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GENERALIZED PREDICTIVE TESTS AND STRUCTURAL CHANGE
ANALYSIS IN ECONOMETRICS*

By Jean-Mawrige DUFCUR, BEric GHYSELS, AND ALaSTAR HaArLL!

A generalized predictive testing procedure for structural stability in nonlin-
ear dynamic simultaneous equations models is presented. It has several
attractive features: (1) the tests are based on easy-to-compute predicted
residuals: (2) the prediction subsample can be arbitrarily small; (3} only
consistency is required and allowance is made for data-based model selection;
(4) it is possible to analyze the timing and form of structural change equation
by cquation or globally, allowing an exploratory analysis of structural change
conveniently summarized in a predictive analysis table; and (5) general forms
of temporal dependence between modet disturbances are allowed.

1. iINTRODUCTION

Many models in econometrics can be written in the form
(1.1) flX,, Bl=wu, t=1, .o, n

where f, is an m % | (possibly nonlinear) vector fonction, X, is a g % 1 vector of
variables, Bis an{ % | parameter vector, and i, is an m X | vector of disturbances
such that E(u,) = {0, Prominent examples include linear and nonlinear regression
madels, time series models, nonlinear simultaneous equations models and Euler
eguations models.

Before a model is used to draw inference about economic phenomena, it is
important to assess the adequacy of its specification. While the examples cited
above differ in the choice of f,[-] and the assumptions made about [X,, «,], they are
alt based on the assumption of parameter constancy over the sample. Therefore, in
any of these examples, a natural method for assessing model adequacy is to test
perameter constancy. Such a test is particularly appropriate for dynamic econo-
metric models. Lucas (1976) has argued that the parameters of traditional econo-
meatric models arc functions of the economic environment and certain underlying
“laste and technology’ (or ‘‘structural’’) parameters. This led to a growing
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research program whose aim is te estimate these structural parameters from models
based on Euler optimality conditions; see, for example, Hansen and Singleton
(1982), Pindyck and Rotemberg (1983), Eichenbaum, Hansen, and Singletor (1987)
and Gallant and Tauchen (1989). Given the Lucas critique, it appears fundamental
to test whether the parameters of models derived from Euler cquations exhibit the
constancy predicted by economic theory.? Of course, it may be useful to test the
stability of a model in other contexts as well.

Despite the importance of this problem, work on testing for the presence of
structural change has mainly considered linear regression models (see Chow 1258,
Dufour 1980, 1982a, 1982b and the references therem} or lincar simultaneous
equations models (see Erlat 1983, Lo and Newey 1985, Hodoshima 1986 and Honda
1990). Work on nonlinear dynamic simultanecus eguations models has been much
more limited. Recently, however, Andrews and Fair (1988}, Ghysels and Hall
(1990a, 1990b) and Andrews (1993) have proposed tests of parameter stability
applicable to such models.

Andrews and Fair (1988, henceforth AF} consider the problem of testing
parameter stabilily against the alternative that the sample can be split inte two
subsamples with known breakpoint and such that coefficients are stable inside the
subperiods considered. They propose Wald. likelihcod ratio-type (LR} and La-
grange multiplier-type (LM) tests, and they derive the asymptotic distributions of
the test statistics as both subsamples become large. Their results apply under weak
regularity conditions which allow for general forms of temporal dependence and
heteroskedasticity. However, their analysis does require that the ratio of subsam-
ple sizes be asymptotically fixed. Further, to implement the Wald and LM tests, the
asymptotic distribution of the parameter cstimates needs to be known, while LR
tests require additional regularity conditions to be valid. Similarly, Ghysels and
Hall (1990b) introduce a different LR-type test which is based on procedures
suggested by Gallant (1987a) and Eichenbaum, Hansen, and Singleton (1988). All
these tests can be interpreted as generalizations of classic analvsis-of-covariance
tests for the problem of comparing two regressions (Kullback and Rosenblatt 1957,
Chow 1960). Ghysels and Hall (19902, henceforth GH) propose to test structural
stability by using a generalized predictive approach. This procedure can be viewsd
as an extension of the Davis's (1952) approach, originally proposed for single linear
regressions, to nonlinear dynamic simultaneous cquations models. It is based on
evaluating the orthogonality conditions from one subsample at the parameter
estimates obtained from the other subsample. 1f the model is stable, these estimated
orthogonality conditions should hold approximately, yielding residuals that ave not
statistically different from zero.? GH derive the asymptotic distribution of their test
statistic under the weak assumptions employed by AF. Compared to the AF tests,
the predictive test is simple to implement as well as designed against a wider

2 Furthermore, parameter consiancy tests are particularly convenient in Euler equativns models
because these models are usually estimated under very weak assumptions about [X, . &, ], s0 that very few
model specification tests are available; sce Hansen (1982) and Ghysels and Hall {199a, 19%0b).

3 The idea of using such residuals to test parameter constancy in noplinear models was also suggested
and applied by Hoffman and Pagan (198%). Other applications appear in Epstein and Zin (1921) and
Ghysels and Hall {1990b).
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alternative, but shares the disadvantage of requiring e¢ach subsample to be
sufficiently large to allow the application of conventional asymptotic theory.
Further, the asymptotic distribution of the parameter estimates also needs to be
known, More recently, Andrews (1993) has extended the AF framework to cover
the case where the breakpoint is unknown. His test is based on calculating a given
test (Wald, LM or LR) against a two-regime alternative for a subset of possible
breakpoints, and then using the maximum of these statistics as the test statistic.
Andrews derives and tabulates the limiting distribution of such tests under weak
conditions on [X,, #,] and f,[-]. While this procedure may represent a significant
improvement over previous contributions, because it allows for unknown break-
point, some undesirable features remain. Firstly, there must be enough observa-
tions both before and after every breakpoint to ailow the application of conven-
tional asymptotic theory. Secondly, the Wald and LR-type tests require one to
reestimate the model aver two subperiods for each breakpoint considered, and thus
they can be computationally quite expensive. Thirdly, they are cleatly designed
against a two-regime alternative and do not allow an exploratory analysis of
possible structural shifts during a given subperiod. Indeed, it is a common
drawback of all the tests mentioned above that they cannot be applied to detect
structural instability at either the very beginning or the end of the sample.

The GH predictive test is computationally convenient. However, it is based on
estimated orthogonality conditions that are effectively the average of a set of
estimated disturbances. When viewed from this perspective, it is clear that one may
lose a considerable amount of information by examining only the average rather
than the complete vector of the residuals. Clearly, it is possible for certain patterns
in the residuals to indicate structural instability, but still average out not to be
significantly different from zero.?

In this paper, we propose predictive tests for structural stability that utilize all the
information contained in the residuals of a nonlinear dynamic simultaneous
equations model of the form (1.1). The tests arc applicable when the model is
structurally stable during a given asymptotically large subperiod (the “‘estimation
subsample™) but the form and timing of possible structural changes during the
second period (the “*prediction subsample’’) are unknown. Most importantly, our
tests do not require the prediction subsample to be asymptotically large. Therefore,
unlike the A¥, GH and Andrews tests, our procedures can be applied to test
structural stability near the end of the sample. Further, the tests are applicable even
if the asymptotic distribution of the parameter estimates is unknown: only a
consistency assumption is required. Data-based model selection is also allowed.
The tests proposed here can be viewed as extensions of Chow’s (1960) predictive
test, which was criginally proposed for linear regression models, to nonlinear
dynamic simultaneous equations models. In addition, we present a simple explor-

1 1t is of interest to note here that the predictive test formally derived by GH is not a generalization
of the so-called “‘predictive Chow test’” proposed by Chow (1960} for the case where the predicted
subsample is undersized in a linear model. Chow’s predictive test assesses whether all the prediction
errors have mean zero, not whether these prediction errors are zero on average. In general, there is no
reason to expect that the sum of predicted residuals will be a sufficient statistic to analyze structural
change, either in finite samples or asymptotically (except against very specific alernatives).
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atory technique for analyzing structural change in the prediction subsample which
extends earlier work by Dufour (1980, 1981) for the linear regression model. This
exploratory technique can be a useful complement to any global test for the
presence of structural change, such as the tests suggested by Andrews and Fair
(1988), Ghysels and Hall (1990a, 1990b) and Andrews (1993).

