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Abstract

The problem of identification is defined in terms of the possibility of characterizing parameters of interest from observable data. This problem 
occurs in many fields, such as automatic control, biomedical engineering, psychology, systems science, the design of experiments, and 
econometrics. This article focuses on identification in econometric models, which typically involve random variables. Identification in general 
parametric statistical models is defined, and its meaning in a number of specific econometric models is considered: regression (collinearity), 
simultaneous equations, dynamic models, and nonlinear models. Identification in nonparametric models, weak identification, and the statistical 
implications of identification failure are also discussed.
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Article

In economic analysis, we often assume that there exists an underlying structure which has generated the observations of real-world data. However,
statistical inference can relate only to characteristics of the distribution of the observed variables. Statistical models which are used to explain the
behaviour of observed data typically involve parameters, and statistical inference aims at making statements about these parameters. For that
purpose, it is important that different values of a parameter of interest can be characterized in terms of the data distribution. Otherwise, the problem
of drawing inferences about this parameter is plagued by a fundamental indeterminacy and can be viewed as ‘ill-posed’.
To illustrate, consider X as being normally distributed with mean E(X) = µ1 − µ2. Then µ1 − µ2 can be estimated using observed X. But the 
parameters •1 and •2 are not uniquely estimable. In fact, one can think of an infinite number of pairs (µi, µ j), i, j = 1, 2, …(i ≠ j) such that 
µi − µ j = µ1 − µ2. In order to determine •1 and •2 uniquely, we need additional prior information, such as µ2 = 3µ1 or some other assumption. 
Note, however, that inference about the variance of X remains feasible without extra assumptions.
More generally, identification failures – or situations that are close to it – complicate considerably the statistical analysis of models, so that
tracking such failures and formulating restrictions to avoid them is an important problem of econometric modelling.
The problem of whether it is possible to draw inferences from the probability distribution of the observed variables to an underlying theoretical 
structure is the concern of econometric literature on identification. The first economists to raise this issue were Working (1925; 1927) and Wright 
(1915; 1928). The general formulations of the identification problems were made by Frisch (1934), Marschak (1942), Haavelmo (1944), Hurwicz 
(1950), Koopmans and Reiersøl (1950), Koopmans, Rubin and Leipnik (1950), Wald (1950), and many others. An extensive treatment of the 
theory of identification in simultaneous equation systems was provided by Fisher (1976). Surveys of the subject can be found in Hsiao (1983), 
Prakasa Rao (1992), Bekker and Wansbeek (2001), Manski (2003), and Matzkin (2007); see also Morgan (1990) and Stock and Trebbi (2003) on
the early development of the subject.
In this article, we first define the notion of identification in general parametric models (Sections 1 and 2) and discuss its meaning in a number of 
specific statistical models used in econometrics, such as regression models (collinearity), simultaneous equations, dynamic models, and nonlinear 
models (Section 3). Identification in nonparametric models (Sections 4 and 5), weak identification (Section 6), and the statistical implications of 
identification failure (Section 7) are also considered.

1 Definition of parametric identification

It is generally assumed in econometrics that economic variables whose formation an economic theory is designed to explain have the characteristics 
of random variables. Let y be a set of such observations. A structure S is a complete specification of the probability distribution function of y. The 
set of all a priori possible structures, T, is called a model. In most applications, y is assumed to be generated by a parametric probability distribution
function F(y, θ ), where the probability distribution function F is assumed known, but the q×1 parameter vector • is unknown. Hence, a structure 

is described by a parametric point •, and a model is a set of points A µ Rq.
Definition 1:  Two structures, S0 = F(y, θ 0) and S* = F(y, θ *) are said to be observationally equivalent if F(y, θ 0) = F(y, θ *) for (‘almost’) 
all possible y. A model is identifiable if A contains no two distinct structures which are observationally equivalent. A function of •, g(θ ), is 
identifiable if all observationally equivalent structures have the same value for g(θ ).
Sometimes a weaker concept of identifiability is useful.
Definition 2:  A structure with parameter value θ 0 is said to be locally identified if there exists an open neighborhood of θ 0, W, such that no
other • in W is observationally equivalent to θ 0.



identification : The New Palgrave Dictionary of Economics http://www.dictionaryofeconomics.com/article?id=pde2008_I0000...

