083 0.083 0.095 0.087 0.087 1.006 1.147 1.051 1.057
φ11,2 -0.36 -0.359 -0.360 -0.436 -0.361 -0.385 0.000 0.000 0.076 0.001 0.025 0.073 0.073 0.112 0.081 0.070 1.007 1.539 1.111 0.967
φ12,2 -0.90 -0.897 -0.897 -0.780 -0.894 -0.859 0.002 0.0020.119 0.005 0.040 0.109 0.109 0.171 0.121 0.104 1.007 1.568 1.109 0.957
θ11,1 0.33 0.304 0.303 0.297 0.310 0.278 0.025 0.026 0.032 0.019 0.051 0.076 0.077 0.092 0.086 0.074 1.007 1.208 1.136 0.978
θ21,1 -0.18 -0.170 -0.169 -0.188 -0.176 -0.127 0.009 0.010 0.008 0.003 0.052 0.069 0.069 0.098 0.077 0.064 1.009 1.429 1.116 0.933
θ12,1 -0.20 -0.205 -0.206 -0.253 -0.200 -0.247 0.005 0.006 0.053 0.000 0.047 0.095 0.096 0.100 0.104 0.094 1.014 1.053 1.096 0.991
θ22,1 -0.40 -0.374 -0.370 -0.296 -0.378 -0.310 0.025 0.0290.103 0.021 0.089 0.104 0.105 0.124 0.118 0.103 1.013 1.198 1.133 0.994
θ11,2 -0.20 -0.226 -0.228 -0.200 -0.229 -0.237 0.026 0.028 0.000 0.029 0.037 0.078 0.079 0.108 0.089 0.076 1.011 1.383 1.147 0.982
θ12,2 0.92 0.915 0.913 0.727 0.919 0.814 0.004 0.0060.192 0.000 0.105 0.136 0.138 0.197 0.155 0.122 1.012 1.442 1.1330.891
µΦ,1 0.00 0.003 0.002 0.003 0.002 0.003 0.003 0.002 0.003 0.002 0.003 0.082 0.082 0.082 0.081 0.084 1.005 1.003 0.999 1.028
µΦ,2 0.00 -0.003 -0.003 -0.003 -0.004 -0.004 0.003 0.003 0.003 0.004 0.004 0.089 0.089 0.089 0.089 0.090 1.005 1.001 1.005 1.015
φ21,0 0.50 0.498 0.498 0.498 0.498 0.500 0.001 0.001 0.001 0.001 0.000 0.021 0.021 0.021 0.021 0.023 1.001 1.004 1.000 1.057
φ11,1 1.80 1.799 1.798 1.798 1.798 1.805 0.000 0.001 0.001 0.001 0.005 0.024 0.025 0.025 0.025 0.025 1.017 1.025 1.024 1.015
φ21,1 -0.40 -0.383 -0.381 -0.382 -0.381 -0.385 0.016 0.018 0.017 0.018 0.014 0.060 0.060 0.060 0.060 0.065 1.003 1.001 1.002 1.090
φ22,1 0.80 0.771 0.768 0.770 0.768 0.770 0.028 0.031 0.029 0.031 0.029 0.085 0.086 0.085 0.085 0.094 1.002 0.999 1.001 1.068
φ11,2 -0.36 -0.367 -0.366 -0.364 -0.362 -0.393 0.007 0.006 0.004 0.002 0.033 0.075 0.077 0.077 0.078 0.076 1.021 1.030 1.037 1.007
φ12,2 -0.90 -0.884 -0.886 -0.889 -0.891 -0.843 0.015 0.013 0.010 0.008 0.056 0.111 0.113 0.114 0.115 0.111 1.020 1.030 1.038 1.004
θ11,1 0.33 0.307 -0.308 0.308 0.309 0.301 0.022 0.021 0.021 0.020 0.028 0.078 0.079 0.079 0.080 0.080 1.013 1.015 1.024 1.029
θ21,1 -0.18 -0.172 -0.171 -0.170 -0.171 -0.183 0.007 0.008 0.009 0.008 0.003 0.072 0.072 0.073 0.073 0.076 0.998 1.017 1.016 1.049
θ12,1 -0.20 -0.211 -0.211 -0.212 -0.210 -0.221 0.011 0.011 0.012 0.010 0.021 0.095 0.097 0.097 0.098 0.100 1.021 1.016 1.034 1.049
θ22,1 -0.40 -0.366 -0.361 -0.362 -0.366 -0.354 0.033 0.038 0.037 0.033 0.045 0.112 0.114 0.113 0.115 0.118 1.018 1.006 1.028 1.048
θ11,2 -0.20 -0.226 -0.227 -0.228 -0.231 -0.212 0.026 0.027 0.028 0.031 0.012 0.079 0.080 0.080 0.082 0.079 1.011 1.015 1.039 1.006
θ12,2 0.92 0.899 0.898 0.899 0.913 0.856 0.020 0.021 0.020 0.006 0.063 0.139 0.143 0.143 0.146 0.135 1.029 1.029 1.053 0.974

Note – These estimates are obtained from 1000 replications. TS1, TS2 stand for the respective proposed third-stage GLS estimators based on the two-stage GLS and the two-stage OLS
estimators. While HK, RBY and PS stand for the fully efficient GLS estimatorssuggested by Hannan and Kavalieris (1984b), Reinsel et al. (1992) and Poskitt and Salau (1995), respectively.
The eigenvalues of the model are real 0.800 and a double root 0.900for the autoregressive (AR) operator, and real -0.530 and conjugate -0.350̄+0.584i (0.681 in norm) for the moving-average
(MA) operator. Recall that the number of eigenvalues in each of the AR and MA operators is equal to the McMillan degree of the model. That is, the sum of the Kronecker indices. In the upper
panelnT = [ln T ] was used, whereas is the lower panel a value ofnT = [T 1/2] has been used. Finally, [x] stands for the integer less or equal tox.
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A Appendix: Proofs

PROOF OF PROPOSITION 3.1 Note first that
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hence
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Further, we have
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where as in the univariate caseE
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and finally
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PROOF OF THEOREM 3.1 Recall that̃Π (nT ) = W̃Y (nT ) Γ̃Y (nT )−1, whereW̃Y (nT ) = T−1 ∑T
t=1 ytYt (nT )′

andyt = Π(nT ) Yt (nT ) + ut (nT ). Set

U1 (nT ) = T−1
T
∑

t=1

[

ut (nT ) − ut

]

Yt (nT )′ , U2 (nT ) = T−1
T
∑

t=1

utYt (nT )′ (A.8)

Then
∥

∥

∥
Π̃ (nT ) − Π(nT )

∥

∥

∥
≤

{

∥

∥U1 (nT )
∥

∥ +
∥

∥U2 (nT )
∥

∥

}
∥

∥

∥
Γ̃Y (nT )−1

∥

∥

∥
(A.9)

where, by Assumption2.3
∥

∥

∥
Γ̃Y (nT )−1

∥

∥

∥
= Op (1) + Op

(

knT

T 1/2

)

= Op (1) . (A.10)

Note that

E
∥

∥U1 (nT )
∥

∥ = E

∥

∥

∥

∥

T−1
T
∑

t=1

[

ut (nT )−ut

]

Yt (nT )′
∥

∥

∥

∥

≤ T−1
T
∑

t=1

{

E
∥

∥ut (nT )−ut

∥

∥

2
}1/2{

E
∥

∥Yt (nT )
∥

∥

2
}1/2

, (A.11)
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with
E
∥

∥Yt (nT )
∥

∥

2
= 1 + nT tr

[

Γy (0)
]

≤ (1 + nT ) δ (A.12)

whereδ = max
{

1, tr
[

Γy (0)
]}

. Further, using (2.3), one can show that

E
∥

∥ut (nT ) − ut

∥

∥

2
= E

∥

∥

∥

∥

∞
∑

τ=nT +1

Πτya
t−τ

∥

∥

∥

∥

2

=
∞
∑

τ1=nT +1

∞
∑

τ2=nT +1

tr
[

Π′
τ1

Πτ2
Γya (τ2 − τ1)

]

