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ABSTRACT

In this paper, we provide evidence on two alternative mechanisms of interaction between returns

and volatilities: theleverage effect and thevolatility feedback effect. We stress the importance of

distinguishing betweenrealized volatility andimplied volatility in this context, and find thatimplied

volatilities are essential for assessing thevolatility feedback effect. The leverage hypothesis asserts

that return shocks lead to changes in conditional volatility, while the volatility feedback effect theory

assumes that return shocks can be caused by changes in conditional volatility through a time-varying

risk premium. On observing that a central difference between these alternative explanations lies in

the direction of causality, we consider vector autoregressive models of returns and realized volatility

and we measure these effects along with the time lags involved through short-run and long-run

causality measures proposed in Dufour and Taamouti (2009),as opposed to simple correlations.

We analyze 5-minute observations on S&P 500 Index futures contracts, the associatedrealized

volatilities (before and after filtering jumps through the bispectrum) and implied volatilities. Using

only returns and realized volatility, we find a strong dynamic leverage effect for the first three

days. The volatility feedback effect appears to be negligible at all horizons. By contrast, when

implied volatility is considered, a volatility feedback becomes apparent, whereas the leverage effect

is almost the same. These results can be explained by the factthat volatility feedback effect works

through implied volatility which contains important information on future volatility, through its

nonlinear relation with option prices which are themselvesforward-looking. In addition, we study

the dynamic impact of news on returns and volatility. First,to detect possible dynamic asymmetry,

we separate good from bad return news and find a much stronger impact of bad return news (as

opposed to good return news) on volatility. Second, we introduce a concept of news based on the

difference between implied and realized volatilities (thevariance risk premium) and we find that

a positive variance risk premium (an anticipated increase in variance) has more impact on returns

than a negative variance risk premium.

Keywords: Volatility asymmetry, leverage effect, volatility feedback effect, risk premium, variance

risk premium, multi-horizon causality, causality measure, high-frequency data, realized volatility,

bipower variation, implied volatility.

Journal of Economic Literature classification: G1; G12; G14; C1; C12; C15; C32; C51; C53.
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1. Introduction

One of the many stylized facts about equity returns is an asymmetric relationship between returns

and volatility. Volatility tends to rise following negative returns and fall following positive returns.

Two main explanations for volatility asymmetry have been proposed in the literature. The first

one is theleverage effect: a decrease in the price of an asset increases financial leverage and the

probability of bankruptcy, making the asset riskier, hencean increase in volatility; see Black (1976)

and Christie (1982). When applied to an equity index, this original idea translates into a dynamic

leverage effect.1 The second explanation is thevolatility feedback effect, which is related to a time-

varying risk premium: if volatility is priced, an anticipated increase in volatility raises the required

rate of return, implying an immediate stock price decline inorder to allow for higher future returns;

see Pindyck (1984), French, Schwert and Stambaugh (1987), Campbell and Hentschel (1992), and

Bekaert and Wu (2000).

In this paper, we provide new evidence on these two mechanisms of interaction between returns

and volatilities by considering causality measures on high-frequency data. We also stress the im-

portance of distinguishing betweenrealized volatility andimplied volatility when studying leverage

and volatility feedback effects, and we find thatimplied volatilities are essential for assessing the

volatility feedback effect.

On noting that the two explanations involve differentcausal mechanisms [see Bekaert and Wu

(2000) and Bollerslev et al. (2006)], which may differ both through their direction and the time

lags involved, we study the issue using short and long-run causality measures recently introduced

in Dufour and Taamouti (2009). The causality measures allowus to study and test the asymmetric

volatility phenomena at several horizons. When considering horizons longer than one period, it is

important to account for indirect causality. Auxiliary variables can transmit causality between two

variables of interest at horizons strictly higher than one,even if there is no causality between the two

variables at the horizon one; see Dufour and Renault (1998).Using high-frequency data increases

the chance to detect causal links since aggregation may makethe relationship between returns and

volatility simultaneous. By relying on realized volatility measures we avoid the need to specify a

volatility model.

To be more explicit on thecausality issue involved, the leverage effect explains why a negative

return shock leads to higher subsequent volatility, while the volatility feedback effect explains how

1The concept of leverage effect, which means that negative returns today increases volatility of tomorrow, was in-
troduced for individual stocks (or firms). However, it has also been applied to stock market indices; see Bouchaud,
Matacz and Potters (2001), Jacquier, Polson and Rossi (2004), Brandt and Kang (2004), Ludvigson and Ng (2005), and
Bollerslev, Litvinova and Tauchen (2006).
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an anticipated increase in volatility may result in a negative return. Thus, volatility asymmetry may

result from various causal links: from returns to volatility, from volatility to returns, instantaneous

causality. Causality here is defined as in Granger (1969): a variableY causes a variableX if the

variance of the forecast error ofX obtained by using the past ofY is smaller than the variance of

the forecast error ofX obtained without using the past ofY . In order to quantify and compare the

strength of dynamic leverage and volatility feedback effects, we propose to use vector autoregressive

(VAR) models of returns and various measures of volatility at high frequency together with short

and long-run causality measures in Dufour and Taamouti (2009).

Using 5-minute observations on S&P 500 Index futures contracts, we first consider causality

measures based on a bivariate VAR involving returns and realized volatility. In this setting, we find

a weak dynamic leverage effect for the first four hours in hourly data and a strong dynamic leverage

effect for the first three days in daily data. The volatility feedback effect appears to be negligible,

irrespective of the horizon considered.

In studying the relationship between volatility and returns, implied volatility – derived from op-

tion prices – can be an interesting alternative measure of volatility or constitute a useful auxiliary

variable, because option prices may capture additional relevant information as well as nonlinear re-

lations. Implied volatility can be viewed as a forward-looking measure of volatility with an horizon

corresponding to the maturity of the option. We find that adding implied volatility to the information

set to forecast returns leads to statistical evidence for a sizable volatility feedback effect for a few

days, whereas the leverage effect remains almost the same. Akey element of the volatility feed-

back mechanism is an increase of expected future volatility. Implied volatility certainly provides

an option market forecast of future volatility, which is better than a forecast based on past realized

volatility. The informational content of implied volatility does not come as a surprise since several

studies have documented that implied volatility can be usedto predict whether a market is likely

to move higher or lower and help to predict future volatility; see Day and Lewis (1992), Canina

and Figlewski (1993), Lamoureux and Lastrapes (1993), Fleming (1998), Poteshman (2000), Blair,

Poon and Taylor (2001), and Busch, Christensen and Nielsen (2006). Pooling the information con-

tained in futures and options markets unveils an effect thatcannot be found with one market alone.

This is a new and important empirical finding.

