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ABSTRACT

In this paper, we provide evidence on two alternative meishas of interaction between returns
and volatilities: thdeverage effect and thevolatility feedback effect. We stress the importance of
distinguishing betweerealized volatility andimplied volatility in this context, and find thammplied
volatilities are essential for assessing thotatility feedback effect. The leverage hypothesis asserts
that return shocks lead to changes in conditional volgtilihile the volatility feedback effect theory
assumes that return shocks can be caused by changes inarmaidiolatility through a time-varying
risk premium. On observing that a central difference betwtbese alternative explanations lies in
the direction of causality, we consider vector autoregvesnodels of returns and realized volatility
and we measure these effects along with the time lags inddlmugh short-run and long-run
causality measures proposed in Dufour and Taamouti (2@39ppposed to simple correlations.
We analyze 5-minute observations on S&P 500 Index futuredracts, the associate@alized
volatilities (before and after filtering jumps through the bispectrung iamplied volatilities. Using
only returns and realized volatility, we find a strong dynar@verage effect for the first three
days. The volatility feedback effect appears to be nedkgdi all horizons. By contrast, when
implied volatility is considered, a volatility feedbackdmnes apparent, whereas the leverage effect
is almost the same. These results can be explained by thénfdatolatility feedback effect works
through implied volatility which contains important infoation on future volatility, through its
nonlinear relation with option prices which are themseli@®/ard-looking. In addition, we study
the dynamic impact of news on returns and volatility. Firstetect possible dynamic asymmetry,
we separate good from bad return news and find a much stromgerct of bad return news (as
opposed to good return news) on volatility. Second, we thice a concept of news based on the
difference between implied and realized volatilities (tkaeiance risk premium) and we find that

a positive variance risk premium (an anticipated increaseriance) has more impact on returns
than a negative variance risk premium.

Keywords: Volatility asymmetry, leverage effect, volatility feealtk effect, risk premium, variance
risk premium, multi-horizon causality, causality measurigh-frequency data, realized volatility,

bipower variation, implied volatility.

Journal of Economic Literature classification: G1; G12; G14; C1; C12; C15; C32; C51; C53.
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1. Introduction

One of the many stylized facts about equity returns is an asgtmic relationship between returns
and volatility. Volatility tends to rise following negagvreturns and fall following positive returns.
Two main explanations for volatility asymmetry have beeapwmsed in the literature. The first
one is theleverage effect: a decrease in the price of an asset increases financiah{gva@nd the
probability of bankruptcy, making the asset riskier, heaéncrease in volatility; see Black (1976)
and Christie (1982). When applied to an equity index, thigioal idea translates into a dynamic
leverage effect. The second explanation is thelatility feedback effect, which is related to a time-
varying risk premium: if volatility is priced, an anticipgat increase in volatility raises the required
rate of return, implying an immediate stock price declinerider to allow for higher future returns;
see Pindyck (1984), French, Schwert and Stambaugh (198@®pkell and Hentschel (1992), and
Bekaert and Wu (2000).

In this paper, we provide new evidence on these two mecharo$mteraction between returns
and volatilities by considering causality measures on4figguency data. We also stress the im-
portance of distinguishing betweeealized volatility andimplied volatility when studying leverage
and volatility feedback effects, and we find thaiplied volatilities are essential for assessing the
volatility feedback effect.

On noting that the two explanations involve differeatisal mechanisms [see Bekaert and Wu
(2000) and Bollerslev et al. (2006)], which may differ botiraugh their direction and the time
lags involved, we study the issue using short and long-rusaldy measures recently introduced
in Dufour and Taamouti (2009). The causality measures aliswo study and test the asymmetric
volatility phenomena at several horizons. When considehiorizons longer than one period, it is
important to account for indirect causality. Auxiliary iavles can transmit causality between two
variables of interest at horizons strictly higher than @awen if there is no causality between the two
variables at the horizon one; see Dufour and Renault (1998hng high-frequency data increases
the chance to detect causal links since aggregation may thakelationship between returns and
volatility simultaneous. By relying on realized volatflitneasures we avoid the need to specify a
volatility model.

To be more explicit on theausality issue involved, the leverage effect explains why a negative
return shock leads to higher subsequent volatility, whikevolatility feedback effect explains how

1The concept of leverage effect, which means that negativen® today increases volatility of tomorrow, was in-
troduced for individual stocks (or firms). However, it hasabeen applied to stock market indices; see Bouchaud,
Matacz and Potters (2001), Jacquier, Polson and Rossi \2Bf#hdt and Kang (2004), Ludvigson and Ng (2005), and
Bollerslev, Litvinova and Tauchen (2006).



an anticipated increase in volatility may result in a nagateturn. Thus, volatility asymmetry may
result from various causal links: from returns to volagjlifrom volatility to returns, instantaneous
causality. Causality here is defined as in Granger (1969ariaheY causes a variabl&’ if the
variance of the forecast error &f obtained by using the past &f is smaller than the variance of
the forecast error oK obtained without using the past Bf. In order to quantify and compare the
strength of dynamic leverage and volatility feedback effewe propose to use vector autoregressive
(VAR) models of returns and various measures of volatilithigh frequency together with short
and long-run causality measures in Dufour and TaamoutiqR00

Using 5-minute observations on S&P 500 Index futures cotgrave first consider causality
measures based on a bivariate VAR involving returns andzeshbolatility. In this setting, we find
a weak dynamic leverage effect for the first four hours in hodata and a strong dynamic leverage
effect for the first three days in daily data. The volatiligetiback effect appears to be negligible,
irrespective of the horizon considered.

In studying the relationship between volatility and resyimplied volatility — derived from op-
tion prices — can be an interesting alternative measure lafiity or constitute a useful auxiliary
variable, because option prices may capture additionevaet information as well as nonlinear re-
lations. Implied volatility can be viewed as a forward-lowk measure of volatility with an horizon
corresponding to the maturity of the option. We find that addinplied volatility to the information
set to forecast returns leads to statistical evidence firabke volatility feedback effect for a few
days, whereas the leverage effect remains almost the sankey Alement of the volatility feed-
back mechanism is an increase of expected future volatilityplied volatility certainly provides
an option market forecast of future volatility, which is teetthan a forecast based on past realized
volatility. The informational content of implied volatiji does not come as a surprise since several
studies have documented that implied volatility can be ueegatedict whether a market is likely
to move higher or lower and help to predict future volatjlisee Day and Lewis (1992), Canina
and Figlewski (1993), Lamoureux and Lastrapes (1993), Figif1998), Poteshman (2000), Blair,
Poon and Taylor (2001), and Busch, Christensen and NieZ06]§. Pooling the information con-
tained in futures and options markets unveils an effectdaanot be found with one market alone.
This is a new and important empirical finding.

Another contribution of this paper consists in showing thatproposed causality measures help
to quantify the dynamic impact of bad and good return newsaatiity.> A common approach

2In this study bad and good news are determined by negativpasitive innovations in returns and volatility. Another
literature considers the impact of macroeconomic news @mements on financial markets (e.g. volatility), see for
example Cutler, Poterba and Summers (1989), Schwert (188&hrce and Roley (1985), Hardouvelis (1987), Haugen,

2



for empirically visualizing the relationship between nesvgl volatility is provided by the news-
impact curve originally studied by Pagan and Schwert (129@) Engle and Ng (1993). To study
the effect of current return shocks on future expected NityaEngle and Ng (1993) introduced the
News Impact Function (hereaftBli F). The basic idea of this function is to consider the effect of
the return shock at timeon volatility at timet + 1 in isolation while conditioning on information
available at time and earlier. Engle and Ng (1993) explain that this curve,revfadl the lagged
conditional variances are evaluated at the level of thet asfigrn unconditional variance, relates
past positive and negative returns to current volatility.

We propose a new curve, ti@ausal News Impact Function (CNIF), for capturing the impact of
news on volatility based on causality measures. In contvabtthe NIF of Engle and Ng (1993),
the CNIF curve can be constructed for parametric and sttichedatility models and it allows one
to consider all the past information about volatility anturas. We also build confidence intervals
using a bootstrap technique around the CNIF curve. Funiteigan visualize the impact of news
on volatility at different horizons [see also Chen and Glg/§2007)] rather than only one horizon
as in Engle and Ng (1993).

We confirm by simulation that the CNIF based on causality messdetects well the differential
effect of good and bad news in various parametric volatititydels. Then, we apply the concept to
the S&P 500 Index futures returns and volatility: we find a matronger impact from bad news at
several horizons. Statistically, the impact of bad newségsicant for the first four days, whereas
the impact of good news is negligible at all horizons.

Our results on the informational value of implied volagilalso suggest that the difference be-
tween implied and realized volatility (called tlhariance risk premium) constitutes an interesting
measure of “news” coming to the market. So we compute caysakasures from positive and
negative variance risk premia to returns. We find a stronggact when the difference is positive
(an anticipated increase in volatility or bad news) thanmibés negative.

Recently, two studies have used high-frequency data tgy shelrelationship between returns
and volatility. Using high-frequency data and simpterelations, Bollerslev et al. (2006) find an
important negative correlation between volatility andreat and lagged returns lasting for sev-
eral days, while correlations between returns and laggéatibty are all close to zero. Masset
and Martin (2008) use high-frequency data to analyze the-lieg relationship of option implied
volatility and index return in Germany based on Granger alitydests and impulse-response func-

Talmor and Torous (1991), Jain (1988), McQueen and Role®3)19Balduzzi, Elton and Green (2001), Andersen,
Bollerslev, Diebold and Vega (2003), and Huang (2007).



tions. They find that the relationship is return-driven ie ense that index returns Granger cause
volatility changes. An important difference between oupgraand Bollerslev et al. (2006) and
Masset and Martin (2008) papers is that, among other thimgshow thatmplied volatilities are
important for assessing tivelatility feedback effect. Further, in the present paper we use short and
long-run causality measures to quantify the causality fi¢rdint horizons, whereas in their papers
they consider simple correlations and impulse-responsgtiftns which are inappropriate measures
of causality: to see why impulse-response functions arpprapriate measures of causality, the
reader can consult Dufour and Renault (1998).