≤
∞
∑

τ1=nT +1

∞
∑

τ2=nT +1

∥

∥Πτ1

∥

∥

∥

∥Πτ2

∥

∥

∥

∥Γya (τ2 − τ1)
∥

∥

≤
C2

1 − ρ2

∥

∥Σu

∥

∥

∞
∑

τ1=nT +1

∞
∑

τ2=nT +1

ρ|τ2−τ1|
∥

∥Πτ1

∥

∥

∥

∥Πτ2

∥

∥

≤
C2

1 − ρ2

∥

∥Σu

∥

∥

( ∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)2

(A.13)

whereC is a positive constant andΓya (s − t) = E
[

ya
t ya′

s

]

with ya
t = yt − µy =

∞
∑

v=0

Ψvut−v, hence

E
∥

∥U1 (nT )
∥

∥ ≤
C

(1 − ρ2)1/2

∥

∥Σu

∥

∥

1/2
(1 + nT )1/2 δ1/2

( ∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)

= C1

(

1 + nT

nT

)1/2 (

n
1/2
T

∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)

= O (1)

(

n
1/2
T

∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)

(A.14)

whereC1 is a positive constant. Then

∥

∥U1 (nT )
∥

∥ = Op (1)

(

n
1/2
T

∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)

. (A.15)

Sinceut andYt (nT ) are independent, we have

E
∥

∥U2 (nT )
∥

∥

2
=

1

T 2

T
∑

t=1

E
[

u′
tut

]

E

[

Yt (nT )′ Yt (nT )
]

=
1

T
tr
[

Σu

]

(

1 + nT tr
[

Γy (0)
]

)

= O

(

k + k2nT

T

)

= O

(

k2nT

T

)

, (A.16)

hence
∥

∥U2 (nT )
∥

∥ = Op

(

kn
1/2
T

T 1/2

)

. (A.17)

Then, by Assumption2.4, we show, using (A.9), (A.10), (A.15) and (A.17), that

∥

∥

∥
Π̃ (nT ) − Π(nT )

∥

∥

∥
= op (1) . (A.18)

Using Assumption2.6, we finally get

∥

∥U1 (nT )
∥

∥ = Op

(

n
1/2
T

T 1/2

)(

T 1/2
∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)

= op

(

n
1/2
T

T 1/2

)

(A.19)

and
∥

∥

∥
Π̃ (nT ) − Π(nT )

∥

∥

∥
= Op

(

kn
1/2
T

T 1/2

)

. (A.20)
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PROOF OF PROPOSITION 3.2 First, note that

∥

∥

∥
S̃Y (nT ) − SY (nT )

∥

∥

∥
=

∥

∥

∥
T 1/2l′nT

vec
[

Ω̃Y (nT ) Γ̃Y (nT )−1 − ΩY (nT ) ΓY (nT )−1
]
∥

∥

∥

≤ T 1/2
∥

∥lnT

∥

∥

∥

∥

∥
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[

Ω̃Y (nT ) Γ̃Y (nT )−1 − ΩY (nT ) ΓY (nT )−1
]
∥

∥

∥

=
∥

∥lnT

∥

∥

∥

∥

∥
T 1/2

{

Ω̃Y (nT ) Γ̃Y (nT )−1 − ΩY (nT ) ΓY (nT )−1
}
∥

∥

∥

≤ M1/2
{

∥

∥q1 + q2

∥

∥

}

≤ M1/2
{

∥

∥q1

∥

∥ +
∥

∥q2

∥

∥

}

(A.21)

where

q1 = T 1/2[U1 (nT ) + U2 (nT )
]

[

Γ̃Y (nT )−1 − ΓY (nT )−1
]

, q2 = T−1/2
T
∑

t=1

[

ut (nT ) − ut

]

Yt (nT )′ ΓY (nT )−1 ,

with U1 (nT ) andU2 (nT ) as defined in (A.8). Then

∥

∥q1

∥

∥ =
∥

∥

∥
T 1/2

[

U1 (nT ) + U2 (nT )
][

Γ̃Y (nT )−1 − ΓY (nT )−1
]
∥

∥

∥

≤ T 1/2
{

∥

∥U1 (nT )
∥

∥ +
∥

∥U2 (nT )
∥

∥

}
∥

∥

∥
Γ̃Y (nT )−1 − ΓY (nT )−1

∥

∥

∥

1
, (A.22)

E
∥

∥q2

∥

∥ = E

∥

∥

∥

∥

T−1/2
T
∑

t=1

[

ut (nT ) − ut

]

Yt (nT )′ ΓY (nT )−1

∥

∥

∥

∥

≤ T−1/2

{ T
∑

t=1

E

∥

∥

∥

[

ut (nT ) − ut

]

Yt (nT )′ ΓY (nT )−1
∥

∥

∥

}

≤ T−1/2

{ T
∑

t=1

E
∥

∥ut (nT ) − ut

∥

∥

2
}1/2{ T

∑

t=1

E

∥

∥

∥
Yt (nT )′ ΓY (nT )−1

∥

∥

∥

2
}1/2

. (A.23)

By Proposition3.1, (A.15) and (A.17), we can see, using Assumption2.6, that

∥

∥q1

∥

∥ = T 1/2

{

Op (1)

(

n
1/2
T

∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)
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(

n
1/2
T

T 1/2

)}

Op

(

nT

T 1/2

)

=

{

Op (1)

(

T 1/2
∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)

+ Op (1)

}
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(

n
3/2
T

T 1/2

)
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(

n
3/2
T

T 1/2

)

. (A.24)

Moreover, we have

E

∥

∥

∥
Yt (nT )′ ΓY (nT )−1

∥

∥

∥

2

= E

{

tr
[

ΓY (nT )−1 Yt (nT ) Yt (nT )′ ΓY (nT )−1 ]
}
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[

ΓY (nT )−1
E
{

Yt (nT ) Yt (nT )′
}

ΓY (nT )−1
]

= tr
[

ΓY (nT )−1
]

= O
(

1
)

.(A.25)

Then, using (A.13), we get

E
∥

∥q2

∥

∥ ≤ T−1/2

{ T
∑

t=1

E
∥

∥ut (nT ) − ut

∥

∥

2
}1/2{ T

∑
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E

∥

∥

∥
Yt (nT )′ ΓY (nT )−1

∥

∥

∥

2
}1/2

.

= T−1/2

{

O
(

T
)

( ∞
∑
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∥

∥Πτ

∥

∥

)2}1/2{

O
(

T
)

}1/2

= O (1)

(

T 1/2
∞
∑
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∥

∥Πτ

∥

∥

)

, (A.26)

∥

∥q2

∥

∥ = Op (1)

(

T 1/2
∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)

, (A.27)

hence
∥

∥

∥
S̃Y (nT ) − SY (nT )

∥

∥

∥
= Op

(

n
3/2
T

T 1/2

)

+ Op (1)

(

T 1/2
∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)

. (A.28)
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Therefore, by Assumptions2.5and2.6, we have

∥

∥

∥
S̃Y (nT ) − SY (nT )

∥

∥

∥
= op (1) . (A.29)

Further, we see that

(

T 1/2

n
3/2
T

)

∥

∥

∥
S̃Y (nT ) − SY (nT )

∥

∥

∥
= Op (1) + Op (1)

(

Tn
−3/2
T

∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)

(A.30)

where, by Assumption2.5, Tn
−3/2
T ≤ c−3/2T 1−3δ2/2, sincenT ≥ cT δ2 . Setting alsoδ3 = 1 − 3

2
δ2, then 1

2
< δ3 < 1

since0 < δ2 < 1/3. Hence

(

T 1/2

n
3/2
T

)

∥

∥

∥
S̃Y (nT ) − SY (nT )

∥

∥

∥
= Op (1) + Op (1)

(

T δ3

∞
∑

τ=nT +1

∥

∥Πτ

∥

∥

)

. (A.31)

If, in addition, Assumption2.7holds, then we get

(

T 1/2

n
3/2
T

)

∥

∥

∥
S̃Y (nT ) − SY (nT )

∥

∥

∥
= Op (1) + op (1) = Op (1) (A.32)

and finally
∥

∥

∥
S̃Y (nT ) − SY (nT )

∥

∥

∥
= Op

(

n
3/2
T

T 1/2

)