Another contribution of this paper consists in showing thatthe proposed causality measures help

to quantify the dynamic impact of bad and good return news on volatility.2 A common approach

2In this study bad and good news are determined by negative andpositive innovations in returns and volatility. Another
literature considers the impact of macroeconomic news announcements on financial markets (e.g. volatility), see for
example Cutler, Poterba and Summers (1989), Schwert (1981), Pearce and Roley (1985), Hardouvelis (1987), Haugen,
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for empirically visualizing the relationship between newsand volatility is provided by the news-

impact curve originally studied by Pagan and Schwert (1990)and Engle and Ng (1993). To study

the effect of current return shocks on future expected volatility, Engle and Ng (1993) introduced the

News Impact Function (hereafterNIF). The basic idea of this function is to consider the effect of

the return shock at timet on volatility at timet + 1 in isolation while conditioning on information

available at timet and earlier. Engle and Ng (1993) explain that this curve, where all the lagged

conditional variances are evaluated at the level of the asset return unconditional variance, relates

past positive and negative returns to current volatility.

We propose a new curve, theCausal News Impact Function (CNIF), for capturing the impact of

news on volatility based on causality measures. In contrastwith theNIF of Engle and Ng (1993),

the CNIF curve can be constructed for parametric and stochastic volatility models and it allows one

to consider all the past information about volatility and returns. We also build confidence intervals

using a bootstrap technique around the CNIF curve. Further,we can visualize the impact of news

on volatility at different horizons [see also Chen and Ghysels (2007)] rather than only one horizon

as in Engle and Ng (1993).

We confirm by simulation that the CNIF based on causality measures detects well the differential

effect of good and bad news in various parametric volatilitymodels. Then, we apply the concept to

the S&P 500 Index futures returns and volatility: we find a much stronger impact from bad news at

several horizons. Statistically, the impact of bad news is significant for the first four days, whereas

the impact of good news is negligible at all horizons.

Our results on the informational value of implied volatility also suggest that the difference be-

tween implied and realized volatility (called thevariance risk premium) constitutes an interesting

measure of “news” coming to the market. So we compute causality measures from positive and

negative variance risk premia to returns. We find a stronger impact when the difference is positive

(an anticipated increase in volatility or bad news) than when it is negative.

Recently, two studies have used high-frequency data to study the relationship between returns

and volatility. Using high-frequency data and simplecorrelations, Bollerslev et al. (2006) find an

important negative correlation between volatility and current and lagged returns lasting for sev-

eral days, while correlations between returns and lagged volatility are all close to zero. Masset

and Martin (2008) use high-frequency data to analyze the lead-lag relationship of option implied

volatility and index return in Germany based on Granger causality tests and impulse-response func-

Talmor and Torous (1991), Jain (1988), McQueen and Roley (1993), Balduzzi, Elton and Green (2001), Andersen,
Bollerslev, Diebold and Vega (2003), and Huang (2007).
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tions. They find that the relationship is return-driven in the sense that index returns Granger cause

volatility changes. An important difference between our paper and Bollerslev et al. (2006) and

Masset and Martin (2008) papers is that, among other things,we show thatimplied volatilities are

important for assessing thevolatility feedback effect. Further, in the present paper we use short and

long-run causality measures to quantify the causality at different horizons, whereas in their papers

they consider simple correlations and impulse-response functions which are inappropriate measures

of causality: to see why impulse-response functions are inappropriate measures of causality, the

reader can consult Dufour and Renault (1998).

Previous empirical evidence about the links between returns and volatility, often based on

volatility models, is abundant but the messages about the sign of the relationship or about the promi-

nence of the leverage effect or the volatility feedback effect are mixed. Studies focusing on the

leverage hypothesis conclude that the latter cannot completely account for changes in volatility; see

Christie (1982) and Schwert (1989). However, for the volatility feedback effect, empirical findings

conflict. French et al. (1987), Campbell and Hentschel (1992) and Ghysels, Santa-Clara and Valka-

nov (2004) find a positive relation between volatility and expected returns, while Turner, Startz

and Nelson (1989), Glosten, Jagannathan and Runkle (1993) and Nelson (1991) find a negative

relation. Often the coefficient linking volatility to returns is statistically insignificant. Ludvigson

and Ng (2005) find a strong positive contemporaneous relation between the conditional mean and

conditional volatility and a strong negative lag-volatility-in-mean effect. Guo and Savickas (2006)

conclude that the stock market risk-return relation is positive, as stipulated by the CAPM; however,

idiosyncratic volatility is negatively related to future stock market returns.

Only a few studies have looked at the relation between returns and implied volatility [Giot

(2005), Dennis, Mayhew and Stivers (2006), Bekaert and Wu (2000)]. These studies remain limited

to relatively low frequency data (such as, daily data), do not take into account realized volatility

(for which implied volatility may play the role of aconfounding factor), and do not exploit the

newer causal analysis framework used in the present paper. Giot (2005) uses S&P100 index and an

implied volatility index (VIX) to show that there is acontemporaneous asymmetric relationship be-

tween S&P100 index returns and VIX: negative S&P100 index returns yield bigger changes in VIX

than do positive returns [see Whaley (2000)]. He also assesses the possible relationship between

implied volatility and forward looking stock index returns. He finds that there is some evidence that

positive (negative) forward looking returns are to be expected for long positions in the stock index

triggered by extremely high (low) levels of the implied volatility indices. Dennis et al. (2006), us-

ing daily stock returns and innovations in option-derived implied volatilities, show that the relation

4



between stock returns and innovations in systematic volatility (idiosyncratic volatility) is substan-

tially negative (near zero). These results suggest that asymmetric volatility is primarily attributed to

systematic influences (such as feedback of market-level volatility changes), rather than aggregated

firm-level effects (such as leverage). For individual assets, Bekaert and Wu (2000) argue that the

volatility feedback effect dominates the leverage effect empirically.

The plan of the paper is as follows. In Section 2, we define volatility measures in high-frequency

data and we review the concept of causality at different horizons and its measures. In Section 3,

we propose and discuss VAR models that allow us to measure leverage and volatility feedback

effects with high-frequency data. In Section 4, we propose to use implied volatility(IV ) – in ad-

dition to realized volatility and returns – in order to measure the dynamic leverage and volatility

feedback effects. Section 5 describes the high-frequency data, the estimation procedure and the em-

pirical findings regarding causality effects between volatility and returns. In Section 6, we propose

a method to assess the dynamic impact of good and bad return news on volatility. Simulation results

on the efficiency of this method are also presented. Our empirical results on news effects in S&P

500 futures market appear in Section 7. We conclude in Section 8.