Previous empirical evidence about the links between retammd volatility, often based on
volatility models, is abundant but the messages about ¢fmecdithe relationship or about the promi-
nence of the leverage effect or the volatility feedback atflre mixed. Studies focusing on the
leverage hypothesis conclude that the latter cannot cdetplaccount for changes in volatility; see
Christie (1982) and Schwert (1989). However, for the viitatfeedback effect, empirical findings
conflict. French et al. (1987), Campbell and Hentschel (1992 Ghysels, Santa-Clara and Valka-
nov (2004) find a positive relation between volatility angpested returns, while Turner, Startz
and Nelson (1989), Glosten, Jagannathan and Runkle (19@B3Nalson (1991) find a negative
relation. Often the coefficient linking volatility to retus is statistically insignificant. Ludvigson
and Ng (2005) find a strong positive contemporaneous reld@ween the conditional mean and
conditional volatility and a strong negative lag-volagiin-mean effect. Guo and Savickas (2006)
conclude that the stock market risk-return relation isfpasias stipulated by the CAPM; however,
idiosyncratic volatility is negatively related to futureosk market returns.

Only a few studies have looked at the relation between retarmd implied volatility [Giot
(2005), Dennis, Mayhew and Stivers (2006), Bekaert and WQ@}Y. These studies remain limited
to relatively low frequency data (such as, daily data), dbtake into account realized volatility
(for which implied volatility may play the role of aonfounding factor), and do not exploit the
newer causal analysis framework used in the present pajmr(2805) uses S&P100 index and an
implied volatility index (VIX) to show that there is @ntemporaneous asymmetric relationship be-
tween S&P100 index returns and VIX: negative S&P100 indéxrns yield bigger changes in VIX
than do positive returns [see Whaley (2000)]. He also assdb® possible relationship between
implied volatility and forward looking stock index returride finds that there is some evidence that
positive (negative) forward looking returns are to be expador long positions in the stock index
triggered by extremely high (low) levels of the implied uility indices. Dennis et al. (2006), us-
ing daily stock returns and innovations in option-derivegpiied volatilities, show that the relation
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between stock returns and innovations in systematic ligyatidiosyncratic volatility) is substan-
tially negative (near zero). These results suggest that@tric volatility is primarily attributed to
systematic influences (such as feedback of market-levalility changes), rather than aggregated
firm-level effects (such as leverage). For individual agsBekaert and Wu (2000) argue that the
volatility feedback effect dominates the leverage effespiically.

The plan of the paper is as follows. In Section 2, we definetilityfameasures in high-frequency
data and we review the concept of causality at differentZoms and its measures. In Section 3,
we propose and discuss VAR models that allow us to measuezage and volatility feedback
effects with high-frequency data. In Section 4, we propasese implied volatility(/V") — in ad-
dition to realized volatility and returns — in order to me@sthe dynamic leverage and volatility
feedback effects. Section 5 describes the high-frequeaty the estimation procedure and the em-
pirical findings regarding causality effects between wtijatand returns. In Section 6, we propose
a method to assess the dynamic impact of good and bad retarsnamevolatility. Simulation results
on the efficiency of this method are also presented. Our érapitesults on news effects in S&P
500 futures market appear in Section 7. We conclude in Se8tio

2. \Volatility and causality measures

To assess causality between volatility and returns at higguincy, we need to build measures for
both volatility and causality. For volatility, we use vasmmeasures of realized volatility introduced
by Andersen, Bollerslev and Diebold (2@)3see also Andersen and Bollerslev (1998), Andersen,
Bollerslev, Diebold and Labys (2001), Barndorff-NielsemdaShephard (20@8, and Barndorff-
Nielsen and Shephard (2082 For causality, we rely on the short and long run causaliéasures
proposed by Dufour and Taamouti (2009).

Let us first set some notations. We denote the tintegarithmic price of the risky asset or
portfolio by p, and the continuously compounded returns from tint@t + 1 by ry 1 = pra1 — Dt
We assume that the price process may exhibit both stochamitility and jumps. It could belong
to the class of continuous-time jump diffusion processes,

dpy = pydt + o dWy + kydgy, 0 <t < T, (2.1)

where 1, is a continuous and locally bounded variation processis the stochastic volatility
process, W, denotes a standard Brownian motielfy; is a counting process witllg; = 1 corre-
sponding to a jump at timeanddq; = 0 otherwise, with jump intensity;. The parametex, refers



to the size of the corresponding jumps. Thus, the quadratiation of returns from timetot + 1
is given by

t+1
[r, r]t+1:/ Jgds—i— g HE (2.2)
t

where the first component, called integrated volatilitynes from the continuous component of
(2.1), and the second term is the contribution from discj@teps. In the absence of jumps, the
second term on the right-hand-side disappears, and theajitadariation is simply equal to the
integrated volatility.

2.1. Volatility in high-frequency data: realized volatility, bipower variation, jumps

In this section, we define the various high-frequency messtimat we will use to capture volatility.
In what follows we normalize the daily time-interval to yndand we divide it intoh periods. Each
period has length\ = 1/h. Let the discretely sampled-period returns be denoted by, 1) =
pr — pt—A and the daily return by, = Z;‘L:l T(t+4.A, 4)- The daily realized volatility is defined
as the summation of the correspondingigh-frequency intradaily squared returns:

h

RVigy1 =) 7hiia ) (2.3)
j=1
The realized volatility satisfies
lim RV = " 2d 2
t+1 — Og 5+ Z KRg, (24)
A—0 t 0<s<t

which means thaRV;.; is a consistent estimator of the sum of the integrated vaeigfﬁ“ o2ds
and the jump contribution; see Andersen and Bollerslevg}l,98ndersen, Bollerslev, Diebold and
Labys (2001), Andersen, Bollerslev and Diebold (2808arndorff-Nielsen and Shephard (2@02
2002), and Comte and Renault (19988imilarly, a measure of standardized bipower variation is

given by
h

™
BV = 5 Z | Tja,a) I Ter (-4, 8) | - (2.5)
=2

Under reasonable assumptions on the dynamics of (2.1)jpbever variation satisfies

t+1 )
lim B = ds; 2.6
Jim BV /t o2ds; (2.6)

3For a general discussion of integrated and realized vitiesilin the absence of jumps, see Meddahi (2002).
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see Barndorff-Nielsen and Shephard (2004) and Barnda€fsiih, Graversen, Jacod, Podolskij
and Shephard (2005). Equation (2.6) means &}, ; provides a consistent estimator of the
integrated variance unaffected by jumps. Finally, as ndtgdBarndorff-Nielsen and Shephard
(2004), combining the results in equation (2.4) and (2I®,dontribution to the quadratic variation
due to the discontinuities (jumps) in the underlying pricegess may be consistently estimated by

1i — = 2, .

AEO(RVtH BViy1) Z Ky (2.7)
0<s<t

We can also define the relative measure

(RVig1 — BViga)

Ry = 2.8

1 o (2.8)
or the corresponding logarithmic ratio

Jir1 = In(RVii1) — In(BViyq). (2.9)

Huang and Tauchen (2005) argue that these are more robustiresaf the contribution of jumps
to total price variation Since in practice/;;; can be negative in a given sample, we impose a

non-negativity truncation of the actual empirical jump s@w@ments:
Jir1 = max[In(RViy1) — In(BVita), 0] (2.10)
see Andersen, Bollerslev and Diebold (28Dand Barndorff-Nielsen and Shephard (2004).

2.2. Short-run and long-run causality measures

We study the causality at different horizons between rst(iry) and volatilities(c?). For that pur-
pose, it will be convenient to define finsbncausality in terms of orthogonality between subspaces
of a Hilbert space of random variables with finite second nmuisie To give a formal definition
of noncausality at different horizons, we need to consitlerfollowing notations. We denote by
r(w,t], o?(w,t], andz(w,t] the information contained in the history of variables otiestr and

o2 and another auxiliary variable respectively up to time. The “starting point'w is typically
equal to a finite initial date (such as= —1, 0 or 1) or to —oc. In our empirical application the
auxiliary variablez is given by the implied volatility (hereaftdrl’). The information sets obtained
by “adding” z(w,t] to r(w,t], 2(w,] to 0?(w, ], r(w,t] to o*(w,t], and z(w,t] to r(w,t] and



o?(w, t] are defined as:
Lo(t) = Io+r(w, t] + z(w, 1], L2.(t) = Ip + 0°(w, t] + z(w, 1], (2.11)

Ircr2 (t) = Iy + T(‘”» t] + 02(&), t] ) ITUQZ(t) =1y + ’I”(UJ, t] + UQ(UJ, t] + Z(UJ, t] ) (212)

wherel; represents a fundamental information set available ineaiés (such as deterministic vari-
ables, a constant, etc.). Finally, for any given informatget B,, we denote bWar[r.,; | By
(respectivelyVar[o7 , | B;]) the variance of the forecast error«f,;, (respectivelyo; +h) based
on the information seB;.* Thus, we have the following definition of noncausality afetiént hori-
zons [see Dufour and Renault (1998) and Dufour and Taam2Q@i9))].