. (A.33)

PROOF OF THEOREM 3.2 By the standard central limit theorem for stationary processes [see Anderson (1971,
Section 7.7), Scott (1973, Theorem 2), Berk (1974, page 491), Lewis and Reinsel (1985, Theorem 3), Chung (2001,
Theorem 9.1.5)] and under the assumption of independence betweenut andYt (nT ) we have:

SY (nT )
{

l′nT
QY (nT ) lnT

}1/2

d
−→

T→∞
N
[

0, 1
]

(A.34)

whereQY (nT ) = ΓY (nT )−1⊗Σu andΓY (nT ) = E
[

Yt (nT ) Yt (nT )′
]

. Therefore, by Proposition3.2and Assumption
2.5we finally conclude that

T 1/2l′nT
vec

[

Π̃ (nT ) − Π(nT )
]

{

l′nT
QY (nT ) lnT

}1/2
=

S̃Y (nT )
{

l′nT
QY (nT ) lnT

}1/2

d
−→

T→∞
N
[

0, 1
]

. (A.35)

PROOF OF PROPOSITION 3.3 Let Σu (T ) = T−1 ∑T
t=1 utu

′
t. Then, by the triangular inequality, we have

∥

∥

∥
Σ̃u (nT ) − Σu

∥

∥

∥
≤

∥

∥

∥
Σ̃u (nT ) − Σu (T )

∥

∥

∥
+

∥

∥Σu (T ) − Σu

∥

∥ (A.36)

where
∥

∥Σu (T ) − Σu

∥

∥ = Op

(

k/T 1/2
)

and

∥

∥

∥
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∥

∥

∥
≤

1

T
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∑
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∥

∥ũt (nT ) ũt (nT )′ − utu
′
t

∥

∥

≤
1

T

T
∑

t=1

{

∥

∥ũt (nT ) − ut

∥

∥

∥

∥ũt (nT )
∥

∥ +
∥

∥ut

∥

∥

∥

∥ũt (nT ) − ut

∥

∥

}

. (A.37)

Moreover, we have

∥

∥ũt (nT ) − ut

∥

∥

2
≤ 2

∥

∥ũt (nT ) − ut (nT )
∥

∥

2
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∥
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∥

∥

2
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∥

∥

∥
Π̃ (nT ) − Π(nT )

∥

∥

∥

2∥
∥Yt (nT )

∥

∥

2
+ 2

∥

∥

∥

∥

∞
∑
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Πτya
t−τ

∥

∥

∥

∥

2

(A.38)
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where
∥

∥Π̃ (nT ) − Π(nT )
∥

∥

2
= Op

(

k2nT /T
)

, E
∥

∥Yt (nT )
∥

∥

2
= O (knT ) and

E

∥

∥

∥

∥

∞
∑
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Πτya
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∥

∥

∥

∥

2

= O (k)

( ∞
∑

τ=nT +1

∥

∥Πτ

∥

∥
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= O
(

kρ2nT
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, (A.39)

hence
∥

∥ũt (nT ) − ut

∥

∥

2
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k3n2
T

T

)

,
∥

∥ũt (nT ) − ut

∥

∥ = Op

(

k3/2nT

T 1/2

)

. (A.40)

Finally, we get
∥

∥

∥
Σ̃u (nT ) − Σu (T )

∥

∥

∥
= Op
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k2nT

T 1/2

)

,
∥

∥

∥
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∥

∥
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(

k2nT

T 1/2
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, (A.41)

sinceE
∥

∥ut

∥

∥

2
= O (k). Therefore, similarly, as in the proof of Proposition3.1, it can be seen that

∥

∥

∥
Σ̃u (nT )−1 − Σ−1

u

∥

∥

∥
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k2nT

T 1/2
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. (A.42)

PROOF OF PROPOSITION 3.4 Let

ΓX (T ) = T−1
T
∑

t=1

XtX
′
t , ΥX (T ) = ΓX (T ) ⊗ Σ−1

u , QX (T ) =
{

R′ΥX (T ) R
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. (A.43)

Then
∥
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∥
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∥

∥

1
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∥

∥

∥
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∥
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∥

∥
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∥
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, (A.44)

with
∥

∥

∥
QX (T )−1 − Q−1

X

∥

∥

∥
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∥
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∥
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∥ (A.45)

where
∥
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∥

∥

2
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Moreover, we have
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∥

∥
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where
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∥

∥
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∥
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∥
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∥

∥
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∥

∥
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∥
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with
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using (A.40). Further, sinceE
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∥Xt

∥

∥
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∥
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then
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∥
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Hence
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∥
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. (A.53)

Finally, as in the proof of Proposition3.1, one can show that
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1
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PROOF OF THEOREM 3.3 Recall that̃η − η = Q̃X (nT ) Ω̃X (nT ). Then
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∥
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∥ (A.55)

where, by Proposition3.4,
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1
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1
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. (A.56)

Let also

WX =
1

T

T
∑

t=1

utXt
′. (A.57)

Then one sees that
ΩX = R′vec

[

Σ−1
u WX

]

(A.58)

and
E
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∥ΩX
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∥

2
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∥
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∥

2
(A.59)

where, by independence betweenut andXt,

E
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2
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. (A.60)

Hence
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. (A.61)

Now, consider the term
∥

∥Ω̃X (nT ) − ΩX

∥

∥. Then it can be shown that
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where

W̃ 1
X (nT ) =

1

T

T
∑
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[
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][
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]′, (A.63)

W̃ 2
X (nT ) =
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∑
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[

et (nT ) − ut

]

Xt
′, W̃ 3
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1

T
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]′. (A.64)

By Proposition3.3, we have

∥

∥

∥
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. (A.65)
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Moreover, using (2.12), (3.18) and (A.50), one can see that
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∥
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Hence
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Further, setting̥ =
[

µΦ, Ik − Φ0, Φ1, . . . , Φp̄, Θ1, . . . , Θp̄

]

, one sees that
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∥

∥
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∥

∥

∥
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with
∥

∥

∥

∥
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and
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whereW̃ 21
X (nT ) = T−1 ∑T
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[
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where
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Given the VARMA structure ofyt as described above, one sees that
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∥

∥

1

T

T
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and
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∥
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, (A.74)

for some constantsC1 > 0 and0 < ρ < ρ1 < 1. Consequently, we get
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with C2 = C1ρ
j
1/ (1 − ρ1), then
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Hence, using (A.20) and (A.76), we show that
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In addition, we have
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whereΓX (0) = ΓX . Therefore
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∥
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Then
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Furthermore, one can see that
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∥
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where
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with W̃ 31
X (nT ) = T−1 ∑T
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′ andW̃ 32
X (nT ) = T−1 ∑T

t=1 ut

[

ut−j (nT ) − ut−j

]

′. More
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Therefore, by independence betweenut andYt−j (nT ) for j ≥ 0,
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In view of (A.20), we get
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In the other hand, we have
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Therefore, it follows that
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Then
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Finally, one can see that
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As a result, we get
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Furthermore, in view of Assumption2.3,
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Moreover, one sees that
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Hence, by Assumption2.8, we get
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PROOF OF PROPOSITION 3.5 Note that
∥

∥

∥
S̃X (nT ) − SX

∥

∥

∥
= T 1/2

∥

∥

∥
Q̃X (nT ) Ω̃X (nT ) − QXΩX

∥

∥

∥

≤ T 1/2
∥

∥

∥
Q̃X

∥

∥

∥

1

∥

∥

∥
Ω̃X (nT ) − ΩX

∥

∥

∥
+ T 1/2

∥

∥

∥
Q̃X (nT ) − QX

∥

∥

∥

1

∥

∥ΩX

∥

∥ (A.94)

where by Proposition3.4and Theorem3.3, we have:
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and finally
∥

∥

∥
S̃X (nT ) − SX

∥

∥

∥
= Op

(

r2
p̄h2k6n2

T

T 1/2

)

. (A.97)

PROOF OF THEOREM 3.4 By the standard central limit theorem for stationary processes [see Anderson (1971,
Section 7.7), Scott (1973, Theorem 2) and Chung (2001, Theorem 9.1.5)], and under the assumption of independence
betweenut andXt, we have:
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Then
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Further, by Proposition3.5and assumption2.8we conclude that
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PROOF OF PROPOSITION 3.6 By the triangular inequality we have
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where
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with
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Therefore, we get
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Hence
∥