The intuition behind our procedures follows from the observation that if the
model is stable over the entire sample, then the laws of motion of ¢, within the
prediction subsample are the same as those for the estimation subsample. We
propose using the estimation subsample to estimate relevant aspects of the laws of
motion of u, in the prediction sample, and then employ these to estimate
probabilities of observing values of u; in the prediction subsample (or bounds on
the latter probabilities), when the model is stable. To develop our tests, we must
circumvent two problems. The first problem comes from the fact that § is unkvown,
so that 4, is unobservable. Therefore, we base our tests on the residuals #, =
filX,, Bl where 8 is obtained from the estimation subsample. We call such
residuvals predicted residuals. 1t is important to note that predicted residuals arc not
generally identical to prediction errors, except in special cases {c.g., linear
regression models). Indeed, in nonlinear simultancous equations models, forecasts
and forecast errors can be quite difficult to compute (see Bianchi and Calzolar
1980, Brown and Marianc 1984 and Mariano and Brown 1983a, 1983b, 1985), while
predicted residuals are usually easy to calculate. We prove two general proposi-
tions under which #, and #, are asymptotically equivalent, and so asymptotically
have the same distribution. These propasitions allow for data based model selectinn
and may be of separate interest. The second problem pertains to the specification
of the laws of motion of #;. In some circumstances, one may be comfortable with
completely specifying the probability law of {u,} up to a finite nuember of
parameters (e.g., with a normality assumption). However, in other cases, such as
Euler equations models, economic theory does not provide distributiona! informa-
tion and the current practice is to employ robust estimation technigues such as
GMM (Hansen 1982). Accordingly, we propose three different methods for
estimating the distribution of the predicted residuals, cach of which uses different
amounts of information about the probability distribution of fu,}. First, we
consider the case where {u,} has a normal distribution and show that our methods
yield convenient normal and »* statistics. Secondly, we consider the case where
one has very little information about the distribution of {x,} and propose using
Markov inequalities to provide bounds on the desired probabilities. This method
only requires an assumption about the constancy of certain conditional or uncon-
ditional moments. Finally, we consider the use of semi-nonparametric (SNP)
techniques to model the distribution of u, and propose using this estimuted
distribuiion to calculate the desired probabilities. We illustrate our technigues using
recent models for the comovements of asset prices and consumption considergd by
Hansen and Singleton (1982) and Gallant and Tauchen (198%). We find clear
evidence of structural instability mostly but not exclusively related to the Octiober
1979 monetary policy shift.

Section 2 describes our general framework, defines the test statistics proposed
and shows how they can be used when the distribution of the disturbances is
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assumed to be known up to a finite number of parameters (e.g., a normal
distribution). Section 3 gives the asymptotic equivalence results which ensure the
asymptotic validity of the method, under the simple assumption that consistent
model selection and parameter estimates are available. Sections 4 and 3 discuss two
alternative ways of dealing with nonnormal disturbances: the first one is based on
Markov inequalities, while the second one is based on semi-nonparametric estima-
tion. Section 6 presents applications of the techniques suggested to a VAR model
and to consumption-based asset pricing models. Finally, Section 7 contains a
number of concluding remarks.

2. PREDICTIVE TEST STATISTICS

Consider a general mode! of the form
(2'1) f![k! X.E’ .B(k)]:;”h IETa

where £,[k, X, Bk = (fulk, X¢, BUOL, oo s fruelk, Xy BUODY', f 15 2 known
real function, X, is a ¢ X | vector of random variables, k is a positive integer
parameter, j = 1, ..., m, B(k) is an I(k) x 1 real parameter vector whose
dimension /(k) can be a function of k, T is a subset of the integers (TChandu, =
(Ui, - 5 ) I8 A vector of random disturbances such that E{u;) = 0. In certain
cases, we shall also make the stronger assumption E(u/|X, |, X,—2, -.)=0.The
integer parameter k can be viewed as an index for the model, to be chosen from the
nonempty countable set M C N, possibly on the basis of the data. Clearly, it is
natural to suppose that the dimension I(k) of the parameter vector B(k) be a
function of & (e.z., the order of an ARMA model). When only one model is
considered, equation (2.1) can be written more compactly as

2.2) filX,, Bl=u,, t&€T

where £ has dimension /.

In general, it will not be assumed that the random disturbances {u,:t € T} are
mutually independent {or uncorrelated). In many cases thougk, it is appropriate to
make such an assumption. Such cases would include simultancous equations
models with uncorrelated errors, as well as Euler equations models where
innovations are martingale difference sequences. When the u,’s are autocorrelated,
we will assume that we can estimate the autocorrelation structure and orthogonal-
ize the disturbances accordingly (e.g., by using an autoregressive model on the
disturbances). Assuming that the disturbances are uncorrelated may therefore not
be very restrictive from a theoretical point of view, since it is possible to include the
parameters of the autocorrelation structure into the vector 3(k). On the other hand,
it may be simpler in practice not to model the autocorrelation structure. The results
below allow both possibilities.

Suppose now that 7' = {-n; + 1, ... , 0, 1, ..., n,} and the sample is split into
two parts: the estimation subsample T, = {—»n; + 1, ..., 0} and the prediction
subsample 7> = {1, ..., ny}. The first sample is assumed to be large enough to

allow the estimation of the mode!. In contrast, the prediction subsample may not be
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large (possibly containing only one observation). Further, we suppose that the
model is stable over the first period T, while it is not necessarily stable over the
second period T;. We arc interested in detecting the presence of structoral change
during this second period. We would also like to analyze the timing and form of
possible shifts over the latter period. Note we are not assuming that there is a
structural break at the point where the sample is split: we simply assume that somc
form of structural change may have taken place during the second period. More
explicitly, the null hypothesis will be defined as

(2-3) H(]:E(ff[k(}9X.'! BU])zow VIET,

where kg € M and 8, & [R"“"“), while the alternatives considered are subsets of the
general alternative

(24) HIZE(fr[kU’Xh fgl)]):ov V{ETI,
and E(f,[ky, X,, B4]1)520, for some 1 < 7.

As pointed cut by Ghysels and Hall (1990a), 2 natural way of testing structig:!
stability consists in estimating the model from the first sample and then checking
whether the estimated disturbances from the second sumple are “large.”” We shall
call the latter predicied residuals. More precisely, if k,,l and E(ﬁnl) are estimators
of k and B{k) obtained from sample 7', we check whether the predicted residuals
(2.5) an) =filk,, . X, Bk, )], t€T,,
are statistically “‘large.” We call such tests generalized predictive tests for
structural change. Moreover, by looking at individual equations and individual
values of ; © T,, we can assess which equations and which observations in the
second sample exhibit discrepancies with the rest of the sample. Note that
predicted residuals are not generally identical to prediction errors, except in special
cases (e.g., linear regression models). Indeed. in nonlinear models such as (2.1,
forecasts can be difficult to compute; see Bianchi and Calzolari (1980), Brown and
Mariano (1984} and Mariano and Brown (1983a, 1983b, 1985, By contrast, it is
usually straightforward to compute predicted residuals.

We propose two types of predictive stability tests. The first one examines
individual values of #,(x ) Ef,[.@,,!, X, Btk, )] and their components, where 1 ©
T,. Such tests are called individual or sequential predictive tests. The second one
considers scveral or all the values of &,(n ), t & T,, for evidence of instability:
these tests are referrved to as joint predictive tests. Both tests can be applied under
fairly general circumstances, provided we can rely on: (1) an asymptotic equiva-
lence result, and (2) a distributional stability assumption under the nuil hypothesis
appearing in (2.3).

To obtain the asymptotic equivalence result needed. it will be showa in Section
3 that, under very general conditions, &,(n) ard #, = f,(ky, X,, By) have the
same asymptotic distribution as n; — =, provided plimy, . »’2,,‘ = kg and
plim, . B(ky) = By. In addition, we need to use a distributional stability
argument in order to decide whether i#,(n;) is **large.”” This requires being able to
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determine the distribution of «, (under Hy), where 1 € T, on the basis of the first
sample T, {e.g., by appropriate ‘‘stationarity”’ assumptions). The distribution
considered may be the unconditional distribution of «, or the conditional distribu-
tion given an appropriate information set W. Natural choices for the set ¥ are the
history of the process up to the end of the first sample {¥;) or up to time ¢ — 1
(¥,_;), where we denote ¥, = {X;i5 < 7}. Depending on the conditioning
information set, we distinguish: (1) predictive tests based on the unconditional
distribution, i.e., ¥ is the empty set; (2) predictive tests conditioned on data from
the period T, i.e. ¥ = ¥y; and (3) tests for #,(ny), 1 € T, using information up
tor - 1, hence, possibly including observations from the period 7,. In the second
case, we assume also that E(u,|¥,) = 0 for r € T,, while in the third case, we
assume £(u,|¥, ) = 0 for t € T,. Tests based on the unconditional distribution
are often the easiest to implement, in comparison with conditional tests. The latter,
however, are most likely to be more powerful than unconditional tests because they
use more information. This, in fact, emphasizes an important point already noted in
Section 1. Namely, since we look at individual predicted residuals 7.(n,), instead
of averages, distributional assumptions about #, will play a crucial role, even if ny
is large.

In order to analyze the information contained in the predicted residual vectors
i, (ny), it will usually be convenient to scale these by appropriate factors or
matrices, such as standard errors or covariance matrix estimates. Let &, (r [¥),
where i, j= 1, ..., mands, = 1, ..., ny, beacollection of such factors. The
latter will typically be functions of the first sample (of size n;). W represents a
(possibly empty) set of conditioning variables. Let also

2.6) S0 1W) = [y [ ejerms By [ W) =[Gy (0 [ )1y s
2.7 Ay W) = [, (n W) )=t o, -

For example, if it is assumed that E(nﬁ) < o, for all j and ¢, a natural choice for
Tyjse (1]} is to take a weakly consistent estimator (as n; — =) of the covariance
Uy (F) between u; and u;, (conditional on W), i.c., plim, .o [Ty, (V) —
oy (W3] = 0. Note that ¥ = (7 (empty conditioning set) yields unconditional
covariances. Assumptions under which such estimators can be obtained will be
discussed in Section 3. In this case, % ,,(n,|W¥) is a consistent estimator of the
covariance matrix 2 (W) between u, and u,, A #(n1|¥) is a consistent estimator
of the covaljance matrix 4, (¥} between u' = (g, oo, ) and w = tj1s ooe s
uj, )" and A(n,]W) is a consistent estimator of the covariance matrix A(¥) of # =
(uy, uh, ..., uy ). In most cases studied below, we shall adopt this covariance
interpretation. However, other interpretations may be required (¢.g., when second
moments do not exist). We can now define the basic test statistics that will be
considered.