Definition 2.1 Let h be a positive integer.
(i) r does not cause o at horizon h given I 2, (t), denoted r - 02 | I2,(t), iff

Var [Ungh | Icr2z(t)] = Var [Ut2+h | Ira2z(t)] ) (2.13)

(i) r does not cause o2 up to horizon h given 1,2, (t), denoted r 0 o2 | I2,(t), iff

T—I/:<72|Iazz(t) fork=1,2, ..., h; (2.14)
(iii) r does not cause o2 at any horizon given I, (t), denoted r he 0% | L2, (), iff

rﬂ;a? | L2, (t)forallk=1,2, ... (2.15)

Definition 2.1 corresponds to causality fromto o2 and means that causess? at horizonh
if the past ofr improves the forecast fo ., given the information sef,-.(¢). We can similarly
define noncausality at horizdnfrom o2 to ». The presence of auxiliary variablemay transmit
the causality between ando? at horizonh strictly higher than one even if there is no causality
between the two variables at horizbnHowever, in the absence of auxiliary variable, noncausalit
at horizonl implies noncausality at any horizdnstrictly higher than one; see Dufour and Renault
(1998). In other words,

T o? | o (w, t] = r (—/») o2 | I2(t), (2.16)

o s | 7(w, t] = o> -7 | I-(t), (2.17)
1 (0)

4B, can be equal t@,,(t), I, (t) , or I, (t).



wherel 2 (t) = Ip+0%(w,t] andl,.(t) = Iy+r(w,t]. Ameasure of causality fromto o2 at horizon
h, denotedC(r - a?), is given by following function [see Dufour and Taamouti (200

C(r 702) =In

2.18
Varo7up | Trg (1) 19)

Var(o7,, | 1,2,(t)] ]

Similarly, a measure of causality froat to r at horizonh, denotedC (o - r), is given by:

(2.19)

owATMZm[WWmmmww

Var[ryn | Ig2 (1)) ]
For example( (r — o?) measures the causal effect frerto o2 at horizonh given the past of>
andz. In terms of predictability, it measures the informationegivby the past of that can improve
the forecast ob7, ,. SinceVar(o7, ,, | I,2,(t)] > Var[o7,, | I,,2,(t)], the functionC(r — o?)
is nonnegative. Furthermore, it is zero when when there isansality at horizork. However, as
soon as there is causality at horizon 1, causality meastidifexent horizons may considerably
differ.

In Dufour and Taamouti (2009), a measure of instantaneousatity between- and o2 at
horizonh is also proposed. It is given by the function

Var[rypp | Ip2,(t)] Varo7, | 2. (1)]

- z 2.2
C(’I” ? 7 ) . det (E [Tt-l—hy Ut2+h | ITUQZ(t)]) ( 0)

wheredet (X [rin, 07, | 1,02,(t)]) represents the determinant of the variance-covarianceéxmat
2 [revns 07y | Loz, (t)] of the forecast error of the joint proceés 02), at horizonh given the
information setl, 2, (t). Note thato? may be replaced bin(c?). Since the logarithmic transfor-
mation is nonlinear, this may modify the value of the catgaiieasure.

In what follows, we apply the above measures to study theadigyat different horizons from
returns to volatility (hereafter leverage effect), fromatdity to returns (hereafter volatility feed-
back effect), and the instantaneous causality and depeadegtween returns and volatility. In
Section 3, we study these effects by considering a limitéatimation set which contains only the
past of returns and realized volatility. In Section 4, weeexted our information set by adding the
past of implied volatility.



3. Measuring leverage and volatility feedback effects in a AR model

In this section, we study the relationship between the metyand its volatility 2. The objective
is to measure and compare the strengtbyobmic leverage and volatility feedback effects in high-
frequency equity data. These effects are quantified witiercontext of a VAR model and by using
short and long run causality measures proposed by Dufoufaauhouti (2009). Since the volatility
asymmetry may be the result of causality from returns totilitye[leverage effect], from volatility
to returns [volatility feedback effect], instantaneousisadity, all of these causal effects, or some
of them. We wish to measure all these effects and to compare i order to determine the most
important ones.

We suppose that the joint process of returns and logarithodatility, (r; 1, In(o? +1))' follows
an autoregressive linear model

P
Tt4+1 Tt4+1—y5
=u+ D ( > +u 3.1
( ln(o'?Jrl) > : ]Zl ! ln(a§+1_j) i 3D
where

s _( uin o — | Puj Puy ] _ 3.
M ( Ly ) y Ut+1 < U?.;_l ) ) 7 |: @21j @22j y J y e Dy ( . )

/ Yy fors=t
E [u,] = 0 andE [utu] - { 0 o Iy (3.3)

In the empirical applicatiorarfJrl will be replaced by the realized volatilitiRV;, or the bipower
variation BV, 1. The disturbance;, , is the one-step-ahead error when is forecast from its
own past and the past bf(c7, ;), and similarlyu?, , is the one-step-ahead error wheiio?, ;) is
forecast from its own past and the pastgf; . We suppose that these disturbances are each serially
uncorrelated, but may be correlated with each other cortesmgously and at various leads and
lags. Sinceu; , is uncorrelated witll, 2 (t), the equation for;, ; represents the linear projection
of ri11 on1,,2(t). Likewise, the equation fom (o7, ;) represents the linear projectionlafc?, ;)
onl,,(t).

Equation (3.1) allows one to model the first two conditionaiments of the asset returns. We
model conditional volatility as an exponential functioropess to guarantee that it is positive. The
first equation of thé” AR(p) in (3.1) describes the dynamics of the return as

p p
Pept = pp Y Prijrip—g + Y Py (o) + gy (3.4)
j=1 j=1
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This equation allows to capture the temporary componenaofdand French (1988) permanent and
temporary components maodel, in which stock prices are geekby a random walk and a stationary
autoregressive process, respectively. gf; = 0, this model of the temporary component is the
same as that of Lamoureux and Lastrapes (1993); see alsdtBnach Kang (2004), and Whitelaw
(1994). The second equation BfA R(p) describes the volatility dynamics as

p p
In(071) = pty + Y Porjrear—j + O Poojn(071 ;) + ufyy, (3.5)
j=1 j=1
and it represents the standard stochastic volatility mdémi®,; ; = 0, equation (3.5) can be viewed
as the stochastic volatility model estimated by Wiggins3{@)9 Andersen and Sgrensen (1996), and
many others. However, in this paper we consider tat, is not a latent variable and it can be
approximated by realized or bipower variations from higigfiency data. We also note that the
conditional mean equation includes the volatility-in-meaodel used by French et al. (1987) and
Glosten et al. (1993) to explore the contemporaneous oekttip between the conditional mean
and volatility [see Brandt and Kang (2004)]. To illustralte ttonnection to the volatility-in-mean
model, we premultiply the system in (3.1) by the matrix

1 . COV(7‘t+17 111(0'%_‘_1))
B Var[ln(af+1)|fw,2 ()]
P= _ Cov(req1, In(o?,,)) 1 ‘ (36

Var[ri41 \Img )]

Then, the first equation of_ ; is a linear function of the elements ofw, t], o%(w, t + 1], and the

Cov(rit1, ln(af+l)) e
Var[ln(o7)|],,2()] T+

uncorrelated withn(o7, ;) as well as withr(w, t] ando?(w, ¢ + 1]. Hence the linear projection of

disturbanceu},; — Since this disturbance is uncorrelated with ,, it is

741 ONT(w, t] ando?(w, t + 1] is provided by the first equation of the new system:

p p
Tt41 = Vr + Z P17 415 + Z G195 (07 1) + Ufyy - (3.7)

j=1 J=0
The new parametens,, ¢,;, andg¢,,;, for j =0, 1,... ,p, are functions of parameters in the
vector i and matrix®;, for ;7 = 1,...,p. Equation (3.7) is a generalized version of the usual
volatility-in-mean model, in which the conditional mearpdeds contemporaneously on the con-
ditional volatility. Similarly, the existence of the linegrojection ofln(c7, ;) onr(w,t + 1] and
o?(w, ],

p p
(o) = vy + Z Po1jTt+1-5 + Z a9 (071 1) + Ay (3.8)
=0 =1
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follows from the second equation of the new system. The neanpaters/;, ¢,;;, andgs,;, for

j =1,...,p, are functions of parameters in the vectoand matrix®;, for j = 1,... ,p. The
volatility model given by equation (3.8) captures the pesice of volatility through the terngs,.

In addition, it incorporates the effects of the mean on ¥itlgtboth at the contemporaneous and
intertemporal levels through the coefficients ;, for j =0, 1,... ,p.

Let us now consider the matrix

2
Our 026 :| : (39)

C g

zu- |

where o2, and o2, represent the variances of the one-step-ahead forecass @fr return and
volatility, respectively. ¢ represents the covariance between these errors. Basedtems(s.1),
the forecast error ofr;y, ln(a?_i_h))/ is given by:

e [('th, In( at+h ] Zl/) AUt i (3.10)

where the coefficients,, fori = 0,... ,h — 1, represent the impulse response coefficients of the
M A(o0) representation of model (3.1). These coefficients are diyethe following equations:

QJ)O = Ia
1/)1 - ¢1¢0 - djl )
Yy = P11y + Patpy = P} + Do, (3.11)

Vg = P11y + Potpy + Doty = D} + B 1Py + PPy + D3,

wherel is an identity matrix and
¢; =0, forj>p+1.