∥

∥
Σ̃e (nT ) − Σu

∥

∥

∥
=

∥

∥

∥
Σ̃e (nT )−1 − Σ−1

u

∥

∥

∥
= Op

(

rp̄h1/2k5/2nT

T 1/2

)

. (A.105)

PROOF OF L EMMA 4.1 Under the invertibility condition of the echelon form VARMA representation wehave
det [Θ (z)] 6= 0, |z| ≤ 1. Then there exists a positive constantε, such that

Θ (z)−1 =

∞
∑

τ=0

Λτ (η) zτ , |z| < 1 + ε. (A.106)

Moreover, there exist real constants(ς, ζ) > 0 andτ ≥ τ0 (τ , τ0 ∈ Z), such thatΛτ (η) (1 + ς)τ → 0 asτ → ∞,
andΛlc,τ (η) ≤ ζ (1 + ς)−τ , |z| < 1 + ς, whereΛlc,τ (η) is the component ofΛτ (η) in the l-th row andc-th column
(l, c = 1, ..., k) and 0 < ς < ε. This means that all components ofΛτ (η) are geometrically bounded. Further, let
ρ = (1 + ς)−1 so thatρ ∈ (0, 1), then

∥

∥Λτ (η)
∥

∥ ≤ Cρτ , with C = kζ. In particular, there exists a positive constantκ
such that1 + κ−1 < ρ−1. Hence for|z| ≤ 1 + κ−1

∞
∑

τ=0

∥

∥Λτ (η)
∥

∥ |z|τ ≤
∞
∑

τ=0

∥

∥Λτ (η)
∥

∥

(

1 + κ−1)τ
≤

∞
∑

τ=0

Cρτ (

1 + κ−1)τ

=
∞
∑

τ=0

C
[

ρ
(

1 + κ−1)
]τ

=
Cκ

κ − ρ (κ + 1)
< ∞. (A.107)

Let alsoΛlc,τ (η̆) andΛlc,τ (η) be the components ofΛτ (η̆) andΛτ (η), respectively. Then

∣

∣

∣
Λlc,τ (η̆) − Λlc,τ (η)

∣

∣

∣
= (τ !)−1

∣

∣

∣

∣

[

Λ
(τ)
lc (η̆) (z) − Λ

(τ)
lc (η) (z)

]
∣

∣

∣

z=0

∣

∣

∣

∣

(A.108)

where|.| stands for the euclidean norm, andΛ
(τ)
lc (η̆) andΛ

(τ)
lc (η) designate theτ -th derivatives ofΛlc (η̆) andΛlc (η) with

respect toz, respectively. Hence, applying the Cauchy inequality to the derivativesof an analytic function, hereΛ (η) (z)
[see Ahlfors (1966, Page 122), and Churchill and Brown (1990, Page 130)], we get

∣

∣

∣

∣

[

Λ
(τ)
lc (η̆) (z) − Λ

(τ)
lc (η) (z)

]
∣

∣

∣

z=0

∣

∣

∣

∣

≤ (τ !) (1 + κ−1)−τ max
|z|=1+κ−1

∣

∣

∣
Λlc (η̆) (z) − Λlc (η) (z)

∣

∣

∣
, (A.109)
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then
∣

∣

∣
Λlc,τ (η̆) − Λlc,τ (η)

∣

∣

∣
≤ (1 + κ−1)−τ max

|z|=1+κ−1

∣

∣

∣
Λlc (η̆) (z) − Λlc (η) (z)

∣

∣

∣

≤ (1 + κ−1)−τ max
|z|=1+κ−1

∣

∣

∣

∣

[

det
{

Θ̆τ (z)
}

]−1

θ̆
+

lc,τ (z) −
[

det
{

Θτ (z)
}

]−1

θ+
lc,τ (z)

∣

∣

∣

∣

≤ (1 + κ−1)−τ max
|z|=1+κ−1

∣

∣

∣

∣

[

det
{

Θ̆τ (z)
}

]−1

−
[

det
{

Θτ (z)
}

]−1
∣

∣

∣

∣

∣

∣

∣
θ̆
+

lc,τ (z)
∣

∣

∣

+(1 + κ−1)−τ max
|z|=1+κ−1

∣

∣

∣

∣

[

det
{

Θτ (z)
}

]−1
∣

∣

∣

∣

∣

∣

∣
θ̆
+

lc,τ (z) − θ+
lc,τ (z)

∣

∣

∣
, (A.110)

for τ ∈ Z and|z| ≤ 1 + κ−1, where the polynomials̆θ
+

lc,τ (z) andθ+
lc,τ (z) are the(l, c)-th components of the adjoint

matrices of̆Θ (z) andΘ (z), respectively. By assumption
∥

∥η̆−η
∥

∥ = Op

(

T−1/2
)

, hence
∥

∥Θ̆ (z)−Θ (z)
∥

∥ = Op

(

T−1/2
)

for |z| ≤ 1 + κ−1. Consequently, we have

∥

∥

∥

∥

[

det
{

Θ̆τ (z)
}

]−1

−
[

det
{

Θτ (z)
}

]−1
∥

∥

∥

∥

= Op

(

T−1/2
)

, (A.111)

∣

∣

∣
θ̆
+

lc,τ (z) − θ+
lc,τ (z)

∣

∣

∣
= Op

(

T−1/2
)

,
∣

∣

∣
Λlc,τ (η̆) − Λlc,τ (η)

∣

∣

∣
≤ C

(

1 + κ−1
)−τ

T−1/2. (A.112)

Hence

∥

∥

∥
Λτ (η̆) − Λτ (η)

∥

∥

∥
≤ C

(

1 + κ−1
)−τ

T−1/2, T 1/2
(

1 + κ−1
)τ∥

∥

∥
Λτ (η̆) − Λτ (η)

∥

∥

∥
= Op (1) . (A.113)

Finally, we get
∥

∥

∥
Λτ (η̆)

∥

∥

∥
≤ C

[

ρτ +
(

1 + κ−1
)−τ

T−1/2

]

. (A.114)

PROOF OF PROPOSITION 4.1 By the triangular inequality, we have

∥

∥

∥
Σ̃u (η̃) − Σu

∥

∥

∥
≤

1

T

T
∑

t=1

∥

∥ut (η̃) ut (η̃)′ − utu
′
t

∥

∥ + Op

(

T−1/2)

≤
1

T

T
∑

t=1

{

∥

∥ut (η̃) − ut

∥

∥

∥

∥ut (η̃)
∥

∥ +
∥

∥ut

∥

∥

∥

∥ut (η̃) − ut

∥

∥

}

+ Op

(

T−1/2) (A.115)

where
∥

∥ut (η̃) − ut

∥

∥ ≤
∥

∥ut (η̃) − ut (η)
∥

∥ +
∥

∥ut (η) − ut

∥

∥ , (A.116)

with
∥

∥ut (η) − ut

∥

∥ = Op

(

ρt
)

. Furthermore, let̃Φ (p̄) =
[

Φ̃0,−Φ̃1, . . . ,−Φ̃p̄

]

, Φ (p̄) =
[

Φ0,−Φ1, . . . ,−Φp̄

]

and

Y a
t (p̄) =

[

ya′
t, y

a′
t−1, . . . , y

a′
t−p̄

]′
. Then

∥

∥ut (η̃) − ut (η)
∥

∥ ≤

∥

∥

∥

∥

t−1
∑

τ=0

[

Λτ (η̃) − Λτ (η)
]

Φ̃ (p̄) Y a
t−τ (p̄)

∥

∥

∥

∥

+

∥

∥

∥

∥

t−1
∑

τ=0

Λτ (η)
[

Φ̃ (p̄) − Φ (p̄)
]

Y a
t−τ (p̄)

∥

∥

∥

∥

, (A.117)

with

∥

∥

∥

∥

t−1
∑

τ=0

[

Λτ (η̃) − Λτ (η)
]

Φ̃ (p̄) Y a
t−τ (p̄)