2. Volatility and causality measures

To assess causality between volatility and returns at high frequency, we need to build measures for

both volatility and causality. For volatility, we use various measures of realized volatility introduced

by Andersen, Bollerslev and Diebold (2003a); see also Andersen and Bollerslev (1998), Andersen,

Bollerslev, Diebold and Labys (2001), Barndorff-Nielsen and Shephard (2002a), and Barndorff-

Nielsen and Shephard (2002b). For causality, we rely on the short and long run causality measures

proposed by Dufour and Taamouti (2009).

Let us first set some notations. We denote the time-t logarithmic price of the risky asset or

portfolio bypt and the continuously compounded returns from timet to t+ 1 by rt+1 = pt+1 − pt.

We assume that the price process may exhibit both stochasticvolatility and jumps. It could belong

to the class of continuous-time jump diffusion processes,

dpt = µtdt + σtdWt + κtdqt, 0 ≤ t ≤ T, (2.1)

whereµt is a continuous and locally bounded variation process,σt is the stochastic volatility

process,Wt denotes a standard Brownian motion,dqt is a counting process withdqt = 1 corre-

sponding to a jump at timet anddqt = 0 otherwise, with jump intensityλt. The parameterκt refers

5



to the size of the corresponding jumps. Thus, the quadratic variation of returns from timet to t+ 1

is given by

[r, r]t+1 =

∫ t+1

t
σ2

sds+
∑

0<s≤t

κ2
s (2.2)

where the first component, called integrated volatility, comes from the continuous component of

(2.1), and the second term is the contribution from discretejumps. In the absence of jumps, the

second term on the right-hand-side disappears, and the quadratic variation is simply equal to the

integrated volatility.

2.1. Volatility in high-frequency data: realized volatili ty, bipower variation, jumps

In this section, we define the various high-frequency measures that we will use to capture volatility.

In what follows we normalize the daily time-interval to unity and we divide it intoh periods. Each

period has length∆ = 1/h. Let the discretely sampled∆-period returns be denoted byr(t, ∆) =

pt − pt−∆ and the daily return byrt+1 =
∑h

j=1 r(t+j.∆, ∆). The daily realized volatility is defined

as the summation of the correspondingh high-frequency intradaily squared returns:

RVt+1 ≡
h

∑

j=1

r2(t+j∆, ∆). (2.3)

The realized volatility satisfies

lim
∆−→0

RVt+1 =

∫ t+1

t
σ2

sds+
∑

0<s≤t

κ2
s , (2.4)

which means thatRVt+1 is a consistent estimator of the sum of the integrated variance
∫ t+1
t σ2

sds

and the jump contribution; see Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and

Labys (2001), Andersen, Bollerslev and Diebold (2003a), Barndorff-Nielsen and Shephard (2002a,

2002b), and Comte and Renault (1998).3 Similarly, a measure of standardized bipower variation is

given by

BVt+1 ≡ π

2

h
∑

j=2

| r(t+j∆, ∆) || r(t+(j−1)∆, ∆) | . (2.5)

Under reasonable assumptions on the dynamics of (2.1), the bipower variation satisfies

lim
∆−→0

BVt+1 =

∫ t+1

t
σ2

sds ; (2.6)

3For a general discussion of integrated and realized volatilities in the absence of jumps, see Meddahi (2002).
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see Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen, Graversen, Jacod, Podolskij

and Shephard (2005). Equation (2.6) means thatBVt+1 provides a consistent estimator of the

integrated variance unaffected by jumps. Finally, as notedby Barndorff-Nielsen and Shephard

(2004), combining the results in equation (2.4) and (2.6), the contribution to the quadratic variation

due to the discontinuities (jumps) in the underlying price process may be consistently estimated by

lim
∆−→0

(RVt+1 −BVt+1) =
∑

0<s≤t

κ2
s. (2.7)

We can also define the relative measure

RJt+1 =
(RVt+1 −BVt+1)

RVt+1
(2.8)

or the corresponding logarithmic ratio

J̄t+1 = ln(RVt+1) − ln(BVt+1). (2.9)

Huang and Tauchen (2005) argue that these are more robust measures of the contribution of jumps

to total price variation. Since in practiceJt+1 can be negative in a given sample, we impose a

non-negativity truncation of the actual empirical jump measurements:

Jt+1 ≡ max[ln(RVt+1) − ln(BVt+1), 0] ; (2.10)

see Andersen, Bollerslev and Diebold (2003a) and Barndorff-Nielsen and Shephard (2004).

2.2. Short-run and long-run causality measures

We study the causality at different horizons between returns (rt) and volatilities(σ2
t ). For that pur-

pose, it will be convenient to define firstnoncausality in terms of orthogonality between subspaces

of a Hilbert space of random variables with finite second moments. To give a formal definition

of noncausality at different horizons, we need to consider the following notations. We denote by

r(ω, t], σ2(ω, t], andz(ω, t] the information contained in the history of variables of interestr and

σ2 and another auxiliary variablez respectively up to timet. The “starting point”ω is typically

equal to a finite initial date (such asω = −1, 0 or 1) or to−∞. In our empirical application the

auxiliary variablez is given by the implied volatility (hereafterIV ). The information sets obtained

by “adding” z(ω, t] to r(ω, t], z(ω, t] to σ2(ω, t], r(ω, t] to σ2(ω, t], and z(ω, t] to r(ω, t] and
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σ2(ω, t] are defined as:

Irz(t) = I0 + r(ω, t] + z(ω, t] , Iσ2z(t) = I0 + σ2(ω, t] + z(ω, t] , (2.11)

Irσ2(t) = I0 + r(ω, t] + σ2(ω, t] , Irσ2z(t) = I0 + r(ω, t] + σ2(ω, t] + z(ω, t] , (2.12)

whereI0 represents a fundamental information set available in all cases (such as deterministic vari-

ables, a constant, etc.). Finally, for any given information setBt, we denote byVar[rt+h | Bt]

(respectivelyVar[σ2
t+h | Bt]) the variance of the forecast error ofrt+h

(

respectivelyσ2
t+h

)

based

on the information setBt.
4 Thus, we have the following definition of noncausality at different hori-

zons [see Dufour and Renault (1998) and Dufour and Taamouti (2009)].

Definition 2.1 Let h be a positive integer.

