Improved Eaton Bounds for Linear Combinations
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The problem of evaluating tail probabilities for linear combinations of independent, possibly nonidentically distributed, bounded
random variables arises in various statistical contexts, mainly connected with nonparametric inference. A remarkable inequality on
such tail probabilities has been established by Eaton. The significance of Eaton’s inequality is substantiated by a recent result of
Pinelis showing that the minimum Bgp of Eaton’s bound Bg and a traditional Chebyshev bound yields an inequality that is optimal
within a fairly general class of bounds. Eaton’s bound, however, is not directly operational, because it is not explicit; apparently, it
never has been studied numerically, and its many potential statistical applications have not yet been considered. A simpler inequality
recently proposed by Edelman for linear combinations of iid Bernoulli variables is also considered, but it appears considerably less
tight than Eaton’s original bound. This article has three main objectives. First, we put Eaton’s exact bound Bg into numerically
tractable form and tabulate it, along with Bgp, which makes them readily applicable; the resulting conservative critical values are
provided for standard significance levels. Second, we show how further improvement can be obtained over the Eaton-Pinelis bound
Bgp if the number 7 of independent variables in the linear combination under study is taken into account. The resulting improved
Eaton bounds Bpp and the corresponding conservative critical values are also tabulated for standard significance levels and most
empirically relevant values of n. Finally, various statistical applications are discussed: permutation ¢ tests against location shifts,
permutation / tests against regression or trend, permutation tests against serial correlation, and linear signed rank tests against various
alternatives, all in the presence of possibly nonidentically distributed (e.g., heteroscedastic) data. For permutation ¢ tests and linear
signed rank tests, the improved Eaton bounds are compared numerically with other available bounds. The results indicate that the
sharpened Eaton bounds often yield sizable improvements over all other bounds considered.
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1. INTRODUCTION

Let Y;, ..., Y, be independent random variables with
meanOand |Y;| <1,i=1,...,n. We do not require that
the Y,’s be identically or symmetrically distributed. Denote
by a = (ay, ..., a,) a n-tuple of fixed real numbers such
that 27, a? = 1. The vector a need not be specified. Let
also ¢(z) = (2w) "2exp(—z%/2) and ®(x) = [* ¢(z) dz
denote the standard normal probability density and distribu-
tion functions. We study here the distribution of >7_,a;Y;.

Many problems in nonparametric inference lead one to
consider statistics of the form Z7-, g,Y;. Important examples
include linear signed rank tests, permutation ¢ tests against
location shift, permutation ¢ tests against regression or trend,
and permutation tests against serial dependence. Except for
very special cases, the distributions of such statistics are either
unknown or quite difficult to compute. In most cases only
large sample approximations are available (e.g., normal ap-
proximations). These require additional regularity assump-
tions (e.g., on the constants a,, . . ., a,), however, and may
be highly inaccurate.
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In such contexts it is clear that finite sample bounds on
the tail areas of 27—, a;Y; can be quite useful. On this issue,
Eaton (1974, thm. 2) proved the following fundamental re-
sult: for all y > 0,

7 =

<2 inf
O=c=<y Ve

> aY,

1=1

oo _ 3
(Z ") #(z) dz=2Be(y). (1)

y—c¢

Eaton did not, however, provide any explicit solution to the
problem of minimizing the integral expression in (1). Instead,
he suggested several upper bounds for Bg()) (see his cor. 1
and 2) and conjectured that for y > \/i,

Be(y) < Be(y) = (2€°/9¢(»)y™". (@)

No attempt apparently has been made to study Eaton’s
bound numerically or to implement it, and no table of the
bound Bg(y) seems to be available so far. In the particular
case when Y, ..., Y, are independent Bernoulli variables
suchthat P[Y,=1]=P[Y,=—1]=4,i=1,...,n, Edelman
(1990, lem. 2) has proposed the alternative simpler inequality

d

) aiYi' = y] <2{1— @[y —(1.5/y)1} = 2Bra(¥),
=1

for y>0. (3)
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As we discuss in Section 3, Bgg is less tight than Bg for most
practically relevant values of y (y = 1.1).

Eaton’s result has also been revisited recently by Pinelis
(1991). Observing that Eatons’ bound can be improved for
small y (0 < y < 2V2/—1r = 1.596) by a second-order Che-
byshev bound y~2 (or simply by 1), Pinelis proposed the
alternative bound 2Bgp(y) = min{2Bg(y), y~2, 1} and
showed that it is optimal within the context of Eaton’s ap-
proach, in the sense that it is tightest among all bounds based
on expectations of convex functions of a standard normal
variable; see Pinelis (1991, prop. 4.7, with » = 1). Pinelis
also provided a proof of (2). For most values of y of practical
relevance (y > 2\/2_/; = 1.596), the bound Bgp coincides
with Eaton’s bound Bg, so that Bg enjoys the optimality of
Bgp for y > 1.596.