The covariance matrix of the forecast error (3.10) is given b

Var[e[(ren, In(07,4)) sz Lt (3.12)

We also consider the following restricted model:

T _ P Porq B
( 1n(;+§il) ) =i+ P ( 1n(t+21 ' > + Tgp1 (3.13)
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where

— /_LT _ o ﬂ;rl > F |: @llj 0 :| . _
= "), G =1{ _ , & = _ L i=1, .. 3.14
Iz < i, ) t+1 ( ag,, j 0 Bon,; J D (3.14)

_ _ ! Eu fOI’S:t ST Zﬂ'r c
E[ut]_O’E[utuS}_{O fors#t “_[c Eua]

Zero values inP; mean that there is noncausality at horizofrom returns to volatility and from

(3.15)

volatility to returns. As mentioned in subsection 2.2, innabate system, noncausality at horizon
one implies noncausality at any horizarstrictly higher than one. This means that the absence of
leverage effect at horizon one (respectively the absencelafility feedback effect at horizon one)
which corresponds tds;; = 0, for j = 1,...,p, (respectivelybo; = 0, for j = 1,...,p, ) is
equivalent to the absence of leverage effect (respectixatility feedback effect) at any horizon
h > 1.

To compare the forecast error variance of model (3.1) witt 8f model (3.13), we assume
thatp = p. Based on the restricted model (3.13), the covariance matrthe forecast error of

(re+n,In(02,,))" is given by:

h—1
Var |e[(re4n, ln(Ungh)),]} = Z@z Zaty, (3.16)
=0
where the coefficients;, for i = 0,...,h — 1, represent the impulse response coefficients of

the M A(~o) representation of model (3.13). They can be calculatedarséime way as in (3.11).
From the covariance matrices (3.12) and (3.16), we definéotlmsving measures of leverage and
volatility feedback effects at any horizdn whereh > 1,

— 2)) — Z?gol ey(¥; Z_’zﬂz};)% _ /
v I ) [Z?_ol es(¥; Euw;)GZI’ =01, (317)

W1 (. S, /
C(In(e?) —r) =In E?—Zl :EZ 5 Z;:] e =(1,0). (3.18)

The parametric measure of instantaneous causality atdmohizwhereh > 1, is given by the
following function

C(r = n(o?) = In [(Eﬁ:& e (v Sug)ea) (g €1 (¥ xuw;m)] ‘ (3.19)

h det (30 by Zuy)
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4. Implied volatility as an auxiliary variable

An important feature of causality is the information setgidered to forecast the variables of in-
terest. Until now, we have included only the past of returnd eealized volatility. Since the
volatility feedback effect rests on anticipating futureveaments in volatility it is natural to include
option-based implied volatility, an all-important measof market expectations of future volatility.
Formally, we “add” the past of implied volatility to the infmation set/, 2 (¢) that we considered
in the previous section. The new information set is given bgw,. .2, (t), wherez is an auxiliary
variable represented by implied volatility.

In this paper, we consider call options written on S&P 50Ceinéutures contracts. The data
come from the OptionMetrics data set which contains hisabron option prices, dating back to
January 1996. Given observations on the option pficand the remaining variableS, K, 7,
andr, an estimate of the implied volatilityl” can be obtained by solving the nonlinear equation
C = C (S, K, r,r, IVY/?) for IV1/2, whereC(-) refers to the Black-Scholes formula. Each
day, we extract the implied volatility corresponding to thation that is closest to the money. This
selection criterion ensures that the option will be liquitdaherefore aggregates the opinion of
many investors about future volatility. This appears manpartant than keeping a fixed maturity.
This choice is often made in the empirical literature onapfpricing [see for example Pan (2002)].

Therefore, we consider a trivariate autoregressive modelding implied volatility, in addition
to the realized volatility (bipower variation) and retufhs

Ti41 e p | Py Piaj Pizj Tit1—j u%r‘}
RVi, | =| gy | + Z Po1j Pooj  Posj RV}}PJ' + ut]—i‘—/l (4.1)
IV, Hrv i=1 | @315 D325 Pasj IV, Uy

whereRV;* = In(RV;) andIV;* = In(I'V}). The first equation of the above system

p p p
revt = pot Y Prgreni—jt Y PRV ) Pugl Vi jtui (4.2)
j=1 j=1 j=1

describes the dynamics of the return, while the second equat
p p p
RViy =ppy + Y Pojrernj+ PRV i+ B IV +uflh (4.3)
j=1 j=1 j=1

describes the volatility dynamics. It is well known that iled volatility can be used to predict

SFurther, we consider an autoregressive model where we agusjand our results do not change.
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whether a market is likely to move higher or lower and helpredjct future volatility [see Day and
Lewis (1992), Canina and Figlewski (1993), Lamoureux anstiages (1993), Poteshman (2000),
Blair et al. (2001), and Busch et al. (2006)]. The forwardkimg nature of the implied volatility
measure makes it an ideal additional variable to capturdenpal volatility feedback mechanism.
Apart from using/V without any constraint in (4.2) and (4.3), we will also lodknaore restricted
combinations dictated by financial considerations. Ingddbed difference betweehlV and RV
provides an estimate of the risk premium attributable toser@&ance risk factor.

5. Causality measures for S&P 500 futures

In this section, we first describe the data used to measusalitguin the VAR models of the previous
sections. Then we explain how to estimate confidence irleenfacausality measures for leverage
and volatility feedback effects. Finally, we discuss oudifiys.

5.1. Data description

Our data consists of high-frequency tick-by-tick transaciprices for the S&P500 Index futures
contracts traded on the Chicago Mercantile Exchange, twepériod January 1988 to December
2005 for a total of 4494 trading days. We eliminated a few daiisre trading was thin and the
market was open for a shortened session. Due to the unusughyvolatility at the opening,
we also omit the first five minutes of each trading day [seedBslibv et al. (2006)]. For reasons
associated with microstructure effects we follow Bollevsét al. (2006) and the literature in general
and aggregate returns over five-minute intervals. We catiethe continuously compounded returns
over each five-minute interval by taking the difference leswthe logarithm of the two tick prices
immediately preceding each five-minute mark to obtain al totar7 observations per day [see
Mdiller, Dacorogna, Gengay, Olsen, and Pictet (2001) anteBbév et al. (2006) for more details].
We also construct hourly and daily returns by summimgand 77 successive five-minute returns,
respectively.

Summary statistics for the five-minute, hourly, and dailyinres and the associated volatilities
are reported in tables 1 -2 and displayed in figures 1-2 of AgpeB. From these, we see that the
unconditional distributions of the returns exhibit highrtasis and negative skewness. The sample
kurtosis is much greater than the Gaussian value of threallftiree series. The negative skewness
remains moderate, especially for the five-minute and datyrns. Similarly, the unconditional
distributions of realized and bipower volatility measuaes highly skewed and leptokurtic. How-
ever, on applying a logarithmic transformation, both measw@approximately normal [see Ander-
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sen, Bollerslev, Diebold and Ebens (2001)]. The desceptatistics for the relative jump measure,
Ji+1, clearly indicate a positively skewed and leptokurtic mlisition. The time series plots of re-
turns and volatilities show the familiar volatility clusieg effect, along with some occasional large
absolute returns.

It is also of interest to assess whether the realized andveipeolatility measures differ signif-
icantly. To test this, recall that

t+1
lim (RVis1) = / s+ 3 K2, (5.1)
—0 t 0<s<t
Whereftt+1 o2ds is the integrated volatility and o< 2 represents the contribution of jumps to

total price variation. In the absence of jumps, the secormd te the right-hand-side disappears,
and the quadratic variation is simply equal to the integramatility: or asymptotically A — 0)

the realized variance is equal to the bipower variance. Méatystics have been proposed to test for
the presence of jumps in financial data [see for example BeffAielsen and Shephard (2002
Andersen, Bollerslev and Diebold (2083 Huang and Tauchen (2005), among others]. In this
paper, we test for the presence of jumps in our data by camsigtne following test statistics:

RViy1 — BV

z = , 5.2
enLe V((E)? +7—5)AQP 5.2)
oy — nRVE) (B 53

5 p QP ? -
(G2 7 —5)A%T
In(RViy1) — In(BVig) (5.4)

ZQP,lm,t = )
» (1T P,
V(G 7= 5)Amax(1, Z5)

where@ P, is the realized Quad-Power Quarticity [Barndorff-Nielsamd Shephard (2083,
with
h
QPis1 = huy* Z | 7150, 2) | TerG-1).a,2) | T@rG-2).4,2) | T@erG-3).4,2) |, (5.5)
j=4

andy, = \/g Under the assumption of no jumps and for each tiqehe statisticsgp 1+, zgp,t,
andzgp, im, + follow a Normal distribution\V/(0,1) asA — 0. The results of testing for jumps in
our data are plotted in Figure 3 of Appendix B. These grappsesent the quantile to quantile plots
(hereafter QQ plot) of the relative measure of jumps giverdpyation (2.8) and the QQ Plots of the
other statisticszgp, 1,1, 2zgp,+» andzgp,im,¢- When there are no jumps, we expect that the cross
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line and the dotted line in Figure 3 will coincide. Howeves,this figure shows, the two lines are
clearly distinct, indicating the presence of jumps in ouadd herefore, we will present our results
for both realized volatility and bipower variation.

5.2. Causality measures

We examine several empirical issues regarding the reltiprbetween volatility and returns. Be-
fore high-frequency data were not available and the conuegalized volatility took root — such
issues could only be addressed through volatility modetseRtly, Bollerslev et al. (2006) looked
at these relationships using high-frequency data andzezhiiolatility measures. As they empha-
size, the fundamental difference between the leveragehanddatility feedback explanations lies
in the direction of causality. The leverage effect explaifs/ a low return causes higher subse-
guent volatility, while the volatility feedback effect dajpes how an increase in volatility may cause
a negative return. However, they studied only correlatioetsveen returns and volatility at various
leads and lags, not causality relationships.

