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ABSTRACT

We propose finite sample tests and confidence sets for models with uredbseny generated
regressors as well as various models estimated by instrumental variablesimeiine validity of
the procedures is unaffected by the presence of identification probletneak instruments”, so
no detection of such problems is required. We study two distinct appredoh&arious models
considered by Pagan (1984). The first one is an instrument substitutibiodnehich generalizes
an approach proposed by Anderson and Rubin (1949) and Fullgr)iér different (although re-
lated) problems, while the second one is based on splitting the sample. Then@strsubstitution
method uses the instruments directly, instead of generated regressameriricotest hypotheses
about the “structural parameters” of interest and build confidence Be¢ssecond approach relies
on “generated regressors”, which allows a gain in degrees of fregalod a sample split technique.
For inference about general possibly nonlinear transformations of Inpadameters, projection
techniques are proposed. A distributional theory is obtained undersbengsions of Gaussian er-
rors and strictly exogenous regressors. We show that the variousestenfidence sets proposed
are (locally) “asymptotically valid” under much weaker assumptions. Thpepties of the tests
proposed are examined in simulation experiments. In general, they outpdterusual asymp-
totic inference methods in terms of both reliability and power. Finally, the teckeiguggested are
applied to a model of Tobin'g and to a model of academic performance.

Key words: simultaneous equations; structural model; instrumental variables; weaknestts;
generated regressor; Anderson-Rubin method; pivotal functiomplgasplit; exact test; confidence
region; projection techniques; Tobirgsacademic performance.

JEL classification numbers C1, C12, C3, C5, E22, 12, J24.



RESUME

Nous proposons des tests égions de confiance exactes pour des @hesl comportant des
variables inobseles ou deségresseurs esties de néme que pour divers metes estirds par la
méthode des variables instrumentales. La vaidigs proedures propdes n’est pas influege par
la préesence de probimes d’identification ou d’instruments faibles, de sorte quétadlion de tels
problemes n’est pas requise pour les appliquer. De facon pkfgpue, nousgtudions deux ap-
proches diférentes pour divers metks consiédrés par Pagan (1984). La prare est une &thode
de substitution d’instruments quegeralise des techniques proges par Anderson et Rubin (1949)
et Fuller (1984) pour des prabhes diférents, tandis que la secondéthmde est fongke sur une
subdivision de chantillon. La rdthode de substitution d’instruments utilise directement les in-
struments disponibles, phttque desé&gresseurs esties, afin de tester des hypé#es et construire
des Egions de confiance sur les “paratmes structuraux” du mede. La seconde athode s’appuie
sur des eégresseurs esties, ce qui permet un gain de degrde liber, ainsi que sur une technique
de subdivision de &chantillon. Pour faire de l'ifrence sur des transformatiogrgrales, pos-
siblement non-ligaires, des paragtres du moéle, nous proposons l'utilisation de techniques de
projection. Nous fournissons unegthrie distributionnelle exacte sous une hygasthde normakt
des perturbations et dégresseurs strictement exages. Nous montrons que les testségfions
de confiance ainsi obtenus sont aussi (localement) “asymptotiquentidestiaous des hypolses
distributionnelles beaucoup plus faibles. Naigdions les propétes des tests propes dans le
cadre d'une exg@rience de simulation. Enégéral, celles-ci sont plus fiables et ont une meilleure
puissance que les techniques traditionnelles. Finalement, les techniqgpespsosont applicges
a un moele duq de Tobin eta un mole de performance scolaire.

Mots-clefs équations simultaes; moéle structurel; variables instrumentales; instruments faibles;
regresseur estiey méthode d’Anderson-Rubin; fonction pivotale; subdivisioréahantillon;
inférencea distance finie; test exactégion de confiance; technigues de projectiqrde Tobin;
performance scolaire.

Classification JEL: C1, C12, C3, C5, E22, 12, J24.
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1. Introduction

A frequent problem in econometrics and statistics consists in making ingsemcmodels which
contain unobserved explanatory variables, such as expectationaéor Variables and variables
observed with error; see, for example, Barro (1977), Pagan (11986) and the survey of Oxley
and McAleer (1993). A common solution to such problems is based on usingrimental variables
to replace the unobserved variables by proxies obtained from auxiégrgssionsgenerated re-
gressory. It is also well known that using such regressors raises difficultiesniking tests and
confidence sets, and it is usually proposed to replace ordinary lasstesqOLS) standard errors
by instrumental variables (IV) based standard errors; see Pagddh, (1986) and Murphy and Topel
(1985). In any case, all the methods proposed to deal with such probldgneave an asymptotic
justification, which means that the resulting tests and confidence sets catrdrmaady unreliable
in finite samples. In particular, such difficulties occur in situations involving&linstruments”,
a problem which has received considerable attention recently; sesxdorple, Nelson and Startz
(19904, 1990b), Buse (1992), Maddala and Jeong (1992), Bdaeder, and Baker (1993, 1995),
Angrist and Krueger (1995), Hall, Rudebusch, and Wilcox (1996)foDr (1997), Shea (1997),
Staiger and Stock (1997) and Wang and Zivot (1998) and Zivot, Stanid Nelson (1998) [for
some early results relevant to the same issue, see also Nagar (1959)dRich(1968) and Sawa
(1969)].

In this paper, we treat these issues from a finite sample perspectiveegmopose finite sample
tests and confidence sets for models with unobserved and generatstozg. We also consider a
number of related problems in the more general context of linear simultargaatons. To get re-
liable tests and confidence sets, we emphasize the derivation of trulylgivobeundedly pivotal)
statistics, as opposed to statistics which are only asymptotically pivotal; farexaediscussion of
the importance of such statistics for inference, see Dufour (1997) Wil svo distinct approaches
for various models considered by Pagan (1984). The first one is &ariment substitution method
which generalizes an approach proposed by Anderson and Ruldifi)(&8d Fuller (1987, Section
1.4) for different (although related) problems, while the second onesistban splitting the sample.
The instrument substitution method uses the instruments directly, instead ohgehegressors,
in order to test hypotheses and build confidence sets about “strupanaieters”. The second
approach relies on “generated regressors”, allowing a gain in degfeieeedom, and a sample
split technique. Depending on the problem considered, we derive eiaetsimilar tests (and
confidence sets) or conservative procedures. The hypothasgkitin we obtain similar tests (and
correspondingly similar confidence sets) include: (a) hypotheses whicthe value of the unob-
served (expected) variable coefficient vector [as in Anderson amihR1949) and Fuller (1987)];
(b) analogous restrictions taken jointly with general linear constraints otoificients of the (ob-
served) exogenous variables in the equation of interest; and (c) gthbout the coefficients
of “surprise” variables when such variables are included in the equaliests for these hypothe-
ses are based on Fisher-type statistics, but the confidence sets typwalie inonlinear (although
quite tractable) inequalities. For example, when only one unobservedlea(@a endogenous ex-
planatory variable) appears in the model, the confidence interval foisBueiated coefficient can
be computed easily on finding the roots of a quadratic polynomial. Note thadrAo-Rubin-type



methods have not previously been suggested in the context of the beagea (1984) setup. The
general setup we consider here includes as special cases the atied bjuPagan (1984), Fuller
(1987) and Zivot, Startz, and Nelson (1998), allowing for structugakgions which include more
than one endogenous “explanatory” variable as well as exogenoables, so the hypotheses of
type (a) we consider and the associated confidence sets are in facgemael than those con-
sidered by Fuller (1987, Section 1.4) and Zivot, Startz, and Nelsor8§198 particular, for the
case where the structural equation studied includes one endogerptasatary variable, we ex-
tend the range of cases where close-form quadratic confidencedilstgsimilar to those described
by Fuller (1987), Dufour (1997), and Zivot, Startz, and Nelson 8pare available. Further, prob-
lems such as those described in (b) and (c) above have not appamgrnlbnsidered at all from
this perspective in the earlier literature.

In the case of the instrument substitution method, the tests and confidencedigtsised can be
interpreted as likelihood ratio (LR) procedures (based on approprietielyen reduced form alter-
natives), or equivalently as profile likelihood techniques [for furthiecassion of such techniques,
see Bates and Watts (1988, Chapter 6), Meeker and Escobar (12B6han and Jennrich (1996)].
The exact distributional theory is obtained under the assumptions of i@awesors and strictly
exogenous regressors, which ensures that we have well-defitegléanodels. Although we stress
here applications to models with unobserved regressors, the extengidndarson—Rubin (AR)
procedures that we discuss are also of interest for inference irugastauctural models which are
estimated by instrumental variable methods (e.g., simultaneous equations nmeglgrmore, we
observe that the tests and confidence sets proposed are (locally)ptasically valid” under much
weaker distributional assumptions (which may involve non-Gaussian emdra/eakly exogenous
instruments).

It is important to note that the confidence sets obtained by the methods desabibve, unlike
Wald-type confidence sets, are unbounded with non-zero probabititgmfohasized from a general
perspective in Dufour (1997), this is a necessary property of ditya@nfidence set for a parameter
that may not be identifiable on some subset of the parameter space. Astaca¥idence proce-
dures that do not have this property have true level zero, and thedfitles corresponding tests
(like Wald-type tests) must deviate arbitrarily from their nominal levels. It &/éa see that such
difficulties occur in models with unobserved regressors, models with giekbregressors, simulta-
neous equations models, and different types of the error-in-variatiegls. In the context of the
first type of model, we present below simulation evidence that strikingly illtestrinese difficul-
ties. In particular, our simulation results indicate that tests based on instraoiestitution methods
have good power properties with respect to Wald-type tests, a feakwiepsly pointed out for the
AR tests by Maddala (1974) in a comparative study for simultaneous egsidtiorthe power of
AR tests, see also Revankar and Mallela (1972)]. Furthermore, we fatdyémerated regressors
sample-split tests perform better when the generated regressorgairedifrom a relatively small
fraction of the sampleg(g, 10% of the sample) while the rest of the sample is used for the main
regression (in which generated regressors are used).