This article has three main objectives. First, we put Eaton’s
exact bound Bg into a numerically tractable form and then
evaluate it (hence also the Eaton—Pinelis bound Bgp) by nu-
merical methods. We then compute the corresponding con-
servative critical values for standard significance levels. Be-
cause the resulting table does not depend on # or a, these
critical values are applicable even if the constants a, . ..,
a, or the sample size n are not specified. Numerical com-
parisons of Bgp with Edelman’s bound Bgq also show that
Bep is often substantially sharper. Second, building again on
Eaton’s (1974) results, we observe that the bounds Bgp and
Bg can be improved in an operational way if the number n
of independent random variables in 2 ¢, Y, is taken into
account. The resulting bound BEp(y; n), which depends on
yand n (but not on ay, ..., a,), is always tighter than the
bound Bg(y) and never larger than Bgp(y). The bound
Bip(y; n) can improve the “optimal” Eaton-Pinelis bound
Bep(y) because it is based on the expectation of a function
of a standardized binomial variable (instead of a standard
normal one). Because the sample size # is typically known
in applications, the improved bound Bfp can easily be used
in practically all situations where the alternative bounds Bk,
Bep, and Bgq apply. In Section 3 we also tabulate the critical
values based on Bfp(y; n) for standard significance levels
and several values of ». Third, we show how the bounds
derived can be applied in statistical problems of practical
interest, including permutation ¢ tests against location shift,
permutation ¢ tests against regression or trend, permutation
tests against autocorrelation, and linear signed rank tests.

The improved bound BEp is presented in Section 2. The
tabulation of the bounds Bgp and Bfp is given in Section 3;
for the purpose of comparison, Bg, Bg, and Bgq are also
tabulated. The statistical applications to hypothesis testing
problems are described in Section 4.

2. AN IMPROVED EATON INEQUALITY

In this section we establish an inequality that improves
the bounds given by Eaton (1974) and Pinelis (1991). As in
Eaton (1974), let #, be the class of all functions f: R — R
such that fis symmetric (about 0) and admits a derivative
fsuch that t~'[f(t + A) — f(—t + A)] is nondecreasing in ¢
> 0 for all A = 0. A sufficient condition for a symmetric
function fto be in ¥, is given by Eaton (1974, lem. 1) and
requires the existence of a third derivativef (The notation
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£, f,f is used for derivatives.) A slightly more general version
of this lemma, where f may not exist at a finite number of
points, is required here. Actually, this extended lemma is
also necessary for the proof of Eaton’s theorem 2, because
the function £.(x) = [(| x| — ¢).]* defined there (Eaton 1974,
eq. 3.2) has no third derivative at x = c. This is because the
left derivative is (f.),(c) = 0, whereas the right derivative is
(f2)/(c) = 6. The proof of this extended lemma is briefly
sketched in the Appendix.

Lemma 1. Suppose that the function f: R - R is sym-
metric (about 0) and that f exists and everywhere admits
nondecreasing left and right derivatives, f; and f,. Also sup-
pose that f; = f, everywhere, except possibly in a finite set of
points. Then f€ F,.

Proposition 1. Let Y, ..., Y, be independent random
variables, with E(Y;) =0and |Y;| <1,i=1,...,n. Then
for any fixed vector a = (a, ..., a,)’ such that X7, a?

= 1’
1

> a,-Y,-‘ > y] < 2 min{Bg(y; n), .5y7%, .5}

i=1
=2Btp(y; n)
<2 min{Bg(y), .5y7%, .5}

= 2Bep(y) 4)
for y > 0, where
Be(y; n) = (.5) inf [(.5)" 2> (n ) Jel(n/4)7'72
O=<c<y m=0 \M

X (m = (n/2)]/(y — 6)3} » (9

f(x) = [ x| = o)’ (:q) = n!/[m!(n — m)!], and
. © (- ¢ 3
Be(y) = 01$r3<f}_ ) (-y—:—c) #(z) dz

= inf {[¢(c)(2 + ¢?)

O=c<y

— (1= &N+ 301/ (y =)}

Furthermore, Bip(y; n) < Bip(y; n + 1), for y > 0.

The proof of this proposition is given in the Appendix.
Note that the last expression in (6) is much more convenient
for minimization purposes than Eaton’s integral form (1).
Further, we can write

Be(y; n) = (.5) Oinf {ELJ(T)]/(y — )},

<c<y

(6)

where T, =n~"/2 %7, U, and Uy, . . ., U, are independent

Bernoulli variables such that P[U; = —1] = P[U; = 1] = .5.
Consequently, there is no contradiction between the fact that
Bip(y; n) improves the Eaton-Pinelis bound Bgp(y) and
the optimality property given by Pinelis (1991) for Bgp. Ac-
cording to the latter, Bgp is optimal in a class of bounds
based on expectations of convex functions of standard nor-
mal variables, whereas Bfp(y; n) is based on the expected
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value of a function of a nonnormal variable (7},). It is also
useful to observe that the bound Bfp(y; 1) increases mono-
tonically with 7.