Consider first the individual predictive test statistics. These are defined as
follows:

{28) ﬁj,(n;!‘lf) = fij,(nli‘l’")."&j,(n, E\P), j: 1, ey M, e Tz,
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(2.9) Wl W) = @ (n)'[5, (0, W) 1, (ny), 1€ Ty,

where @, (n1|¥)* = G, (n,|¥) and £,(n; %) = 5,00, |0). If phim, .. [5y,(F)
— o ()] = 0 and approprate regularity conditions hold (see Section 3), the
asymptotic distributions (as n| — «) of Ty (n W) and W, (1) are identical to the
distributions of v, (¥) = w; /o, (¥) and w,(¥) = u}[3,(¥)] 'u, respectively,
where (W) = oy, (¥) and 3,(¥) = 3,.(W). The statistics Tpnd = 1, wn, 1,
allow one to assess discrepancies at observation ¢ for each equation, while #,
provides an overall indication based on the m cquations taken jointly. Note also
that p-values based on ¥y may be combined by using Bonferroni’s incguality.
The joint predictive test statistics for individual equations are

(210) gj(f“,"P):ﬁj(i’i])’[Kj(flllq')]_lﬁj(ﬂf;), _}': I, see HH,

where ﬁj(n]) = bap(ny), dpin ]_), ey ﬁjnz(i’tl)y is the vector of predicted
residuals for the jth equation, and A ey I.‘P‘)fv: A_,-J,-( 11| is a consistent estimator
{as n; — o) of the covariance matrix of u/. {7 (n1 W) is a portmanteau statistic that
allows one to assess whether the n; predicted residuals for the jth equation show
evidence of structural change. A portmanteau statistic that pools the m cquations

considered takes the form
2.10) Win, W) = i(n,) [Aln, N tEng ),

where @(n ) = [d{n)', @2(ny), ..., i, (17))'] is the (mn,) X 1 vector stacking
all the predicted residuals and A(n,|¥) is given by (2.7). ljj-(nj{‘l’) is a natuial
generalization of Chow's (1960) *‘predictive test™” (for a single lincar regression) to
the case of a oonlinear dynamic equation, while W(nlf‘lf} provides a similar
extension to systems of nonlinear simultaneous dynamic cquations.

In the special (but important) case where u . ..., u,, are uncorrelated, the
statistics Uj(nll‘lf) and W(n,|¥) simplify considerably;

2

(212) ﬁJ(Hl“\I’r) = 2 ﬁ.fi‘(nl,q’)z: 2 [lfjr(nl)/&jl(nllw)]zs .]= 1: eer , I,
=1

=1

R2 2

(2.13)  Win W)= 3 &, W)y = > i, (n)' [, (n|¥)] 0010,

r=1 t=1

U;(n P} is the sum of the squared T;{n|¥) statistics while W(z |'F) is the sum
of the v, (n[¥) statistics.

Since there are m equations and n, predicted residuals for each equation, a
convenient way of presenting the statistics defined in (2.8) through (2.11) consists
in building a table where the lines (or columns) correspond to equations (j = 1, ... ,
m) and the columns (or lines) to observations (¥ = I, ..., r,), and where Ty 18
presented at the corresponding position. Furthermore. v, is given at the end of rth
column (line}, U; at the end of jth line (column), and W in the corner of the last line
and column. Because it is akin to an analysis-of-variance table, such a table wili bic
called a predictive analysis table (PAT). The general form of such a table is

~Copvright © 2001, All Rights
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TaBLE 2.1
PREDICTIVE ANALYSIS TABLE
=1 2 o na
i=1 7y 712 Tin, U,
2 T T Uiy U,
m Tl Tm2 Tonny U
W) Wy Wy W

described by Table 2.1. Depending on the way the various statistics are condi-
tioned, several variants of the predictive analysis table are possible. The most
natural choices consist in taking either ¥ = & or ¥ = ¥, for all four statistics
appearing in the table. In the first case, we are led to consider unconditional tests
while, in the second one, the tests will be conditional on the history of the process
up to the end of the first sample. Another poesﬂ)n]lly consists in taking ¥ = ¥,_
for 7; and W, and ¥ = ¥y for U; and W, ie.. 7; = (| W,oq), W, =
won|¥,-1), U = U, (n1|‘P0) and W W(n|¥y). In some situations, this
choice is con51derably more convenieni for obtaining p-values than the two
previous possibilities (see Sections 5 and 6).

Because 7, is asymptoticaily equivalent to v; = u; /oy, it is clear that
distributional assumptions about u; can play an important role when deciding
whether 7 is too large; and smmlarly for the statistics w,, U and W. If it is
assumed that u = (u, uh, ..., uy )" follows a multinormal dlstnbutlon (either
unconditionaily, or conditional on ¥, depending on the type of test considered), it
is natural to define o, = E(ujsuy) or oy = Elujg uy| ). In this case, the results
of the next section {(see Proposition 3.1) demonstrate that the asymptotic distribu-
tionsashy = = (undcr Hy) of vﬂ(nl) w(n), U (n1) and W(n,) are respectwely
N0, 1), ¥2(m), x 2(n,) and x%(mns), prov1dcd plimy, o (Tyse = Oyse) =
When the process u, is stationary and ergodic, a natural estimator of the
unconditional covariance o, is

—[t —s]

(2.14) & ijnt T > o @ (R - (), s =0

T s=-n +1

The consisteocy of &y for oy, as ny — = follows from Proposxtmn 3.2. Itis
important to note, however, that the chi-squared approximations for U (n;) and
W(n,) may not be accurate even asymptotically if n, is not small with respect to
n, {e.g., if we let the number of predicted residuals grow as ny —» ).

More generally, if it is assumed that the distributions of vy, w,, etc., are not
normal but known up to a finite-dimensional parameter vector 8 (moments, for
example), then asymptotically valid p-values can be computed, provided a consis-
tent estimator 8{n,) of 8 is available and the distribution function is continuous in
its arguments. For example, if the (possibly conditiona) distribution function of
lvi] is G;(x; 6p), x € R, where G;(x; 6) is continuous in (x, 8), then

Copyright © 2001. All Rights Reseved.
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plim {Gj:[lﬁj:(”l)[s a(”i)] - Gjr['”jr‘a 0o} =0

ny > ®

provided plim, . B(ry) = 8,; the validity of this argument is ensured by
Proposition 3.1 below.5

Note finally that the assvmed distribution function may be validated by the data,
using for ¢xample the conditional moment tests of Newey (1985) and Tauchen
(1985). If these tests reject or no information is available about the functional form
of G;,(-), then it is more appropriate to use the procedures outlined in Sections 4
and 5.

3. ASYMPTOTIC EQUIVALENCE

In this section, we give two propositions on asymptotic equivalence. The firs:
proposition will allow us to conclude that f,[£,. X,, B,(k,)] and f,[ky, X,, 8]
have the same asymptotic distribution, provided plim,_. k, = kg and plim,_..
Balky) = Bo (where n = n ). The second proposition will do the same for statistics
of the form (1/n) 2 /L g(f,lk,, X, By(k,)D) and (1/n) 31, g(fTky, X, Bob).
where g(+) is a function of f;. Important examples of such functions g{) include
moment estimators such as g(-) = | - |*, where r > 0. The regularity conditions
used are very weak, only involving local continuity or Lipschitz conditions. In
addition, no information wili be needed on the asymptotic distribution of the
consistent estimators employed. The first proposition is based on the following
assumptions, where |||, refers to the usual Euclidean norm in BR* and N is the set
of positive integers.

AssUMPTION B1 (CoNSISTENT ESTIMATORS). Let M be a nonemipty subset of the
positive integers (G #MCN), k€ M, k) EN, g = Nandn € N. {X = RY,
X, € RY, E,,(k) ERNM .y el ne N, k € M} is a collection of random vectors,
and k,, is a positive integer-valued random variable for each n € N, all defined on
a common probability space (), s, P) and such that lim,_.., Plk, = kg] = 1 and
plimy, o Ba(ky) = Bg, where kg € M and B, € R0

ASSUMPTION B2 (MEASURABILITY). Let x & RY and ptk) € R"™  {g,[k, x.
BUO]:t € 1} is a collection of functions from N x BRI '% 1o R™ such that .k, X,
BOL. gk, X, Bk, giik, X,, BUO] and g,[k,, X,, B,(k)] are random
vectors forall k e M, t € land n € N.

AssuMpTION B3 (Joint ConTiNuIY). Forallt €1, g ko, x, Bl is a continuous
Junction of (x. ) for |8 — Bolluk,) = ™(Bo) and some (B4} > 0.

ASSUMPTION B4 (LipscHiTz CoNpITION).  There is a constari HBo) > 0 such thur
BE R and |8 ~ Bollux,) = 7(Bo) imply llg.lko, X, Bl — g,lka, X, Bolll, =
* Note that @ is usualty distinct from the vector of structural parameters 8. Namucly, 3 contains the

parameters that index the moment condition, while 8 is a vector of nuisance parameters that determine
the distribution G}, required to perform the tests.
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B, (ky, X, BOhId(B, By), Bol, Yi, as., where B, h and d are nonnegative
real-valued functions such that B (ky, X, By) is a random variable, d(B, By)— 0
as |8 ~ Bolliwy — 0. and h(y, Bo) > 0asy | 0.