2 of 8 2008-09-18 09:58 AM

2 General results for identification in parametric models

Lack of identification reflects the fact that a random variable has the same distribution for some if not all values of the parameter. R.A. Fisher's 
information matrix provides a sensitivity measure of the distribution of a random variable due to small changes in the value of the parameter point 
(Rao, 1962). It can therefore be shown that, subject to regularity conditions, θ 0 is locally identified if and only if the information matrix evaluated 
at θ 0 is nonsingular (Rothenberg, 1971).
It is clear that unidentified parameters cannot be consistently estimated. There are also pathological cases where identified models fail to possess 
consistent estimators (for example, Gabrielson, 1978). However, in most practical cases, we may treat identifiability and the existence of a 
consistent estimator as equivalent; for precise conditions, see Le Cam (1956) and Deistler and Seifert (1978).

3 Some specific parametric models

The choice of model structure is one of the basic ingredients in the formulation of the identification problem. In this section we briefly discuss some
identification conditions for different types of models in order to demonstrate the kind of prior restrictions required.

3.1 Linear regression with collinearity

One of the most common models where an identification problem does occur is the linear regression model:
y = Xβ + u

(1)

where y is an n×1vector of dependent observable variables, X is an n×k fixed matrix of observable variables, • a k×1 unknown coefficient vector,
and u is an n×1 vector of disturbances whose components are (say) independent and identically distributed according to a normal distribution
N(0, σ 2) with unknown positive variance σ 2.
In this model, the value of • must be determined from the expected value of y : E(y) = Xβ . If the latter equation has a solution for • (that is, if the 
model is correct), the solution is unique if and only the regressor matrix X has rank k. If X has rank zero (which entails X=0), all values of • are 
equivalent (• is completely unidentifiable). If 1 ≤ rank(X) < k, then not all the components can be determined, but some linear combinations of the 
components of • (say c••) can be determined (that is, they are identifiable). A necessary and sufficient condition for c•• to be estimable 
(identifiable) is that c = (X 0X)d  for some vector d. Linear combinations that do not satisfy this condition are not identifiable. The typical way out 
of such collinearity problems consists in imposing restrictions on • (identifying restrictions) which set the values of the unidentifiable linear 
combinations (or components) of •.
Correspondingly, when X does not have full rank, the equation (X 0X)β̂ = X 0y, which defines the least squares estimator β̂ , does not have a unique 

solution. But all solutions of the least squares problem can be determined by considering β̂ = (X 0X)− X 0y where (X 0X)− is any generalized inverse
of (X 0X). Different generalized inverses then correspond to different identifying restrictions on •. For further discussion, see Rao (1973, ch. 4).

3.2 Linear simultaneous equations models

Consider a theory which predicts a relationship among the variables as
Byt + •xt = ut , t = 1, …, n,

(2)

where yt and ut are G×1 vectors of observed and unobserved random variables, respectively, xt is a K×1 vector of observed non-stochastic
variables, B and • are G×G and G×K matrices of coefficients, with B nonsingular. We assume that the ut are independently normally distributed
with mean 0 and variance-covariance matrix •. Equations (2) are called structural equations. Solving for the endogenous variables, y, as a function 
of the exogenous variables, x, and the disturbance u, we obtain:

yt = − B−1•xt + B−1ut = •xt + vt ,
(3)

where • = − B−1•, Evt = 0, Evtvt
0 = V = B−1X

(B−1) 0. Equations (3) are called the reduced form equations derived from (2) and give the 
conditional likelihood of yt for given xt that summaries the information provided by the observed (yt, xt). The variables in xt are often also called
‘instruments’.
From (3), we see that the simultaneous equations model can be viewed as a special case of a multivariate regression model (MLR), such that the
regression coefficient matrix • satisfies the equation:

B• = − •.
(4)

Provided the matrix X=[x1,…,xn]• has full rank K (no collinearity), the regression coefficient matrix • is uniquely determined by the distribution of
Y=[y1,…,yn]• (it is identifiable). The problem is then whether B and • can be uniquely derived from eq. (4). Premultiplying (2) by a G×G
nonsingular matrix D, we get a second structural equation:

B*yt + •*xt = ut*,
(5)

where B*=DB, •*=D•, and ut* = Du. It is readily seen that the reduced form of (5) is also (3). So eq. (4) cannot be uniquely solved for B and •,
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given •. Therefore, the two structures are observationally equivalent and the model is non-identifiable.
To make the model identifiable, additional prior restrictions have to be imposed on the matrices B, • and/or •. Consider the problem of estimating
the parameters of the first equation in (2), out of a system of G equations. If the parameters cannot be estimated, the first equation is called 
unidentified or underidentified. If given the prior information, there is a unique way of estimating the unknown parameters, the equation is called 
just identified. If the prior information allows the parameters to be estimated in two or more linearly independent ways, it is called overidentified. 
A necessary condition for the first equation to be identified is that the number of restrictions on this equation be no less than G•1 (order condition).
A necessary and sufficient condition is that a specified submatrix of B, • and • be of rank G•1(rank condition) (see Fisher, 1976; Hausman and 
Taylor, 1983). For instance, suppose the restrictions on the first equation are in the form that certain variables do not appear. Then this rank 
condition says that the first equation is identified if and only if the submatrix obtained by taking the columns of B and • with prescribed zeros in
the first row is of rank G•1 (Koopmans and Reiersøl, 1950).

3.3 Dynamic models

When both lagged endogenous variables and serial correlation in the disturbance term appear, we need to impose additional conditions to identify a
model. For instance, consider the following two equation system (Koopmans, Rubin and Leipnik, 1950):

y1t + β11 y1, t −1 + β12 y2, t−1 = u1t ,β12 y1t + y2t = u2t .
(6)

If (u1t, u2t) are serially uncorrelated, (6) is identified. If serial correlation in (u1t, u2t) is allowed, then
y1t + β11* y1, t −1 + β12* y2, t−1 = u1t* ,β12 y1t + y2t = u2t ,

(7)

is observationally equivalent to (6), where β11* = β11 + dβ21, β12* = β12 + d , and u1t* = u1t + du2t .
Hannan (1971) derives generalized rank conditions for the identification of this type of model by first assuming that the maximum orders of lagged 
endogenous and exogenous variables are known, then imposing restrictions to eliminate redundancy in the specification and to exclude 
transformations of the equations that involve shifts in time. Hatanaka (1975), on the other hand, assumes that the prior information takes only the 
form of excluding certain variables from an equation, and derives a rank condition which allows common roots to appear in each equation.

3.4 Nonlinear models

For linear models, we have either global identification or else an infinite number of observationally equivalent structures. For models that are linear 
in parameters, but nonlinear in variables, there is a broad class of models whose members can commonly achieve identification (Brown, 1983; 
McManus, 1992). For models linear in the variables but nonlinear in the parameters, the state of the mathematical art is such that we only talk 
about local properties. That is, we cannot tell the true structure from any other substitute; however, we may be able to distinguish it from other 
structures which are close to it. A sufficient condition for local identification is that the Jacobian matrix formed by taking the first partial derivatives 
of

ωi = •i(θ ), i = 1, …, n,0 = ϕ j(θ ), j = 1, …, R,
(8)

with respect to • be of full column rank, where the •i are n population moments of y and the ϕ j are the R a priori restrictions on • (Fisher, 1976).
When the Jacobian matrix of (8) has less than full column rank, the model may still be locally identifiable via conditions implied by the 
higher-order derivatives. However, the estimator of a model suffering from first-order lack of identification will in finite samples behave in a way 
which is difficult to distinguish from the behaviour of an unidentified model (Sargan, 1983).

3.5 Bayesian analysis

In Bayesian analysis all quantities, including the parameters, are random variables. Thus, a model is said to be identified in probability if the 
posterior distribution for • is proper. When the prior distribution for • is proper, so is the posterior, regardless of the likelihood function of y. In this
sense unidentifiability causes no real difficulty in the Bayesian approach. However, basic to the Bayesian argument is that all probability statements
are conditional, that is, they consist essentially in revising the probability of a fixed event in the light of various conditioning events, the revision
being accomplished by Bayes’ theorem. Therefore, in order for an experiment to be informative with regard to unknown parameters (that is, for the
posterior to be different from the prior), the parameter must be identified or estimable in the classical sense and identification remains as a property
of the likelihood function (Kadane, 1975).
Drèze (1975) has commented that exact restrictions are unlikely to hold with probability 1 and has suggested using probabilistic prior information. 
In order to incorporate a stochastic prior, he has derived necessary rank conditions for the identification of a linear simultaneous equation model.