An apparent shortcoming of the similar procedures proposed abodeyrabably one of the
reasons why AR tests have not become widely used, is the fact that negsaricted to testing
hypotheses which specify the values of the coefficients of all the endoggor unobserved) ex-



planatory variables, excluding the possibility of considering a subsetafficients (e.g., individual
coefficients). We show that inference on individual parameters aestitrs of coefficients is how-
ever feasible by applying a projection technique analogous to the ongtgw3afour (1989, 1990),
Dufour and Kiviet (1996, 1998) and Kiviet and Dufour (1997). Wgso show that such techniques
may be used for inference on general possibly nonlinear transforreatfahe parameter vector of
interest.

The plan of the paper is as follows. In Section 2, we describe the main mbitgh way con-
tain several unobserved variables (analogous to the “anticipated”qfattese variables), and we
introduce the instrument substitution method for this basic model with variousatestsonfidence
sets for the coefficients of the unobserved variables. In Section 3repse the sample split
method for the same model with again the corresponding tests and confsggeck Section 4, we
study the problem of testing joint hypotheses about the coefficients ohthteserved variables and
various linear restrictions on the coefficients of other (observedgsegrs in the model. Section
5 extends these results to a model which also contains error terms of theeovexdb variables (the
“unanticipated” parts of these variables). In Section 6, we considertigm of making inference
about general nonlinear transformations of model coefficients. The®ection 7, we discuss the
“asymptotic validity” of the proposed procedures under weaker distribatiassumptions. Sec-
tion 8 presents the results of simulation experiments in which the performamme afethods is
compared with some widely used asymptotic procedures. Section 9 prepphtations of the
proposed methods to a model of Tobig'and to an economic model of educational performance.
The latter explains the relationship between students’ academic perforntheicgersonal char-
acteristics and some socio-economic factors. The first example illustra¢esrioé in presence of
good instruments, while in the second example only poor instruments are &akebexpected,
confidence intervals for Tobin'g based on the Wald-type procedures largely coincide with those
resulting from our methods. On the contrary, large discrepancies ataeén the confidence in-
tervals obtained from the asymptotic and the exact inference methods wbeimptruments are
used. We conclude in Section 10.

2. Exact inference by instrument substitution

In this section, we develop finite sample inference methods based on instrsuhstitution meth-

ods for models with unobserved and generated regressors. Weefirg deneral formulae for the
test statistics and then discuss the corresponding confidence setsn¥idecthe following basic
setup which includes as special cases Models 1 and 2 studied by Pagdix (1

(2.2) y=2.0+Xy+e,

(2.2) Z,=WB+U,,Z=2+V,

whereyis aT x 1 vector of observations on a dependent variahlés aT x G matrix of unobserved
variablesX is aT x K matrix of exogenous explanatory variables in the structural m@dslaT x
G matrix of observed variable¥/ is aT x g matrix of variables related ., whilee= (ey,...,er)/,



U, = [U,,...,u ] andV, = [V,4,...,V,;] areT x 1 andT x G matrices of disturbances. The
matrices of unknown coefficiens y, andB have dimensions respectiveB/x 1, K x 1 andq x G.
In order to handle common variables in both equations (2.1) and (2.2), lilkkxémple the constant
term, we allow for the presence of common columns in the matiitasdX. In the setup of Pagan
(1984),U.. is assumed to be identically zefld, = 0), & andv,; are uncorrelatefE(av.:) = 0], and
the exogenous regressotsare excluded from the “structural” equation (2.1). In some cases below,
we will need to reinstate some of the latter assumptions.

The finite sample approach we adopt in this paper requires additionahpisaos, especially
on the distributional properties of the error term. Since (2.2) erda#dV B+V whereV =U, +V,,
we will suppose the following conditions are satisfied:

(2.3) X andW are independent @&andV,;

(2.4) rankX) =K, 1<rankW)=q<T, G>1, 1<K+G<T,;
(2.5) (@, V) N[0, Q], t=1,...T;

(2.6) defQ) > 0.

If K=0, X is simply dropped from equation (2.1). Note that no assumption on the distnbuitio
U, is required. Assumptions (2.3) — (2.6) can be relaxed if they are replgcagsumptions on the
asymptotic behavior of the variablesBs— . Results on the asymptotic “validity” of the various
procedures proposed in this paper are presented in Section 7.

Let us now consider the null hypothesis:

(2.7) Ho:d = 9dg.

The instrument substitution method is based on replacing the unobseriadde/éry a set of instru-
ments. First, we substitute (2.2) into (2.1):

(2.8) y=(Z—V,)0+Xy+e=2Z3+Xy+ (e—V.9).
Then subtractin@ o on both sides of (2.8), we get:
(2.9) y—Z280=WB(d—dg) +Xy+u

whereu = e—V, 8¢+ U, (0 — &p). Now suppose thaty and X haveK; columns in commori0 <
K2 < q) while the other columns of are linearly independent &¥:

(2.10) W= W, Xo], X =[Xg,Xo], rankWg, X, Xo] =q1+K<T

whereWy, X3 andX; areT x g1, T x K1 and T x K, matrices, respectivelyK(= K; + Kz, q =



g1 + K2). We can then rewrite (2.9) as
(2.11) y—200=W101. + Xy, +U

wheredy, = B1(8 — o), Yo, = Yo+ B2(8—00), V. = (V4. Vo.)', Biis aKi x G matrix (i = 1, 2) and
B=[B;,B,).

It is easy to see that model (2.11) undigy satisfies all the assumptions of the classical linear
model. Furthermore, sina®;, = 0 whend = &g, we can tesHg by a standardr-test of the null
hypothesis

(2.12) Ho. : 01, = 0.

This F-statistic has the form

(y—Z0)'P(M(X)Wi) (y — Z0) /a1
(Y —Z80)'M([Wa, X]) (y—2d0)/(T — th — K)

whereP(A) = A(AA)~1A andM(A) = It — P(A) for any full column rank matrid. Whend = &,
we haveF (8o; Wi) ~ F (a1, T — g1 — K), so thatF(do; Wi) > F(a; qi, T — a1 — K) is a critical
region with levela for testingd = &g, whereP[F(do; W) < F(a; 01, T—q1—K)]=1—a. The
essential ingredient of the test is the fact ipat 1, i.e. some instruments must be excluded frdm
in (2.1). On the other hand, the usual order condition for “identification™ G) is not necessary
for applying this procedure. In other words, it is possible to test cerigintheses aboul even if
the latter vector is not completely identifiable. It is then straightforward to sddhb set

(2.13) F (00, W) =

(2.14) Cs(a) =1{00:F(d0; W) <F(a;qy, T—qu—K)}

is a confidence set with level-1a for the coefficien®. The tests based on the statigtitdo; W)
and the above confidence set generalize the procedures desgribetds (1987, pp. 16-17), for
a model with one unobserved varial§é = 1), X limited to a constant variablg = 1) and two
instrumentgq = 2, including a constant), and by Zivot, Startz, and Nelson (1998) for a hvatte
one unobserved variab(& = 1), no exogenous variables and an arbitrary number of instruments
(@=1).

Consider now the case whereis aT x 1 vector andX is aT x K matrix. In this case, the
confidence set (2.14) for testimty : d = dg has the following general form:

260)’A1(y—260) » Vo }
260)’A2(y—260) g1

(2.15) Cs(a) = {50: g:

whereFy = F(a; g1, T—a1 —K) andv, = T — g1 — K and the matricedy = P(M(X)W,), Ay =
M([Wi, X]). Since(vz/01) only takes positive values, the inequality in (2.15) is equivalent to the
guadratic inequality:

(2.16) ad3+bdg+c<0



TABLE 1
CONFIDENCE SETS BASED ON THE QUADRATIC INEQUALITYa5(2)+b50+C <0

A>0 A<O
(real roots) (complex roots)
a>0 [01, 02 Empty
a<0 (_ooa 61*} U [52*7 Oo) (_oo’ +°°)
a=0 b>0 (—o0, —£]
b<0 [—§, 0
b=0,¢c>0 Empty
b=0, c<0 (—0o, 4-00)

wherea=Z'CZ, b= —-2yCZ c=YyCy, C=A; — GoA; andG, = (01/v2)F4. Again, the above
guadratic confidence intervals may be viewed as generalizations of theatjaaconfidence inter-
vals described by Fuller (1987, page 55) and Zivot, Startz, and N¢1$@8)?

In empirical work, some problems may arise due to the high dimensions of the esair(X)
andM([W, X]). A simple way to avoid this difficulty consists in using vectors of residuals fapm
propriate OLS regressions. Consider the coefficeeatZ’CZ. We may replace it by the expression
Z'A\Z — GoZ'AZ and then rewrite both terms as follows:

ZAZ = (ZM(X)) (MOOWA) [(MOOWL) (MWL)~ (M(XOWA) (M(X)Z)
ZhZ = ZM(Wy, X])Z = [M(Wa, X])Z) [M(WL, X])Z] .

In the above expressionl(X)Z is the vector of residuals obtained by regressiran X, M (X)W
is the vector of residuals from the regressionfon X, and finally M (Wi, X])Z is a vector of
residuals from the regression @gfon X andW;. We can proceed in the same way to compute
the two other coefficients of the quadratic inequality (2.16). This will reqoimy two additional
regressionsy on X, andy on bothX andW;.

It is easy to see that the confidence set (2.16) is determined by the rais écond order
polynomial in (2.16). The shape of this confidence set depends on tieafig andA = b? — 4ac.
All possible options are summarized in Table 1 whé&ie denotes the smaller root and By, the
larger root of the polynomial (when both roots are real).