Assumption B1 states that the model (or discrete parameter) estimator k, and the
parameter estimator A,(ky) obtained under the assumption that k = ko are
consistent as 1 — ». B2 simply assumes the measurability of the relevant functions
of the data. B3 assumes that g, is continuous with respect to x and g in a
neighborhood of Bq. B4 assumes that g, is Lipschitz continuous with respect to 8
in a neighborhood of By, and thus relaxes the joint continuity on x and 8. B3 and
B4 will be taken as alternative assumptions. In applications, we will take g, either
as identical to f, or equal to appropriate transformations of it, e.g., g, = ff,, g, =
Jf,f etc. Using the Assumptions B1 to B4, we can show the following proposition.
The proofs of the propositions are given in the Appendix.

PROPOSITION 3.1 (POINTWISE EQUIVALENCE).  Let Assumptions Bl and B2 hold.
If B3 or B4 holds, then

(3.1) plim {g.[&,, X, Bo (k)] g:(ko. X, Bol} =0, V1.

n—

By taking g, = fi. where f, is given in Section 2, we see that 7, = filk,, X,,
B,(k)] and &, = f,[kq, X,, By] must have the same asymptotic distributicn as »
—» oo, provided plim,, . k, = kg and plim,_, B,(ko) = By. Further, plim,, .,
[SGidy, oo s ) ~ SCup, e 1, )] =0 for any continuous function §; R — R,
so that S(dy, ..., @,) and S(uy, ..., 1, ) have the same asymptotic distribution
as n -»  (for n; and s fixed).

An interesting special case of Proposition 3.1 is the one where only one model is
considered and is identical to the “‘true’” model (£, = k). Since the result takes
a simp'e form in this case and because of its importance, we describe it extensively
(without explicit reference to Assumptions B1 to B4) in the following corollary.

CoroLLarRY 3.1. Let X € RYand B, € R, n=1,2, ..., be random vectors
defined on a common probability space (§, A, P) such that plim,,_,., B, =B €
Rr. Let g(x, B) be a function from R7* to R™(x € RY, B € RY), such that g(X,
B.) is a random vector and such that the following condition holds: there is a
constant ™(By) > 0 such that |8 — Boll; < 7(By) implics

() g(x, B) is a continuous function of (x, B), or

(i) [[g(X, B) -~ g(X, Bolll = B(X, Bo)hld(B. Bo), Bul as.,

where B, & and d are nonnegative real-valued functions such that B{(X, Bg) is a
random variable, d(B, Bo) — O as |8 — Byl — 0, k(y, Boy— Oasy | 0. Then

(3.2) plim [g(X, B.) — g(X, Bp)]1=0.

n— o
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In order to apply the tests described in Section 2, we shall also need consistent
estimators of the variances and covariances of «, and, eventually, of higher-order
moments. Stronger assumptions are needed in order to do this. For this reason, we
introduce two additional assumptions.

ASSUMPTION B5 (UNIFORM CONVERGENCE). There is a constant {Bg) > 0 and
a function c,(By) of n and By such that B € R" and || g — Bolly, = (Bq) imply
(@) plim, ... {supgeg, c.(Bo) Z/%y (g,lko, X, B] — Eglkq, X,, BDIl .} =
0, and
(b) e,(Bo) 2/-1 Eg, ko, X,, Bl is continuous on B € By, nniformly in n,
where Ly = ko) and By = {B € RY:||8 — = oBy)}.

ASSUMFTION B6 (LipSCHITZ BOUNDEDNESS).  There is a function ¢ ,(8y) of n and
Bo and a function G{x, By} such that

lim Plic,(Bo)l 2 Bilko, X, Bo) =] = Glx, Bo),

=1

n— x

¥ x=0, and lim G(x, 84)=10.

X s

Assumptlon B5 is a uniferm convergence assumption. For the case ¢, (By) =
falrly general conditions under which BS holds are given by Andrews (1987),
Gal]ant {1987a, Chap. 7), Gallant and White {1988, Chap. 2) and Pétscher and
Prucha (1986, 1989). Assumption B6 sets an additional restriction on the Lipschitz
condition B4 by assuming that |c,(Bo)l X% Blko, X,, Bg) is bounded in
probability. Note that B6 is weaker than the more familiar condition lim,_,.. ¢,(Bg)
2y EB kg, X,;, By) < =; see Andrews (1987). Using thesc conditions, we have
the following asymptotic equivalence result.

ProrosimioN 3.2 (LAw oF LARGE NUMBERS EQUIVALENCE).  Ler Assumptions 5
and B2 hold. If B5 holds or B4 and B6 hold, then

(33) plim CH(BO) Z {gl[‘én’ XH Erz(&u)] _gl[kﬂ! Xl’ 180]} =4,

n—c £=1

", where r > 0, it is easy to sce that

Taking ¢,(Be) = n ' and g, = | f;,

R
—

(3.4 pllm — Z {la; " — luy |7} =

17— o

where &, = f,[k,, X;, Bo(k,)] and u; == f,lkq, X,, Byl. Provided the law of large
numbers holds for [u;|", (1/n) £ ity |" and (1/a) 2/ |uy|” will converge to the
same limit. If the process u, is strictly stationary and ergodic with y;, =
Eluy|" < =, we thus have
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1 n
(3.5) plim — X, |, = v;.
o L
It is straightforward to see that a similar condition holds for the estimation of the
covariances or any other (cross-) moment of the #, process. For the special case
where only one model is considered (12,, = kq), we get the following useful
corollary.

COROLLARY 3.2. Let {X,:t € 1} and {B,:n € N} be collections of random
vectors defined on a commen probability space (0, o, P) and such that plim,,_,.
B, = B € R'. Let {g,(x, B):t € 1} be a collection of functions from R 1o R™
(reRY, B& RYY, such that g,(X,, B) and g (X, B,) are random vectors for all
B € R'. Further, suppose there is a constant 7(Bo) > 0 such that B € By = B E
R\ B - Bull, = wBg)} implies one of the following two conditions:

() plim, . {Sup,BEBU (1/n) 275 [g/(X,, B — Eg (X, Blllm} =0
and (1/n) 2.1, Eg(X,, B) is continuous on B € Bg uniformly in n; or
(i) g, (X, BY — 94X, Bolm < B,(X,, BORIA(B, By). Bol. Vi, as.,
and lim, ... PI(1/n) ¥, BJ(X,, By) = x] = G(x, By), Vx = 0,

where B,. h, d and G are nonnegative real-valued functions such that B.(X,, By)
is @ random variable (Y1), d(8, By) = 0 as |8 — Bolli — 0, limy ¢ A(y, By) =
0 and lim,_,.. G(x, Bg) = 0. Then

12 -~
(3.6) plim -~ > (aXe, Ba) - 94X, Bp)]=0.

t==1

n—m

4. MARKOV PREDICTIVE TESTS

The predictive test statistics introduced in Section 2 have well-known asymptotic
distributions when observations are generated by a Gaussian process. Assuming
normality is not always appropriate, however. To deal with the possibility of
non-Gaussian disturbances, we study two approaches, namely: (1) methods based
on Markov inequalities, and (2) methods based on a semi-nonparametric estimation
of the {conditional) distribution of the process {i,}. The first approach is studied in
this section, while the second one will be considered in the next section.

Let X be a real random variable and g: % — R a nonnegative Borel function such
that g(x) = g(--x) and g{x) is nondecreasing for x = 0, Then we have the
inequality

(4.1) PlXi = A]< E[g(X)Vg(A), YA =0,

where we set 0/) = 1; see Logve (1977, p. 159). Natural choices for g(x) include
g, (x) = |x|” and
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(4.2) gl = |«|", it [x] <e,

=c’, if|x|=¢,

where 0 < r < = and 0 < ¢ = = are fixed constants. Clearly g, (x) = g,{x). The
first choice leads to Chebyshev-type inequatities and requires the evaluation of an
absolute moment. The second choice leads one to consider truncated moments. An
important advantage of the latter is that truncated moments always exist, provided
0 << ¢ < =, The probability and the expected value in (4.1) may also be taken
conditionally on any appropriate set of variables (e.g., past observations).

In the present context, the random variable X may be any component of u ; for
t € T, or any of the predictive test statistics introduced in Section 2. For
simplicity, let us discuss first the case where X = u ¢~ Then

(4.3) pi(A, g} = ELglu; ) Vg(A) = v; (g)lg(r),

where u;; = fi[ko, X,, By}, is an upper bound on Plluj| > Al If the realization
u; = i is observed, pj,(|£7j,|, g) yields an upper bound on the p-value for a test
that rejects the null hypothesis of stability when || is large. But, of course,
neither u » nor the moment v;,(g) can typically be observed. If iy (the realized
value of u;) and »;(g) are replaced by consistent estimates i ioand Py (g) {as
ny — =), it is clear that

(4.4) plim {[#;(gVgld;)] — pylla,l, g} =0

ny — @

for all values 7 in a set with probability 1. Similarly, if ¥ is some appropriate
information set (which may depend on ¢), the quantity

(4.5) pic(A, gl = E{ glu; )| W1g(X) = v, (g|¥)/g(A)

is an upper bound on Pliu;| > A|¥}. Again. provided ¥, (g|¥) is a consistent
estimator of v, (g|W) as n; -+ =, we have

(4.6) plim {[l—’jx(g|‘l')fg(l?jr)] - Pﬂﬂﬁj;h gl¥} = 0.

n; = ®

For example, consider unconditional tests and assume that the #, process is
strictly stationary and ergodic. Then, using the asymptotic equivalence results of
Proposition 3.2, one sees easily that

1]

1 “l -
(4.7 Buln, gi) = e > gl ()]

1 £=-n +1

is a consistent estimator of v, (g/) = Elg/ («;;)] as n| — =, where g/ is given by
{(4.2). Here, under the assumption of stationarity, the first sample T, can be used to
estimate the moments of u;, for ¢ € T,. Thus the critical region g (&, (1)), g/} =
o, where
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(4.8 Fuliy(ny), g) = 7ylny, gi)g i n)],

is conservative at level a.