Here, we apply short-run and long-run causality measuregiémtify the strength of the re-
lationships between return and volatility. We use OLS tineste the VARp) models described
above and the Akaike information criterion to specify thaiders® To obtain consistent estimates
of the causality measures, we simply replace the unknowampeters by their estimates. We calcu-
late causality measures for various horizans 1, ... ,20. A higher value for a causality measure
indicates a stronger causality. We also compute the camneipg nominal95% bootstrap per-
centile confidence intervals according to the procedurerdesl in Appendix A. As mentioned
by Inoue and Kilian (2002), for bounded measures, as in csg,d&ie bootstrap approach is more
reliable than the delta-method. One reason is because Haendethod interval is not range re-
specting and may produce confidence intervals that aredihgiavalid. In contrast, the bootstrap
percentile interval preserves by construction these caings [see Inoue and Kilian (2002, pages
315-318) and Efron and Tibshirani (1993)]. Further, thecpstile interval allows avoiding using
the variance-covariance matrix of the estimators whicheddp on the homoskedasticity assump-
tion. More details on the consistency and statistical figstion of the procedures used here are
available in Dufour and Taamouti (2009).

The concept of Granger causality requires an informatioause is analyzed in the framework
of a model between the variables of interest. Both the stheofjthis causal link and its statistical

Using Akaike’s criterion we find that the appropriate valti¢he order of the unconstrained autoregressive model is
equal to10. Since using the same criterion the value of the order of timsttained model is smaller than, we take
p = p = 10 [see Section 3].
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significance are important. A major obstacle to detectingsality is aggregation. Low frequency
data may mask the true causal relationship between vasiablggh-frequency data thus offer an
opportunity to analyze causal effects. In particular, we destinguish with an exceptionally high
resolution between immediate and lagged effects. Fumthien if one’s interest focuses on relation-
ships at the daily frequency, using higher-frequency datsohstruct daily returns and volatilities
can provide better estimates than using daily returns (ae @oprevious studies). Besides, since
measured realized volatility can be viewed as an approxam#d the “true” unobservable volatility,
we consider both raw realized volatility and the bipoweriaton (which provides a way to filter
out possible jumps in the data); see Barndorff-Nielsen drepBard (2004).

With five-minute intervals we could estimate the VAR modethas frequency. However, if we
wanted to allow for enough time for the effects to develop veeil need a large number of lags
in the VAR model and sacrifice efficiency in the estimation.isTproblem arises in many studies
of volatility forecasting. Researchers have use severaraes to group five-minute intervals, in
particular the HAR-RV or the MIDAS schemésWe decided to look both at hourly and daily
frequencies.

Our empirical results will be presented mainly through gsafEach figure reports the causality
measure as a function of the horizon. The main results arensuized and compared in figures
4 - 7 of Appendix B. Detailed results, including confidencadmon the causality measures, are
reported in Appendix C.

Results based on bivariate models indicate the followingyfe 4 and Table 3 in Appendix B
and figures 11 - 12 in Appendix C]. When returns are aggredatdiae hourly frequency, we find
that the leverage effect is statistically significant fa finst four hours, while the volatility feedback
effect is negligible at all horizons. Using daily obsergat, derived from high-frequency data, we
find a strong leverage effect for the first three days, whisevitiatility feedback effect appears to be
negligible at all horizons. The results based on realizégtiity (R1") and bipower variatiotBV)
are essentially the same [Figure 11 in Appendix C]. Ovetha#ise results show that the leverage
effect is more important than the volatility feedback eff@gégure 4 in Appendix B].

If the feedback effect from volatility to returns is almagtn-existent, it is apparent that the
instantaneous causality between these variables exidtseamains economically and statistically
important for several days [see Figure 12 in Appendix C]. sTineans that volatility has a con-

"The HAR-RV scheme, in which the realized volatility is paetarized as a linear function of the lagged realized
volatilities over different horizons has been proposed hylléf, Dacorogna, Davé, Olsen, Pictet and Von Weizsacker
(1997) and Corsi (2003). The MIDAS scheme, based on the ifldstoibuted lags, has been analyzed and estimated by
Ghysels, Santa-Clara and Valkanov (2002).
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temporaneous effect on returns, and similarly returns hasentemporaneous effect on volatility.
These results are confirmed with both realized and bipoweati@ans. Furthermore, dependence
between volatility and returns is also economically antisgteally important for several days.

Let us now consider a trivariate autoregressive model dietuyimplied volatility in addition
to realized volatility (bipower variation) and returns, stsggested in Section 4 [figures 5-7 in
Appendix B and figures 13-16 in Appendix C]. First, we see thailied volatility (IV') helps
to predict future realized volatility for several days athg¢gigure 5 in Appendix B; Figure 13 in
Appendix C]. Itis also interesting to note that the diffeseetweendV and RV, which captures a
variance risk premium, also helps predict future volatilNote that Bollerslev et al. (2006) do not
consider implied volatility in their analysis.

Second, there is an important increase in the volatilitgllieek effect when implied volatility
is taken into account [Figure 6 in Appendix B; figures 14 - 1Rppendix C]. In particular, it is
statistically significant during the first four days. Theatilty feedback effect relies first on the
volatility clustering phenomena which means that retuimscks, positive or negative, increases
both current and future volatility. The second basic exglimm of this hypothesis is that there
is a positive intertemporal relationship between condélovolatility and expected returns. Thus,
given the anticipative role of implied volatility and thelk between the volatility feedback effect
and future volatility, implied volatility reinforces anddreases the impact of volatility on returhs.
Figure 6 also compares volatility feedback effects withaitdout implied volatility as an auxiliary
variable. We see that the difference betwdéhand RV has a stronger impact on returns than
realized volatility alone in the presence of implied vdigti Further, different transformations of
volatility (logarithmic of volatility and standard deviah) are considered: the volatility feedback
effect is strongest when the standard deviation is used &sune volatility.

Finally, we look at the leverage effects with and without lieg volatility as an auxiliary vari-
able [Figure 16 in Appendix C]. We see that there is almosthange in the leverage effect when
we take into account implied volatility. On comparing thedeage and volatility feedback effects
with and without implied volatility, we see that the diffeiee, in terms of causality measure, be-
tween leverage and volatility feedback effects decreasesvimplied volatility is included in the
information set. In other words, taking into account imghelatility allows to identify a volatility
feedback effect without affecting the leverage effect. sTilmiay reflect the fact that investors use
several markets to carry out their financial strategies,i@fiodmation is disseminated across several

8Since option prices reflect market participants’ expestatiof future movements of the underlying asset, the velatil
ity implied from option prices should be an efficient foreicat future volatility, which potentially explains a better
identification of the volatility feedback effect.
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markets. Since the identification of a causal relationskjpedds crucially on the specification of the
information set, including implied volatility appears estial to demonstrate a volatility feedback
effect.

6. Dynamic impact of positive and negative news on volatilt

In the previous sections, we did not account for the fact thatrn news may differently affect
volatility depending on whether they are good or bad. Wenagll propose a method to sort out the
differential effects of good and bad news, along with a satioh study showing that our approach
can indeed detect asymmetric responses of volatility tormethocks.

6.1. Theory

Several volatility models capture this asymmetry and apdoegd in Engle and Ng (1993). To study
the effect of current return shocks on future expected NityaEngle and Ng (1993) introduced the
News Impact Function (hereaft®liF). The basic idea of this function is to consider the effect of
the return shock at timeon volatility at timet + 1 in isolation while conditioning on information
available at timeg and earlier. Recently, Chen and Ghysels (2007) have exdetmgeconcept of
news impact curves to the high-frequency data settinge&usof taking a single horizon fixed para-
metric framework they adopt a flexible multi-horizon serargmetric modeling [see also Linton
and Mammen (2005)].

In what follows we extend our previous VAR model to capturedinamic impact of bad news
(negative innovations in returns) and good news (positiv@vations in returns) on volatility. We
guantify and compare the strength of these effects in omldetermine the most important ones.
To analyze the impact of news on volatility, we consider wiWwing model:

p

P P
(o) = po, + Z ¢7In(o7,q-;) + Z Pjerijt+ Z i erijtul (6.1)
=1 =1 =1

where

er, ,_; = min {eriy1-4, 0}, er;foj =max {er1—j, 0}, ergi—j = rep1—5—Ej(rep1—5),
(6.2)

Yo fors=t 6.3)

0 fors#t °

Equation (6.1) represents the linear projection of vatgton its own past and the past of centered

E[uf] = 0andE [uful]| = {

negative and positive returns. This regression model allome to capture the effect of centered
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negative or positive returns on volatility through the dméénts ;" or @j respectively for j =
1,...,p. It also allows one to examine the different effects thatdaagpd small negative and/or
positive information shocks have on volatility. This willqwide a check on the results obtained in
the literature on GARCH modeling, which has put forward exeglming evidence on the effect of
negative shocks on volatility.

Again, in our empirical applicationss, ; will be replaced by realized volatility?V;; or
bipower variationBV,;. Furthermore, the conditional mean return will be approxedaby the
following rolling-sample average:

m

- 1
Ei(reer) = — Y T

j=1
where we take an average around= 15, 30, 90, 120, and240 days. Now, let us consider the

following restricted models:

il

D
In(o7,) = b, + Z @7 In(07, ;) Z eriiy _j el (6.4)
i=1 i=1

D
Ut-l—l -3 +Z§0Z €7"t+1 j+vt+1 (65)
=1

In (Ut+1

T M»s

Equation (6.4) represents the linear projection of vatgtin (o7, ;) on its own past and the past
of centred positive returns. Similarly, equation (6.5)resgnts the linear projection of volatility
In(o? +1) on its own past and the past of centred negative returns. Mpace the forecast error
variances of model (6.1) with those of models (6.4) and (&v&)assume that = p = p.