Note that the confidence s€(a) may be empty or unbounded with a non-zero probability.
Since the reduced form fgrcan be written

(2.17) Yy =WATTy + X1 712+ Xo T2+ Vy

wherem = B1d, 1 = y,, T2 = Y, + Byy andvy = e+ U, d, we see that the conditio, = B1d
may be interpreted as an overidentifying restriction. Jointly Witk dq, this condition entails the

1 We proposed this generalization independently of Zivot, Startz, and Né1$98); see Dufour and Jasiak (1993).
For further discussion of quadratic confidence intervals, see alsorRiEldi®4) and Dufour (1997, Section 5.1).



hypothesido. : B1(d — d9) = 0 which is tested by the statistq do; Wi ). Thus an empty confidence
set means the conditidB; (6 — d9) = O is rejected for any value a¥y and so indicates that the
overidentifying restrictions entailed by the structural model (2.1) - (2.8)nat supported by the
data, i.e. the specification is rejected. However, if the model is correctly specifiedpribbability

of obtaining an empty confidence set is not greater tha@n the other hand, the possibility of
an unbounded confidence set isecessargharacteristic of any valid confidence set in the present
context, because the structural paraméteray not be identifiable [see Dufour (1997)]. Unbounded
confidence sets are most likely to occur wieis not identified or close to being unidentified, for
then all values o® are almost observationally equivalent. Indeed an unbounded cotéicen
obtains whera < 0 or (equivalently) wheif (1, = 0) < Fq, whereF (11 = 0) is theF -statistic for
testinglM; = 0 in the regression

(2.18) Z =Willy +XIT +Vs.

In other words, the confidence interval (2.15) is unbounded if and ibnhe coefficients of the
exogenous regressors\ih [which is excluded from the structural equation (2.1)] are not signifi-
cantly related t& at levela : i.e., W; can be interpreted as a matrix of “weak instruments’Zoin
contrast, Wald-type confidence sets &are typically bounded with probability one, so their true
level must be zero. Note finally that an unbounded confidence setecerfidomative:e.g, the set
(—00, d1,] U[024, ©) may exclude economically important valuesdofd = 0 for example).

3. Inference with generated regressors

Test statistics similar to those of the previous section may alternatively be abfedme linear re-
gressions with generated regressors. To obtain finite sample infefarstesd contexts, we propose
to compute adjusted values from an independent sample. In particulamthidone by applying
a sample split technique.

Consider again the model described by (2.1) to (2.6). In (2.9), a ndfimglto do would consist
in replacingW Bby WB, whereB is an estimator oB. TakeB = (W'W)~1W’Z, the least squares
estimate oB based on (2.2). Then we have:

(3.1) y— 280 =WB(5 — 3o) + Xy+ [u+W(B—B) (8 — 80)] = Z80. + Xy+ U,

wheredg, = 6 — 8y andu, = e—V, 50+ [U. +W(B—B)](5 — d0). Again, the null hypothesis
0 = dp may be tested by test[ﬁgo* : 0o« = 0 in model (3.1). Here the standdrdstatistic forHg,
is obtained by replacing4 by Z in (2.13), i.e.

(y—280)P(M(X)2) (y — 280)/G
(v~ 260/ M((Z, X)) (y— 280)/(T - G—K)

(3.2) F(80; Z) =

if K =0 [noX matrix in (2.1)], we conventionally séfl(X) = |1 and[Z, X] = Z. However, to get



A

a null distribution forF (do; Z), we will need further assumptions. For example, in addition to the
assumptions (2.1) to (2.6), suppose, as in Pagan (1984), that

(3.3) eandV = U, +V, are independent.

In this case, whed = 3 = 0, Z andu, are independent and, conditional &ypmodel (3.1) satisfies
all the assumptions of the classical linear model (with probability 1). Thusuhelistribution of
the statisticF (0; Z) for testingdg = 0 is F(G, T — G — K). Unfortunately, this property does not
extend to the more general statisfitdo; Z) wheredg # 0 becaus& andu, are not independent in
this case. A similar observation (in an asymptotic context) was made by Pe@fix).(1

To deal with more general hypotheses, suppose now that an esBro&&such that

(3.4) B is independent o andV,
is available, and replacé=WB by Z = WB in (3.1). We then get
(35) y_250 = 260* + Xy + Uy

whereu,. = e—V.8+ [U. +W(B—B)] (8 — 8o). Under the assumptions (2.1) - (2.6) with= &o
and conditional orZ (or B), model (3.5) satisfies all the assumptions of the classical linear model
and the usudr -statistic for testingdg, = 0,

(y—Z80)'P(M(X)Z)(y —Z80)/G

36) (00 2) = 25 M2 X) 9 280)/ (T - G K)

where the usual notation has been adopted, follows(& T — G —K) distribution. Consequently,

the critical regiorF (do; Z) > F(a; G, T — G—K) has sizex. Note that condition (3.3) is not needed
for this result to hold. Furthermore

(3.7) Cs(a)={do: F(d0;Z) <F(a;G, T—G—K)}

is a confidence set fab with size 1— a. For scalard (G = 1), this confidence set takes a form
similar to the one in (2.15), except that = P(M(X)Z) andA, = M([Z, X]).

A practical problem here consists in finding the independent estiBiaténder the assump-
tions (2.1) — (2.6), this can be done easily by splitting the sample. TLet T; 4+ T,, where
T >G+K and T, > g, and write: y = (3/(1),y’(2))’, X = (X(/l),X(’Z))’, Z= (Zgl),ZEZ))’,W =
(V\/(’l) ,V\/(’z))’,e: (el(l) ) e’(Z))’,V* = (v*’(l),v*’(z))’ and(U;(l) , U;(Z))’, where the matriceg;;), X,
Ziy, Wiy » &) » Vi(iy @andU, ;) haveT; rows (i = 1, 2). Consider now the equation

(3.8) Y1) — Z(1)00 = Z(1)80: + X(1)Y + U1

whereZ ;) = Wy)B, B = [V\/(’Z)V\/(Z)A]*lvv('z)z(z) is obtain~ed from the second sample, ang., =
€1) — Vi(1)00 + [Uy(1) +W1) (B —B)](0 — do). Clearly B is independent og 1) andV, 1), so the
statisticF (do; Z(1)) based on equation (3.8) followsdG, T; — K — G) distribution whend = do.



A sample split technique has also been suggested by Angrist and K(i8§&) to build a new
IV estimator, called Split Sample Instrumental Variables (SSIV) estimator. \israage over the
traditional IV method is that SSIV yields an estimate biased toward zero, rdthertoward the
probability limit of the OLS estimator in finite sample if the instruments are weak. Angnd
Krueger show that an unbiased estimate of the relevant bias can be @, consequently, an
asymptotically unbiased estimator (USSIV) can be derived. In their apiprédangrist and Krueger
rely on splitting the sample in hali,e., settingTy =T, = % whenT is even. However, in our setup,
different choices foff; andT, are clearly possible. Alternatively, one could select at random the
observations assigned to the vectgrs andy(,). As we will show later (see Section 8) the number
of observations retained for the first and the second subsample héneximhpact on the power
of the test. In particular, it appears that one can get a more powerfulrtes we use a relatively
small number of observations for computing the adjusted values and keepoieervations for
the estimation of the structural model. This point is illustrated below by simulatioeriments.
Finally, it is of interest to observe that sample splitting techniques can bemusedjunction with
the Boole-Bonferroni inequality to obtain finite-sample inference pro@=in other contexts, such
as seemingly unrelated regressions and models with moving average fanrdusther discussion,
the reader may consult Dufour and Tesr(1998).

4. Joint tests ond and y

The instrument substitution and sample split methods described above danheaslapted to test
hypotheses on the coefficients of both the latent variables and the exegeggressors. In this
section, we derivé--type tests for general linear restrictions on the coefficient vector.siGen
again model (2.1) — (2.6), which after substituting the t¢Zm-V,.) for the latent variable yields the
following equation:

4.1) y=(Z-V,)0+Xy+e=20+Xy+(e—V.9).

We first consider a hypothesis which fixes simultaneodsind an arbitrary set of linear transfor-
mations ofy:
Ho: =99 and Riy= V1o

whereRy is ary x K fixed matrix such that ¥ rankR;) =r1 < K. The matrixR; can be viewed as
a submatrix of & x K matrixR= [R;, R,)" where defR) # 0, so that we can write

R]_ R1V:| [ Vi :|
4.2 Ry = = = .
( ) v |: Ry :| y |: Rzy Vo
Let Xg = XR™1 = [Xr,, Xg,] WhereXg, andXg, areT x ry andT x r, matrices(r, = K —ry). Then

we can rewrite (4.1) as

(4.3) y=20+Xg,V1+Xg,V2+ (6—V,0).



SubtractingZdo andXg, V10 on both sides, we get

(4.4) y—Z200—Xg,Vio = [WiB1+XoBy] (0 — o)+ XRr,(V1—V10)
+Xr,V2+ [6— V.00 +U.(8 — d0)] -

Suppose now tha¥/ andX haveK; columns in common (with & K < ), while the other columns
of X are linearly independent ¥ as in (2.10). Sinc& = [X1, Xo] = XgR= Xg,R1 + Xg,R2, we can
write X = [Xq, Xo] = [Xr,R11+ Xr,Ro1, Xgr,R12+ Xg,Ro2| , WhereR; = [Ri1, Ri2], Ro = [Ro1, Roo)
andR; is arj x Kj matrix (i, j = 1, 2). Then replaceé; by X, Ri2+ Xg,Ro2 in (4.4):

(4.5) Y —Z80 — Xr, V1o =Wid7 + XR, V1 + XR, Y + U

where5’{ = 51(5 — 50), Y]k_ = R1282(5 — 50) + (Vl — Vlo), Yﬁ = R2252(5 — 50) + vy, andu=
e—V.00+U.(d— o). Consequently, we can tedp by testingH) : 61 =0, y; = 0,in (4.5), which
leads to the statistic:

{y (30, v10) P(M(Xg,)Wk,) Y (80, V10)/(ch +r1)}
{y (80, v10)'M (W4, X]) Y (0, V10)/(T —th —K)}

where y (8o, V1o) = Y — Z00 — Xr, V1o and Wy, = Wy, Xg,]; if ro = 0, we set M(Xg,) =
It. Under Ho, F(do, Vio; Wi, Xr,) ~ F(q1+r1, T — 1 —K) and we rejectHp at level
a when F(&g, vVio; Wi, Xg,) > F(a; g1 +r1, T — a1 — K). Correspondingly,{(5g, Vo) :
F(d0, Vio, Wi, Xg,) < F(a; a1 +r1, T — a1 — K)} is a confidence set with level-1a for 6 and
vi=Ruy;.