Naturally, the choice of r and ¢ is arbitrary. Suppose, however, that the pairs
(r, ¢} ate selected from a finite set § = {(r;, ¢;):/ = 1, v\ N}, Since (4.1) holds
forall ¢ = ¢g¢ such that 0 < r < @ and 0 < ¢ = =, it follows that

(4.9) P[|X| = A] = min {E[gf(X)Vg;(A):(r, ¢) € S}

Consequently, if we compute several bounds based on different functions g;, we
can obtain an improved bound by taking the lowest of these bounds. Consequently,
min {7, (g Vg/(E):(r, ¢) € S} is an asymptotically valid bound on the
(UHCOHdlt]Oﬂal) p- value for ||, and similarly for min {3, (gf | Wy (@ (r, o) €
S} for the conditional p-value (given W).6

The above method for constructing upper bounds on p-values for realizations of
{1,:t € T} can be extended to 7, W, U; and W as defined in Section 2. For 7
and w s the approach is exactly the same except that 4, is replaced by 7; it and w,.
For U (n;) and W(n,), the construction of upper bounds en p- -values is shightly
more compllcated because each of these statistics uses n, predicted residuals. To
apply an approach similar to the one just described for @;,, ; and w,, we need to
estimate the expected valtues of g(U;) and g(W) in a consistent way from the
sample Ty, where U; and W are defined as U (n;) and W{n) with Hy(ny), A; i(ny)
and A(sn,) replaced hy their probability llmlts (as 1y — =). This can be done in
particular, if 2, is sufficiently large with respect to n (ny <€ ny). From T, one
can form n; — n, + 1 subsamples of size #,. Then an asymptotically valid upper
bound on the p-value for U(n|} is

0

(4.10)  p;(U(ny), 99 = P S g0 (n,, 01|/ g0, 7)]
—h T=—n thz

where Uj(ny, 7 = diny, D'8;(a) " "a(n,, » and &(ny, 1) = [ mp,+1

(ny), ..., @i {n)]’. Note that a;(n,, ny) = i;{ny). An upper bound on the

p-value for the joint test W is constructed along the same principles:

(4.11) pw(W, g)

i 0 _ -
i P > gilatny, v)'Aln) @ny, |9/ [Win))

® When using higher order moments with moderately sized samples, some caution may need to be
exerciscd because higher order moments converge slowly to their limits. There has recently been some
discussion of this issue in the context of the information matrix test, and simulation evidence indicates this
slow convergence can have a nonnegligible impact on the finite sample properties of the test; see Orme
(1990), Chesher and Spady (1951) and Kennan and Neumann (1988}, However, higher order moments are
used here to bound p-values: since the resulling tests are generally conservative, the fact that estimated
higher order moments have a large variance does not imply that the resulting p-values will loose their
conservative character. Using truncated moments as suggested above cun also have an addilional
stabilizing effcct. Further research on these issues would certainly be of interest, but is beyond the scope
of the presemt paper.
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where II("’11’ T) = [ﬁr—n2+l(”])’, A If.,.(l’l])']' and ﬁ(”{v I’Ez) = ﬁ(‘q])-

3. SEMI-NONPARAMETRIC PREDICTIVE TESTS

The Markov inequalities used in the previous section provide conservative
probability statements. To avoid this problem (but at the expense of further
regularity conditions and computation costs), we propose now to calculate the
p-values of the predictive tests via a semi-nonparametric (SNP) estimation of the
conditional distribution of the test statistics.

In Section 2, we observed that if we knew the distributions (conditional or noi)
of the test statistics up to a finite-dimensional parameter vector 8, we would be able
to exploit the asymptotic equivalence results of Section 3 to compute the p-values
of our tests. The situation we consider here is different, in the sense that we assume
a flexible functional form for the density function proposed by Phillips (1983),
Gallant and Nychka (1987) and Gallant and Tauchen (1989). Let us dencte by
Gyx(x; K, 8(K)|¥) the conditional probability density function (p.d.f.) of X given
WV, where X is a random variable that may stand for any of the test stafistics
considered. The parameter vector #(K) describes the polynomials of the SN
expansion.” Specific examples would be: G, (x K, 6(KW¥,_|) and G,. Lx: K,
8(K)|¥,_,) which are conditioned on ¥, ._,, and Gy (x; K, 8(K)|¥) and G!,‘.u,.&
K, 6(K)|¥y) conditioned on ¥,. The index parameter K appears as one of the
arguments because the SNP approach uses a Hermite polynomial as a gencral
approximation to the conditional density. The polynomial expansions are truz-
cated, with the truncation rule depending on the sample size. Following Gallant and
Tauchen (1989), we consider the following generic representation of the conditional

density;
Kiini) 2
Z a, (Wix®| &(x|¥)
le| = &
(5.1 Gix; K, 0(K)|['¥) = PR 73

r S a, (x| S| W) dx

- ‘Q:El()

where (i) a ,(¥) is a linecar polynomial of degree K;{r ) defined on a finite subset
of ¥; (ii) the index K represents the pair (K ({(n,), K+{n;)) of tuncation paramcters
depending on ny; (i) (K) is the unknown parameter vector describing the
parameters of the (K (n,), K,(#;)) Hermite polynomial expansion; (iv) & x|V} is
the “*lead term™ of the expansion which is itself a probability density function.
Several aspects of this approximation are worth noting. Firstly, Gallant and
Nychka (1987) verify a set of conditions under which G ,(+|¥) perfectly approxi-
mates the true underlying conditional p.d.f. as n, —» = for a wide class of
distributions.® Gallant and Tauchen (1989) provide a data-based strategy for

7 The parameter vector 8 determines. of course, the processes o, es W, ete. (see Section 2}
¥ Gallant and Tauchen (1989) observe that a M-dimensional SNP expansinn ((x) can approxiniaie
arbitrarily accurately distributions with fat tails such as those proportional to (1 + x'x) ~8, 5 > M/2, and

o Copvright @ 2001, All Rights. Reseved,




GENERALIZED PREDICTIVE TESTS 215

choosing K (n1) and K,(n|) for a given ny. Secondly, we are free to choose any
p.d.f. as the lead term, but the choice may affect the finite-sample properties of the
approximation. Following Gallant and Tauchen (198%), we chose #} so that a
special case of interest is nested within the approximation. For v, the lead term is
chosen to be homoskedastic mean zero normal, while for w,, U; and W, the lead
terms are chosen to be Xz(m), Xz(nz) and Xz(mnz) respectively. Thus, in each
case, the lead term of the expansion is the p.d.f. implied by {«,} being Gaussian. Of
course, this choice is somewhat arbitrary and will have an incidence on the
finite-sample properties of the procedure.® However, if n is large enough, the
semi-nonparametric procedure will work well, irrespective of the choice of lead
term. Thirdly, to use this approximation, we assume that {u,:f = ~n; + 1, ...,
n,} comes from a realization of a stationary time series {1, },~ ... Fourth, we us¢
this framework to model the conditional densities of v;,, w,. U; and W. Finally,
after estimating these conditional densities, the latter are applied to the observed
values of 7, W, U ; and W to obtain p-values. Under appropriate regularity
conditions, the conditional densities of v;, w,, U; and W are consistently
estimated by thc SNP approximations {as n; — ), and similarly for the
corresponding distribution functions.'® Further, 7, W, i ; and W are asymptot-
ically equivalent to v;,, w,, U; and W respectively as n; — =.

To calculate the p-values for the predictive tests using a semi-nonparametric
approximation, one proceeds as follows.

1) The mode! is estimated by maximum likelihood from the sample 7| using
the SNP approximate p.d.f. (5.1). Details about such estimation appear in
Gallant and Tauchen (1989).

2) Once the SNP density has been estimated over T, vielding the parameter
estimate #(K), the predictive test statistics are computed. For the individ-
val predictive statistics 7;, and w,, the conditioning set ¥ will usually be
¥, , ={X,:s =t — l}or ¥, = {X s = 0}. For the joint predictive tests,

those with thin tails such as those proportional to exp [—(x'x)"1, 1 < p < & — |, Off the tails, the SNP
expansion is capable of approximating a wide variety of p.d.F.’s. Essentially, the only types of behaviour
ruled out arc violent oscillations.

9 As pointed out by a referec. the choice of lead term may be especially influential for the individual
test statistics 7, and #,. On the other hand, for the portmantean statistics ([7; and W) and provided n,
is large. it is plausible that the choice of lead term will be less important, because (U; — ﬂz)f\/r-l; and (W —
YV mny me approximately normal, just like (i) ~ nz)/\/’;:; and (xX(mny) — mu)Vmn, are
approximately normal for 15 large. Fuarther work would be useful to assess the sensitivity of the method to the
choice of lead ferm.