∥

∥

∥

∥

≤
∥

∥

∥
Φ̃ (p̄)

∥

∥

∥

∥

∥Y a
t (p̄)

∥

∥

( t−1
∑

τ=0

∥

∥

∥
Λτ (η̃) − Λτ (η)

∥

∥

∥

)

≤
C1

T 1/2

( t−1
∑

τ=0

(

1 + κ−1)−τ
)

=
C1

T 1/2

[

1 −
(

1 + κ−1
)−t

1 − (1 + κ−1)−1

]

= Op

(

T−1/2
)

(A.118)
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using Lemma4.1. Then, by Theorem3.3,

∥

∥

∥

∥

t−1
∑

τ=0

Λτ (η)
[

Φ̃ (p̄) − Φ (p̄)
]

Y a
t−τ (p̄)

∥

∥

∥

∥

≤
∥

∥

∥
Φ̃ (p̄) − Φ (p̄)

∥

∥

∥

∥

∥Y a
t (p̄)

∥

∥

( t−1
∑

τ=0

∥

∥Λτ (η)
∥

∥

)

≤
C2

T 1/2

( t−1
∑

τ=0

ρτ

)2

=
C2

T 1/2

(

1 − ρt

1 − ρ

)

= Op

(

T−1/2
)

, (A.119)

for some positive constantsC2 andC2. Hence

∥

∥ut (η̃) − ut (η)
∥

∥ = Op

(

T−1/2
)

,
∥

∥ut (η̃) − ut

∥

∥ = Op

(

T−1/2
)

+ Op

(

ρt) = Op

(

T−1/2
)

. (A.120)

Therefore, we get
∥

∥

∥
Σ̃u (η̃) − Σu

∥

∥

∥
= Op

(

T−1/2
)

,
∥

∥

∥
Σ̃u (η̃)−1 − Σ−1

u

∥

∥

∥
= Op

(

T−1/2
)

. (A.121)

PROOF OF L EMMA 4.2 Consider the two equations

Φ0
0yt = µΦ0 +

p̄
∑

i=1

Φ0
i yt−i + Φ0

0ut

(

η0) +

p̄
∑

j=1

Θ0
jut−j

(

η0) , (A.122)

Φ1
0yt = µΦ1 +

p̄
∑

i=1

Φ1
i yt−i + Φ1

0ut

(

η1) +

p̄
∑

j=1

Θ1
jut−j

(

η1) (A.123)

whereµΦ0 = Φ0 (1) µy, µΦ1 = Φ1 (1) µy, with Φ0 (1) = Φ0
0−

∑p̄
i=1 Φ0

i andΦ1 (1) = Φ1
0−

∑p̄
i=1 Φ1

i . Then subtracting
(A.122) from (A.123), we get

(

Φ1
0 − Φ0

0

)

vt

(

η1) =
(

µΦ1 − µΦ0

)

+

p̄
∑

i=1

(

Φ1
i − Φ0

i

)

yt−i +

p̄
∑

j=1

(

Θ1
j − Θ0

j

)

ut−j

(

η1)

+

( p̄
∑

j=0

Θ0
jL

j

)

[

ut

(

η1)− ut

(

η0)
]

(A.124)

wherevt

(

η0
)

= yt − ut

(

η0
)

. Therefore

ut

(

η1)− ut

(

η0) = −

( p̄
∑

j=0

Θ0
jL

j

)−1
[

X ′
t

(

η1)⊗ Ik

]

R
(

η1 − η0) = −

t−1
∑

τ=0

[

X ′
t−τ

(

η1)⊗ Λτ

(

η0)
]

R
(

η1 − η0)

(A.125)
whereXt

(

η1
)

=
[

1, v′
t

(

η1
)

, y′
t−1, . . . , y

′
t−p̄, u′

t−1

(

η1
)

, . . . , ut−p̄

(

η1
) ]′

, with vt

(

η1
)

= yt − ut

(

η1
)

. Finally

ut

(

η1)− ut

(

η0) = −Z◦
t

(

η1, η0)′ (η1 − η0), Z◦
t

(

η1, η0) =

t−1
∑

τ=0

R′
[

Xt−τ

(

η1)⊗ Λτ

(

η0)′
]

. (A.126)

PROOF OF PROPOSITION 4.2 Set

Q̄X (η) =

{

1

T

T
∑

t=1

Zt (η) Σ−1
u Zt (η)′

}−1

. (A.127)

Then
∥

∥

∥
Q̃◦

X (η̃)−1 − QX (η)−1
∥

∥

∥

1
≤

∥

∥

∥
Q̃◦

X (η̃)−1 − QX (η)−1
∥

∥

∥
≤

∥

∥

∥
Q̃◦

X (η̃)−1 − Q̄X (η)−1
∥

∥

∥
+

∥

∥

∥
Q̄X (η)−1 − QX (η)−1

∥

∥

∥
,
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with

∥

∥Q̄X (η)−1 − QX (η)−1
∥

∥ =

∥

∥

∥

∥

1

T

T
∑

t=1

{

Zt (η) Σ−1
u Zt (η)′ − E

[

Zt (η) Σ−1
u Zt (η)′

]

}
∥

∥

∥

∥

≤
∥

∥R
∥

∥

2∥
∥Σ−1

u

∥

∥

{ ∞
∑

τ=0

∞
∑

v=0

∥

∥Γ̃X (τ − v) − ΓX (τ − ν)
∥

∥

∥

∥Λτ (η)
∥

∥

∥

∥Λv (η)
∥

∥

}

(A.128)

where

Γ̃X (τ − v) =
1

T

T
∑

t=1

Xt−τX ′
t−v, ΓX (τ − v) = E

[

Xt−τX ′
t−v

]

. (A.129)

From the VARMA structure ofyt one can see that

E
∥

∥Γ̃X (τ − v) − ΓX (τ − v)
∥

∥

2
≤

C̄ρ̄|τ−v|

T
, (A.130)

for some positive constants̄C andρ < ρ̄ < 1. Hence

∥

∥Q̄X (η)−1 − QX (η)−1
∥

∥ = Op

(

T−1/2
)

. (A.131)

Further, it can be seen that
∥

∥

∥
Q̃◦

X (η̃)−1 − Q̄X (η)−1
∥

∥

∥
≤

∥

∥Q1

∥

∥ +
∥

∥Q2

∥

∥ +
∥

∥Q3

∥

∥ (A.132)

where

Q1 =
1

T

T
∑

t=1

Zt (η)Σ−1
u

[

Z◦
t (η̃, η) − Zt (η)

]′
, Q2 =

1

T

T
∑

t=1

Zt (η)
[

Σ̃u (η̃)−1 − Σ−1
u

]

Z◦
t (η̃, η)′ , (A.133)

Q3 =
1

T

T
∑

t=1

[

Z◦
t (η̃, η) − Zt (η)

]

Σ̃u (η̃)−1 Z◦
t (η̃, η)′ . (A.134)

More especially, we have
∥

∥Q1

∥

∥ ≤
1

T

T
∑

t=1

∥

∥Zt (η)
∥

∥

∥

∥

∥
Σ−1

u

∥

∥

∥

∥

∥Z◦
t (η̃, η) − Zt (η)

∥

∥, (A.135)

with

E
∥

∥Zt (η)
∥

∥

2
= E

∥

∥

∥

∥

∞
∑

τ=0

R′
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Xt−τ ⊗ Λτ (η)′
]

∥

∥

∥

∥

2

≤
∥

∥R
∥

∥

2
∞
∑

τ1=0

∞
∑

τ2=0

∥

∥ΓX (τ1 − τ2)
∥

∥

∥

∥Λτ1
(η)

∥

∥

∥

∥Λτ2
(η)

∥

∥

≤ C̄1

∥

∥R
∥

∥

2
∞
∑

τ1=0

∞
∑

τ2=0

ρ̄
|τ1−τ2|
1

∥

∥Λτ1
(η)

∥

∥

∥

∥Λτ2
(η)

∥

∥ ≤ C̄2

∥

∥R
∥

∥

2
( ∞
∑

τ=0

∥

∥Λτ (η)
∥

∥

)2

= O (1) ,(A.136)

for some constants̄C1, C̄2 > 0 and0 < ρ < ρ̄ < 1, and

∥

∥Z◦
t (η̃, η) − Zt (η)