In our empirical application, we also consider a model witltentered negative and positive

returns:

In(o?,;) —wU+Z¢ In(o7,_; +Z¢ Tl —|—Z¢+rt+1 it (66)

j=1
R -
wherer, ; ; =min{ry1-;, 0}, 0y ; = max{r1_;, 0},

Eea fOI’ s=t

Elef] = 0andE[e]el] = { 0 fors£t

(6.7)
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and the corresponding restricted volatility models:

P
(o7,) = Ay + Z ¢; In(07y-) + Z o (IR S TRY (6.8)
=1 i=1
D D
(o7, ;) Z (o7, +Z¢ Tiy1—i T €l (6.9)
= =1
Thus, a measure of the impact of bad news on volatility atzoork, whereh > 1, is given by the

following equation:

Var [e7,, | 0®(w, 1], erf(w, t
Cler —Tn(o?) = n | L2 LFen |7 (w8}, er 7w ] (6.10)
h Var [ut+h | J(t)]
Similarly, a measure of the impact of good news on volatdityrorizonh is given by:
Var [v7,, | 0%(w, t], er™(w, t
Clert — n(o?)) = In | Y2 ien L7 (1), er_( ] (6.11)
h Var [uf,, | J(t)]
where
er (w, t] = {er;s, s> 0} , (6.12)
ert(w, t] = {ertts, s> 0} , (6.13)

and.J(t) is the information set obtained by “adding®(w, t] to er ~ (w, t] ander ™ (w, t], introduced

the News Impact Function (hereaftéi-). By analogy, e call the curves defined in (6.10) and (6.11),
Causal News Impact Functions (CNIF). We also define a function which allows us to compare the
impact of bad and good news on volatility. This function cardefined as follows:

Var [e7, ), | 0% (w, 1], ert(w, t]]
Var [v7,, | 02(w, 1], er~(w, t]]

Cler |ert - In(o?)) = In (6.14)
WhenC'(er~ | ert - In(0?)) > 0, this means that bad news have more impact on volatility than
good news. Otherwise, good news will have more impact ortilitfghan bad news. Compared to
Chen and Ghysels (2007), our approach is also multi-horamhbased on high-frequency data but
is more parametric in nature. Before applying these new areago our S&P 500 futures market,
we conduct a simulation study to verify that the asymmetiaction of volatility is well captured

in various models of the GARCH family that produce or not sanlasymmetry.
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6.2. Simulation study on news asymmetry detection

We will now present an exploratory simulation study on thditgbof the causality measures to
detect asymmetry in the impact of bad and good news on \bjgtitagan and Schwert (1990),
Gouriéroux and Monfort (1992), Engle and Ng (1993)]. To dis,thve consider that returns are
governed by a process of the form:

Tt+1 = \/OtEt41 (6.15)

wheree; 11 ~ N(0,1) and o, represents the conditional volatility of returp, ;. Since we are
only interested in studying the asymmetry in leverage &ffeguation (6.15) does not allow for a
volatility feedback effect. Second, we assume thafollows one of the following heteroskedastic
models:

1. GARCH(1, 1) model:

0y =w+ Boi_1 + ag? | ; (6.16)
2. EGARCH1, 1) model:
€t—1 | et-1 | }
log(o:) = w+ Blog(ot—1) + + « —\/2/7| ; 6.17
s(0) = -+ Bloglorn) +9 2 1o |20 - 7] (617
3. nonlinear NL-GARCH1, 1) model:
op=w+PBo1+tale | (6.18)
4. GJR-GARCH]1, 1) model:
or=w+ Bos_1+ as?,l + ’yIt_lef,l (6.19)

where

I _ 17 if Et—1 S 0|
=171 0, otherwise;

5. asymmetric AGARCKIL, 1) model:

or=w+ Por_1+a(e—1+ 7)2 : (6.20)
6. VGARCH(1, 1) model:
€t—1 2
or=w+ foi_1 +a — + ; 6.21
t Boi—1 <\/T1 V> (6.21)
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7. nonlinear asymmetric GARGH, 1) model[NGARCH(1,1)] :

o1 =w+ Bor_1 + a1 +7/T-1) (6.22)

GARCH and NL-GARCH models are, by construction, symmefficus, we expect that the curves
of causality measures for bad and good news will be the sammla8y, because EGARCH, GJR-

GARCH, AGARCH, VGARCH, and NGARCH are asymmetric we expéeit these curves will be

different. The parameter values considered are given ifeabf Appendix B?

To see whether the asymmetric structures gets translatedhia causality patterns, we then
simulate returns and volatilities according to the abovel@®and we evaluate the causality mea-
sures for bad and good news as described in Section 6.1. Taettfsom statistical uncertainty, the
models are simulated with a large sample siZe= 40000).

The results obtained in this way are reported in Figure 8 gieklix B. We see from these that
symmetry and asymmetry are well represented by causaligsuone patterns. For the symmetric
models [GARCH and NL-GARCH], bad and good news have the sampadét on volatility. In
contrast, for the asymmetric models [EGARCH, GJR-GARCHAREZH, VGARCH, NGARCH],
bad and good news exhibit different impact curves.

It is also interesting to observe for the asymmetric mod®s bad news have a greater impact
on volatility than good news. The magnitude of the volatiliesponse is largest for NGARCH
model, followed by the AGARCH and GJR-GARCH models. Thedaffs negligible in EGARCH
and VGARCH modelsThe impact of good news on volatility is more noticeable inA&8CH and
NGARCH models. Overall, causality measures appear to mapjuite well the effects of returns
on volatility, both qualitatively and quantitatively.

7. News effects in S&P 500 futures market

We now apply the good news and bad news measures of causaBi§R 500 futures returns. To
carry out our analysis, we consider two alternative measafenews: (1) positive and negative
deviations of returns from average past returns, and (d)iywand negative variance risk premia.
An important feature of our approach comes from the factahsptecific volatility model need not
be estimated, which can be contrasted with previous rekttetles [see, for example Bekaert and
Wu (2000), Engle and Ng (1993), Glosten et al. (1993), Cathphd Hentschel (1992), and Nelson

®These parameters are the results of an estimation of ditfgrarametric volatility models using the daily returns
series of the Japanese TOPIX index from January 1, 1980 terbeer 31, 1988. For details, see Engle and Ng (1993).
We also considered other values based on Engle and Ng (1B88Yesults are similar to those presented here.
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(1991)].

7.1. Return news

Our empirical results on return news effect (includiGgusal News Impact Functions) are sum-
marized and compared in Figure 9 of Appendix B. Detailedltegwith confidence intervals) are
presented in tables 5-7 of Appendix B and figures 17-C. We fintbah stronger impact of bad
news on volatility for several days. Statistically, the mspof bad news is significant for the first
four days, whereas the impact of good news is negligibleldtaaizons. So our central finding is
that bad news have more impact on volatility than good nevadl Abrizons.

7.2. Variance risk premium

Let us now look at the reaction of future returns to the sigrihaf difference between implied
volatility and realized volatility (bipower variation).His difference is a measure of the variance risk
premium since the option-implied volatility includes thgkrpremium that investors associate with
expected future volatility [see Bollerslev and Zhou (20@6y Drechsler and Yaron (2008)]. We
will therefore assess whether a positive variance risk pnenias an impact of similar magnitude
on expected returns than a negative variance risk premianthel case of a positive variance risk
premium, we expect an increase in the expected returnsriregk premium), and in the opposite,
we expect a decrease in expected returns.
Since implied volatility is a predictor of future volatiitwe write:

In(RViyp) = f(In(IVy), In(IVi-1), ...) + €4n, Vh 2 1, (7.1)

Et+h = In(RViyn) — f(In(IV), In(IVi—y), ...), (7.2)

where f (In(IV;), In(IV;_1), ...) is a function of the past observations on implied volatifty
The term on the right-hand side of equation (7.2) can be \demgean approximation of volatility
shocks or volatility news. To measure empirically tygamic impact of volatility news on returns,
we consider the following model:

p p p
e =+ > Qg+ Y 0; VP Y e VP g, (7.3)
=1 =1 =1

0f (In(IVh), In(IVi—1),...) represents the optimal forecast, in the sense of mininoizaif the mean squared error,
of In(RV;+5) based on the past observations of implied volatility.
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whereV P,

1 =min{VPy 0}, VP, =max{VP, j 0} and

VP j = Viy15) —In(RVip1-5), j=1,...,p. (7.4)

Equation (7.3) represents a linear projection of returngown past and the past of negative and
positive variance risk premia. This regression model adlone to capture the effect of volatility
news on returns through the coefficiem; or goj, forj=1,...,p.Italso allows one to examine
different effects that large and small negative and/ortp@svolatility shocks have on return risk
premium. When implied volatility is bigger than realizedatdity (bipower variation), we expect
an increase in future volatility followed by an increase lie expected returns. In the opposite
situation, we expect a decrease in future volatility fokmirby a decrease in the expected returns.

The empirical results on the impact of volatility news onuras are given in Figure 10 of
Appendix B. The latter shows the impact of negative and pesiariance risk premium on returns
and the comparison between them. We see that a positivengarigsk premium has more impact
on expected returns than a negative variance risk premithighwmeans that positive shocks on
volatility have more impact on returns than negative sho@ke impact is twice as big on the first
day and shrinks to zero after about five days. By looking astitye of coefﬁcientsoj+ andgo;, for
j=1,...,p, wefind that<p;L are positive, whereasj‘ are negative, as expected. Consequently,
the increase in expected returns tends to be higher tharetlieakse for a movement in the variance
risk premium of the same magnitude but of opposite signs.