4 Definition of identification in nonparametric models

When the restrictions of an economic model specify all functions and distributions up to the value of a finite dimensional vector, the model is said 
to be parametric. When some functions or distributions are left parametrically unspecified, the model is said to be semiparametric. The model is 
nonparametric if none of the functions and distributions are specified parametrically. The previous discussion is based on parametric specification. 
We now turn to the issue of whether economic restrictions such as concavity, continuity and monotonicity of functions, equilibrium conditions, the 
implications of optimization, and so on, may be used to guarantee the identification of some nonparametric models and the consistency of some 
nonparametric estimators (see Matzkin 1994).
Formally, an econometric model is specified by a vector of observable dependent and independent variables, a vector of unobservable variables, and
a set of known functional relationships among the variables. When such functional relationships are unspecified, the nonparametric identification 
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studies what functions or features of function can be recovered from the joint distribution of the observable variables.
The set of restrictions on the unknown functions and distributions in an econometric model defines the set of functions and distributions to which 
these belong. Let the model T denote the set of all a priori possible unknown functions and distributions. Let m denote a vector of the unknown 
functions and distributions in T and P(m) denote the joint distribution of the observable variables under m. Then the identification of m can be 
defined as follows.
Definition 3:  The vector of functions m is identified in T if for any other vector, m*•T such that m•m*, P(m)•P(m*).
Let C(m) denote some feature of m, such as the sign of some coordinate of m.
Definition 4:  The feature C(m) of m is identified if C(m)=C(m*) for all m, m*•T such that P(m)=P(m*).

5 Examples of nonparametric identification

Contrary to the parametric model, there is no general result for nonparametric identification. We shall therefore give some examples of how 
restrictions can be used to identify nonparametric functions.

5.1 Generalized regression models

Economists often consider a model of the form
y = g(x) + u.

(9)

When E(u|x)=0 and g(·) is a continuous function g : x ! R, then g(·) can be recovered from the joint distribution of (y, x) because E(y|x)=g(x).
In some cases, the object of interest is not a conditional mean function g(·), but some ‘deeper’ function, such as a utility function generating the
distribution of demand for commodities by a consumer. For example, x in (9) can be a price vector for K commodities and the income of a 
consumer. Mas-Colell (1977) has shown that we can recover the underlying utility function from the distribution of demand if we restrict g(·) to be
monotone increasing, continuous, concave and strictly quasi-concave functions.

5.2 Simultaneous equations models

Suppose (y, x) satisfies the structural equations
r(x, y) = u,

(10)

where y and u denote G×1 vectors of observable endogenous and unobservable variables, respectively, x is a K×1 vector of observable exogenous
variables, r denotes the G unknown functions, and let p(r) and p(r*) represent the joint distributions of the observables under r and r* respectively.
Assume also that: (i) •(x, y), •r/•y has full rank, (ii) there exists a function •(·) such that y=•(x, u) (for conditions ensuring this, see Benkard and 
Berry, 2006), and (iii) u is distributed independently of x. Then a necessary and sufficient condition guaranteeing that p(r*)=p(r) is that

rank

0

B
@
BB
BB

•ri*
•(x, y)

•r
•(x, y)

O < G + 1,

(11)

for all (x, y) and i=1,…,G, and all, where ri* denotes the i-th coordinate function of r*•T (see Roehrig, 1988; Matzkin, 2007).

5.3 Latent variable models and the measurement of treatment effects

For each person i, let (y0i* , y1i* ) denote the potential outcomes in the untreated and treated states, respectively. Then the treatment effect for 
individual i is

•i = y1i* − y0i*

and the average treatment effect (ATE) is defined as
E(•i) = E(y1i* − y0i* );

(12)

see Heckman and Vytlacil (2001).
Let the treatment status be denoted by the dummy variable di where di=1 denotes the receipt of treatment and di=0 denotes nonreceipt. The 
observed data are often in the form

yi = d i y1i* + (1 − d i)y0i* .
(13)