∥

∥ =

∥

∥

∥

∥

t−1
∑

τ=0

R′
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Xt−τ (η̃) ⊗ Λτ (η)′
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−
∞
∑
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[

Xt−τ ⊗ Λτ (η)′
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∥

∥

∥

≤
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∥

∥

∥
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)
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∥

∥

∥

∥

+

∥

∥

∥

∥

∞
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∥

∥
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(A.137)

where

E
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∥

∥

∥
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∥
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∥
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∞
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∥

∥
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∥

∥

2
∞
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∞
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|τ1−τ2|
1

∥

∥Λτ1
(η)

∥

∥

∥

∥Λτ2
(η)

∥

∥

≤ C̄2

∥

∥R
∥
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2
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∑

τ=t

∥

∥Λτ (η)
∥

∥

)2

≤ C̄2C
∥

∥R
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2
( ∞
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ρ2t) , (A.138)
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and
∥

∥

∥

∥

t−1
∑

τ=0

[(

Xt−τ (η̃) − Xt−τ

)

⊗ Λτ (η)′
]

∥

∥

∥

∥

≤

t−1
∑

τ=0

∥

∥Xt−τ (η̃) − Xt−τ

∥

∥

∥

∥Λτ (η)
∥

∥, (A.139)

with
∥

∥Xt−τ (η̃) − Xt−τ

∥

∥

2
=

p̄
∑

j=0

∥

∥ut−j−τ (η̃) − ut−j−τ

∥

∥

2
= Op

(

T−1
)

(A.140)

in view of (A.120). Therefore

∥

∥

∥

∥

t−1
∑
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∥

∥

∥

∥
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, (A.141)

then
∥

∥Z◦
t (η̃, η) − Zt (η)

∥
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T−1/2
)
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(
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(

T−1/2
)

. (A.142)

Hence
∥

∥Q1

∥

∥ = Op

(

T−1/2
)

. (A.143)

Likewise, using (A.136), (A.142) and Proposition4.1, we can show that

∥
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∥
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∥

∥
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∥
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)

(A.144)

and
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∥
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u

∥

∥

∥

∥

∥Zt (η)
∥

∥ +
∥
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u

∥

∥

∥

∥Zt (η)
∥

∥

}
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(
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)

. (A.145)

Consequently, we get

∥

∥

∥
Q̃◦

X (η̃)−1 − Q̄X (η)−1
∥

∥

∥
= Op

(

T−1/2
)

,
∥

∥

∥
Q̃◦

X (η̃)−1 − QX (η)−1
∥

∥

∥
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(

T−1/2
)

, (A.146)

then
∥

∥

∥
Q̃◦

X (η̃)−1 − QX (η)−1
∥

∥

∥

1
= Op

(

T−1/2
)

,
∥

∥

∥
Q̃◦

X (η̃) − QX (η)
∥

∥

∥

1
= Op

(

T−1/2
)

. (A.147)

Further, one can show that

∥

∥

∥
Q̃X (η̃)−1 − Q̃◦

X (η̃)−1
∥

∥

∥

1
≤

∥

∥

∥
Q̃X (η̃)−1 − Q̃◦

X (η̃)−1
∥

∥

∥

≤
∥

∥

∥
Σ̃u (η̃)−1

∥

∥

∥

1

T

T
∑

t=1

{

∥

∥Zt (η̃) − Z◦
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∥

∥

∥

∥Zt (η̃)
∥

∥

+
∥

∥Z◦
t (η̃, η)

∥

∥

∥

∥Zt (η̃) − Z◦
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∥

∥

}

(A.148)

where, by Proposition4.1and Lemma4.1,

∥

∥

∥
Σ̃u (η̃)−1

∥

∥

∥
≤

∥

∥

∥
Σ̃u (η̃)−1 − Σ−1

u

∥

∥

∥
+

∥

∥Σ−1
u

∥

∥ = Op (1) , (A.149)

∥

∥Zt (η̃) − Z◦
t (η̃, η)

∥

∥ ≤
∥

∥R
∥

∥

t−1
∑

τ=0

{

∥

∥Xt−τ (η̃) − Xt−τ

∥

∥ +
∥

∥Xt−τ

∥

∥

}

∥

∥Λτ (η̃) − Λτ (η)
∥

∥ = Op

(

T−1/2). (A.150)

Then, using (A.136), (A.142) and (A.150)

∥

∥Z◦
t (η̃, η)

∥

∥ ≤
∥

∥Z◦
t (η̃, η) − Zt (η)

∥

∥ +
∥

∥Zt (η)
∥

∥ = Op (1) , (A.151)
∥

∥Zt (η̃)
∥

∥ ≤
∥

∥Zt (η̃) − Z◦
t (η̃, η)

∥

∥ +
∥

∥Z◦
t (η̃, η) − Zt (η)

∥

∥ +
∥

∥Zt (η)
∥

∥ = Op (1) , (A.152)
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then
∥

∥

∥
Q̃X (η̃)−1 − Q̃◦

X (η̃)−1
∥

∥

∥
= Op

(

T−1/2). (A.153)

Hence
∥

∥

∥
Q̃X (η̃)−1 − Q̃◦

X (η̃)−1
∥

∥

∥

1
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(

T−1/2),
∥

∥

∥
Q̃X (η̃) − Q̃◦

X (η̃)
∥

∥

∥

1
= Op

(

T−1/2). (A.154)

PROOF OF THEOREM 4.1 By the triangular inequality, we have

∥

∥η̂ − η
∥

∥ ≤
∥

∥

∥
Q̃◦

X (η̃) Ω̃•
X (η̃)

∥

∥

∥
+

∥

∥

∥
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X (η̃) Ω̃◦
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∥

∥

∥

≤
∥

∥QX (η)
∥

∥

1

∥

∥ΩX (η)
∥

∥ +
∥

∥

∥
Q̃◦

X (η̃) − QX (η)
∥

∥

∥

1

∥

∥

∥
Ω̃•

X (η̃)
∥

∥

∥
+

∥

∥QX (η)
∥

∥

1

∥

∥

∥
Ω̃•

X (η̃) − ΩX (η)
∥

∥

∥

+
∥

∥

∥
Q̃X (η̃) − Q̃◦

X (η̃)
∥

∥

∥

1

∥

∥

∥
Ω̃X (η̃)

∥

∥

∥
+

∥

∥

∥
Q̃◦

X (η̃)
∥

∥

∥

1

∥

∥

∥
Ω̃X (η̃) − Ω̃◦

X (η̃)
∥

∥

∥
(A.155)

where
∥

∥QX (η)
∥

∥

1
= Op (1),

∥

∥ΩX (η)
∥

∥ = Op

(

T−1/2
)

,

∥

∥

∥
Q̃◦

X (η̃) − QX (η)
∥

∥

∥

1
= Op

(

T−1/2
)

,
∥

∥

∥
Q̃X (η̃) − Q̃◦

X (η̃)
∥

∥

∥

1
= Op

(

T−1/2
)

. (A.156)

Now, consider
∥

∥Ω̃•
X (η̃) − ΩX (η)

∥

∥ and
∥

∥Ω̃X (η̃) − Ω̃◦
X (η̃)

∥

∥. For the first term, we have

∥

∥

∥
Ω̃•

X (η̃) − ΩX (η)
∥

∥

∥
≤

∥

∥

∥

∥

1

T

T
∑

t=1

Zt (η) Σ−1
u

[

ut (η) − ut

]

∥

∥

∥

∥

+

∥

∥

∥

∥

1

T

T
∑
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Zt (η)
[

Σ̃u (η̃)−1 − Σ−1
u

]

ut (η)

∥

∥

∥

∥

+

∥

∥

∥

∥

1

T

T
∑

t=1

[

Z◦
t (η̃, η) − Zt (η)

]

Σ̃u (η̃)−1 ut (η)

∥

∥

∥

∥

(A.157)

where

∥

∥

∥

∥

1

T

T
∑

t=1

Zt (η)Σ−1
u

[

ut (η) − ut

]