Suppose how we employ the procedure with generated regressoraus&egmatoB mdepen-
dent ofu andV. We can then proceed in the following way. Settihg- WB andV =Z — 7, we
have:

(4.6) F (00, Vio; Wi, XR,) =

4.7) y— 2380 — Xr,V10 = 28} 4+ Xg,V} + Xr,V2 + Ui

where 87 = 0 — dg, V; =vi1—Vi andu,. =e—V.dp+ [U.+W(B— I§)](6 d0). In this case
we will simply test the hypothesidy : 87 =0, v; = 0. TheF statistic forHy takes the form:

{y (o, Vlo)’P(MSXRZ)ZRl)Y(CSOa V10)/(G+r1)}
{y (30, v10)'M([Z, X]) ¥ (0, V10) /(T — G- K)}

wherey(do, V1) = Y — Zd0 — Xr, V10, andZRl =[Z, Xr,]. UnderHo, F(do, V1o0; Z, Xr,) ~ F(G+
ri, T —G—K). The corresponding critical region with level is given byF (do, V10; Z, Xg,) >
F(a; G+ry, T—G—r;), and the confidence set at level-1a is thus {(&g, Vi) :
F (80, Vio; Z, Xg,) < F(a; G411, T—G—K}.

(4.8) F (80, Vio; Z, XR,) =
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5. Inference with a surprise variable

In many economic models we encounter so-called “surprise” terms amongptla@atory variables.

These reflect the differences between the expected values of lat&iilea and their realizations.
In this section we study a model which contains the unanticipated paifiRdgan (1984, model 4)]
as an additional regressor beside the latent variable, namely:

(5.1) Yy=2.8+(Z—-Z)y+XB+e=28+V.y+XB+e—\.5,

(5.2) Z=Z7,4+V, =WB+ (U, +V,) =WB+V,

where the general assumptions (2.3) — (2.6) still hold. The t&rmZz,) represents the unanticipated
part of Z. This setup raises more difficult problems especially for inferencg dfevertheless we
point out here that the procedures described in the preceding sefdioiméerence ond andy
remain applicable essentially without modification, and we show that similar gwoeg can be
obtained as well for inference gnprovided we make the additional assumption (3.3).

Consider first the problem of testing the hypothéis 0 = d¢. Applying the same procedure
as before, we get the equation:

(5.3) y—2Z80=WB(J—dp) +XB+V.y+ (e—V.p)
hence, assuming the&t andX haveK, columns in common,
(5.4) y—280=WiB1(3 — 80) + X181 + X2oB5 + €+ V.(y— 80) = Wi d1. + XB, + U

whered. = B1(8 — o), B5 = B, +B2(d — o), B, = (B, B5) andu= e+ V.(y— &o). Then we
can tesid = Jg by using the--statistic ford1g = 0:

(y—2Z50)'P(M(X)Wi) (Y —Zd0) /a1
(Y —2Z80)MX(WA)] (y = Z80) /(T =1 — K)

Whend = ¢, F(80; Wi) ~ F(q1, T — a1 — K). It follows thatF (do; Wi) > F (a; g— Ko, T— 1 — K)

is a critical region with levetr for testingd = do while {d¢: F(do; W) <F(a;q;, T—a1 —K)}

is a confidence set with level-1a for 6. Thus, the procedure developed for the case where no
surprise variable is present applies without change. If generatesbsays are used, we can write:

(5.5) F(d0;Wh) =

(5.6) y—2Z80=WB(8 — 80) +XB +e+V.(y—80) +V (6 — o).
Replacing/VB by Z = WB, whereB is an estimator independent®@andV, we get
(5.7) y—Z80=28.+XB+u

whered, = & — 8g,u=e+V.(y— o) + V(6 — &) andV = Z — Z. Here the hypothesié = &
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entailsHj: &, = 0. TheF-statisticF (do; Z) defined in (3.6) follows af (G, T — G—K) distribution
whend = dp. Consequently, the tests and confidence set procedures basddgr) apply in
the same way. Similarly, it is easy to see that the joint inference procedesestzed in Section 4
also apply without change.

Let us now consider the problem of testing an hypothesis on the coeffafidre surprise term,
i.e. Ho: y=Y, In this case, it appears more difficult to obtain a finite-sample test under the
assumptions (2.1) — (2.6). So we will assume that the following conditions hvarie similar to
assumptions made by Pagan (1984), hold:

(5.8) a)u, =0; b)eandV are independent.
Then we can write:

(5.9) y=2.0+(Z—-Z,)y+XB+e=2Zy+Wd;+XB, +e.
SubtractingZy, on both sides yields

(5.10) Y—ZYy=2y,+Wid1. +XB,+e

wherey, = y—y,. We can thus test = y, by testingy, = 0 in (5.10), using

(Y= Zyp)'PM(W, X])Z) (y—Zyp) /G
(Y= Zy)'M(W, Z, X]) (Y= ZYo) /(T-G—aqu —K)

Wheny =y, F(yy; Z) ~F(G, T—-G—1 —K) sothatF(y,; Z) > F(a; G, T-G—q1—K)isa
critical region with levela for y =y, and

(5.11) F(yp Z) =

(5.12) Vo: F(yp: Z) <F(a; G, T-G—1—K)}
is a confidence set with level-la for y. Wheny is a scalar, this confidence set can be written as:

{V  (Y—2yo)'D(y—Zyy) v V2 }
O (y=Zyo)E(Y—2ZYo) = V1~

wherevi =G=1,vo =T -G—q1—K, D=P(M([W, X])), E=M(W,, Z, X]). Since the ratio
v2/v1 always takes positive values, the confidence set is obtained by findingathesy, that
satisfy the inequalitpyZ + by, +c < 0, wherea= Z'LZ, b= —2Z'Ly, c= YLy, L = D — H4E and

Hq = (v1/v2)Fq. Finally it is straightforward to see that the problem of testing a joint hyp&thods

the typeHo : vy = Yy, RiB = V1o can be treated by methods similar to the ones presented in Section
4.

(5.13)
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6. Inference on general parameter transformations

The finite sample tests presented in this paper are based on extensione@mr-Rubin statistics.
An apparent limitation of Anderson—Rubin type tests comes from the fadhinatire designed for
hypothesis fixing the complete vector of the endogenous (or unob3eaegessor coefficients.
In this section, we propose a solution to this problem which is based on agmyprojection
technique. Even more generally, we study inference on general nantieesformations ob in
(2.1), or more generally di®’, v})" wherev; = Ryyis a linear transformation of, and we propose
finite sample tests of general restrictions on subvectodsaf(d’, v})'. For a similar approach, see
Dufour (1989, 1990) and Dufour and Kiviet (1998).

Let@=50r8= (&, v})' depending on the case of interest. In the previous sections, we derived
confidence sets fd which take the general form

(6.1) Cg(a):{eoZF(eo)ﬁFg}

whereF (6p) is a test statistic fof = 6y andFy is a critical value such th&[6 € Cg(a)] > 1—a.
If 8 =0q, we have

(6.2) PlBoeCy(a)]>1—a, P[Op ¢ Co(a)] < a.
Consider a (possibly nonlinear) transformatipa- f(6) of 6. Then it is easy to see that
(6.3) Ch(a)={ng:no= f(0) for somed € Co(ar)}

is a confidence set far with level at least - a, i.e.

(6.4) P[n €Cy(a)] > P[0 €Cy(a)l >1-a,
hence
(6.5) Pln¢Ch(a)] <a.

Thus, by rejectingdo : n = no whenng ¢ C,(a), we get a test of levat. Further

(6.6) No ¢ Cy(a) < no# f(60) , V8o € Co(a)

so that the condition ¢ C, (a) can be verified by minimizin§ (6o) over the sef ~1(ny) = {6y
f(6o0) = ng} and checking whether the infimum is greater thgn

Whenn = f(0) is a scalar, it is easy to obtain a confidence intervalrfaoy considering
variablesy, =inf{nqy:nye€Cy(a)} andny =sup{ng: ng € C,(a)} obtained by minimizing and
maximizingn, subject to the restriction, € C, (a). Itis then easy to see that

(6.7) PlnL<n<nyl=PneC(a)|>1-a

so that[n,ny] is a confidence interval with level-1a for n. Further, if such confidence intervals
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are built for several parametric functions, say= fi(6), i = 1, ...,m, from the same confidence
setCq(a), the resulting confidence intervalg; ,nyy], i =1, ...,m, are simultaneous at level-1
a, in the sense that the correspondimg-dimensional confidence box contains the true vector
(N4, ---,Nm) With probability (at least) - a; for further discussion of simultaneous confidence
sets, see Miller (1981), Savin (1984) and Dufour (1989). When afsmtnfidence intervals are not
simultaneous, we will call them “marginal intervals”.

Consider the special case whére- § = (81, 05)' andn = &1, i.e. n is an element 06. Then
the confidence s&;, (o) takes the form:

(6.8) Cy(a) =Cs,(a) = {d10: (810,05)' € Cs(a), for somedy}.
Consequently we must have:
(6.9) P01 €Cs,(a)] >1—a, P[010¢Cs,(a)] < a.