3. EXPLICIT BOUNDS AND CRITICAL VALUES

The numerical evaluation of Bfp(y; n) and Bgp(y), as
defined in Proposition 1, is possible by means of standard
optimization techniques. Table 1 provides numerical values
for BEp (with n = 20), Bgp, Bg, Be, and Bgq.

Using obvious notation, let Sgp(a/2; 1), Sep(a/2), Se(a/
2), Seq(/2), and Sg(«/2) denote the two-sided critical val-
ues derived from the various bounds considered; that is,
let S.(a/2) be the positive solution of B.(y) = a/2. Be-
cause P[|Z1) a;Yi| = S(a/2)] < 2B.(S.(a/2)) = a,
|27 a;Y;| = S.(a/2) is a conservative critical region for
a two-sided test with level o based on 27, a;Y,. Note that
S.(a) can be used as a (conservative) upper critical value
for a one-sided test with level @ only if 2 7., a;Y; is sym-
metrically distributed, an assumption we have not made so
far. For example, this will hold when Y,,i =1, ..., n have
symmetric distributions, as in Edelman (1990), where Y; is
symmetric Bernoulli with P(Y; = —1) = P(Y; = 1) = }.
Table 2 provides critical values based on the four bounds
Brp, Be, Be, and Bgy, which do not depend on the number
of variables n. The significance levels considered are o = .40,
.25, .20, .10, .05, .025, .01, .005, .0025, .001, .0005. Table
3 contains critical values based on the improved bound
Bfp for n = 5 (1) 15 (5) 100 (10) 150 and « < .20; for «
> .20, the critical values based on Bgp can be used (see Table
2). A more detailed table, with critical values for n = 5 (1)
100 (10) 150, is available in a working paper (Dufour and
Hallin 1992b, table 3). For very small values of n (n < 10)
and small «, the equation Bgp(); 1) = a/2 may not have a
solution; in such cases, we do not report a critical value.
Note that Vz is the maximum possible value of | 27 a;Y;].

All calculations were performed using the GAUSS (1991)

Table 1. Numerical Values of the Improved Eaton Bounds Bg»
(with n = 20) and Bgp, Eaton’s Original Bound B,
Edelman’s Bound Bg,, and Eaton’s Conjectured
Bound Bg, fory = .2(.2)4.0

y  B&(=200 B Be B: Beg
2 .5000 .5000 99.7356 8.7270 1.0000
4 .5000 .5000 12.4670 4.1094 .9996
6 .5000 .5000 3.6939 2.4789 9713
.8 .5000 .5000 1.5584 1.6163 .8588

1.0 .5000 .5000 7979 1.0800 .6915

1.2 3472 3472 4617 .7223 5199

1.4 .2551 .2551 .2908 4774 3712

1.6 1922 .1948 .1948 .3094 .2538

1.8 1278 1311 1311 .1958 .1669

2.0 .0811 .0848 .0848 .1205 .1057

2.2 .0492 .0528 .0528 .0720 .0645

2.4 .0284 .0317 .0317 .0416 .0379

2.6 .0155 .0183 .0183 .0233 .0215

2.8 .0080 .0101 .0101 .0126 .0118

3.0 .0039 .0054 .0054 .0066 .0062

3.2 .0018 .0028 .0028 .0033 .0032

3.4 .0008 .0014 .0014 .0016 .0015

3.6 .0003 .0007 .0007 .0008 .0007

3.8 .0001 .0003 .0003 .0003 .0003

4.0 .0000 .0001 .0001 .0001 .0001
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Table 2. Conservative Critical Values Associated With Bgp, Bg, By,
and Bg, at Usual Nominal Probability Levels «

o Ser(a) Se(a) Sea(a) Se(a)
.40 1.1181 1.2589 1.3580 1.4828
.25 1.4143 1.4724 1.6076 1.6946
.20 1.5812 1.5861 1.7159 1.7910
.10 1.9264 2.0231 2.0738
.05 2.2222 2.2977 2.3345
.025 2.4875 2.5486 2.5766
.010 2.8042 2.8523 2.8730
.005 3.0242 3.0652 3.0822
.0025 3.2308 3.2663 3.2804
.001 3.4868 3.5168 3.5282
.0005 3.6697 3.6964 3.7062

NOTE: Two-sided tests reject at level « if | Za)Y)| = S.(«/2); one-sided tests reject if ZaY, = S.(a)
(< —S.(a)) provided Za,Y, is symmetrically distributed with respect to 0.