8. Conclusion

In this paper we analyze and quantify the relationship betwlatility and returns with high-
frequency equity returns. Within the framework of a vectatosegressive linear model of re-
turns and realized volatility or bipower variation, we gtiinthe dynamic leverage and volatility
feedback effects by applying short-run and long-run cétysaieasures proposed by Dufour and
Taamouti (2009). These causality measures go beyond sitoplelation measures used recently
by Bollerslev et al. (2006).

Using 5-minute observations on S&P 500 Index futures cotdrave measure a weak dynamic
leverage effect for the first four hours in hourly data andrarg dynamic leverage effect for the
first three days in daily data. The volatility feedback effiedound to be negligible at all horizons.
Interestingly, when we remeasure the dynamic leverage @latlity feedback effects using implied
volatility (IV'), we find that a volatility feedback effect appears, while ltherage effect remains
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almost the same. This can be explained by the power of impbéility to predict future volatility
and by the fact that volatility feedback effect is relatedhe latter. We also use causality measures
to quantify and test statistically the dynamic impact of g@md bad news on volatility. First, we
assess by simulation the ability of causality measures tiecti¢he differential effect of good and
bad news in various parametric volatility models. Then, ieicgdly, we measure a much stronger
impact for bad news at several horizons. Statistically,itmgact of bad news is significant for the
first four days, whereas the impact of good news is negligablall horizons. We introduce a new
concept of news based on volatility. This one is defined byifierence between implied volatility
and realized volatility (bipower variation). When impliedlatility is bigger than realized volatility
(bipower variation) it means that the market is expectingharease in future volatility with respect
to current volatility. Our empirical results show that suah expected increase in volatility has a
stronger impact on return risk premium than an expectededserof a similar magnitude.
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Appendix

A. Bootstrap confidence intervals for causality measures

We compute the nomin@li5% bootstrap confidence intervals of the causality measurésllass
[see Dufour and Taamouti (2009)]:
(1) Estimate by OLS th& AR(p) process given by equation (3.1) and save the resitfuals

P
~ o Tt oA x Tt—j _
au(t) = < In(RV}) > il Eléj < In(RV,_,) >, fort=p+1,...,T, (A1)
j:

wheref andqu are the OLS regression estimatesuand®;, for j = 1,... ,p.
(2) Generate(T-p) bootstrap residuals*(¢t) by random sampling with replacement from the
residualsi(t), t=p+1,... ,T.

(3) Generate a random draw for the vectopahitial observations

w(0) = [(r1, n((RW)), ..., (rp, In(RV}))]'. (A.2)

(4) Givenju andiij, forj=1,...,p, 4*(t), andw(0), generate bootstrap data for the dependent
variable(r;, In(RV;)*)" from equation:

* p *
" — | 5 Tt—j ~ % .
< In(RV;)* > —‘“sz_;@ﬂ ( In(RV,_;)" > +a'(t), t=p+1,..., T (A.3)

(5) Calculate the bootstrap OLS regression estimates

T
ot = (7, B, By, .., Dy =T, Sn= > ar(at () /(T - p), (A.4)
t=p+1
T T
I = (T-p)" Y ww @), IT=(T-p)~" D wt)(ri, m(RViy1)*)(A5)
t=p+1 t=p+1

when we “add” the past of implied volatility to the informatti setZ,._» (t), then we consider th& AR(p) process
given by equation (4.1).
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’

wherew* (t) = [(rf,In(RV})*) , ... , (rf_py1> I(RVipi1)*) ]" and

T * p *
W) =art)- Y @ = @)= , ot ="y (Tt .
=70 3 T W/T-p), andi () (chie )7 ;¢j<ln(m_j)*)

(A.6)
(6) Estimate the constrained model of the marginal proegasdIn(RV;) using the bootstrap sam-
ple { (rf, m(RV))}
(7) Calculate the causality measures at horizbn denoted C'V)*(r — In(RV)) and
O(j)*(ln(RV) - r), using equations (3.17) and (3.18) respectively and thésbap sample.
(8) ChooseB suchsa(B + 1) is an integer and repeat ste3-(7) B times?2
(9) Finally, calculate ther and1-« percentile interval endpoints of the distributions(sf)* (r -
In(RV)) andC'W*(In(RV') — r).13
A proof of the asymptotic validity of the bootstrap confideniatervals of the causality measures is
provided in Dufour and Taamouti (2009).

121-a is the considered level of confidence interval.
Bwe follow the same steps to compute the bootstrap confidenesvals of instantaneous causality and dependence
measures.
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B. Summary of empirical results

We present here basic summary statistics and graphs foatheuded in this paper.

Table 1. Summary statistics for S&P 500 futures returns312@5

Variables Mean St.Dev. | Median Skewness | Kurtosis
Five-minute | 6.9505¢ — 006 | 0.000978 | 0.00e — 007 —0.0818 73.9998
Hourly 1.3176e — 005 | 0.0031 0.00e — 007 —0.4559 16.6031
Daily 1.4668¢ — 004 | 0.0089 1.1126e — 004 | —0.1628 12.3714

Note: This table summarizes the five-minute, hourly, and daitynres distributions for the S&P 500 index contracts. The

sample covers the period from 1988 to December 2005 for bab#94 trading days.

Table 2. Summary statistics for daily volatilities, 198808

Variables | Mean St.Deuw. Median Skewness | Kurtosis
RV, 8.1354e — 005 | 1.2032¢ — 004 | 4.9797¢ — 005 | 8.1881 120.7530
BV, 7.6250e — 005 | 1.0957¢ — 004 | 4.6956e — 005 | 6.8789 78.9491
In(RV;) —9.8582 0.8762 —9.9076 0.4250 3.3382
In(BV;) —9.9275 0.8839 —9.9663 0.4151 3.2841
Jrr1 0.0870 0.1005 0.0575 1.6630 7.3867

Note: This table summarizes the daily volatilities distributsofor the S&P 500 index contracts. The sample covers the

period from 1988 to December 2005 for a total of 4494 tradiagsd
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Table 3. Hourly and daily volatility feedback effects

Hourly volatility feedback effects using(RV")

C(In(RV) - )

h=1

h=2

h=3

h=4

Point estimate

0.00016

0.00014

0.00012

0.00012

95% Bootstrap interval

[0.0000, 0.0007]

[0.0000, 0.0006]

[0.0000, 0.0005]

[0.0000, 0.0005]

Hourly volatility feedback effects usinig.(BV)

C(In(BV) — r)

h=1

h=2

h=3

h=4

Point estimate

0.00022

0.00020

0.00019

0.00015

95% Bootstrap interval

[0.0000, 0.0008]

[0.0000, 0.0007]

[0.0000, 0.0007]

[0.0000, 0.0005]

Daily volatility feedback effects using(RV')

O(ln(RV)Tr) h=1 h=2 h=3 h=4

Point estimate 0.0019 0.0019 0.0019 0.0011

95% Bootstrap interval| [0.0007, 0.0068] | [0.0005, 0.0065] | [0.0004, 0.0061] | [0.0002, 0.0042]
Daily volatility feedback effects usin(BV)

C(ln(BV)Tr) h=1 h=2 h=3 h=4

Point estimate 0.0017 0.0017 0.0016 0.0011

95% Bootstrap interval| [0.0007, 0.0061] | [0.0005, 0.0056] | [0.0004, 0.0055] | [0.0002, 0.0042]

Note: This table summarizes the estimation results of causalégsures from hourly realized volatilityn(RV)] to
hourly returns £), hourly bipower variationlp(BV)] to hourly returns, daily realized volatility to daily retus, and
daily bipower variation to daily returns, respectively.ef$econd row in each small table gives the point estimateeof th
causality measures at horizohs= 1, ..., 4. The third row gives th®5% corresponding percentile bootstrap interval.

Table 4. Parameter values of different GARCH models

w I} @ vy
GARCH 2.79107° 0.86695 | 0.093928 | —
EGARCH —0.290306 | 0.97 0.093928 | —0.09
NL-GARCH | 2.79107° 0.86695 | 0.093928 | 0.5, 1.5, 2.5
GJR-GARCH| 2.79107° 0.8805 | 0.032262 | 0.10542
AGARCH 2.79107° 0.86695 | 0.093928 | —0.1108
VGARCH 2.79107° 0.86695 | 0.093928 | —0.1108
NGARCH 2.79107° 0.86695 | 0.093928 | —0.1108

Note: This table summarizes the parameter values for parametiatility models considered in our simulations study.
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Table 5. Measuring the impact of good news on volatility gdin( RV') [centered positive returhs

7y 1 15
Be(ret1) = 15 20521 Te41—j

Cler™ —(RV)) h=1 h=2 h=3 h=4

Point estimate 0.0007 0.0007 0.0007 0.0004
95% Percentile bootstrap interval [0.0003,0.0043] | [0.0002,0.0039] | [0.0001,0.0034] | [0.0000,0.0030]

—

Er(reg1) = 95 Y0y Te1j
C’(er+}—>ln(RV)) h=1 h=2 h=3 h=4
Point estimate 0.0010 0.0007 0.0007 0.0005
95% Percentile bootstrap interval [0.0004, 0.0051] | [0.0003,0.0039] | [0.0003,0.0036] | [0.0000,0.0032]