Suppose y1i* = µ1 (xi, u1i), y0i* = µ0 (xi, u0i), and d i* = µD(zi) − udi, where di=1 if d i* ≥ 0 and 0 otherwise, xi and zi are vectors of observable 
exogenous variables and (u1i, u0i, udi) are unobserved random variables. The average treatment effect and the complete structural econometric 
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model can be identified with parametric specifications of (•1(·), •0(·), •D(·)) and the joint distributions of (u1i, u0i, udi) even though we do not 
simultaneously observe y1i*  and y0i* . In the case that neither (•1(·), •0(·), •D(·)) nor the joint distribution of (u1, u0, ud) are specified, certain 
treatment effects may still be nonparametrically identified under weaker assumptions. For instance, under the assumption that di is orthogonal to 
(y1i* , y0i* ) conditional on a set of confounders (x, z) (conditional independence or ignorable selection), the ATE is identifiable and estimable by 
comparing the difference of the average outcomes from the treatment group and from the untreated (control) group (Heckman and Robb, 1985; 
Rosenbaum and Rubin, 1985). If the focus is on the average treatment effect for someone who would not participate if p(z) ≤ p(z0 ) and would 
participate if p(z)>p(z0) (the local average treatment effect (LATE)), where p(z)=Prob(d=1|z) (propensity score), Imbens and Angrist (1994) show 
that under the assumptions of separability of the effects of observable factors and unobservable factors and independence between observed factors 
and unobserved factors, they can be estimated by the sample analogue of

• LATE(x, p(z), p(z0)) ´ E(y|x, p(z)) − E(y|x, p(z0))
p(z) − p(z0)

(14)

where, without loss of generality, we assume p(z)>p(z0). The limit of LATE provides the local instrumental variable (LIV) estimand (Heckman and
Vytlacil, 1999):

• LIV (x, p(z)) ´ • E(y|x, p(z))
• p(z)

.

(15)

Heckman and Vytlacil (2001) give conditions that suitably weighted versions of LIV identify the ATE.

6 Weak instruments and weak identification

The most common way of trying to achieve identification consists in imposing exclusion restrictions on the variables of a structural equation. In 
model (2), suppose that yt and xt are partitioned as yt = (y1t , y2t

0 , y3t
0 )0 and xt = (x1t

0 , x2t
0 )0 where y1t is a scalar, yit has dimension Gi(i=2, 3) and 

xit has dimension Ki(i=1, 2). If y3t and x2t are excluded from the first equation and the coefficient of y1t is normalized to one, this yields an 
equation of the form:

y1t − y2t
0 β1 = x1t

0 γ 1 + u1t , t = 1, …, n.
(16)

Let us also rewrite the reduced equation for y2t in terms of x1t and x2t:
y2t = •21x1t + •22x2t + v2t .

(17)

Then, substituting (17) into (16), we see that the reduced form for y1t is:
y1t = •11x1t + •12x2t + v1t ,

(18)

where v1t = u1t + v2t
0 β1, •11 = γ 1

0 + β1
0 •21 and

•12
0 = •22

0 β1 .
(19)

Since •1 is free, •11 is not restricted, but eq. (19) determines the identifiability of •1, hence also of •1. Provided eq. (19) has a solution (that is, if 
eq. (16) is consistent with the data), the solution is unique if and only if the rank of the G2×K2 matrix •22 is equal to G2, the dimension of •1:

rank(•22) = G2.
(20)

If rank(•22)<G2, the vector •1 is not identifiable. However, it is completely unidentifiable only if rank(•22)=0, or equivalently if •22=0. If
1<rank(•22)<G2, some linear combinations c••1 are identifiable, but not all of them. Failure of the identification condition means that the
regressors (or the ‘instruments’) x2t do not move enough to separate the effects of the different variables in y2t. Condition (20) underscores two
important things: first, exclusion and normalization restrictions – which are easy to check – are not sufficient to ensure identification; second,
identification depends on the way the exogenous variables x2t excluded from the structural equation of interest (16) are related to endogenous 
variables y2t included in the equation. The latter feature is determined by the matrix •22 whose rows should be linearly independent. Since •22 is 
not observable, this may be difficult to determine in practice.
A situation that can lead to identification difficulties is the one where the identification condition (20) indeed holds, but, in some sense, •22 is
‘close’ not to have sufficient rank. In such situations, we say that we have weak instruments. In view of the fact that the distributions of most
statistics move continuously as functions of •22, the practical consequences of being close to identification failure are essentially the same.
Assessing the closeness to non-identification may be done in various ways, for example by considering the eigenvalues of the matrices which
measure the ‘size’ of •22, such as •22•22