,
statistical package. Computation of the functions Bgp()) and
Bfp(y; n), which requires minimizing appropriate functions
over the interval 0 < ¢ < y, were evaluated by a double grid
search over 0 < ¢ < y. A'grid with intervals of length 107*
was first used to locate a first approximate value ¢, of ¢; then
a second grid search over the set [¢c; — 107%, ¢; + 107*] with
intervals of length 10 ~® was used to locate the optimal value
of c¢. The critical values were obtained by solving for y the
equations Bep(y) = a and Bfp(y; n) = a through the quasi-
Newton algorithm for solving nonlinear equations (NLSYS)
available in GAUSS. The validity of each figure obtained
was also checked by direct substitution. To keep the con-
servative character of the critical values reported, the values
in Tables 2 and 3 have been rounded to the closest number
with four decimals not smaller than the one actually com-
puted (with higher precision).

Inspection of Tables 1, 2 and 3 reveals the substantial
superiority of the bounds Bfp and Bgp over their competitors.
One sees easily that

Bip(y; n) = Bep(¥) < Bea(y) < Be(y) < Be(p),

for 0<y=<.7,

Bip(y; n) = Bep(¥) < Bea(¥) < Be(y) < Be(p),
for 8=<y<1.0,

Bp(y; n) = Bep(¥) < Be(y) < Bea(y) < Be(»),
for 1.1<y=<l1.)5,

and

Bfp(y; n) < Bep(¥) = Be(p) < Bra(y) < Be(p),

for 1.6 =y=<5.0.

(See Table 2 and the more detailed tabulation in Dufour
and Hallin 1992b, table 1). From a practical standpoint, the
most relevant ranking is the one for y > 1.6, where Bfp is
strictly smaller than all the other bounds, whereas Eaton’s
bound ranks second (with Bgp = Bg). Further, for a < .10,
the critical values based on Bfp are always strictly smaller
(hence less conservative) than those based on Bgp; see Table
3. Eaton’s conjecture about Bg is numerically confirmed (for
.8 < y < 5.0) but loses its relevance in view of the much
better performance of Bip and Bgp.
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Table 3. Conservative Critical Values Stp(a; n) Associated With Bgp at Usual Nominal Probability Levels «
n a=.20 .10 .05 .025 .01 .005 .0025 001 .0005
5 1.556 1.855 2.087 2.237 — — — —_ —
6 1.564 1.870 2.114 2.315 2.450 — — — —
7 1.566 1.878 2.138 2.343 2.582 2.646 —_ —_ —_
8 1.570 1.886 2.144 2.374 2.603 2.769 2.829 — —_
9 1.571 1.889 2.158 2.380 2.638 2.790 2.944 — —_
10 1.573 1.895 2.162 2.395 2.658 2.825 2.965 3.158 3.163
11 1.574 1.897 2.169 2.405 2.668 2.851 3.000 3.173 3.312
12 1.575 1.901 2174 2.410 2.686 2.860 3.032 3.204 3.327
13 1.576 1.902 2177 2.420 2.694 2.879 3.039 3.242 3.358
14 1.577 1.904 2.182 2.423 2.702 2.891 3.058 3.258 3.397
15 1.577 1.905 2.184 2.428 2.713 2.897 3.075 3.271 3.416
20 1.580 1.911 2.194 2.444 2.736 2.932 3.116 3.334 3.486
25 1.581 1.914 2.200 2.453 2.751 2.952 3.139 3.369 3.524
30 1.582 1.916 2.204 2.459 2.760 2.965 3.155 3.389 3.551
35 1.582 1.918 2.207 2.463 2.766 2.974 3.167 3.403 3.570
40 1.582 1.919 2.209 2.466 2.771 2.980 3.175 3.414 3.583
45 1.582 1.920 2.210 2.469 2.775 2.985 3.182 3.422 3.593
50 1.582 1.921 2.212 2.471 2,778 2.989 3.187 3.429 3.601
55 1.582 1.921 2.213 2.472 2.780 2.993 3.191 3.435 3.608
60 1.582 1.922 2.214 2.474 2.783 2.996 3.194 3.439 3.613
65 1.582 1.922 2.214 2.475 2.784 2.998 3.197 3.443 3.617
70 1.582 1.922 2.215 2.476 2.786 3.000 3.200 3.446 3.621
75 1.582 1.923 2.215 2.477 2.787 3.001 3.202 3.449 3.625
80 1.582 1.923 2.216 2.477 2.788 3.003 3.204 3.451 3.627
85 1.582 1.923 2.216 2.478 2.789 3.004 3.205 3.454 3.630
90 1.582 1.923 2.217 2.478 2.790 3.005 3.207 3.455 3.632
95 1.5682 1.924 2.217 2.479 2.791 3.006 3.208 3.457 3.634
100 1.582 1.924 2.217 2.479 2.791 3.007 3.209 3.459 3.636
110 1.582 1.924 2.218 2.480 2.793 3.009 3.211 3.461 3.639
120 1.582 1.924 2.218 2.481 2.794 3.010 3.213 3.463 3.642
130 1.582 1.925 2.218 2.481 2.794 3.011 3.214 3.465 3.644
140 1.5682 1.925 2.219 2.482 2.795 3.012 3.216 3.467 3.646
150 1.582 1.925 2.219 2.482 2.796 3.013 3.217 3.468 3.648

NOTE: Two-sided tests reject at level « if |Za)Y;| = Sgs(«/2; n); one-sided tests reject at level « if = &Y, = SEzs(a; n) (< —Sge(a; n)) provided Za)Y, is symmetrically distributed about 0.