(i) r does not cause σ2 at horizon h given Iσ2z(t), denoted r 9
h
σ2 | Iσ2z(t), iff

Var
[

σ2
t+h | Iσ2z(t)

]

= Var
[

σ2
t+h | Irσ2z(t)

]

; (2.13)

(ii) r does not cause σ2 up to horizon h given Iσ2z(t), denoted r 9
(h)
σ2 | Iσ2z(t), iff

r 9
k
σ2 | Iσ2z(t) for k = 1, 2, . . . , h ; (2.14)

(iii) r does not cause σ2 at any horizon given Iσ2z(t), denoted r 9
(∞)

σ2 | Iσ2z(t), iff

r 9
k
σ2 | Iσ2z(t) for all k = 1, 2, . . . (2.15)

Definition 2.1 corresponds to causality fromr to σ2 and means thatr causesσ2 at horizonh

if the past ofr improves the forecast ofσ2
t+h given the information setIσ2z(t). We can similarly

define noncausality at horizonh from σ2 to r. The presence of auxiliary variablez may transmit

the causality betweenr andσ2 at horizonh strictly higher than one even if there is no causality

between the two variables at horizon1. However, in the absence of auxiliary variable, noncausality

at horizon1 implies noncausality at any horizonh strictly higher than one; see Dufour and Renault

(1998). In other words,

r 9
1
σ2 | σ2(ω, t] ⇒ r 9

(∞)
σ2 | Iσ2(t) , (2.16)

σ2
9
1
r | r(ω, t] ⇒ σ2

9
(∞)

r | Ir(t) , (2.17)

4Bt can be equal toIrσz(t), Irz(t) , or Iσz(t).
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whereIσ2(t) = I0+σ
2(ω, t] andIr(t) = I0+r(ω, t]. A measure of causality fromr toσ2 at horizon

h, denotedC(r −→
h
σ2), is given by following function [see Dufour and Taamouti (2009)]:

C(r −→
h

σ2) = ln

[

Var[σ2
t+h | Iσ2z(t)]

Var[σ2
t+h | Irσ2z(t)]

]

. (2.18)

Similarly, a measure of causality fromσ2 to r at horizonh, denotedC(σ2 −→
h

r), is given by:

C(σ2 −→
h

r) = ln

[

Var[rt+h | Irz(t)]

Var[rt+h | Irσ2z(t)]

]

. (2.19)

For example,C(r −→
h

σ2) measures the causal effect fromr to σ2 at horizonh given the past ofσ2

andz. In terms of predictability, it measures the information given by the past ofr that can improve

the forecast ofσ2
t+h. SinceVar[σ2

t+h | Iσ2z(t)] ≥ Var[σ2
t+h | Irσ2z(t)], the functionC(r −→

h
σ2)

is nonnegative. Furthermore, it is zero when when there is nocausality at horizonh. However, as

soon as there is causality at horizon 1, causality measures at different horizons may considerably

differ.

In Dufour and Taamouti (2009), a measure of instantaneous causality betweenr and σ2 at

horizonh is also proposed. It is given by the function

C(r ↔
h
σ2) = ln

[

Var[rt+h | Irσ2z(t)] Var[σ2
t+h | Irσ2z(t)]

det
(

Σ
[

rt+h, σ
2
t+h | Irσ2z(t)

])

]

(2.20)

wheredet
(

Σ
[

rt+h, σ
2
t+h | Irσ2z(t)

])

represents the determinant of the variance-covariance matrix

Σ
[

rt+h, σ
2
t+h | Irσ2z(t)

]

of the forecast error of the joint process
(

r, σ2
)′

at horizonh given the

information setIrσ2z(t). Note thatσ2 may be replaced byln(σ2). Since the logarithmic transfor-

mation is nonlinear, this may modify the value of the causality measure.

In what follows, we apply the above measures to study the causality at different horizons from

returns to volatility (hereafter leverage effect), from volatility to returns (hereafter volatility feed-

back effect), and the instantaneous causality and dependence between returns and volatility. In

Section 3, we study these effects by considering a limited information set which contains only the

past of returns and realized volatility. In Section 4, we extended our information set by adding the

past of implied volatility.
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3. Measuring leverage and volatility feedback effects in a VAR model

In this section, we study the relationship between the return rt and its volatilityσ2
t . The objective

is to measure and compare the strength ofdynamic leverage and volatility feedback effects in high-

frequency equity data. These effects are quantified within the context of a VAR model and by using

short and long run causality measures proposed by Dufour andTaamouti (2009). Since the volatility

asymmetry may be the result of causality from returns to volatility [leverage effect], from volatility

to returns [volatility feedback effect], instantaneous causality, all of these causal effects, or some

of them. We wish to measure all these effects and to compare them in order to determine the most

important ones.

We suppose that the joint process of returns and logarithmicvolatility, (rt+1, ln(σ2
t+1))

′
follows

an autoregressive linear model

(

rt+1

ln(σ2
t+1)

)

= µ+

p
∑

j=1

Φj

(

rt+1−j

ln(σ2
t+1−j)

)

+ ut+1 (3.1)

where

µ =

(

µr

µσ

)

, ut+1 =

(

ur
t+1

uσ
t+1

)

, Φj =

[

Φ11j Φ12j

Φ21j Φ22j

]

, j = 1, . . . , p, (3.2)

E [ut] = 0 andE

[

utu
′

s

]

=

{

Σu for s = t
0 for s 6= t

. (3.3)

In the empirical applicationσ2
t+1 will be replaced by the realized volatilityRVt+1 or the bipower

variationBVt+1. The disturbanceur
t+1 is the one-step-ahead error whenrt+1 is forecast from its

own past and the past ofln(σ2
t+1), and similarlyuσ

t+1 is the one-step-ahead error whenln(σ2
t+1) is

forecast from its own past and the past ofrt+1. We suppose that these disturbances are each serially

uncorrelated, but may be correlated with each other contemporaneously and at various leads and

lags. Sinceur
t+1 is uncorrelated withIrσ2(t), the equation forrt+1 represents the linear projection

of rt+1 on Irσ2(t). Likewise, the equation forln(σ2
t+1) represents the linear projection ofln(σ2

t+1)

on Irσ2(t).

Equation (3.1) allows one to model the first two conditional moments of the asset returns. We

model conditional volatility as an exponential function process to guarantee that it is positive. The

first equation of theV AR(p) in (3.1) describes the dynamics of the return as

rt+1 = µr +

p
∑

j=1

Φ11jrt+1−j +

p
∑

j=1

Φ12j ln(σ2
t+1−j) + ur

t+1. (3.4)

10



This equation allows to capture the temporary component of Fama and French (1988) permanent and

temporary components model, in which stock prices are governed by a random walk and a stationary

autoregressive process, respectively. ForΦ12j = 0, this model of the temporary component is the

same as that of Lamoureux and Lastrapes (1993); see also Brandt and Kang (2004), and Whitelaw