" General results on the consistency of SNI” density cstimators appear in Gallant and Nychka (1987).
For relatad resulis, see also Gallant (1982, 1987b), Eastwood and Gallant (1987), Andrews (1988) and the
references therein. These results, however, are better adapted to cross-sectional data. Gallant and
Tauchen (1982, p. 1096) observe that while there has been much analysis of SNP models for
cross-sectional data, ““whether or not these results and methods of proof extend to time series data is an
open question.” In this paper, we adopt their conjecture that the vnderlying true p.d.f. can be
approximated arbitrarily well by a SNP density as the sample size n| tends to infinity. It is important {o
note that further restrictions may be needed for this to hold. An explicit determination of appropriate
conditions is left to fsture research, and we assume here that such conditions apply. Andrews (198%a.
1989b) provides asymptotic distributions for scmiparametric estimators in time series contexts, but his
results do not cover Gallant’s semi-nonparametric estimators (except for special cases).
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the natural conditicning set is Wy, Of course, it is also possible to consider
unconditional tests. If ¥ = ",_; in (5.1), densities conditional on ¥y and
unconditional densities can be oblained by integration. Such calculations
may, however, be costly so that joint SNP predictive tests are often more
difficult to implement than individual SNP predictive tests.

3) The p-values of the predictive tests are calculated as follows: for 7 ; and ¥y,
with *F = ¥, |, we take

(5.2) pli) =1 - f G., (x: K, B(K)|¥,_,) dr,

ﬁ(wf)_l_J r Gw,(x; K! é(K”‘yr—!)d“:’
o
while for U; and W, with ¥ = ¥, we take

3 z ,
(5.3) PO} =1 —J Gu, (x5 K, #(K)| W) dx,
]

— W ~
p(W) =1 "f Guw(x; K, 6(K)[¥) dx,
0

where t € 7. A two-sided critical region based on 7y (with critical values yielding
equal right and left tail areas) has the form 5(¢;,) = 2 min {p(7;), 1 — pl&;)} =
o) Ele critical regions for the other statistics simply are: 50F,) = a, p( UJ-) < @ and
P(W) = a. Tt is clear how different conditioning sets or unconditional tests could
be considered. Again, under appropriate regularity coaditions, these estimated
p-values are asymptotically equivalent to those based on the ““true’” densities. For
example, this will occur if the SNP estimated densities converge uniformly in x to
the true densities.

6. EMPIRICAL EXAMPLES

The purpose of this section is to show how to apply the generalized predictive
tests introduced in Sections 2, 4 and 5. Throughout this section, we use the same
data to test the stability of two models involving different assumptions, mode!
specifications and levels of generality. The data and sample employed correspond
to those used in the empirical study of Gallant and Tauchen (1989}, In a companion
discussion paper (Dufour, Ghysels, and Hall 1991}, we report other examples as
well. It should be pointed out that the model specifications studied do not per se
contradict cach other. They differ in their degree of specificity about distributienal
assumptions, moment conditions, etc. Both models explain the comoevements of
asset returns and consumption growth. The estimation and prediction samples arc
the same. As we shall sece, there is a fairly strong agreement across the specifica-
tions about the outcome of the predictive stability analysis.
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The first model specification is a vector autoregressive time series model of
consumption growth and T-bill returns. Such a model can be viewed as the linear
projection indeterministic part of a more complex (possibly nonlinearly predictable)
data generating process. As a benchmark, we consider first the case where the
erTors are assumed normal. Then, to deal with the possibility of nonnormal errors,
we consider two approaches: the first one uses Markov inequalities to construct
predictive tests, while the second one is based on estimating a semj-nonparametric
density for the VAR error process. As noted in Section 5, we use the estimated
density to compute p-values for the predicted residuals. While neither the tests
based on the Markov inegualities nor those based on SNP density estimation
require normality. it should be noted that both represent different types of tests.
The former are unconditional tests, while the latter arz conditional. With the
second model specification, we move to a nonlinear model characterized by a set of
implicit equations. Here no closed-form solution is specified and no specific
distributional assumptions are made except, of course, for the relatively mild
requirements that ensure the consistency of the parameter estimates. The model is
a constant relative risk aversion consumption-based asset pricing model introduced
by Hansen and Singleton (1982), estimated with a one month T-Bill return. Ghysels
and Hall (1990b) tested its stability with Wald, LM-type, LR-type and predictive
tests: the first two tests were introduced by Andrews and Fair (1988), the LR-type
test was presented in Eichenbaum, Hansen, and Singleton (1988) and adapted to
test structural stability by Ghysels and Hall (1990b), while the predictive test was
introduced by Ghysels and Hall (1990a). The four tests applied by Ghysels and Hall
(1990b} to the Hansen-Singleton (henceforth HS) empirical asset pricing models
were based on two crucial assumptions: (1) the sample split is known and (2) the
two subsamples grow proportionally, i.e., 1/n; is constant. Both assumptions can
be relaxed with the tests presented in Sections 2, 4 and 5. The asset pricing models
can now be scrutinized without assuming a priori that, for instance, the October
1979 monetary policy shift is a breakpoint. Equally important is the fact that the
tests presented in this paper allow one to test stability with a small prediction
subsample, i.e., 1, does not have to be proportional to the first sample size »,
(which is assumed to be large).

The models are all estimated from the same set of monthly data covering the
period 1959:1 unti! 1978:12. The variables considered are per capita consumption of
nondurable goods and services {c,) and the return on one-month T-Bills corrected
for inflation using the price index corresponding to the consumption measure (r,).
The prediction sample consists of two years of observations covering 1979 and
1980, which amounts to 24 observations. The test results will be reported in
“predictive analysis tables’ (PAT), as described in Section 2.

The VAR model is based on the variables log {r,) and log (¢, /c,_ ). In estimating
the latter, we followed closely Gallant and Tauchen (1989) with regard to data
transformations and normalizations, before and after fitting the VAR model. This
will facilitate comparison with the SNP-based tests discussed later. In particular,
before fitting the VAR model by least squares, the vector [tog (r,), log (c,/c,—1)]'
is centered by subtracting the sample mean and is normalized by multiplying the
centered data by the inverse of the upper triangular Choleski factorization matrix

Copyright © 2001. All Rights Reseved.
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associated with the empirical covariance matrix of the observations. The autore-
gressions include two lags of each variable. The least squares residuals from these
regressions are also normalized by multiplying them by the inverse of the Choleski
matrix associated with their empirical covariance matrix. The predicted residuals
are computed in a similar way, using the parameter estimates and the Choleski
matrix obtained from the estimation sample.!!

Let us consider first the results obtained under the assumption that the
disturbances in the VAR are normally distributed. The predicted residuals for the
24 months of 1979-80 and their associated p-values appear in Table 6.1. This table
has the structure of a PAT discussed in Section 2. Each equation is listed separaiely
first for each observation in the pradiction sample, and then for all observations at
once (bottom of the table). Finally, the predicted residuals and p-values for the joint
set of equations appear in the last pair of columns. Three observations stick out
with low p-values (say, less than or equal to 0.05); 79:12 (for the T-bill equation),
80:2 (for both equations, individually and jointly}, 80:10 (for the consumption
equation) and 80:12 (for the T-Bill equation), The rejection is especially sirong for
80:2. p-values less than 0.10 also include 80:10 and 80:12 when the cquations arc
taken jointly. Of course, we know that October 1979 is the month of 2 major policy
announcement of the Federal Reserve. We will discuss this subject further as we
review the cvidence from the other models to be presented. None of the equations,
taken over the entire two-year sample, separately appears to be nnstable. Let us
now drop the normality assurmption and consider unconditional generalized pradic-
tive tests based on the second, fourth. sixth and eight moment Markov inegualitizs.
The lowest of these four bounds is reported in Table 6.1. We see that the results are
qualitatively similar to those obtained under the normal assumption, although 79:12
and BO:10 are certainly less significant than in the normal case. The observation for
80:2 still stands out as special despite the fact ihat we do not use the normality
assumption.

Next, we consider conditional predictive tests where the conditional distribu-
tions of the observations are approximated by SNP expansions based on the work
of Gallant and Tauchen (1989), as described in Section 5. The estimation sample
and data transformations used to estimate the VAR model were also used in this
approach. Instead of considering the linear projection error processes abtained
from a VAR, we use the Hermite polynomial described in (5.1) to approximate the
conditional joint density of log (r,) and log (c¢,/c,_ ). The information set in (5.1)
denoted ¥ was set equal to ¥,_; which consists of past realizations of T-Bill
returns and consumption growth. 2 The SNP density was cstimated with K (n;) =
2 and K;(n|) = 1 involving 42 parameters (coiresponding to the fourth eniry of
Gallant and Tauchen (1989, Table III). Via numerical integration of the conditiona!

' Because of the Choleski normalizations the **transformed interest rate variable™ can be interpreted
(asymptotically) as a linear transformation of the original variables. The inlerest rate cguation and
residuals should be interpreted accordingly. Such a reinterpietation is not required for the consumption
growth equation, because it is only rescaled and reparameterized.