Further if we consider the random variabls= inf{310: 310 € C5,(a)} andd; = sup(310: d10
€ Cs,(a)} obtained by minimizing and maximizindio subject to the restrictiod,o € Cs,(a),
(8%, 87] is a confidence interval with level-da for &;. The test which rejectisly : 81 = 819 when
010 ¢ Cs,(a) has level not greater than Furthermore,

(6.10) 510 §é C51(G) < F ((5/10, 5/2),) > Fa, V52

Condition (6.10) can be checked by minimizing #¢(d7,, 35)') statistic with respect td, and
comparing the minimal value witk,. The hypothesi®; = d1¢ is rejected if the infimum of

F ((5’10, 5’2)’) is greater thark,. In practice, the minimizations and maximizations required by
the above procedures can be performed easily through standardicalrteshniques.

Finally, it is worthwhile noting that, even though the simultaneous confideriégyée) for 6
may be interpreted as a confidence set based on inverting LR-type tests=f@q or as a profile
likelihood confidence set [see Meeker and Escobar (1995) or Gitedesnrich (1996)], projection-
based confidence sets, suctCasa), are not (strictly speaking) LR confidence sets.

7. Asymptotic validity

In this section we show that the finite sample inference methods describesirabeain valid under
weaker assumptions provided the number of observations is sufficiergly. I&onsider again the
model described by (2.1) — (2.6) and (2.10), which yields the followinggqguos:

(7.1) y=20+Xy+u,

(7.2) Z=WiB1+X:B>,+V,

whereu=e—VJ. If we are prepared to accept a procedure which is only asymptoticalid"y
we can relax the finite-sample assumptions (2.3) — (2.6) since the normalityoferms and their
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independence are no longer necessary. To do this, let us focus statistéicF (5o; Wy ) defined in
(2.13). Then, under general regularity conditions, we can show:
a) under the null hypothes&= dp the F-statistic in (2.13),

(y— Z30)' M(X)Wa WM (X)W4] WM (X) (y — Z80) /o1

(7.3) P00 W) = = =7 5 MK, Wal) (y— Z80) /(T —p —K)

follows a xﬁl /qu distribution asymptotically (8 — );
b) under the fixed alternativé = &1, providedB; (1 — do) # O, the value of (2.13) tends to get
infinitely large asT increases,e. the test based ofR(Jdo; W, ) is consistent.

Assume that the following limits hold jointly:

vu uv VvV
(7.4) <T7 ?, T) - (057 DITVA ZV) )
XX X'W, WW
(7.5) < T T L %I' 1) — (Zxx, Zxwh, ZWW,)
(7.6) (T72X'u, T-2Wu, T 2XV, T 2WV) = & = (Pxu, P, Py, D)

where— and=- denote respectively convergence in probability and convergencetiibdi®on as
T — oo, and the joint distribution of the random variablesdis multinormal with the covariance
matrix of (@, &y,,)’ given by

D, O2wx  2Ww,

whereZxw, = 3y, x and det>) # 0. We know from equation (2.11) that

Z:V[ Dxy ] _ [ 0%25xx  OZxw

y— Zdo :WlBl(é— 60) +XV* +Uu.
Under the null hypothesid = do, the numerator of (do; W;) is equal to
N = UMX)Wi WM (X)Wa] WM (X)u/an
= U (1 — P)WiW{ (I — P)Wa] "W (I — P)u/qs
/
= [Tdwi( - P)u} (2w (1 —P)wa] [T*%Wl’(l . P)u} /o

whereP = P(X) = X(X’X)~1X’. Under the assumptions (7.4) to (7.6), we have the following con-
vergence:

THAW(-Pu = T 3wu— (W) (xX) 7 (T-3x)
= CRNl‘X = QKNlU_ZWlXZ)Z;(DXU
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where

V[%Iﬂx] = V[‘D\Nlu} + ZWlX Z)Z)](-V[CDXU] Z)Z;I(- ZXWl

- E[(D\Nlu CD)/<u} Z)Z)]f 2XW — 2WiX Z)Z)J(- E[CDXU ¢)\,/\I1u]
= Swws — Swax Sxx Sxwg
and .
TWII =P = WG — FWEX (XX) (3 X'W)
— 2w, — ZWX Zx K X -

Consequently

_ -1
N = Ry ix (S, — Zwx Sxx Zxw)  Powjx /G ~ X*(a) /0l

This means that we can define the confidence intervals as the sets ofqagfiotsvhich the statis-
tic (7.3) fails to reject, using the asymptoptt?11 /a1 critical values or the somewhat stronger (and
probably more accurate) critical values of the Fisher distribution. Furthes, it is easy to see that,
both under the null and the alternative, the denomin@toonverges tmﬁ asT — oo;

D =UM([X,W])u/T

_du _ XWX WA X WA X WaTu o
T T u

Consider now a fixed alternative= 61. Whend = 41, we have

N = [WiBi(81— o)+ ul'M(X)WA[W/M(X)Wa] WM (X) WiB1 (31 — 8o) + U] /a1
= T [(WEMOOWA)B1(81 — Bo) + WMOX)U)] [VM} -
X T2 [(W{M(X)W1)B1(81 — 80) + WM (X)u)] /.
The behavior of the variabld depends on the convergence limits of the terms on the right-hand

side of the last equation. It means that we can find the limi by showing the convergence of the
individual components. The major building block of the expressioNf

T2 [W{M(X)WiBy(81 — 8o) +W{M(X)u] = T2 (w> By(81— 50)
+ T 2W/M(X)u.

As we have shownT*%Wl’M(X)u converges in distribution to a random variatdg, x and the
term T M B1(81 — o) diverges in probability a3 gets large. Consequently, under a

fixed alternative, the whole expression goes to infinity, and the test isstemis It is easy to prove
similar asymptotic results for the other tests proposed in this paper.
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8. Monte Carlo study

In this section, we present the results of a small Monte Carlo experimentacomgphe perfor-
mance of the exact tests proposed above with other available (asymptotiséifiggl) procedures,
especially Wald-type procedures.

A total number of one thousand realizations of an elementary version of thel if#1)—(2.2),
equivalent to Model 1 discussed by Pagan (1984), were simulatedsonple of sizd = 100 In
this particular specification, only one latent variallies present. The error termsé&andV (where
e andV are vectors of length 100) are independent wit®), 1) distributions. We allow for the
presence of only one instrumental varialdlén the simulated model, which was also independently
drawn (once) from a(0, 1) distribution. Following Pagan’s original specification, there is no
constant term or any exogenous variables included.

The explanatory power of the instrumental varidBl@lepends on the value of the paramder
Hence, we leB take the following values: 0, 0.05, 0.1, 0.5 and 1. WB4da close or equal to zero,
W has little or no explanatory power,e. Wis a bad instrument for the latent varialZleFor each
value ofB we consider five null hypotheses:

Ho:0=90¢, fordg=0,1 5 10and5Q
each one being tested against four alternative hypotheses of the form
Hi:0=01, f0r61:60+p*l(5o).

The alternativéH; is constructed by adding an increment to the valuégpivherep* =0, 0.5, 1, 2
and 4, and (8p) = 1 for 69 = 0, andl (d9) = d¢ otherwise.

Table 2 summarizes the results. In the first 3 columns, we report the vdlBed@and the alter-
natived1. When the entries in columns Il and Il are equal, we haye- 41, and the corresponding
row reports the levels of the tests. The next three columns (IV, V andhdyshe performance
of the Wald-type IV-based test [as proposed by Pagan (1984)],iwdoasists in correcting the
understated standard errors of a two stage procedure by replacingptha 2SLS standard error.
We report the corresponding results in column IV [asymptotic (As.)]. Besavhere the level of
Pagan’s test exceeds 5%, we consider two correction methods. Theditisod is based on the
critical value of the test at the 5% level for specific valuedgfandB in each row of the table
[locally size-corrected tests; column V (C.L.)]. The critical value is obtaiinech an independent
simulation with 1000 realizations of the model. Another independent simulationsallewo com-
pute the critical value at 5% level in an extreme case when the instrumengddleds very badj.e.
by supposindd = 0 also for each value @iy [globally size-corrected tests; column VI (C.G.)]. This
turns out to yield larger critical values and is thus closer to the theoreticaligacritical value to
be used here (on the assumption tBas actually unknown). In column VII, we present the power
of the exact test based on the instrument substitution method. In the follomimgdlumns (VIII
to XI) we show the performance of the exact test based on splitting the saniy#es the numbers
of observations used to estimate the structural equation are, respe@b,ed9, 75 and 90 over 100
observations. Finally, we report the level and power of a naive twgediest as well as the results
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of a test obtained by replacing the latent variablén the structural equation by the observed value
Z.

Let us first discuss the reliability of the asymptotic procedures. The IéteédV test proposed
by Pagan exceeds 5% essentially always when the paraBietéess then 0.5, sometimes by very
wide margins. The tests based on the two-stage procedure or replacitagetitevariable by the
vector of observed values are both extremely unreliable no matter the vialbhe parameteB.
The performance of Pagan’s test improves once we move to higher ltles parameteB, i.e.
when the quality of the instrument increases. The improvement is obseotledtierms of level
and power. It is however important to note that Pagan'’s test has, imajethee same or less power
than the exact tests. The only exception is the sample split test reportednmcalid, where only
25 observations were retained to estimate the structural equatiorB lrigher then 0.5, the two
other asymptotic tests are still performing worse then the other tests. Thaydaexl extremely
unreliable. In the same range Bf the exact tests behave very well. They show the best power
properties compared to the asymptotically based procedures and in lgempexform the other
tests.

9. Empirical illustrations

In this section, we present empirical results on inference in two distinciogsiz models with latent
regressors. The first example is based on Tobin’s marginabdel of investment [Tobin (1969)],
with fixed assets used as the instrumental variable.fGihe second model stems from educational
economics and relates students’ academic achievements to a number nhpensmacteristics and
other socioeconomic variables. Among the personal characteristicaoaarger a variable defined
as “self-esteem” which is viewed as an imperfect measure of a latent lesaiadh is instrumented
by measures of the prestige of parents’ professional occupatiorfirshexample is one where we
have good instruments, while the opposite holds for the second example.