4. STATISTICAL APPLICATIONS
4.1 One-sample Permutation f Tests

Let X,, ..., X, be independent random variables with
(possibly nonidentical) unspecified distributions symmetric
about a common median u. It is well known that the classical
one-sample Student statistic

n n 1/2
T,=n"? 3 (X; - Mo)/[(” -7 Y (X "X)z] :

i=1 =1

can be used to test H, : u = uo against u > uo if one considers
its permutational null distribution; that is, the conditional
distribution of T, given |X; — uol, ..., | X» — wol. This
conditional test follows from classical unbiasedness and
Neyman structure arguments; see Hoeffding (1952), Leh-
mann (1986, chaps. 5 and 6), Lehmann and Stein (1949),
Pratt and Gibbons (1981, pp. 218, 233-234). The problem,
of course, is that this permutational distribution cannot be
tabulated explicitly. Several authors, therefore, have proposed
bounding permutational tail areas to obtain conservative
critical values; see Dufour and Hallin (1991) and Edelman
(1986, 1990). The improved Eaton bound derived here also
yields such conservative permutational critical values. Define
(with the convention 0/0 = 0)

n —-1/2
Sn=Z[Z(Xj—#0)2] | X; — wol Ui,

=1 L j=1

where U; = sgn(X; — uo) denotes the sign of X; — uo and
sgn(x) = x/| x|. It is easy to verify that S, = n'/?T,/[n — 1
+ T2]'? is a monotonically increasing transformation of
T,. Further, the conditional distribution of S, (given | X,
—uol, ..., | Xn — mol) is symmetric about 0. Because S,
has the form 27, a,Y, considered in Proposition 1, it follows
that

P[T, = z[ | Xy — pmol, - - -5 | Xy — mol]

< Bfp[n'?z/(n—1+ 23" n] (7)
for z > 0, so that
ta(@) = (n = 1)'2SEp(a; n)/[n — (Skp(a; m))*1'2,  (8)

where SEp(a; n) is given by Table 3, can be used as a critical
value for one-sided permutation ¢ tests (provided Stp(a; 1)?
< n). Similarly, the one-sided critical region 7, < —t,(«/2)
against u < ug and the two-sided critical region | T,,| = t,(a/
2) are conservative at level a. Of course, in (7) and (8), the
bound Brp could be replaced by Bgp and SEp(e; 1) could
be replaced by Sgp(a) from Table 2, yielding more conser-
vative critical values (provided that Sgp(a)? < 7).

In Table 4, the bounds Byp and Bgp from (7) are compared
with Bgq as well as with Edelman’s (1986) exponential bound

P[Tn->-2| |Xl _l~t0|,~--, IXn_IiOI]
<exp(—nz?/[2(n—1+z3)]). )

The figures in Table 4 demonstrate the substantial superiority
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Table 4. Permutational One-Sample t Test (n = 20, 40). Comparison Between the Improved Eaton Bounds Bgr and Bep,

Journal of the American Statistical Association, September 1993

Edelman’s (1990) Bound Bg,, and Edelman’s (1976) Exponential Bound

Tail area bounds z= 1.0 1.5 2.0 2.5 3.0 3.5
Bep(n"?zf(n — 1 + 29)'?) n=20 .5000 .2361 .1109 .0460 .0189 .0080
n=40 5000 2292 0977 .0344 0111 0034
Bep(n"?z/(n — 1 + Z)'?) n=20 5000 .2361 1143 .0497 0219 .0101
n=40 .5000 2292 .0994 0361 0122 .0040
Bea(n'2z/(n — 1 + 23)'?) n=20 6915 .3356 1444 .0605 .0260 0118
n =40 6915 3222 1248 0434 .0142 .0046
exp(—nz?/[2(n — 1 + 27)) n=20 .6065 .3469 1757 .0841 .0402 .0198
n=40 6065 .3359 .1556 .0631 0235 .0084

of the improved Eaton bounds Bfp and Bgp over those sug-
gested by Edelman (1986, 1990). Note that the latter, in
turn, improve earlier bounds given by Bernstein (1924,
1927)—see also Godwin (1955, p. 936) and Uspensky (1937,
pp. 204-206)—Bennett (1962, (7a) and (8a)), Craig (1933),
and Hoeffding (1963, (2.2) and (2.3)). All the bounds con-
sidered here are uniform, in the sense that they do not take
the | X; — uo| values into account. Further improvements
might be obtained (in certain cases) from nonuniform
bounds; see Dufour and Hallin (1992).