2 The VAR parameters were reestimated jointly with the paranseteas of the Hermite expansion and
hence are differeat from the VAR estimates obtained by OLS. The latter were uscd as starting vahics in
the SNP estimation program.

o Copyvright © 2001, All Rights. Reseve
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TABLE 6.2
PREDICTIVE ANALYSIS TABLE FOR A VAR MODEL OF CONSUMPTION AND T-HILL RETURNS BASED ON
SEMI-NONPARAMETRIC ESTIMATION OF THE CONDITIONMAL DENSITIES OF THE VREDICTED RESIDUALS

T-Bill Equation Consumption Equation

Predicted SNP p-values Predicted SNP p-values
residuals residuals —— .

{centercd) p p (centered) il p
79:1 —1.150 0.910 0.180 0.430 0.530 0.940
2 —0.744 0.531 0.938 —0.635 0.799 0.462
3 0.152 0.538 0.924 --1.209 0.899 0.202
4 --0.161 0.538 0.624 -1.578 0.872 0.256
5 —0.878 0.844 0.312 ~-1.502 0.850 0.300
6 0.882 0.348 0.696 —1.558 0.931 0.138
7 0.512 0.318 0.636 -0.912 0.738 0.524
8 ~0.427 0.691 0.618 -0.805 0.532 0.936
9 0.057 0.594 0.812 0.872 0.195 0.39¢
10 —0.784 0.840 0.320 0.798 0.411 0.822
11 -{.124 0.539 0.922 - 1607 0.958 0.064*
12 —1.998 0.989* 0.022* 0.370 0.310 0.620
80:1 —0.27 0.555 0.890 ~{.378 0.611 0.778
2 —~2.672 0.992* 0.016* 3.855 0.000* 0.000*
3 —0.703 0.751 0.482 0.526 0.62¢ 0.742
4 1.584 0.304 0.608 0.691 0.505 0.990
5 —0.021 0.452 0.904 —0.934 0.764 0.472
6 -0.238 0.584 0.832 --3.153 0.993% 0.014*
7 ~0.628 0.795 0.410 -2.138 0.9332 0.134
8 0.839 0.482 0.964 -0.568 0.692 0.616
9 -0.800 0.862 0.276 1.115 0.177 (.354
10 --0.341 0.522 0.956 2.955 0.011* (.022%
11 —1.314 0.923 0.154 2.399 0.035 0.070
12 —2.601 0.897 0.200 1.514 0.219 0.438

Notes: Predicted residuals are normalized as in Gallant and Tauchen (1989} via the Choleski
factorization matrix obtained from the estimation sample, using the SNP estimation procedure, and
then centered (conditional on ¥,_ ). The p-value § is the probability that the residual is larger than
the observed value (conditional on ¥,_|). Therefore, either large or small p-values may be
indicative of structural instability. A star * indicates a value of 517, less than 0.025 or greater than
0.975, while p = 2 min {§, | — £} is the marginal significance level associated with a two-sided
test based on #;, (with critical values yielding equal right and left tails).

SNP density we obtained an estimate, denoted #4,(n,), of the prediction error
process for T-Bills &, = log (r,) — Ellog (r){¥,.;]. Likewise, an estimate
fy,(ny) of uy, = log (c/fc,y) - Ellog (c,/e,-)|¥,- ] was computed frem the
estimated conditional density. Subtracting the conditional means is imporiant to
ensure that the conditional mean of the disturbances be zerc. To calculate p-values
for both series of predicted residuals, we computed, again by numerical integration,
the (estimated) conditional densities of #,(#n ) and &,,(n).

In Table 6.2, we repert the predicted residuals for T-Bills and consumption
growth as well as their p-values computed from the SNP deusities for iy, and «,,.
The residuals in Table 6.2 are numerically different from the VAR residuals hecause
the latter are from a linear projection of log {(#,) and log (¢,/¢,—;) on ¥,_,, while
the former are computed from the conditional expectations implied by the esti-
mated SNP densities. The results in Table 6.2 generallv agree with those in Table

___Copyright © 2001 All Rights Reseved.. .
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6.1.13 We observe again p-values less than 0.05 for 79:12 (for the T-Bill equation),
80:2 (for both equations, very strongly) and 80:10 (for the consumption equation).
But some other predicted residuals exhibit low conditional p-values, especially in
the consumption equation: 79:11, 80:6 and 80:11. These results are not surprising
since: {1) we dropped the normality assumption, which Gallant and Tauchen (1989)
found to be inappropriate for the data being considered, and (2) we now consider
conditional instead of unconditional distributions. It was noted in Section 2 that
conditional tests are likely to be more powerful than unconditional tests,

Unlike the VAR, the second model we consider does not have a closed-form
solution. We reestimated the Hansen and Singleton (1982, henceforth HS) model
with an instrument set slightly different from the original set. Besides a constant,
lagged consumption growth and lagged T-Bill return, we introduced lagged de-
trended money growth as an instrument. Money growth was detrended by
subtracting a linear trend as suggested by Stock and Watson (1989). This trend was
estimated with data until 78:12. The moment restrictions implied by the HS model

are described as follows:
¢, \"
¥y — 1 ® Z‘f -1
Cr—1

6.1 filX:, Bl= (b(

where r,/c,_, is the consumption growth {nondurables plus services, denoted
NDS) and r, is the asset return, i.e., the one month T-Bill return coirected for
inflation (TB1).1* The parameter b measures a subjective discount rate while «
measures constant relative risk aversion. The vector Z, is the instrument set

(6.2) Zo=(1, cJc,_q, rsy W),

i.e., a constant, growth in NDS, TB1 and linearly detrended nominal M1 growth
(denoted M1G).

Equations (6.1} and (6.2) yield a vector function of dimension m = 4. The
unconditional statistics #;,(1), w,(n,), U;(n,) and W(n), forj = 1, ... , 4 and
t € T, are considered once again. For the HS model, the process { f,} defined by
equation (6.1) is a martingale difference sequence. This property greatly simplifics
the joint predictive tests U i =1, w4, and W. The parameter estimates for the
HS model appear in Table 6.3, The results are similar to previously reported
estimates (see Hansen and Singleton 1982, and Ghysels and Hall 1990b). According
to the overidentifying restrictions test, the T-Bill mode! is rejected.

While the overidentifying restrictions do not support the model empirically, it is
still useful to conduct the type of tests we propose as part of the set of diagnostic
tests one would like to consider. In particular, this may provide us more
information about the nature of the problem: which months and equations are likely
to be most related to a breakdown of the model. Here, we do not assume normality

3 These results should be interpreted in view of the caveats of Section 5 (footnote 9) on the
consistency of SNP density cstimator in time series contexts.

¥ 11 showld be noted that there are some differences in the data transformations between (6.1) and the
VAR model. In the YAR the logarithms of ¢,/c,_| and r, were taken und normalized as previously
described. In contrast, ¢,/c,_; and r, enter directly into the moment condition (6.1).
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TasLE 6.3
PARAMETER ESTIMATES OF THE HS MODEL WITH T-BILL RETURMS: 59:02-78:12

b 1.000

(0.0003)
a —0.1594

(0.1083)
SDMRI 0.0385
SDMR2 0.0387
SDMR3 0.0385
SDMR4 0.6001
HORT 57080

Notes: b and « arc the parameters defined in equation (6.1). SDMR7 is the standard deviation of
the ith moment restriction 7 = 1, ..., 4. HORT = Hansen's overidentifying restrictions test.

and apply the unconditional predictive tests based on the Markov inequalities. The
PAT table and the Markov upper bounds on their p-values are reported in Table
6.4.15 According to the individual predictive tests, it is interesting to observe that
the fourth equation, which involves money growth, does not exhibit the same
out-of-sample pattern as the other three equations. Firstly, it should be noted that
the null hypothesis of structural stability is rejected at the 10 percent level for the
moment conditions involving money over the entire two-year sample (bottom of
Table 6.4) on the basis of a second order Markov inequality. Looking then at
individual observations, we sce that the predicted residuals of the money equation
exhibit several relatively low p-values (79:9, 80:2, 80:5, 80:6, 80:7, 80:10) just
before and after October 1979 which is the timing of the announcement of the
Federal Reserve monetary policy regimes shift; the marginal significance level is
especially small for 80:2 (below 0.002). In addition, as with the VAR model, 80:2
appears with low p-values in the three other equations as well as for the equations
taken jointly. The fact that the moment condition involving money growth appears
so different during a period of monetary policy transition suggests questions about
the choice of the instruments used in the estimation. Such questions require more
investigation, which is beyond the scope of the present paper.

7. CONCLUDING REMARKS

In this paper, we have proposed predictive tests for analyzing the structural
stability of a nonlinear dynamic simultaneous equations model. The tests can be
applied when the model is structurally stable during an asymptotically large

15 In the context of model (6. 1), the normality assumption seems difficult to maintain and so we do not
report p-values based on this distribution in the main text. It would imply that the Evler equation
disturbance is normally distributed, as well as the products of the latter with lagged consumption growth,
interest and money growth. However, it is straightforward to perforin significance tests under the
assumption that f,[X,, Bo) is normal. In this casc, the global test W = 204.0 and the joint test Uy =
151.8 (for the mency equation) are strongly significant (at levels imuch lower than 0.05}, while the joint
tests for the other equations do not come out significant (at levels much lower than .05, while the joint
tests for the other equations do not come out significant. The moncy cquation has several statistically
large predicted residvals (79:9, 80:2, 80:5, 80:6, 80:7, 80:10), while 80:2 and (to a lesser extent) 20:10
appear to be outlying in all the equations.
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estimation subsample, but the form and timing of pessible structural changes during
the prediction subsample are unknown. An important advantage of our tests is that
they can be used to test for structural stability at the end of the sample. Further, the
tests are applicable even if the asymptotic distribution of the paramcter estimates
is unknown: only a consistency assumption is needed. We demonstrated that our
tests can be conveniently summarized using the predictive analysis table and this
provided a simple exploratory technique for analyzing the timing of structimal
change. We illustrated our tests and the predictive analysis table by examining the
structural stability of some recent models for the comovements of asset prices and
consumption. The empirical results reported in Section 6 mainly indicated some
structural instability near or afler the October 1979 policy shift. Further, 80:2
appears to be an outlying observation.