Consider first Tobin’s marginal model of investment [Tobin (1969)]. Investment of an indi-
vidual firm is defined as an increasing function of the shadow valuepifataequal to the present
discounted value of expected marginal profits. In Tobin’s original sétwpstment behavior of all
firms is similar and no difference arises from the degree of availability ofeténancing. In fact,
investment behavior varies across firms and is determined to a large extiamarcial constraints
some firms are facing in the presence of asymmetric information. For those éxiesnal financ-
ing may either be too costly or not provided for other reasons. Thustinees depends heavily on
the firm’s own source of financing, namely the cash flow. To accourdiffarences in investment
behavior implied by financial constraints, several authors [Abel (,3¥&ashi (1982, 1985), Abel
and Blanchard (1986), Abel and Eberly (1993)] introduced the fiashas an additional regressor
to Tobin’sgmodel. It can be argued that another explanatory variable controllingafiegpility of
investment is also required. For this reason, one can argue that theificorse has to be included
in the investment regression as well. The model is thus

(9.1) li=Yo+0Q+yiICR+Vy,R +&
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TABLE 2
SIMULATION STUDY OF TEST PERFORMANCE FOR A MODEL WITH UNOBSEWRED REGRESSORS

Parameter values Rejection frequencies
B do o1 Wald-type IS Split-sample 2S | OLS
As. | CL. | C.G. 25 50| 75| 90

I Il 1] v | V| Vi VIl | VI IX X X1 X | Xl
0.00 0.0 0.0 0.1 . . 51| 51| 6.1| 52| 54| 51
0.00 0.0 0.5 0.0 : . 47| 51| 44| 41| 39| 47
0.00 0.0 1.0 0.0 . . 56| 48| 55| 57| 54| 56
0.00 0.0 2.0 0.0 . . 42| 45| 45| 38| 45| 4.2
0.00 0.0 4.0, 0.0 . . 52| 53| 59| 43| 50| 5.2

0.00 1.0 10 73| 51| 51| 50| 46| 49| 48| 52| 157| 4.7
0.00 1.0 15 68| 55| 55| 44| 48| 44| 54| 6.1|15.7| 6.8
0.00 1.0 20/ 76| 59| 59| 50| 43| 48| 48| 51|179| 65
0.00 1.0 30 86| 6.6/ 6.6/ 63| 50| 49| 50| 58|199| 7.0
0.00 1.0 50/ 66| 49| 49| 44| 43| 46| 55| 46|18.1| 51

0.00 5.0 50541 55| 55| 51| 55| 42| 52| 49| 705| 69.3
0.00 5.0 75 528| 54| 54| 49| 61| 49| 51| 46|69.7| 69.0
0.00 50 10.0 565| 57| 57| 48| 45| 61| 50| 48| 71.7| 715
0.00 50 150 50.7| 46| 46| 48| 45| 43| 45| 3.8|66.6| 67.0
0.00 50 250 52.7| 52| 52| 46| 45| 46| 56| 50| 67.8| 68.8

0.00 10.0 10.069.0, 45| 45| 49| 53| 60| 49| 51|845| 85.0
0.00 100 150684| 57| 57| 59| 47| 50| 56| 45| 84.3]| 83.9
0.00 100 20.0686| 50| 50| 57| 43| 49| 47| 52| 84.6| 84.3
0.00 10.0 30.0 70.2| 49| 49| 45| 54| 52| 50| 52|854| 844
0.00 100 50.068.7| 53| 53| 48| 42| 51| 56| 50836 83.1

0.00 50.0 50.0865| 64| 64| 54| 44| 50| 51| 54|96.9| 965
0.00 50.0 75.0852| 6.7| 6.7 6.2| 39| 50| 66| 6.7|951]| 96.1
0.00 50.0 100.0 874| 52| 52| 46| 65| 50| 45| 55|96.8| 964
0.00 50.0 150.0 858| 65| 6.5| 58| 50| 53| 59| 59|971| 971
0.00 50.0 250.0 86.7| 68| 6.8| 59| 48| 60| 6.2| 58|971| 97.3

0.05 0.0 0.0/ 0.0 : : 48| 50| 36| 36| 53| 48
0.05 0.0 0.5 0.2 . . 49| 51| 55| 48| 52| 4.9
0.05 0.0 1.00 0.0 : : 74| 54| 57| 62| 76| 74
0.05 0.0 20 0.3 . - | 16.6| 8.7|11.7| 14.7| 15.7| 16.6
0.05 0.0 40 1.0 : - | 47.8]16.4| 26.9| 38.1| 44.0| 47.8
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0.05
0.05
0.05
0.05
0.05

0.05
0.05
0.05
0.05
0.05

0.05
0.05
0.05
0.05
0.05

0.05
0.05
0.05
0.05
0.05

0.10
0.10
0.10
0.10
0.10

0.10
0.10
0.10
0.10
0.10

0.10
0.10
0.10
0.10
0.10

1.0
1.0
1.0
1.0
1.0

5.0
5.0
5.0
5.0
5.0

10.0
10.0
10.0
10.0
10.0

50.0
50.0
50.0
50.0
50.0

0.0
0.0
0.0
0.0
0.0

1.0
1.0
1.0
1.0
1.0

5.0
5.0
5.0
5.0
5.0

1.0
15
2.0
3.0
5.0

5.0
7.5
10.0
15.0
25.0

10.0
15.0
20.0
30.0
50.0

50.0
75.0
100.0
150.0
250.0

0.0
0.5
1.0
2.0
4.0

1.0
15
2.0
3.0
5.0

5.0
7.5
10.0
15.0

25.0

6.9
6.0
4.7
4.0
2.6

33.8
21.0
12.4
5.1
3.9

34.9
229
14.1
5.1
4.4

32.7
21.2
14.3
6.4
3.2

0.0
0.2
0.1
2.4
8.8

7.3
4.4
3.0
0.9
0.6

17.4
5.8
2.3
1.0
0.4

5.2
4.6
3.9
2.7
2.1

4.6
2.3
0.4
0.1
0.0

7.6
13
0.6
0.0
0.1

5.1
1.7
0.6
0.3
0.0

4.4
2.9
1.9
0.7
0.3

4.6
11
0.2
0.0
0.0

TABLE 2 (continued)

5.6
4.7
3.9
2.7
2.1

16
0.2
0.1
0.0
0.0

0.2
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

5.6
3.8
2.3
0.9
0.5

0.6
0.0
0.0
0.0
0.0

4.7
5.4
5.3
9.9
27.0

4.6
6.3
8.7
14.8
47.1

6.3
6.4
8.6
145
52.5

4.7
6.4
8.5
17.6
51.3

4.8
8.2
15.8
49.4
97.1

4.7
6.6
10.6
28.3
80.1

5.2
7.2
16.5
50.5
97.0
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4.8
6.0
5.7
6.3
9.0

5.8
4.8
4.8
6.1
15.3

6.6
4.4
51
6.7
18.6

4.7
4.5
5.8
7.0
16.0

4.2
6.8
7.1
16.9
47.7

53
4.4
6.6
9.3
26.4

5.2
6.0
7.9
154
45.5

4.4
6.0
4.6
7.4
14.9

5.3
4.6
5.6
8.6
26.2

6.3
5.8
6.1
10.4
30.1

6.0
4.9
7.0
111
28.3

4.9
7.1
8.9
29.3
78.9

5.1
5.6
7.3
18.7
49.4

4.7
6.4
111
27.2
76.6

4.8
5.4
5.1
8.4
23.2

5.2
5.3
7.6
11.7
39.1

6.4
5.8
6.7
13.3
40.8

5.2
5.3
7.2
151
38.7

4.5
6.9
13.9
40.7
93.2

4.5
6.3
9.5
23.8
66.1

4.8
7.4
14.0
38.7
89.4

16.9
16.9
18.1
25.3
51.1

71.7
69.7
71.9
81.2
93.6

84.8
85.8
88.9
90.0
97.5

97.5
96.9
97.7
97.0
99.8

7.9
7.5
7.6
7.4
5.6

72.7
71.4
69.9
66.9
59.0

84.0
78.9
79.0
74.2
62.2

92.0
89.2
86.5
79.8
65.3

14.0
16.2
14.3
10.9

7.4

78.9
74.4
73.0
65.2
46.9



0.10
0.10
0.10
0.10
0.10

0.10
0.10
0.10
0.10
0.10

0.50
0.50
0.50
0.50
0.50

0.50
0.50
0.50
0.50
0.50

0.50
0.50
0.50
0.50
0.50

0.50
0.50
0.50
0.50
0.50

0.50
0.50
0.50
0.50
0.50

10.0
10.0
10.0
10.0
10.0

50.0
50.0
50.0
50.0
50.0

0.0
0.0
0.0
0.0
0.0

1.0
1.0
1.0
1.0
1.0

5.0
5.0
5.0
5.0
5.0

10.0
10.0
10.0
10.0
10.0

50.0
50.0
50.0
50.0
50.0

10.
15.
20.
30.
50.

50.
75.
100.
150.
250.

100.
150.
250.