L —

Er(res1) = g5 Yooy Tedij
C’(erJr?ln(RV)) h=1 h=2 h=3 h=4

Point estimate 0.0013 0.0008 0.0008 0.0008
95% Percentile bootstrap interval [0.0004,0.0059] | [0.0003,0.0044] | [0.0002,0.0041] | [0.0001,0.0039]

- 120
Ee(riv1) = 155 2o jo1 Tt

Cler™ —T(RV)) h=1 h=2 h=3 h=14
Point estimate 0.0011 0.00076 0.00072 0.00074
95% Percentile bootstrap interval [0.0004, 0.0054] | [0.00029,0.0041] | [0.00024,0.00386] | [0.0000,0.00388]

L —

240
Ee(rev1) = g5 2o jmr Ttt1

C’(erJr?ln(RV)) h=1 h=2 h=3 h=4
Point estimate 0.0011 0.0006 0.0006 0.0007
95% Percentile bootstrap interval [0.0004,0.0053] | [0.0003,0.0041] | [0.0002,0.0035] | [0.0000,0.0034]

Note: This table summarizes the estimation results of causalkgsures from centered positive returas™() to realized volatility[In(RV')] using
five estimators of the conditional mean, far= 15, 30, 90, 120, 240. In each of the five small tables, the second row gives thet psiimate of the
causality measures at horizals= 1, ..., 4. The third row gives th®5% corresponding percentile bootstrap interval.
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Table 6. Measuring the impact of good news on volatility gsin( BV') [centered positive returns]

Er(res1) = 15 30,00 Tet1j
C(er+7ln(BV)) h=1 h=2 h=3 h=4
Point estimate 0.0008 0.0008 0.0006 0.0006

95% Percentile bootstrap interval [0.0003, 0.0045]

[0.0002,0.0041]

[0.0002, 0.0035]

[0.0000, 0.0034]

—

30
Ee(ri1) = 55 2521 Tt

Cler™ - In(BV))

h=1

h=2

h=3

h=4

Point estimate

0.0012

0.0007

0.0007

0.0007

95% Percentile bootstrap interval [0.0005, 0.0053]

[0.0003,0.0041]

[0.0002, 0.0039]

[0.0001, 0.0038]

L —

90
Ee(re+1) = g5 20y Te1—

Cler™ > In(BV))

h=1

h=2

h=3

h=4

Point estimate

0.0018

0.0009

0.0008

0.0010

95% Percentile bootstrap intervg

I70.0006, 0.0065]

[0.0003,0.0044]

[0.0002, 0.0041]

[0.0001,0.0042]

- 120
Ee(riv1) = 155 2o jo1 Tt

Cler™ - In(BV))

h=1

h=2

h=3

h=4

Point estimate

0.0016

0.0008

0.0007

0.0009

95% Percentile bootstrap intervg

a1 [0.0006, 0.0063]

[0.0002, 0.0047]

[0.0002, 0.0042]

[0.0001, 0.0044]

L —

240
Ee(rev1) = g5 2o jmr Ttt1

Cler™ > In(BV))

h=1

h=2

h=3

h=4

Point estimate

0.0015

0.0007

0.0006

0.0008

95% Percentile bootstrap intervg

I70.0005, 0.0057]

[0.0002, 0.0044]

[0.0002, 0.0038]

[0.0001,0.0037]

Note: This table summarizes the estimation results of causaligsures from centered positive returas™() to bipower variationn(BV)] using
five estimators of the conditional mean, far= 15, 30, 90, 120, 240. In each of the five small tables, the second row gives thet psiimate of the
causality measures at horizals= 1, ..., 4. The third row gives th®5% corresponding percentile bootstrap interval.
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Table 7. Measuring the impact of good news on volatility femered positive returns]

usingln(RV)
C(r+7ln(RV)) h=1 h=2 h=3 h=4
Point estimate 0.0027 0.0012 0.0008 0.0009
95% Percentile bootstrap interval [0.0011, 0.0077] | [0.0004, 0.0048] || [0.0002, 0.0041] || [0.0001, 0.0038]

usingln(BV)
C’(r"’;ﬂn(BV)) h=1 h=2 h=3 h=4
Point estimate 0.0035 0.0013 0.0008 0.0010
95% Percentile bootstrap intervall [0.0016, 0.0087] | [0.0004, 0.0051] || [0.0002, 0.0039] || [0.0001, 0.0043]

Note: This table summarizes the estimation results of causaktgsures from uncentered positive returng)(to realized volatility [In(RV)]
[bipower variationln(BV')]. The second row of each small table gives the point estim&the causality measures at horizdns= 1,..., 4.
The third row gives th€5% corresponding percentile bootstrap interval.



Figure 1. Daily prices and returns of the S&P 500 futuresudan1988 to December 2005.

Daily price of the S&P 500 futures, 1988—2005

1600

1400

1200

1000

800

600

400

200

x 10

Daily returns of the S&P 500 futures, 1988—2005
0.1 T T T T T T

0.08 |- b

0.06 - -

0.04

0.02

return
o

—0.02

—0.04

—0.06 - u

—0.08 - ]

o 500 1000 1500 2000 2500 3000 3500 4000 4500
Time

41



[A4

25

0.5

-12

-13

Figure 2. Daily realized volatility and bipower variatiohtbe S&P 500 futures. January 1988 to December 2005.
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Figure 3. Quantile to quantile plots (QQ plot) of the relatimeasure of jumpSRJ), zgp,i, ¢, 2Qp,+, andzgp,im,+- January 1988 to

December 2005.
QQ Plot of relative jump measure QQ Plot of zQP
0.6 T T T T T 14 T T
+ +
0.5 B 12 + b
0.4 B 101 b
0.3 B 8r b

0.2}

Quantiles of RJ
o
=
1
Quantiles of zQP
S

of 1 2F 1
-0.1f 1 of 1
-0.21 1 -2r 1
-0.3f 1 -4r 1

re
—0.4 . . . . . . . -6 . . . . . . .
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
Standard Normal Quantiles Standard Normal Quantiles
QQ Plot of zQPI QQ Plot of zQPm
12 T T 10 T T
10+ 4 +
8 + A
sl i +
6 i q
_ 6f b P
g 5
N O 4 - .
w— 4F 4 N
o ©
= 3
% 2 T E' 2+ 4
s I
& >
or i (o4
or d
_2 - 4
_2 - 4
_4 - 4
-6 . . . . . . . -4 . . . . . . .
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles Standard Normal Quantiles



144

Figure 4. Leverage and volatility feedback effects in hparid daily data using a bivariate autoregressive mogétl’). January 1988
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Figure 5. Causality measures between implied volatility') [or variance risk premiundV’ — RV] and realized volatilitf RV'), using
trivariate VAR models for, RV, IV') and(r, RV, IV — RV'). January 1996 to December 2005.
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Figure 6. Volatility feedback effects, with implied volity as auxiliary variable [trivariate models, RV, IV') and(r, RV, IV — RV)]
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Figure 7. Leverage and volatility feedback effects, witlpli®d volatility as auxiliary variable [trivariate mode(s, RV, IV') and
(r, RV, IV — RV')] and without implied volatility [bivariate modél-, RV')]. January 1996 to December 2005.
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Figure 8. Causality measures of the impact of bad and good navgymmetric and asymmetric GARCH volatility models.
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Figure 8 (continued). Causality measures of the impact ofdval good news on symmetric and asymmetric GARCH volatiiodels.
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Figure 8 (continued). Causality measures of the impact ofdval good news on symmetric and asymmetric GARCH volatiiodels.
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Figure 9. Causality measures of the impact of bad and good nawolatility, based on realized volatilifyn(RV')] and bipower
variation[ln(BV)]. January 1988 to December 2005.
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Figure 10. Causality measures of the impact of positive agative variance risk premium on returns. January 1996 teiéer 2005.
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C. Detailed empirical results: Point estimates and confidece inter-
vals
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Figure 11. Leverage effects in hourly and daily data, usikgriate models fofr, In(RV')) and(r, In(BV)). January 1988 to
December 2005.
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Figure 12. Instantaneous causality and dependence betladgmeturns and volatility using bivariate models ferln(RV)) and
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Figure 13. Causality measures between implied volatilifiy) [or variance risk premiuniV — RV'] and realized volatilit RV),
using trivariate VAR models fofr, RV, IV') and(r, RV, IV — RV'). January 1996 to December 2005.
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Figure 14. \olatility feedback effects, with implied valay as auxiliary variable [trivariate modél-, RV, V)] and without implied
volatility [bivariate model(r, RV')]. January 1996 to December 2005.
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Figure 15. Other volatility feedback effects using varmnick premium(IV — RV') and impact of RV, IV — RV') on returns.
January 1996 to December 2005.
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Figure 16. Leverage effects, with implied volatility as diaxy variable [trivariate mode{r, RV, IV') or (r, RV, IV — RV')] and
without implied volatility [bivariate mode{r, RV')]. January 1996 to December 2005.
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Figure 17.

Causality measures of the impact of bad news atiliyl (CNIF), using 5 estimators of the conditional mean = 15, 30,

90, 120, 240), realized volatility[In(RV")] and bipower variatiofin(BV')]. January 1988 to December 2005.
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Figure 17 (continued). Causality measures of the impactadfriews on volatility (CNIF), using 5 estimators of the cdiodial mean
(m = 15, 30, 90, 120, 240), realized volatility[In(RV")] and bipower variatiofiin(BV')]. January 1988 to December 2005.
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Figure 17 (continued). Causality measures of the impactadfriews on volatility (CNIF), using 5 estimators of the cdiodial mean
(m = 15, 30, 90, 120, 240), realized volatility[In(RV")] and bipower variatiofiin(BV')]. January 1988 to December 2005.
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