To assess better the validity and tightness of the Eaton
bounds in the context of permutational ¢ tests, we present
in Table 5 permutational critical values for S, (given | X, |,

, | Xa]), at level .05 (two-sided test), associated with 100
independent samples of # iid N(0, 1) random variables (#
= 20, 40). The 100 samples were generated by a Monte
Carlo simulation. For each sample of size n, we give the
quantiles of order 0 (minimum), .25, .50, .75, and 1 (max-
imum) of the permutational critical values associated with
the 100 samples considered. For each of these samples, the
permutational critical value was estimated by a Monte Carlo
simulation with 1,000 replications (keeping | X, |, ..., | Xl
fixed). The critical values in Table 5 are directly comparable
with the conservative critical values in Tables 2 and 3. As
expected, the maximum permutational critical value is
smaller than the corresponding bound for each sample size;
for example, for n = 40, the maximum critical value is 2.107,
whereas Table 3 yields the bound Sfp (.025; 20) = 2.444.
Of course, distributions other than the normal may yield
permutational critical values closer to the bound SFp. Find-
ing which distribution of (X, . . . , X,;)’ yields permutational
critical values that tend to be closest to Sgp is beyond the
scope of this article.

4.2 Permutation t Tests Against Regression

As another application, consider the simple regression
model y; = Bx; +e;,i=1, ..., n, where x;, ..., X, are
fixed regression constants, not all equal, and ¢, ..., e, are

Table 5. Permutational One-Sample t Test (n = 20, 40). Distribution
of Permutational Critical Values for Two-Sided Tests Based on S,:
100 Normal Samples, a = .05

Sample size  Minimum Q(.25) Q(.50) Q(.75) Maximum
n=20 1.783 1.889 1.932 1.964 2.060
n =40 1.817 1.898 1.944 1.988 2.107

NOTE: Q(p)is the pth quantile of the empirical distribution of critical values. The permutational
critical values were evaluated by a Monte Carlo simulation with 1,000 replications.

independent errors with possibly nonidentical distributions
symmetric about 0. The classical Gaussian procedure for
testing H, : 8 = B¢ in this model relies on Student’s statistic

n 1/2
=(8- ﬁo)/ [(n - Z (i —Bx:)?* [ 2 X?] ,
=1 i=1
where 8 = (Z7-; x?)™' 27, x;y:. Here again, the classical
t distribution of T, does not generally hold under H,, and
unbiasedness as well as Neyman structure arguments lead
to conditioning on | y; — BoXi|, - .., | ¥» — BoXn|. Setting

n
=2 |y — Boxi| x;Us,
i=1

where U; = sgn(y; — BoX;), it can be shown that

27=l .X',2~ Z?=1 (J’: - ﬁoxi)z 12 Tn

2 (v — Boxi)*x? (n—1+THV*’
which is again a monotonically increasing transformation;
see Dufour and Hallin (1991). Conditional on | y; — Boxi |,

, | y» — Boxnl, S, has a distribution symmetric about 0
and satisfies the conditions of Proposition 1, so that

P[Tn22||J/1—ﬁoX1|,~-~, |yn_60xn|]

- B* -1 x’2 2 (i — ﬁoxi)2 12
U = (i — ﬁoxi)zxz2

Sp =

Xz/(n—1 +22)'/2;n) (10)

for z > 0. Critical values #,(a) can be obtained from Table
3 and

to(a) = (n— 1)"2SEp(a; 1)

. { -1 xxz 2 (i — ﬁoxz‘)z
' i (v — ﬁoxi)zxz2

(provided the denominator of ¢,(«) is real and positive).
Note that the bound in (10) is nonuniform here because it
involves both the observations y; and the regression constants
x;. Similarly, it is straightforward to see that the two-sided
critical region | T, | = t,(a/2) has size not greater than «.

1/2
— (SEr(e; n))Z] (11

4.3 Permutation Tests Against First-Order
Autocorrelation

Consider the first-order autoregressive model X, — pX,—_;
=e¢,t=0,1,...,n,where e, e, ..., e, are independent
disturbances with possibly nonidentical distributions sym-



Dufour and Hallin: Improved Eaton Bounds

metric about 0. Suppose that we wish to test Hy : p = 0.
Usual testing procedures are based on some properly nor-
malized version of the first-order autocorrelation

n n
(n)
rln =2 XX thz
=1 =0
Here again, unbiasedness and Neyman structure arguments
suggest conditioning on | Xy|, | X[, ..., | X,|. Define

n n -1/2
Sn=z[ |XSXS_1|2] X1 1 Xt [ U,

=1 Ls=1

where U, = sgn(X,X,_;) denotes the sign of X, X,_,. It can
be shown that S, is symmetrically distributed about 0 and
satisfies the conditions of Proposition 1 (conditional on | X; |,
..., | Xu|); see Dufour and Hallin (1990). Obviously,

n —-1/2r n
r>z iffS, > [z |X,X,_1|2] [z X,z]z.
=0

=1
Accordingly, for all positive z,
PIr” = 2| | Xol, .., | Xal]

<o 2

—1/2r n
IX,X,-IIZ] [Z X?]z; n), (12)
=0

(n)

and conservative critical values for 7| ' are

n —-1/2 n
rﬁ")(a)=[Z|X,Xt-1|2} Skp(a;n) [ X X2, (13)

=1 =0

irrespective of the sample size. The corresponding two-sided
critical region is |7\”| = r{”(«/2). Here again, the inno-
vations e, need only satisfy a mild symmetry assumption
(with respect to 0).