171
6.0
2.7
0.8
0.5

19.8
6.5
3.5
0.9
0.8

2.7
60.3
98.8
99.6
99.0

5.3
8.5
68.0
98.7
99.8

7.4
9.7
92.6
99.1
99.6

6.9
8.6
92.1
99.5
99.5

8.3
8.9
94.3
98.8
99.5

5.6
15
0.1
0.0
0.1

4.8
0.8
0.5
0.0
0.0

4.8
5.2
58.1
98.2
99.7

5.6
1.7
69.1
97.9
99.1

5.2
1.0
74.2
99.0
99.1

6.7
3.7
88.8
98.3
99.0

TABLE 2 (continued)

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

4.2
2.6
47.4
97.5
99.6

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0

4.7
7.0
14.1
51.9
96.5

5.9
7.7
17.7
45.9
97.2

4.6
67.7
99.9
100.0
100.0

5.0
41.4
93.4
100.0
100.0

5.1
66.6
99.7
100.0
100.0

5.1
67.9
99.7
100.0
100.0

4.6
69.8
99.6
100.0
100.0
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4.6
6.4
6.5
18.0
49.5

4.5
5.5
9.4
16.4
48.9

5.4
24.1
68.7
98.4

100.0

4.7
155
39.7
90.3

100.0

4.2
18.4
63.9
98.8

100.0

5.5
21.7
66.6
99.4

100.0

3.9
21.8
63.2
99.4

100.0

4.7
7.0
10.4
28.8
77.6

5.1
5.7
12.3
27.7
78.5

4.3
41.8
92.8
100.0
100.0

5.1
24.4
68.6
99.8

100.0

5.0
39.4
90.5
100.0
100.0

5.2
39.9
93.2
100.0
100.0

4.5
39.1
92.3
100.0
100.0

6.0
8.0
11.3
40.9
91.6

51
6.6
15.7
39.5
94.0

4.8
55.0
99.1
100.0
100.0

4.9
324
84.3
100.0
100.0

4.4
54.5
97.9
100.0
100.0

4.2
55.4
98.7
100.0
100.0

4.4
56.1
98.5
100.0
100.0

84.6
85.0
90.7
9 97.8
.1 100.0

97.0
97.4
97.7
99.6
6 100.0

86.0
84.8
79.4
68.9
49.3

89.6
86.1
82.2
73.1
49.7

98.4
92.8
62.6
1.7
0.1

100.0
99.9
99.2

5.4
0.1

100.0
99.7
99.1
5.6
0.0

100.0
100.0
99.4
5.2
0.3



TABLE 2 (continued)

1.00 0.0 0.0 5.1 : : 5.6 4.9 5.0 5.6 5.8 5.6

1.00 0.0 0.5 995 : . 995| 649 912 985 99.2 995

1.00 0.0 1.0] 100.0 : - 1100.0| 99.2 100.0 100.0 100.p100.0

1.00 0.0 2.0| 100.0 : - 1 100.0| 100.0 100.0 100.0 100.0100.0

1.00 0.0 4.0/ 100.0 : - 1 100.0| 100.0 100.0 100.0 100.0100.0

1.00 1.0 1.0 6.8 7.2 3.8 6.3 54 7.0 6.9 6.8 179 99.7
1.00 1.0 15 879 89.2 822 933| 395 683 84.7 90.1 98.1 33.7
1.00 1.0 2.0/ 100.0 100.0 100.0 100.0| 89.9 99.8 100.0 100.0100.0 0.7
1.00 1.0 3.0, 100.0 100.0 100.0 100.0| 100.0 100.0 100.0 100.p100.0 57.3
1.00 1.0 5.0 100.0 100.0 100.0 100.0| 100.0 100.0 100.0 100.0100.0 98.1
1.00 5.0 50/ 48 4.4 0.0 4.1 55 4.4 4.7 4.8 67.2 100.0
1.00 5.0 7.5/ 98.8 983 0.00 99.6| 625 915 98.0 99.4100.0 67.6
1.00 5.0 10.0] 100.0 100.0 0.0 100.0| 99.0 100.0 100.0 100.p100.0 1.3
1.00 5.0 15.0] 100.0 100.0 0.0 100.0| 100.0 100.0 100.0 100.0100.0 65.9
1.00 5.0 25.0/ 100.0 100.0 7.3 100.0| 100.0 100.0 100.0 100.0100.0 98.3
1.00 100 10.0 51 4.4 0.0/ 6.0 6.2 5.8 6.9 6.3 85.3 100.0
1.00 100 150 98.8 985 0.00 99.6| 63.1 911 97.7 99.4100.0 695
1.00 10.0 20.0 100.0 100.0 0.0 100.0| 99.0 100.0 100.0 100.p100.0 0.6
1.00 10.0 30.0 100.0 100.0 0.0 100.0| 100.0 100.0 100.0 100.0100.0 66.5
1.00 10.0 50.0 100.0 100.0 0.0 100.0| 100.0 100.0 100.0 100.0100.0 99.2
1.00 50.0 50.0 5.2 5.0 0.0 55 55 5.3 5.2 6.9 96.8 100.0
1.00 50.0 75.0 99.0 98.7 0.00 99.9| 658 914 983 99.3100.0 68.1
1.00 50.0 100.0 100.0 100.0 0.0 100.0| 98.8 100.0 100.0 100.p100.0 0.6
1.00 50.0 150.0 100.0 100.0 0.0 100.0| 100.0 100.0 100.0 100.0100.0 67.0
1.00 50.0 250.0 100.0 100.0 0.0 100.0| 100.0 100.0 100.0 100.0100.0 99.0
Notes:

I:  value of parameteB,; VIII: sample split test using 25 observations

II:  null hypothesis; for the structural equation;

Ill: alternative hypothesis; IX: sample split using 50 observations;

IV: Pagan’s test; X:  sample split using 75 observations;

V: Pagan’s test locally size-corrected XI:  sample split using 90 obtens

(B known); XIl: two-stage test @);
VI: Pagan’s test globally size-corrected  XllI: test with latent variabl@aced by
(B=0); observed vector (OLS).

VII: instrument substitution test$);
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wherel; denotes the investment expenses of an individualifi®; andR; its cash flow and income
respectively, whileQ; is Tobin’sq measured by equity plus debt and approximated empirically by
adding data on current debt, long term debt, deferred taxes and ongulitiity interest and equity
less inventoryp andy = (y,, V4, V) are fixed coefficients to be estimated. Given the compound
character of);, which is constructed from several indexes, fixed assets are usedeaplanatory
variable forQ; in the regression which completes the model:

(9.2) Q =Bo+BiFi+vi.

For the purpose of building finite-sample confidence intervals following thieliment substitution
method, the latter equation may be replaced (without any change to the rbgulis)more general
equation (called below the “full instrumental regression”):

(9.3) Qi =Bo+B1F+BCR+B4R +Vi.

Our empirical work is based on “Stock Guide Database” containing datampanies listed
at the Toronto and Montreal stock exchange markets between 198®8amhd The records consist
of observations on economic variables describing the firms’ size anorperhce, like fixed capital
stock, income, cash flow, stock market price, etc. All data on the indivicluapanies have previ-
ously been extracted from their annual, interim and other reports. Waedta subsample of 9285
firms whose stocks were traded on the Toronto and Montreal stockreyemaarkets in 1991.

Since we are interested in comparing our inference methods to the widelWadedype tests,
we first consider the approach suggested by Pagan (1984). Sinakestimators of coefficient
variances obtained from the OLS estimation of equation (9.1) @itfeplaced byQ; are inconsis-
tent [for a proof, see Pagan (1984)], Pagan proposed to useastiameb-stage least squares (2SLS)
methods, which yield in the present context (under appropriate regutarigitions) asymptotically
valid standard errors and hypothesis tests. For the 2SLS estimation of raddel(9.2), the depen-
dent variabld; is first regressed on all the exogenous variables of the system, i.e. n$iaictCF,

R andF;, wherek; is the identifying instrument fo®;, and then the fitted valuééi are substituted
for Q; in the second stage regression.

The results are summarized in Tables 3A, while the instrumental OLS regresgipear in 3B.
From the latter, we see that the identifying instrument@ads strongly significant and so appears
to be a “good” instrument. Table 3C presents 95% (marginal) confidenceatgdor Tobin'sq
parameter based on various methods, as well as projection-based sioustanafidence intervals
for the coefficients of equation (9.1). The three first intervals are addeiom, respectively, 2SLS,
two-stage and augmented two-stage methods by adding or subtracting 1.96@rstsndard error
to/from the estimated parameter vafuBelow we report the exact confidence intervals (instrument
substitution and sample split) based on the solution of quadratic equationabelin Sections
2 and 3. Recall that the precision of the confidence intervals deperttig, éase of the sample split
method, on the number of observations retained for the estimation of the satieuation. We

2 The augmented two-stage method uses all the available instruments totedimpgenerated regressors (full in-
strumental regression), rather than the restricted instrumental eq@&@)nAs with the two-stage method, OLS-based
coefficient standard errors obtained in this way are inconsistent; sge PEO84) for further discussion.
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TABLE 3
TOBIN'S Q MODEL _ N = 9285

A) 2SLS estimators of investment equation (9.1)

Dependent variable: INVESTMENTT)
Explanatory  Estimated

variable coefficient error
Constant 0.0409 0.0064 6.341
Q 0.0052 0.0013 3.879
CF 0.8576 0.0278 30.754
R 0.0002 0.0020 0.109

Standard statistic p-value

0.0000
0.0001
0.0000
0.9134

B) Instrumental OLS regression®ependent variable®

Full instrumental regression Equation (9.2)
Regressor Estimated Stand. t p-value | Estimated Stand. t p-value
coefficient  error coefficient  error
Constant | 0.6689  0.0919 7.271 0.0000 1.0853 0.1418 7.650 0.0000
F -2.7523  0.0527 -52.195 0.0000 2.4063  0.0400 60.100 0.0000
CF 21.2102 0.3188 66.517 0.0000
R 1.2273 0.0291 42.111 0.0000

C) Confidence intervals

Marginal confidence intervals f@

Projection-based simultaneous confidence
intervals (instrument substitution)

Method Interval Coefficient Interval
2SLS [0.0026, 0.0078 Yo [0.0257, 0.0564
Augmented two-stage| [0.0025, 0.0079 o [0.0037, 0.0072
Two-stage [—0.0091, —0.0029 Vi [0.7986, 0.9366
Instrument substitution [0.0025, 0.0078 Yo [0.0033, 0.0042

Sample split 50% [0.0000, 0.0073
Sample split 75% [0.0017, 0.0077
Sample split 90% [0.0023, 0.0078
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thus show the results for, respectively, 50%, 75% and 90% of the eatirple (selected randomly).
The simultaneous confidence intervals for the elements of the \v@etdly,, J, y;, y,)’ are obtained
by first building a simultaneous confidence@g(a ), with level 1— a = 0.95 for 8 according to the
instrument substitution method described in Section 4 and then by both minimizimgeadohizing
each coefficient subject to the restrictire Cy(a) [see Section 6]. The program used to perform
these constrained optimizations is the subroutine NCONF from the IMSL matheimti@ary.
The corresponding four-dimensional confidence box has level @5%o&sibly more), i.ewe have
simultaneous confidence intervals (at level 95%

From these results, we see that all the confidence intervads éxcept for the two-stage interval
(which is not asymptotically valid), are quite close to each other. Among the-&aitgle intervals,
the ones based on the instrument substitution and the 90% sample split metbadtaye the most
precise. It is also worthwhile noting that the projection-based simultanemiislence intervals all
appear to be quite short. This shows that the latter method works well in therpieontext and can
be implemented easily.