∥

∥

∥

∥
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∥

∥

∥

∥

1

T

T
∑
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∞
∑

τ=0

R′[Xt−τ ⊗ Λτ (η)′
]

Σ−1
u

[

ut (η) − ut

]

∥

∥

∥

∥

≤
∥

∥R
∥

∥

1

∥

∥

∥

∥

1

T

T
∑

t=1

∞
∑

τ=0
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[

Λτ (η)′ Σ−1
u

[

ut (η) − ut

]
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t−τ

]

∥

∥

∥

∥
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∥

∥

∥

∥

1

T

T
∑

t=1

∞
∑

τ=0

Λτ (η)′ Σ−1
u

[

ut (η) − ut

]

X ′
t−τ

∥

∥

∥

∥

(A.158)

on using the inequality
∥

∥AB
∥

∥ ≤
∥

∥A
∥

∥

1

∥

∥B
∥

∥, with
∥

∥R
∥

∥

1
= 1 by construction, and

∥

∥vec
[

B
]
∥

∥ =
∥

∥B
∥

∥. It follows that
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T
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Zt (η) Σ−1
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∥

∥

∥

∥

≤
1

T
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∞
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∥

∥Λτ (η)
∥

∥

∥

∥Σ−1
u

∥

∥E

∥

∥

∥
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ut (η) − ut

]

X ′
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∥

∥

∥

≤
1

T

T
∑
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∞
∑
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∥

∥Λτ (η)
∥

∥

∥

∥Σ−1
u

∥

∥

{

E
∥
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∥

∥

2
}1/2{

E
∥

∥Xt−τ

∥

∥

2
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=
1

T

T
∑

t=1

( ∞
∑

τ=0

∥

∥Λτ (η)
∥

∥

)

∥

∥Σ−1
u

∥

∥

{

E
∥

∥ut (η) − ut

∥

∥

2
}1/2{

E
∥

∥Xt

∥

∥

2
}1/2

≤ C̄3

∥

∥Σ−1
u

∥

∥

( ∞
∑

τ=0

∥

∥Λτ (η)
∥

∥

)(

1

T

T
∑

t=1

ρt

)

= O
(

T−1), (A.159)

for some positive constant̄C3. Moreover, we have

∥

∥

∥

∥

1

T

T
∑
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Zt (η)
[

Σ̃u (η̃)−1 − Σ−1
u

]

ut (η)

∥

∥

∥

∥

≤

∥

∥

∥

∥

1

T

T
∑

t=1

Zt (η)
[

Σ̃u (η̃)−1 − Σ−1
u

]

[

ut (η) − ut

]

∥

∥

∥

∥

+

∥

∥

∥

∥

1

T

T
∑

t=1

Zt (η)
[

Σ̃u (η̃)−1 − Σ−1
u

]
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∥

∥

∥

∥

. (A.160)
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Similarly as in (A.158) and (A.159), one sees that

∥

∥

∥

∥

1

T

T
∑

t=1

Zt (η)
[

Σ̃u (η̃)−1 − Σ−1
u

]

[

ut (η) − ut

]

∥

∥

∥

∥

= Op

(

T−3/2). (A.161)

Manipulating as in (A.158), we also show that

∥

∥

∥

∥

1

T

T
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Zt (η)
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Σ̃u (η̃)−1 − Σ−1
u

]
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∥

∥

∥

∥

≤

∥

∥

∥

∥

1

T

T
∑
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∞
∑

τ=0

Λτ (η)′
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Σ̃u (η̃)−1 − Σ−1
u

]

utX
′
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∥

∥

∥

∥

≤
∥

∥

∥
Σ̃u (η̃)−1 − Σ−1

u

∥

∥

∥

{ ∞
∑

τ=0

∥

∥Λτ (η)
∥

∥

∥

∥

∥

∥

1

T

T
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′
t−τ

∥

∥

∥

∥
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(A.162)

where
{ ∞
∑

τ=0

∥

∥Λτ (η)
∥

∥

∥

∥

∥

∥

1

T

T
∑

t=1

utX
′
t−τ

∥

∥

∥

∥

}

=

∞
∑

τ=0

∥

∥Λτ (η)
∥

∥

∥

∥

∥

∥

1

T

T
∑

t=1

utX
′
t−τ

∥

∥

∥

∥

. (A.163)

By the VARMA structure ofyt, one can see that

∥

∥

∥

∥

1

T

T
∑

t=1

utX
′
t−τ

∥

∥

∥

∥

= Op

(
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)

,

∞
∑
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∥

∥Λτ (η)
∥

∥

∥

∥

∥

∥

1

T

T
∑

t=1

utX
′
t−τ

∥

∥

∥

∥
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(

T−1/2
)

. (A.164)

Therefore, using Proposition4.1,

∥

∥

∥

∥

1

T

T
∑

t=1

Zt (η)
[

Σ̃u (η̃)−1 − Σ−1
u

]
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∥

∥

∥

∥
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(

T−1
)

, (A.165)

then
∥

∥

∥

∥

1

T

T
∑
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Zt (η)
[

Σ̃u (η̃)−1 − Σ−1
u

]

ut (η)

∥

∥

∥

∥
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(

T−3/2
)
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(

T−1
)
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(

T−1
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. (A.166)

Finally, one shows that

∥

∥

∥

∥

1

T

T
∑

t=1

[

Z◦
t (η̃, η) − Zt (η)

]

Σ̃u (η̃)−1 ut (η)

∥

∥

∥

∥

≤
∥

∥Ω1
Z (η̃)

∥

∥ +
∥

∥Ω2
Z (η̃)

∥

∥ (A.167)

where

Ω1
Z (η̃) =

1

T

T
∑

t=1
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t (η̃, η) − Zt (η)

]

Σ̃u (η̃)−1 [ut (η) − ut

]
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1

T

T
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[
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t (η̃, η) − Zt (η)

]
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(A.168)
More especially,

∥

∥Ω1
Z (η̃)

∥

∥ ≤
∥

∥Ω11
Z (η̃)

∥

∥ +
∥

∥Ω12
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∥

∥ +
∥
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∥

∥ (A.169)

where

Ω11
Z (η̃) =

1

T

T
∑
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∞
∑
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Ω12
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T

T
∑

t=1
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∑
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T
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with Xt (η) =
[

1, v′
t (η) , y′
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′
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t−1 (η) , . . . , u′
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]′
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∥
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where
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Hence
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Further
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where
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with
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Hence
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then
∥

∥Ω12
Z (η̃)

∥

∥ = Op

(

T−1
)

. (A.180)

We also show that
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∥

∥

∥

{

1

T

T
∑

t=1

( t−1
∑

τ=0

∥

∥Λτ (η)
∥

∥

∥

∥ut (η) − ut

∥

∥

∥

∥Xt−τ (η̃) − Xt−τ (η)
∥

∥
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(A.181)

where
∥

∥Xt−τ (η̃) − Xt−τ (η)
∥

∥

2
=

p̄
∑

j=0

∥

∥ut−j−τ (η̃) − ut−j−τ (η)
∥

∥

2
, (A.182)

with
∥

∥ut−j−τ (η̃) − ut−j−τ (η)
∥

∥ =
∥

∥ut (η̃) − ut (η)
∥

∥ = Op

(

T−1/2
)

, (A.183)

using (A.120). Hence
∥

∥Ω13
Z (η̃)

∥

∥ = Op

(

T−3/2
)

(A.184)
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since
∥

∥ut (η) − ut

∥

∥ = Op

(

ρt
)

, then

∥

∥Ω1
Z (η̃)

∥

∥ =

∥

∥

∥

∥

1

T

T
∑

t=1

[

Z◦
t (η̃, η) − Zt (η)

]

Σ̃u (η̃)−1 [ut (η) − ut

]

∥

∥

∥

∥

= Op

(

T−1
)

(A.185)

In addition, one sees that
∥

∥Ω2
Z (η̃)

∥

∥ ≤
∥

∥Ω21
Z (η̃)

∥

∥ +
∥

∥Ω22
Z (η̃)

∥

∥ +
∥

∥Ω23
Z (η̃)

∥

∥ (A.186)

where

Ω21
Z (η̃) =

1

T

T
∑

t=1

∞
∑

τ=t

R′[Xt−τ ⊗ Λτ (η)′
]