(1994). The second equation ofV AR(p) describes the volatility dynamics as

ln(σ2
t+1) = µσ +

p
∑

j=1

Φ21jrt+1−j +

p
∑

j=1

Φ22j ln(σ2
t+1−j) + uσ

t+1, (3.5)

and it represents the standard stochastic volatility model. ForΦ21j = 0, equation (3.5) can be viewed

as the stochastic volatility model estimated by Wiggins (1987) , Andersen and Sørensen (1996), and

many others. However, in this paper we consider thatσ2
t+1 is not a latent variable and it can be

approximated by realized or bipower variations from high-frequency data. We also note that the

conditional mean equation includes the volatility-in-mean model used by French et al. (1987) and

Glosten et al. (1993) to explore the contemporaneous relationship between the conditional mean

and volatility [see Brandt and Kang (2004)]. To illustrate the connection to the volatility-in-mean

model, we premultiply the system in (3.1) by the matrix

P =





1 − Cov(rt+1, ln(σ2
t+1))

Var[ln(σ2
t+1)|Irσ2 (t)]

−Cov(rt+1, ln(σ2
t+1))

Var[rt+1|Irσ2 (t)] 1



 . (3.6)

Then, the first equation ofrt+1 is a linear function of the elements ofr(ω, t], σ2(ω, t+ 1], and the

disturbanceur
t+1 −

Cov(rt+1, ln(σ2
t+1))

Var[ln(σ2
t+1)|Irσ2(t)]

uσ
t+1. Since this disturbance is uncorrelated withuσ

t+1, it is

uncorrelated withln(σ2
t+1) as well as withr(ω, t] andσ2(ω, t + 1]. Hence the linear projection of

rt+1 on r(ω, t] andσ2(ω, t+ 1] is provided by the first equation of the new system:

rt+1 = νr +

p
∑

j=1

φ11jrt+1−j +

p
∑

j=0

φ12j ln(σ2
t+1−j) + ũr

t+1 . (3.7)

The new parametersνr, φ11j , andφ12j , for j = 0, 1, . . . , p, are functions of parameters in the

vectorµ and matrixΦj, for j = 1, . . . , p. Equation (3.7) is a generalized version of the usual

volatility-in-mean model, in which the conditional mean depends contemporaneously on the con-

ditional volatility. Similarly, the existence of the linear projection ofln(σ2
t+1) on r(ω, t + 1] and

σ2(ω, t],

ln(σ2
t+1) = νσ +

p
∑

j=0

φ21jrt+1−j +

p
∑

j=1

φ22j ln(σ2
t+1−j) + ũσ

t+1 (3.8)
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follows from the second equation of the new system. The new parametersνσ, φ21j , andφ22j , for

j = 1, . . . , p, are functions of parameters in the vectorµ and matrixΦj, for j = 1, . . . , p. The

volatility model given by equation (3.8) captures the persistence of volatility through the termsφ22j .

In addition, it incorporates the effects of the mean on volatility, both at the contemporaneous and

intertemporal levels through the coefficientsφ21j , for j = 0, 1, . . . , p.

Let us now consider the matrix

Σu =

[

σ2
ur c
c σ2

uσ

]

, (3.9)

whereσ2
ur and σ2

uσ represent the variances of the one-step-ahead forecast errors of return and

volatility, respectively. c represents the covariance between these errors. Based on system (3.1),

the forecast error of(rt+h, ln(σ2
t+h))

′
is given by:

e
[

(

rt+h, ln(σ2
t+h)

)
′
]

=

h−1
∑

i=0

ψiut+h−i, (3.10)

where the coefficientsψi, for i = 0, . . . , h − 1, represent the impulse response coefficients of the

MA(∞) representation of model (3.1). These coefficients are givenby the following equations:

ψ0 = I ,
ψ1 = Φ1ψ0 = Φ1 ,
ψ2 = Φ1ψ1 + Φ2ψ0 = Φ2

1 + Φ2 ,
ψ3 = Φ1ψ2 + Φ2ψ1 + Φ2ψ0 = Φ3

1 + Φ1Φ2 + Φ2Φ1 + Φ3 ,
...

(3.11)

whereI is an identity matrix and

Φj = 0 , for j ≥ p+ 1.

The covariance matrix of the forecast error (3.10) is given by

Var
[

e[
(

rt+h, ln(σ2
t+h)

)′
]
]

=

h−1
∑

i=0

ψi Σuψ
′

i. (3.12)

We also consider the following restricted model:

(

rt+1

ln(σ2
t+1)

)

= µ̄+

p̄
∑

j=1

Φ̄j

(

rt+1−j

ln(σ2
t+1−j)

)

+ ūt+1 (3.13)
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where

µ̄ =

(

µ̄r

µ̄σ

)

, ūt+1 =

(

ūr
t+1

ūσ
t+1

)

, Φ̄j =

[

Φ̄11j 0
0 Φ̄22j

]

, j = 1, .., p̄, (3.14)

E [ūt] = 0 , E

[

ūtū
′

s

]

=

{

Σ̄u for s = t
0 for s 6= t

, Σ̄u =

[

Σūr c̄
c̄ Σūσ

]

. (3.15)

Zero values inΦ̄j mean that there is noncausality at horizon1 from returns to volatility and from

volatility to returns. As mentioned in subsection 2.2, in a bivariate system, noncausality at horizon

one implies noncausality at any horizonh strictly higher than one. This means that the absence of

leverage effect at horizon one (respectively the absence ofvolatility feedback effect at horizon one)

which corresponds tōΦ21j = 0, for j = 1, . . . , p̄, (respectivelyΦ̄12j = 0, for j = 1, . . . , p̄, ) is

equivalent to the absence of leverage effect (respectivelyvolatility feedback effect) at any horizon

h ≥ 1.

To compare the forecast error variance of model (3.1) with that of model (3.13), we assume

that p = p̄. Based on the restricted model (3.13), the covariance matrixof the forecast error of

(rt+h, ln(σ2
t+h))

′
is given by:

Var

[

ē[(rt+h, ln(σ2
t+h))

′

]
]

=

h−1
∑

i=0

ψ̄i Σ̄ūψ̄
′

i, (3.16)

where the coefficients̄ψi, for i = 0, . . . , h − 1, represent the impulse response coefficients of

theMA(∞) representation of model (3.13). They can be calculated in the same way as in (3.11).