4.4 Linear Signed Rank Statistics

Various testing procedures in nonparametric inference
based on ranks rely on linear signed rank statistics of the
form

Tn = z an(Ri+9 i)Sgn(Xi)a
i=1
where X|, . .., X, denotes a series of observation, R} is the
rank of | X;| among | X[, ..., | X,|, and a,(r, i) is a score
function. For example, with a,(r, i) = a,(r), T, can be used
to test whether independent symmetrically distributed ob-
servations X, . .., X, have median 0; see Hajek and Sidak
(1967), Hollander and Wolfe (1974), or Huskova (1984).
This includes, in particular, paired sample comparisons; see
Hajek (1969, pp. 109-112) and Pratt and Gibbons (1981,
chap. 3). Other useful applications include tests against
regression or trend alternatives, where a,(r, i) = c;a,(r) and
¢, ..., C,are known constants (Puri and Sen 1985, chap.
3), and tests against serial dependence (Dufour 1981; Hallin,
Laforet, and Mélard 1989; Hallin and Puri 1991). Except
for a few cases, such as the one-sample sign and Wilcoxon
tests, for which simple formulas and tables are available, the
null distribution of this type of statistic must be obtained
either by approximations or by computationally expensive
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algorithms. In particular, asymptotic normal approximations
and their rates of convergence have been extensively studied;
see Albers, Bickel, and van Zwet (1976), Hajek and Sidak
(1967), Huskova (1970, 1984), Koul and Staudte (1972),
Puri and Sen (1985, chap. 3), Puri and Ralescu (1982, 1984),
Puri and Seoh (1984a, b, ¢, 1985), Puri and Wu (1986),
Ralescu and Puri (1985), Seoh (1990), Seoh and Puri (1985),
Seoh, Ralescu, and Puri (1985), Thompson, Govindarajulu,
and Doksum (1967), and Wu (1986, 1987). Convergence to
normality, however, requires restrictive regularity assump-
tions on the scores and regression constants. For general score
functions and given sample size, the normal approximation
may be highly inaccurate, and there is no general guarantee
that tests based on such approximations will not reject too
often. Similar remarks also apply to approximations based
on asymptotic expansions, like Edgeworth expansions (Al-
bers, et al. 1976; Fellingham and Stoker 1969; Field and
Ronchetti 1990; Puri and Seoh 1984a,b; Thompson, Gov-
indarajulu, and Doksum 1967). For several examples show-
ing that Edgeworth expansions may underestimate the actual
tail probabilities in the case of linear signed rank statistics,
see Dufour and Hallin (1992a).

When X, ..., X, are likely to have nonhomogeneous
distributions (as in the case of heteroscedastic observations),
it appears again safer to condition on | X[, ..., | X,| oran
appropriate function of the latter, such as the rank vector
(RT, ..., R}). Then, provided that X, ..., X, are inde-
pendent with distributions symmetric about 0, we straight-
forwardly obtain

P[T,=z|RY,...,R}]

< Bip(2/0n; n) < BEp(z/0n3n)  (14)

for z > 0, where ¢, = [2", (a,(R], i))*]'/2, hence con-
servative (one-sided) critical values of the form T,(«)
= Ste(a; n)oy,.

Other explicit bounds (of the exponential, Chebyshev, and
Berry-Esséen types) have been derived for this situation by
Dufour and Hallin (1992a). Table 6 provides a comparison
for the following two statistics:

n R;O—
T®M = E}l sgn(X,-)cos[r(l + -y l)]

n ) l 1/2
+ I+ ,

i=1

T = 3 sen(X)i%/n(n + 1)@n + 1)/6]'7.

i=1

TV is the optimal one-sample linear rank statistic against
location shift when the observations are independent with a
Cauchy distribution (Philippou 1984), whereas T is opti-
mal against quadratic trend under double-exponential den-
sities. Both 7"’ and T? are exactly standardized under the
null hypothesis of independent observations with symmetric
(possibly nonidentical) distributions. The best of the expo-
nential, Chebyshev, and Berry-Esséen bounds proposed in
Dufour and Hallin (1992a) are provided, for n = 25 and »
= 50, along with the improved Eaton bounds (Bgp and Bgp)
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Table 6. Signed Rank Statistics T¢" and T®