Σ̃u (η̃)−1 ut, (A.187)

Ω22
Z (η̃) =

1

T

T
∑

t=1

t−1
∑

τ=0

R′
[

{

Xt−τ (η) − Xt−τ

}

⊗ Λτ (η)′
]

Σ̃u (η̃)−1 ut, (A.188)

Ω23
Z (η̃) =

1

T

T
∑

t=1

t−1
∑

τ=0

R′
[

{

Xt−τ (η̃) − Xt−τ (η)
}

⊗ Λτ (η)′
]

Σ̃u (η̃)−1 ut, (A.189)

Likewise, we show that
∥

∥Ω21
Z (η̃)

∥

∥ ≤
∥

∥

∥
Σ̃u (η̃)−1

∥

∥

∥

{

1

T

T
∑

t=1

∞
∑

τ=t

∥

∥Λτ (η)
∥

∥

∥

∥utX
′
t−τ

∥

∥

}

(A.190)

where, by independence betweenut andXt,

E

{

1

T

T
∑

t=1

∞
∑

τ=t

∥

∥Λτ (η)
∥

∥

∥

∥utX
′
t−τ

∥

∥

}

≤
1

T

T
∑

t=1

∞
∑

τ=t

∥

∥Λτ (η)
∥

∥

{

E
∥

∥utX
′
t−τ

∥

∥

2
}1/2

=
1

T

T
∑

t=1

∞
∑

τ=t

∥

∥Λτ (η)
∥

∥

{

E
∥

∥ut

∥

∥

2
E
∥

∥Xt−τ

∥

∥

2
}1/2

=
1

T

T
∑

t=1

( ∞
∑

τ=t

∥

∥Λτ (η)
∥

∥

)

{

E
∥

∥ut

∥

∥

2
E
∥

∥Xt

∥

∥

2
}1/2

= O
(

T−1
)

, (A.191)

then
∥

∥Ω21
Z (η̃)

∥

∥ = Op

(

T−1
)

. (A.192)

As for (A.171), using (A.179), we show that

∥
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∥

∥ ≤

∥

∥

∥

∥
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T

T
∑
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∑
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Xt−τ (η) − Xt−τ

]′

∥

∥

∥

∥

≤
∥

∥

∥
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∥

∥

∥
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1

T

T
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∥

∥Λτ (η)
∥

∥

∥

∥ut

∥

∥

∥
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∥

∥

}

≤
∥

∥

∥
Σ̃u (η̃)−1

∥

∥

∥

{

1

T

T
∑
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∥

∥ut

∥

∥

( t−1
∑
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∥

∥Λτ (η)
∥

∥

2
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∑
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∥
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∥

∥

2
)1/2}
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(

T−1
)

.
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Hence

∥

∥Ω23
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∥
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∥

∥

∥

1

T

T
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∥
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∥

∥
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T
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T
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∥

∥

∥

∥

≤
∥

∥

∥
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∥

∥

∥
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∑
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∥

∥Λτ (η)
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∥

∥

∥

∥

∥

1

T

T
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[

Xt−τ (η̃) − Xt−τ (η)
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∥
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∥

∥

}
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where

∥

∥

∥

∥

1

T

T
∑

t=τ+1
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[

Xt−τ (η̃) − Xt−τ (η)
]′

∥

∥

∥

∥

2

=
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∑
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∥

∥

∥

∥

1

T

T
∑

t=τ+1

ut

[

ut−j−τ (η̃) − ut−j−τ (η)
]′

∥

∥

∥

∥

2

, (A.195)

with

∥

∥

∥

∥

1

T

T
∑

t=τ+1

ut

[

ut−τ (η̃) − ut−τ (η)
]′

∥

∥

∥

∥

=

∥

∥

∥

∥

1

T

T
∑

t=τ+1

t−τ−1
∑
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utY
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t−τ−v

[

Φ̃ (p̄)′ Λv (η̃) − Φ (p̄)′ Λv (η)
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∥

∥

∥

∥
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∥

∥

∥

∥

1

T

T−τ−1
∑
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T
∑
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utY
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t−τ−v

[

Φ̃ (p̄)′ Λv (η̃) − Φ (p̄)′ Λv (η)
]

∥

∥

∥

∥

≤

T−τ−1
∑

v=0

∥

∥

∥

∥

1

T

T
∑

t=τ+1+v

utY
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∥

∥

∥

∥

∥

∥
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Φ̃ (p̄)′ Λv (η̃) − Φ (p̄)′ Λv (η)

∥

∥

∥
(A.196)

where, by independence betweenut andY a
t ,

∥

∥

∥

∥

1

T

T
∑

t=τ+1+v

utY
a′

t−τ−v

∥

∥

∥

∥

= Op

(

T−1/2
)

. (A.197)

Further, using Theorem3.3and Lemma4.1, we have

T−τ−1
∑

v=0

∥

∥

∥
Φ̃ (p̄)′ Λv (η̃) − Φ (p̄)′ Λv (η̃)

∥

∥

∥
≤

T−τ−1
∑
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{

∥

∥

∥
Φ̃ (p̄)

∥

∥

∥

∥

∥Λv (η̃) − Λv (η)
∥

∥ +
∥

∥

∥
Φ̃ (p̄) − Φ (p̄)

∥

∥

∥

∥

∥Λv (η)
∥

∥

}

= Op

(

T−1/2
)

, (A.198)

∥

∥

∥

∥

1

T

T
∑

t=τ+1

ut

[

ut−τ (η̃) − ut−τ (η)
]′

∥

∥

∥

∥

=

∥

∥

∥

∥

1

T

T
∑

t=τ+1
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[

ut−j−τ (η̃) − ut−j−τ (η)
]′

∥

∥

∥

∥
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(

T−1
)

, (A.199)
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∥

∥

∥

1

T

T
∑

t=τ+1
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Xt−τ (η̃) − Xt−τ (η)
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∥

∥

∥

∥

= Op

(

T−1
)

, (A.200)

then
∥

∥Ω23
Z (η̃)

∥

∥ = Op

(

T−1
)

. (A.201)

Hence
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Z (η̃)

∥
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∥

∥

∥

∥

1

T

T
∑

t=1

[
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t (η̃, η) − Zt (η)

]

Σ̃u (η̃)−1 ut

∥

∥

∥

∥
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(

T−1
)

, (A.202)

∥

∥

∥

∥
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T
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]
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∥

∥

∥

∥
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T−1
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(A.203)

and finally
∥

∥

∥
Ω̃•

X (η̃) − ΩX (η)
∥

∥

∥
= Op

(

T−1). (A.204)

Similarly, we see that
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∥

∥
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∥
≤

∥
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X (η̃)
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∥

∥ +
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∥

∥

}
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where
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1

T

T
∑

t=1

t−1
∑
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]′

Σ̃u (η̃)−1 [ut (η̃) − ut
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]

, (A.206)

Ω2
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T

T
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′
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, (A.207)
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]
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Ω4
X (η̃) = R′vec

[

1

T

T
∑

t=1

t−1
∑

τ=0

[

Λτ (η̃) − Λτ (η)
]′

Σ̃u (η̃)−1 utXt−τ
′

]
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Using the same arguments as before, one sees that
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hence
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∥

∥

∥
= Op
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In particular, one can see that
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∥
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Again, using the same arguments as before, it can be shown that
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PROOF OF PROPOSITION 4.3 Recall that
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Then it follows, by Proposition4.2and Theorem4.1, that

∥

∥

∥
S̃X (η̃) − SX (η)

∥

∥

∥
= Op

(

T−1/2). (A.218)

PROOF OF THEOREM 4.2 By the central limit theorem for stationary processes [see Anderson (1971, Section 7.7),
Scott (1973, Theorem 2) and Chung (2001, Theorem 9.1.5)] and under the assumption of independence betweenut and
Zt (η), we have

T 1/2ΩX (η)
d

−→
T→∞

N
[

0, QX (η)−1
]

. (A.219)

Then, by Proposition4.3, we get

T 1/2(η̂ − η
)

= S̃X (η̃)
d

−→
T→∞

N
[

0, QX (η)
]

. (A.220)
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