From the covariance matrices (3.12) and (3.16), we define thefollowing measures of leverage and

volatility feedback effects at any horizonh, whereh ≥ 1,

C
(

r −→
h

ln(σ2)
)

= ln

[

∑h−1
i=0 e

′

2(ψ̄i Σ̄ūψ̄
′

i)e2
∑h−1

i=0 e
′

2(ψi Σuψ
′

i)e2

]

, e2 = (0, 1)
′

, (3.17)

C
(

ln(σ2) −→
h

r
)

= ln

[

∑h−1
i=0 e

′

1(ψ̄i Σ̄ūψ̄
′

i)e1
∑h−1

i=0 e
′

1(ψi Σuψ
′

i)e1

]

, e1 = (1, 0)
′

. (3.18)

The parametric measure of instantaneous causality at horizon h, whereh ≥ 1, is given by the

following function

C
(

r ↔
h

ln(σ2)
)

= ln

[

(
∑h−1

i=0 e
′

2(ψi Σuψ
′

i)e2) (
∑h−1

i=0 e
′

1(ψi Σuψ
′

i)e1)

det(
∑h−1

i=0 ψi Σuψ
′

i)

]

. (3.19)
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4. Implied volatility as an auxiliary variable

An important feature of causality is the information set considered to forecast the variables of in-

terest. Until now, we have included only the past of returns and realized volatility. Since the

volatility feedback effect rests on anticipating future movements in volatility it is natural to include

option-based implied volatility, an all-important measure of market expectations of future volatility.

Formally, we “add” the past of implied volatility to the information setIrσ2(t) that we considered

in the previous section. The new information set is given nowby Irσ2z(t), wherez is an auxiliary

variable represented by implied volatility.

In this paper, we consider call options written on S&P 500 index futures contracts. The data

come from the OptionMetrics data set which contains historical on option prices, dating back to

January 1996. Given observations on the option priceC and the remaining variablesS, K, τ ,

andr, an estimate of the implied volatilityIV can be obtained by solving the nonlinear equation

C = C
(

S, K, τ , r, IV 1/2
)

for IV 1/2, whereC(·) refers to the Black-Scholes formula. Each

day, we extract the implied volatility corresponding to theoption that is closest to the money. This

selection criterion ensures that the option will be liquid and therefore aggregates the opinion of

many investors about future volatility. This appears more important than keeping a fixed maturity.

This choice is often made in the empirical literature on option pricing [see for example Pan (2002)].

Therefore, we consider a trivariate autoregressive model including implied volatility, in addition

to the realized volatility (bipower variation) and returns:5





rt+1

RV ∗
t+1

IV ∗
t+1



=





µr

µRV

µIV



 +

p
∑

j=1





Φ11j Φ12j Φ13j

Φ21j Φ22j Φ23j

Φ31j Φ32j Φ33j









rt+1−j

RV ∗
t+1−j

IV ∗
t+1−j



 +





ur
t+1

uRV
t+1

uIV
t+1



 (4.1)

whereRV ∗
t = ln(RVt) andIV ∗

t = ln(IVt). The first equation of the above system

rt+1 = µr+

p
∑

j=1

Φ11jrt+1−j+

p
∑

j=1

Φ12jRV
∗
t+1−j +

p
∑

j=1

Φ13jIV
∗
t+1−j+u

r
t+1 (4.2)

describes the dynamics of the return, while the second equation

RV ∗
t+1 =µRV +

p
∑

j=1

Φ21jrt+1−j+

p
∑

j=1

Φ22jRV
∗
t+1−j +

p
∑

j=1

Φ23jIV
∗
t+1−j + uRV

t+1 (4.3)

describes the volatility dynamics. It is well known that implied volatility can be used to predict

5Further, we consider an autoregressive model where we add jumps and our results do not change.
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whether a market is likely to move higher or lower and help to predict future volatility [see Day and

Lewis (1992), Canina and Figlewski (1993), Lamoureux and Lastrapes (1993), Poteshman (2000),

Blair et al. (2001), and Busch et al. (2006)]. The forward-looking nature of the implied volatility

measure makes it an ideal additional variable to capture a potential volatility feedback mechanism.

Apart from usingIV without any constraint in (4.2) and (4.3), we will also look at more restricted

combinations dictated by financial considerations. Indeed, the difference betweenIV andRV

provides an estimate of the risk premium attributable to thevariance risk factor.

5. Causality measures for S&P 500 futures

In this section, we first describe the data used to measure causality in the VAR models of the previous

sections. Then we explain how to estimate confidence intervals of causality measures for leverage

and volatility feedback effects. Finally, we discuss our findings.

5.1. Data description

Our data consists of high-frequency tick-by-tick transaction prices for the S&P500 Index futures

contracts traded on the Chicago Mercantile Exchange, over the period January 1988 to December

2005 for a total of 4494 trading days. We eliminated a few dayswhere trading was thin and the

market was open for a shortened session. Due to the unusuallyhigh volatility at the opening,

we also omit the first five minutes of each trading day [see Bollerslev et al. (2006)]. For reasons

associated with microstructure effects we follow Bollerslev et al. (2006) and the literature in general

and aggregate returns over five-minute intervals. We calculate the continuously compounded returns

over each five-minute interval by taking the difference between the logarithm of the two tick prices

immediately preceding each five-minute mark to obtain a total of 77 observations per day [see

Müller, Dacorogna, Gençay, Olsen, and Pictet (2001) and Bollerslev et al. (2006) for more details].

We also construct hourly and daily returns by summing11 and77 successive five-minute returns,

respectively.

Summary statistics for the five-minute, hourly, and daily returns and the associated volatilities

are reported in tables 1 - 2 and displayed in figures 1-2 of Appendix B. From these, we see that the

unconditional distributions of the returns exhibit high kurtosis and negative skewness. The sample

kurtosis is much greater than the Gaussian value of three forall three series. The negative skewness

remains moderate, especially for the five-minute and daily returns. Similarly, the unconditional

distributions of realized and bipower volatility measuresare highly skewed and leptokurtic. How-

ever, on applying a logarithmic transformation, both measures approximately normal [see Ander-
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sen, Bollerslev, Diebold and Ebens (2001)]. The descriptive statistics for the relative jump measure,

Jt+1, clearly indicate a positively skewed and leptokurtic distribution. The time series plots of re-

turns and volatilities show the familiar volatility clustering effect, along with some occasional large

absolute returns.