Let us now consider another example where, on the contrary, imporiserepancies arise
between the intervals based on the asymptotic and the exact inference sneliodtmarquette
and Mahseredjian [Montmarquette and Mahseredjian (1989), MontmargHeti¢e, Crespo, and
Mahseredjian (1989)] studied students’ academic achievements astariuoicpersonal and so-
cioeconomic explanatory variables. Students’ school results in Fremtmathematics are mea-
sured by the grade, taking values on the intervall®0. The grade variable is assumed to depend
on personal characteristics, such as age, intellectual ability (1Q)wsaber kindergarten and “self—
esteem” measured on an adapted children self-esteem scale rangifgdrdth Other explanatory
variables include parents’ income, father's and mother’s education megbisunumber of years of
schooling, the number of siblings, student’s absenteeism, his own eduaatiaxperience as well
as the class size. We examine the significance of self-esteem, which is \asveedimperfectly
measured latent variable to explain the first grader’'s achievements in matheniagcself esteem
of younger children was measured by a French adaptation of the MdBRigiEs scale. Noting the
measurement scale may not be equally well adjusted to the age of all studdmseto the high
degree of arbitrariness in the choice of this criterion, the latter was insttedhbg Blishen indices
reflecting the prestige of father's and mother’s professional occuysaitnoorder to take account of
eventual mismeasurement.

The data stem from a 1981-1982 survey of first graders attendingrdédifrancophone public
elementary schools. The sample consists of 603 observations on stuatgnés’ements in mathe-
matics. The model considered is:

(9.4) LMAT; = Bo+0SE+B11Q;+ B,li + B3FE + B4ME; + B5SN

+ B6Ai +B7ABP| +B8 EX| +BgED| +B10ABSi +B11CS +a

where (for each individua) LMAT = ¢/n(grade/(100- grade)), SE= ¢n(self esteem test result/(40
— self esteem test result)), 1Q is a measure of intelligence (observed inrgarten), | is parents’

income, FE and ME are father’'s and mother’s years of schooling, Sbteethe sibling’s number,
A is the age of the student, ABP is a measure of teacher’s absenteeism, iEatésdhe years of
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student’s work experience, ED measures his education in years, ABR®lens's absenteeism and
CS denotes the class size. Finally, the instrumental regression is:

(9.5) SE=Yy+V1FR+Y>,MPi+v

where FP and MP correspond to the prestige of the father and mothefésgion expressed in
terms of Blishen indices. We consider also the more general instrumerntgsamn which includes
all the explanatory variables on the right-hand side of (9.4) excepfT8& 2SLS estimates and
projection-based simultaneous confidence are reported in Table 4A whiteghlts of the instru-
mental regressions appear in Table 4B.

Standard (bounded) Wald-type confidence intervals are of coutadeenby the 2SLS esti-
mation. Ford however, the instrument substitution method yields the confidence inteffiaéde
by the inequality:—31.95365(2) —84.732000 — 8509727 < 0. Since the roots of this second or-
der polynomial are complex arad< 0, this confidence interval actually covers the whole real line.
Indeed, from the full instrumental regression and usitgsts as well as the relevanttest (Table
4B), we see that the coefficients of FP and MP are not significantly eifférom zero, i.e. the latter
appear to be poor instruments. So the fact that we get here an unloconfedence interval for
0 is expected in the light of the remarks at the end of Section 2. The projdutised confidence
intervals (Table 4A) yield the same messagedpalthough it is of interest to note that the intervals
for the other coefficients of the model can be quite short despite the ttcl thay be difficult to
identify. As in the case of multicollinearity problems in linear regressions, énfeg about some
coefficients of a model remains feasible even if the certain parameterstadentifiable.

10. Conclusions

The inference methods presented in this paper are applicable to a varieikydels, such as re-
gressions with unobserved explanatory variables or structural modhéts wan be estimated by
instrumental variable methods (e.g., simultaneous equations models). Theyermapdidered as
extensions of Anderson-Rubin procedures where the major improvemesists of providing tests
of hypotheses on subsets or elements of the parameter vector. Thisngdisbed via a projection
technique allowing for inference on general possibly nonlinear tramsftions of the parameter
vector of interest. We emphasized that our test statistics, being pivotalearsa boundedly pivotal
functions, yield valid confidence sets which are unbounded with a nangrebability. The un-
boundedness of confidence sets is of particular importance when thamestis are poor and the
parameter of interest is not identifiable or close to being unidentified. Aougly, a valid confi-
dence set should cover the entire set of real numbers since all vaduebservationally equivalent
[see Dufour (1997) and Gleser and Hwang (1987)]. Our empiricallt® indicate that inference
methods based on Wald-type statistics are unreliable in the presence afigtoaments since such
methods typically yield bounded confidence sets with probability one. Thdtsda this paper
thus underscore another shortcoming of Wald-type procedures whaplites distinct from other
problematic properties, such as non-invariance to reparameterizatem®fgenais and Dufour
(1991)].
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TABLE 4
MATHEMATICS ACHIEVEMENT MODEL _ N =603

2SLS estimators of achievement equation (9.4)

Dependent variable: LMAT

Explanatory Estimated Standard statistic p-value

Projection-based

95% confidence intervals
(instrument substitution)

variable coefficient error
Constant -4.1557 0.9959 -4.173  0.0000 [-4.8601,-3.7411]
SE 0.2316 0.3813 0.607 0.5438 (—o00,+00)
IQ 0.0067 0.0015 4.203 0.0000 [0.006600, 0.006724]
I 0.0002 0.3175 0.008 0.9939 [-0.09123, 0.10490]
FE 0.0015 0.0089 0.172 0.8636 [-0.00914,0.01889]
ME 0.0393 0.0117 3.342 0.0009 [0.02868, 0.05762]
SN -0.0008 0.0294 -0.029 0.9767 [-0.1546,0.1891]
A 0.0144 0.0070 2.050 0.0408 [0.01272,0.01877]
ABP -0.0008 0.0005 -1.425  0.1548 [-0.003778, 0.000865]
EX -0.0056 0.0039 -1.420  0.156{L [-0.01307, 0.00333]
ED -0.0007 0.0206 -0.035 0.9718 [-0.0123,0.2196]
ABS -0.0001 0.0002 -0.520  0.6033[-0.0001764 , 0.0000786]
CSs -0.0184 0.0093 -1.964  0.0500 [-0.03003, -0.009790]

Marginal 95% quadratic confidence interval for

(_°°7+°°)

Instrumental OLS regression®ependent variable: SE

Full instrumental regression

Equation (9.5)

Regressor Estimated  Stand. t p-value | Estimated Stand. t p-value
coefficient error coefficient  error
Constant | -1.2572 1.0511 -1.1960 0.232 0.8117 0.1188 6.830 0.0000
FP 0.5405 0.3180 1.7000 0.090 0.5120 0.2625 1.951 0.0516
FM 0.3994 0.3327 1.2004 0.230 0.6170 0.2811 2.194 0.0286
@) 0.003822 0.000611 6.2593 0.000
[ 0.02860 0.03161 0.9049 0.366 F-statistic for significance of FP and
FE -0.01352 0.01136 -1.1899 0.23% FMin full instrumental regression:
ME -0.004028 0.01517 -0.2655 0.791 F(2,589) = 2.654 (p-value= 0.078)
SN -0.01439 0.03325 -0.4326 0.665
A 0.003216 0.008161 0.3941 0.694
ABP 0.000698 0.000577 1.2108 0.226
EX -0.002644 0.004466 -0.5920 0.554
ED -0.02936  0.02080 -1.4117 0.159
ABS 0.000426 0.000194 2.1926 0.029
CSs 0.01148 0.009595 1.1966  0.232
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In general, non-identifiability of parameters results either from low qualityunsents or, more
fundamentally, from a poor model specification. A valid test yielding an unted confidence
set becomes thus a relevant indicator of problems involving the econometinig. sThe power
properties of exact and Wald-type tests were compared in a simulatiod-egseriment. The test
performances were examined by simulations on a simple model with varying tévelstrument
guality and the extent to which the null hypotheses differ from the truenpetier value. We found
that the tests proposed in this paper were preferable to more usuadéd-kald-type methods from
the points of view of level control and power. This seems to occur desgitaththat AR-type pro-
cedures involve “projections onto a high-dimensional subspace whigd oesult in reduced power
and thus wide confidence regions” [Staiger and Stock (1997, p. SHA@)ever, it is important to
remember that size-correcting Wald-type procedures requires one touge critical values that
can easily destroy power. Wald-type procedures can be made usBfaltéhe cost introducing im-
portant and complex restrictions on the parameter space that one is radliyeprepare to impose;
for further discussion of these difficulties, see Dufour (1997, Se@&jon

It is important to note that although the simulations were performed under theahty as-
sumption, our tests yield valid inferences in more general cases involvim@gaassian errors and
weakly exogenous instruments. This result has a theoretical justificatibis afso confirmed by
our empirical examples. Since the inference methods we propose ardl asiweutationally easy
to perform, they can be considered as a reliable and a powerful akkertatinore usual Wald-type
procedures.
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