Each of the three methods we examined for calculating the probability of the
prediction subsample involved a different strength of the distributional assump-
tions. In the most restrictive case, it is assumed that the disturbances follow a
normal distribution. If the distribution is unknown, cne can either try to cstimate
the undetlying distribution using a flexible functional form and calculate the
probability, or one can use moment-based inequalities which provide bounds on the
probabilities of interest. There are clearly advantages and disadvantages to all
three. If the normality assumption is correct, then this method should lead to
sharper inference. However, if it is incorrect, then the resulting tests mayv be
unreliable. One can avoid this problem by adepting the approach of estimating thc
probability distribution using a flexible functional form. However, the validity of
the resulting inference still depends on the accuracy of the density approximation.
Further, this approach can be complicated and computationally expensive. The
simplest and most robust method is to use Markov inequalities to calculate bounds
on the appropriate probabilities. This results in conservative inference. Further
research is clearly needed to improve the applicability of the SNFP approach, to
explore how the method of calculating the probability of the prediction subsample
affects the power of the tests, and also to study the finite sample propertics of the
procedures proposed above. This goes beyond the scope of this paper and is left to
future research.

Centre de recherche et développement en économigue and Départment de
sciences économiques, Universiié de Montréal, Canada

Centre de recherche et développement en économigie and Départment de
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APPENDIX

PROOF OF ProrosiTioN 3.1.  Let !, = lky). Consider first the case where B1, BZ
and B3 hold. For any 0 < gy < I, we can find a compact subset C(gg) C R such
that P[X € C(ep)] = &g, e.g., a sufficiently large closed hypercube in RY; sinee RY
is the union of a countable collection of such hypercnbes, the set {(gg) dees exist
(see Rudin 1987, Theorem 1.19). Since g,[kq, x, 8} is a continuous function of (x,

T,
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B for B — Byll;, < m(Bo), where g € R%, it is uniformly continuous on the
compact set C(gg) X {8 € R™:||g — Byll;, = 1(Bo)}; see Royden (1968, p. 164).
Thus, for any £ > 0, we can find 0 < 8(g, 50) = 7(f;) such that

18 = Bolli, < 8(e, £4) > llgilko, x, B] — g.lka, x. Bolly, <&
for any x € C(gg), where 8¢, gy) does not depend on x. Hence,

P[Hg,[f:’,,. X, B.n(‘{n)-l _gl[kﬁa X, BU]”m < g] ?P[kn = kq
and ”gf[kﬂa Xs En(k(})] - gl[k(.l.s X! BU]”m < 6']

= PLX € Cleg), ky = ko and |B, (ko) ~ Boll;, < 8(e. £4)]

=1~ {P[X & Cleq)] + Plk,#ko) + Pl B (ko) ~ Bolly, = 8(e, £0)]}.

By construction P{X & C{ag)l = 1 — gg. From Assumption B1, lim, P[&n #
kol = 0 and lim,,.. P[|B.(ky) - Bolli, = (e, £9)] = 0. Hence, limg .o
Plllg, 1. X, Both)] — g.lko, X, Byl < €] 2= g forany 0 < ey < 1 and & >
0. Consequently, for any ¢ > 0,

lim P[”gr[’;ns X, En(ﬁn)] _Q;[kg, X, BO]”M < 5] =1,

-

from which (3.1) follows. Consider now the case where B4 holds instead of B3. For
any g; > 0, we can choose 0 <0 8(g|) << 7(Bo) such that |8 -~ B,[;, < 8(e;) imiplies
h[d(B, By). Bp)l < &;. Then, for any £ > 0,
P[Hgt[‘éns X’ E?{(kn)] - gr[kOs X, »BO]Hm < ‘9]
2‘P["(\:J'z = kg, “Bu(ko) - 30”10 < 8(ey)
and |lg,Tky, X, Bolko)]— g.fko. X, Bolllm < €]
= Pk, = ko, |Balko) ~ Boliy, < 8(ey) and B,(ky, X, By)ey < ¢]
=1 — {Plk,#ko] + P[]l B, (ky) = Boll, = 8(e1)]
+P[E,(k0, X,Bo)ksfsl]}.

For any 0 < g < 1, we can choose & small enough that P[B,(ky, X, By) =
e/g;] = gy. Hence, using B,

lim Plllg[k,. X, B. (k)] — g:lko, X, Bolllm < el=1- &g

n— =

for all O < g < 1, from which (3.1) follows. Q.E.D.

Copyright © 2001. All Rights Reseved.



226 JEAN-MARIE DUFOUR, ERIC GHYSELS, AND ALASTAIR HALL

Proor oF ProrosiTioN 3.2. For any £ > 0 and &; > 0, we have

P{HCH(B“) Z {gt[krn th En(kn)] 79’;[‘{(), Xt: BU]}”m < E]

t=1

= Plky, = ko, |Batko) — Bolly, < 8y and lca(Bo) > {g:lke, X, Balko)]

t=1

_gt[kﬁ# X, :B'J]}”m < E]
= Pk, = ko, [1Ba(ks) — Boll, < 80

and sup “CH(BO} 2 {gr[kOv Xr! B] _g.‘[k(h Xi! BU]}"m < E]
= 1

B E Bo(6y) re

=1 — Pk, #ko] + PB4 (ko) — Bolls, = 86]

+P Sup ilcn(BO) 2 [gl[kl)s Xt’ B]ig![kﬂ': Xi’ .BO]]“MEE
B £ BolBo) =1

where By(8y) = {B € R B ~ By 1, < 8g}. Consider now the case where BS
holds. We have

sup ch(Bﬂ) 2 {gr[k07 Xis B] —g-‘[k(lv X!w ﬁ(]]}“m SAH(JB‘J)

B € By(5s) £=1

+ gn(Bﬂv 60) + -Bn(:B%}' 8())

where A, (B) = |c,(Bo) 221 {g:lko, Xy, B1 — Eg, ko, X,, B, A, (Bo, &)
= sup {A,(B): B € Bo(8)}, and

Bn(ﬁﬂ’ 50)2 sup ”Cn(BO) z {Egr[k(h Xl‘s B] —_Egi[kﬂv Xl-t IBU]}H:":'
B € Bo(Bo) =t

By BS5(b), for any gy > 0, we can choose 8; such that 0 < §; = T(Bn} and B ,(8y,
8y) < gg for all ». Further, by B5(a), plim, ... A,{(By) = plim,_,. 4,(8y, 63} =
0. Thus

plim sup |lc.(Bo) 2 {9:[ke, X:. Bl — Gelka, X, BolHlm =0

n—= BEByiba) t=1

and, using BI,

.

 Copyright © 2001 All Rights Reseyed, ...



GENERALIZED PREDICTIVE TESTS 227

lim P[“CH(BU) E {gr[gn’ Xt’ En(kn)] ﬁgr[k()s Xl! 160]}Hm < 8] = 1
t=1

n—m

from which (3.3} follows. When B4 and B6 hold, instead of BS, we have

ch(nel)) E {g![k(ls X!s 18] _gr[kﬂv X!* B(}]}“m

=1

= {Cn(Bﬂ)l 2 “g.![kﬁe Xls 3] - gt[kﬂ! Xr: BO]”M
t=1

= {le.(Bo)| 2 Bilko, X.. Bo)thld(B, Bo)s Bo]
r=1

for || B~ Boll;, < 7(Bo); hence, for 0 < & = 7(Bg),

]

sup ”Cn(BO) 2 {gl[k(): Xt! B] _gt[ko’ X!’ ﬁo]}Hm
B Bal8o) =1

={|c.(Bo)| 2, Bilko. X:, Bo)th(By, 8y}
r=1

where E(.BU! 30} = Sl]p'B(_:_BD(s") h[d(ﬁ, B()), Bg] and ]imanlg E(,BQ, 60) =0, Usi.ng
B6, we then have

lim P

n-+ %

SUp ch(ﬁo) 2 {gl[kﬂ, XJ: 3] ugr[k(h XM IB()]}”m = E]
=]

B € B30} £

= lim P

"H— %

‘Cn(JBO)I Z Bl(k()a Xr, BO)]h(ﬁUS 60) = 5}
t =1

= Glelh(By. 80}, Bul

Choose 8 such that 0 << 8y = +(8y) and G[e/f(Bq. 84), Bol = £, where 0 < g5 < 1
is arbitrary. Then, for all 0 << g < 1,

‘li—l;{ F ”Cﬂ(ﬁﬂ) 2 {gl[ﬁn’X.‘e En(én)]ﬁgr[k09xn 30]}”4'1:(5 =1~ g
H— t=1
from which (3.3) follows. Q.E.D.
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