It is also of interest to assess whether the realized and bipower volatility measures differ signif-

icantly. To test this, recall that

lim
∆→0

(RVt+1) =

∫ t+1

t
σ2

sds+
∑

0<s≤t

κ2
s, (5.1)

where
∫ t+1
t σ2

sds is the integrated volatility and
∑

0<s≤t κ
2
s represents the contribution of jumps to

total price variation. In the absence of jumps, the second term on the right-hand-side disappears,

and the quadratic variation is simply equal to the integrated volatility: or asymptotically (∆ → 0)

the realized variance is equal to the bipower variance. Manystatistics have been proposed to test for

the presence of jumps in financial data [see for example Barndorff-Nielsen and Shephard (2002b),

Andersen, Bollerslev and Diebold (2003b), Huang and Tauchen (2005), among others]. In this

paper, we test for the presence of jumps in our data by considering the following test statistics:

zQP, l, t =
RVt+1 −BVt+1

√

((π
2 )2 + π − 5)∆QPt+1

, (5.2)

zQP, t =
ln(RVt+1) − ln(BVt+1)

√

((π
2 )2 + π − 5)∆QPt+1

BV 2
t+1

, (5.3)

zQP, lm, t =
ln(RVt+1) − ln(BVt+1)

√

((π
2 )2 + π − 5)∆max(1, QPt+1

BV 2
t+1

)
, (5.4)

whereQPt+1 is the realized Quad-Power Quarticity [Barndorff-Nielsenand Shephard (2002a)],

with

QPt+1 = hµ−4
1

h
∑

j=4

| r(t+j.∆, ∆) || r(t+(j−1).∆, ∆) || r(t+(j−2).∆, ∆) || r(t+(j−3).∆, ∆) |, (5.5)

andµ1 =
√

2
π . Under the assumption of no jumps and for each timet, the statisticszQP, l, t, zQP, t,

andzQP, lm, t follow a Normal distributionN (0, 1) as∆ → 0. The results of testing for jumps in

our data are plotted in Figure 3 of Appendix B. These graphs represent the quantile to quantile plots

(hereafter QQ plot) of the relative measure of jumps given byequation (2.8) and the QQ Plots of the

other statistics;zQP, l, t, zQP, t, andzQP, lm, t. When there are no jumps, we expect that the cross
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line and the dotted line in Figure 3 will coincide. However, as this figure shows, the two lines are

clearly distinct, indicating the presence of jumps in our data. Therefore, we will present our results

for both realized volatility and bipower variation.

5.2. Causality measures

We examine several empirical issues regarding the relationship between volatility and returns. Be-

fore high-frequency data were not available and the conceptof realized volatility took root – such

issues could only be addressed through volatility models. Recently, Bollerslev et al. (2006) looked

at these relationships using high-frequency data and realized volatility measures. As they empha-

size, the fundamental difference between the leverage and the volatility feedback explanations lies

in the direction of causality. The leverage effect explainswhy a low return causes higher subse-

quent volatility, while the volatility feedback effect captures how an increase in volatility may cause

a negative return. However, they studied only correlationsbetween returns and volatility at various

leads and lags, not causality relationships.

Here, we apply short-run and long-run causality measures toquantify the strength of the re-

lationships between return and volatility. We use OLS to estimate the VAR(p) models described

above and the Akaike information criterion to specify theirorders.6 To obtain consistent estimates

of the causality measures, we simply replace the unknown parameters by their estimates. We calcu-

late causality measures for various horizonsh = 1, . . . , 20. A higher value for a causality measure

indicates a stronger causality. We also compute the corresponding nominal95% bootstrap per-

centile confidence intervals according to the procedure described in Appendix A. As mentioned

by Inoue and Kilian (2002), for bounded measures, as in our case, the bootstrap approach is more

reliable than the delta-method. One reason is because the delta-method interval is not range re-

specting and may produce confidence intervals that are logically invalid. In contrast, the bootstrap

percentile interval preserves by construction these constraints [see Inoue and Kilian (2002, pages

315-318) and Efron and Tibshirani (1993)]. Further, the percentile interval allows avoiding using

the variance-covariance matrix of the estimators which depends on the homoskedasticity assump-

tion. More details on the consistency and statistical justification of the procedures used here are

available in Dufour and Taamouti (2009).

The concept of Granger causality requires an information set and is analyzed in the framework

of a model between the variables of interest. Both the strength of this causal link and its statistical

6Using Akaike’s criterion we find that the appropriate value of the order of the unconstrained autoregressive model is
equal to10. Since using the same criterion the value of the order of the constrained model is smaller than10, we take
p = p̄ = 10 [see Section 3].
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significance are important. A major obstacle to detecting causality is aggregation. Low frequency

data may mask the true causal relationship between variables. High-frequency data thus offer an

opportunity to analyze causal effects. In particular, we can distinguish with an exceptionally high

resolution between immediate and lagged effects. Further,even if one’s interest focuses on relation-

ships at the daily frequency, using higher-frequency data to construct daily returns and volatilities

can provide better estimates than using daily returns (as done in previous studies). Besides, since

measured realized volatility can be viewed as an approximation to the “true” unobservable volatility,

we consider both raw realized volatility and the bipower variation (which provides a way to filter

out possible jumps in the data); see Barndorff-Nielsen and Shephard (2004).

With five-minute intervals we could estimate the VAR model atthis frequency. However, if we

wanted to allow for enough time for the effects to develop we would need a large number of lags

in the VAR model and sacrifice efficiency in the estimation. This problem arises in many studies

of volatility forecasting. Researchers have use several schemes to group five-minute intervals, in

particular the HAR-RV or the MIDAS schemes.7 We decided to look both at hourly and daily

frequencies.

Our empirical results will be presented mainly through graphs. Each figure reports the causality

measure as a function of the horizon. The main results are summarized and compared in figures

4 - 7 of Appendix B. Detailed results, including confidence bands on the causality measures, are

reported in Appendix C.

Results based on bivariate models indicate the following [Figure 4 and Table 3 in Appendix B

and figures 11 - 12 in Appendix C]. When returns are aggregatedto the hourly frequency, we find

that the leverage effect is statistically significant for the first four hours, while the volatility feedback

effect is negligible at all horizons. Using daily observations, derived from high-frequency data, we

find a strong leverage effect for the first three days, while the volatility feedback effect appears to be

negligible at all horizons. The results based on realized volatility (RV ) and bipower variation(BV )

are essentially the same [Figure 11 in Appendix C]. Overall,these results show that the leverage

effect is more important than the volatility feedback effect [Figure 4 in Appendix B].

If the feedback effect from volatility to returns is almost-non-existent, it is apparent that the

instantaneous causality between these variables exists and remains economically and statistically

important for several days [see Figure 12 in Appendix C]. This means that volatility has a con-

7The HAR-RV scheme, in which the realized volatility is parameterized as a linear function of the lagged realized
volatilities over different horizons has been proposed by Müller, Dacorogna, Davé, Olsen, Pictet and Von Weizsäcker
(1997) and Corsi (2003). The MIDAS scheme, based on the idea of distributed lags, has been analyzed and estimated by
Ghysels, Santa-Clara and Valkanov (2002).

18



temporaneous effect on returns, and similarly returns havea contemporaneous effect on volatility.

These results are confirmed with both realized and bipower variations. Furthermore, dependence

between volatility and returns is also economically and statistically important for several days.