n=25 n=50

Z/on = 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
Beq 6915 .3085 .1057 .0287 .0062 6915 .3085 .1057 .0287 .0062
Bgp .5000 2222 .0819 .0218 .0042 .5000 2222 .0834 .0230 .0048
Bep .5000 2222 .0848 .0242 .0054 .5000 2222 .0848 .0242 .0054
T$ Best nonuniform 3512 2222 .0900 .0268 .0052 .2944 .2026 .0919 .0289 .0065
(Type) (BE) (C2) (C4) (C8) (C12) (BE) (BE) (C4) (C6) (C10)
Winner BE Bgp = C2 Bgp Bt Cc12 BE BE Btp Bep Btp
Tail area .1604 .0658 .0220 .0051 .0008 1579 .0655 .0214 .0058 .0011
T2 Best nonuniform .4107 .2222 .0870 .0219 .0032 .3379 2222 .0903 .0275 .0055
(Type) (BE) (C2) (C4) (C8) (C12) (BE) (C2) (C4) (C6) (C10)
Winner BE Bt = C2 Btp Cc8 C12 BE c2 Bep Bte Btp
Tail area 1625 .0691 .0219 .0045 .0005 .1595 .0655 .0216 .0050 .0009

NOTE: Comparisons between Edelman’s bound Beg,, improved Eaton bounds Bee and Bz, and best nonuniform bound among exponential (Exp), Chebyshev (Ci, where i indicates the order of the
optimal Chebyshev inequality used) and Berry-Esséen (BE) bounds; n = 25 and 50. Actual tail areas were evaluated by a Monte Carlo simulation with 10,000 replications.

and Edelman’s Bgq. We see that the improved Eaton bounds
provide the tightest bounds in about one-half of the cases
considered.

APPENDIX: PROOFS

Proof of Lemma 1. Setting D = {t| Tt #ﬁ(t)} and T, = {t
>0|t+ AEDor—t+ A€ D}, for A = 0, the proof is analogous
to the one of Eaton’s (1974) lemma 1, starting with O < ¢ & T,.

Proof of Proposition 1.
(1974), we have

From inequalities (3.4) and (3.5) of Eaton

[ 2 a ‘>y]<15[fe(T)]/(y—c)3
=1
for 0 < c <y, where T, = n™'/2 27, U, and Uy, ..., U, are
independent random variables with P[U; = 1] = P[U, = —1]
=.5,i=1,...,n. Let

B(y;e,n) = (DEM(T))/(r =0, 0=c<y,
and V; = (U; + 1)/2,i=1,...,n.Itisclear that V|, ..., V, are
independent random variables with P[V; = 0] = P[V, = 1] = .5, i

=1, ..., n, so that the variable B, = Z/-; V; has a binomial
distribution B(n, .5). Because T, = (n/4)""?(B, — (n/2)), we
have

n

E[f(TH]=(5" 2

m=0

(;) £L(n/4) 2 (m — (n/z))]/<y i

for 0 < ¢ < y; hence

P[ > y]
=1

Further, by Chebyshev’s inequality,

AZ =)=z )]/

- ia%mh

<2 inf B(y;c, n)=2Bg(y;n).

O=c<y

Y,

yr < y? y>0, (A.l)
because E(Y?) <1 and 27
follows.

To get the second inequality, we observe that the function f.(x)
is symmetric (about 0) and that f; exists everywhere and admits
nondecreasing left and right derivatives, (f); and (7,;),, such that
() = (f2)r everywhere except at x = *c¢. By Lemma 1, f€ ¥,.
Eaton’s (1974) propositions 1 and 2 consequently hold, and

_, a?> = 1. The first inequality in (4)

E[f(T,)] < E[f{Tn+1)] < E[f(Z)], where Z stands for a standard
normal variable. Consequently, Bip(y; n) < Bip(y; n + 1) for y
> 0. Further, for ¢ = 0,

EU@N =2 [ (= oroce) ae
= 2“*00 23¢(z) dz — 3cf00 y*(z) dz

+ 3¢? fw zd(z) dz — 3 foo &(2) dz}

= 2{—C3H| + 3C2H2 - 3CH3 + H4},

with
H = fw #(z)dz=1—(c), H, = fw 2¢(2) dz
- _£ #(z) dz = §(c),
H; = fc 22¢(z) dz= J; [$(2) + ¢(2)] dz
= —¢(c) + 1 — B(c) =cd(c) + 1 — ¥(c),
H, = £ 2¢(z) dz = _[ [2z¢(z) — ¢(2) — $(2)] dz

= 2¢(c) + ¢(c) + ¢(c)(c* — 1)
= (¢ + 2)¢(¢);
hence E[f(Z)] = 2{¢(c)(2 + ¢?) — (1 — &(¢))(c* + 3¢)}. Thus
2Bg(y; n) < Oisrcl<fy {E[f(D)1/(y —¢)*} =2Be(y). (A2)

The second inequality in (4) follows on combining (A.2) and (A.1).
[Received April 1991. Revised October 1992.]
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