0 , •22 X2
0 M(X1)X2•22

0  or a concentration matrix •22
−1/2•22 X2

0 M(X1)X2•22
0 •22

−1/2 where 

X1=[x11,…,x1n]•, X2=[x21,…,x2n]•, •22 is the covariance matrix of v2t, •22
−1/2 is its square root, and M(X1) = In − X1(X1

0 X1)−1 X1
0 . More 

generally, any situation where a parameter may be difficult to determine because we are close to a case where a parameter ceases to be identifiable 
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may be called weak identification. Weak identification was highlighted as a problem of practical interest by Nelson and Startz (1990), Bound, 
Jaeger and Baker (1995), Dufour (1997), and Staiger and Stock (1997); for reviews, see Stock, Wright and Yogo (2002) and Dufour (2003).

7 Statistical consequences of identification failure

Identification failure has several detrimental consequences for statistical analysis:

1. Parameter estimates, tests and confidence sets computed for unidentified parameters have no clear inpt; this situation may be especially 
misleading if the statistical instruments used do not reveal the presence of the problem.

1.

2. Consistent estimation is not possible unless additional information is supplied.2.
3. Many standard distributional results used for inference on such models are not anymore valid, even with a large sample size (see Phillips, 
1983; 1989; Rothenberg, 1984).

3.

4. Numerical problems also easily appear, due for example to the need to invert (quasi) singular matrices.4.

Weak identification problems lead to similar difficulties, but may be more treacherous in the sense that standard asymptotic distributional may 
remain valid, but they constitute very bad approximations to what happens in finite samples:

1. Standard consistent estimators of structural parameters can be heavily biased and follow distributions whose form is far from the limiting 
Gaussian distribution, such as bimodal distributions, even with fairly large samples (Nelson and Startz, 1990; Hillier, 1990; Buse, 1992).

1.

2. Standard tests and confidence sets, such as Wald-type procedures based on estimated standard errors, become highly unreliable or 
completely invalid (Dufour, 1997).

2.

A striking illustration of these problems appears in the reconsideration by Bound, Jaeger and Baker (1995) of a study on returns to education by 
Angrist and Krueger (1991). Using 329,000 observations, these authors found that replacing the instruments used by Angrist and Krueger (1991)
with randomly generated (totally irrelevant) instruments produced very similar point estimates and standard errors. This result indicates that the 
original instruments were weak. Recent work in this area is reviewed in Stock, Wright and Yogo (2002) and Dufour (2003).

8 Concluding remarks

The study of identifiability is undertaken in order to explore the limitations of statistical inference (when working with economic data) or to specify 
what sort of a priori information is needed to make a model estimable. It is a fundamental problem concomitant with the existence of a structure. 
Logically it precedes all problems of estimation or of testing hypotheses.
An important point that arises in the study of identification is that without a priori restrictions imposed by economic theory it would be almost 
impossible to estimate economic relationships. In fact, Liu (1960) and Sims (1980) have argued that economic relations are not identifiable because
the world is so interdependent as to have almost all variables appearing in every equation, thus violating the necessary condition for identification. 
However, almost all the models we discuss in econometrics are only approximate. We use convenient formulations which behave in a general way 
that corresponds to our economic theories and intuitions, and which cannot be rejected by the available data. In this sense, identification is a 
property of the model but not necessarily of the real world. It is also important to be careful about situations where identification almost does not 
hold (weak identification), since these are in practice as damaging for statistical analysis as identification failure itself.
The problem of identification arises in a number of different fields such as automatic control, biomedical engineering, psychology, systems science, 
and so on, where the underlying physical structure may be deterministic (for example, see Aström and Eykhoff, 1971). It is also aptly linked to the 
design of experiments (for example, Kempthorne, 1947; Bailey, Gilchrist and Patterson, 1977). Here, we restrict our discussion to economic 
applications of statistical identifiability involving random variables.

See Also

econometrics
endogeneity and exogeneity
simultaneous equations models
treatment effect
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