Let us now consider a trivariate autoregressive model including implied volatility in addition

to realized volatility (bipower variation) and returns, assuggested in Section 4 [figures 5 - 7 in

Appendix B and figures 13 - 16 in Appendix C]. First, we see thatimplied volatility (IV ) helps

to predict future realized volatility for several days ahead [Figure 5 in Appendix B; Figure 13 in

Appendix C]. It is also interesting to note that the difference betweenIV andRV , which captures a

variance risk premium, also helps predict future volatility. Note that Bollerslev et al. (2006) do not

consider implied volatility in their analysis.

Second, there is an important increase in the volatility feedback effect when implied volatility

is taken into account [Figure 6 in Appendix B; figures 14 - 15 inAppendix C]. In particular, it is

statistically significant during the first four days. The volatility feedback effect relies first on the

volatility clustering phenomena which means that returns shocks, positive or negative, increases

both current and future volatility. The second basic explanation of this hypothesis is that there

is a positive intertemporal relationship between conditional volatility and expected returns. Thus,

given the anticipative role of implied volatility and the link between the volatility feedback effect

and future volatility, implied volatility reinforces and increases the impact of volatility on returns.8

Figure 6 also compares volatility feedback effects with andwithout implied volatility as an auxiliary

variable. We see that the difference betweenIV andRV has a stronger impact on returns than

realized volatility alone in the presence of implied volatility. Further, different transformations of

volatility (logarithmic of volatility and standard deviation) are considered: the volatility feedback

effect is strongest when the standard deviation is used to measure volatility.

Finally, we look at the leverage effects with and without implied volatility as an auxiliary vari-

able [Figure 16 in Appendix C]. We see that there is almost no change in the leverage effect when

we take into account implied volatility. On comparing the leverage and volatility feedback effects

with and without implied volatility, we see that the difference, in terms of causality measure, be-

tween leverage and volatility feedback effects decreases when implied volatility is included in the

information set. In other words, taking into account implied volatility allows to identify a volatility

feedback effect without affecting the leverage effect. This may reflect the fact that investors use

several markets to carry out their financial strategies, andinformation is disseminated across several

8Since option prices reflect market participants’ expectations of future movements of the underlying asset, the volatil-
ity implied from option prices should be an efficient forecast of future volatility, which potentially explains a better
identification of the volatility feedback effect.
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markets. Since the identification of a causal relationship depends crucially on the specification of the

information set, including implied volatility appears essential to demonstrate a volatility feedback

effect.

6. Dynamic impact of positive and negative news on volatility

In the previous sections, we did not account for the fact thatreturn news may differently affect

volatility depending on whether they are good or bad. We willnow propose a method to sort out the

differential effects of good and bad news, along with a simulation study showing that our approach

can indeed detect asymmetric responses of volatility to return shocks.

6.1. Theory

Several volatility models capture this asymmetry and are explored in Engle and Ng (1993). To study

the effect of current return shocks on future expected volatility, Engle and Ng (1993) introduced the

News Impact Function (hereafterNIF). The basic idea of this function is to consider the effect of

the return shock at timet on volatility at timet + 1 in isolation while conditioning on information

available at timet and earlier. Recently, Chen and Ghysels (2007) have extended the concept of

news impact curves to the high-frequency data setting. Instead of taking a single horizon fixed para-

metric framework they adopt a flexible multi-horizon semi-parametric modeling [see also Linton

and Mammen (2005)].

In what follows we extend our previous VAR model to capture the dynamic impact of bad news

(negative innovations in returns) and good news (positive innovations in returns) on volatility. We

quantify and compare the strength of these effects in order to determine the most important ones.

To analyze the impact of news on volatility, we consider the following model:

ln(σ2
t+1) = µσ +

p
∑

j=1

ϕσ
j ln(σ2

t+1−j) +

p
∑

j=1

ϕ−
j er

−
t+1−j +

p
∑

j=1

ϕ+
j er

+
t+1−j + uσ

t+1 (6.1)

where

er−t+1−j = min {ert+1−j , 0} , er+t+1−j = max {ert+1−j , 0} , ert+1−j = rt+1−j−Et−j(rt+1−j),

(6.2)

E [uσ
t ] = 0 andE [uσ

t u
σ
s ] =

{

Σuσ for s = t
0 for s 6= t

. (6.3)

Equation (6.1) represents the linear projection of volatility on its own past and the past of centered

negative and positive returns. This regression model allows one to capture the effect of centered
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negative or positive returns on volatility through the coefficientsϕ−
j or ϕ+

j respectively, for j =

1, . . . , p. It also allows one to examine the different effects that large and small negative and/or

positive information shocks have on volatility. This will provide a check on the results obtained in

the literature on GARCH modeling, which has put forward overwhelming evidence on the effect of

negative shocks on volatility.

Again, in our empirical applications,σ2
t+1 will be replaced by realized volatilityRVt+1 or

bipower variationBVt+1. Furthermore, the conditional mean return will be approximated by the

following rolling-sample average:

Êt(rt+1) =
1

m

m
∑

j=1

rt+1−j .

where we take an average aroundm = 15, 30, 90, 120, and240 days. Now, let us consider the

following restricted models:

ln(σ2
t+1) = θσ +

p̄
∑

i=1

ϕ̄σ
i ln(σ2

t+1−i) +

p̄
∑

i=1

ϕ̄+
i er+t+1−j + eσt+1, (6.4)

ln(σ2
t+1) = θ̄σ +

ṗ
∑

i=1

ϕ̇σ
i ln(σ2

t+1−i) +

ṗ
∑

i=1

ϕ̇−
i er

−
t+1−j + vσ

t+1. (6.5)

Equation (6.4) represents the linear projection of volatility ln(σ2
t+1) on its own past and the past

of centred positive returns. Similarly, equation (6.5) represents the linear projection of volatility

ln(σ2
t+1) on its own past and the past of centred negative returns. To compare the forecast error

variances of model (6.1) with those of models (6.4) and (6.5), we assume thatp = p̄ = ṗ.

In our empirical application, we also consider a model with uncentered negative and positive

returns:

ln(σ2
t+1) = ωσ +

p
∑

j=1

φσ
j ln(σ2

t+1−j) +

p
∑

j=1

φ−j r
−
t+1−j +

p
∑

j=1

φ+
j r+t+1−j + ǫσt+1 (6.6)

wherer−t+1−j = min {rt+1−j , 0} , r+t+1−j = max {rt+1−j , 0} ,

E [ǫσt ] = 0 andE [ǫσt ǫ
σ
s ] =

{

Σǫσ for s = t
0 for s 6= t

, (6.7)
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and the corresponding restricted volatility models:

ln(σ2
t+1) = λσ +

p̄
∑

i=1

φ̄
σ
i ln(σ2

t+1−i) +

p̄
∑

i=1

φ̄
+
i r

+
t+1−i + υσ

t+1, (6.8)

ln(σ2
t+1) = λ̄σ +

ṗ
∑

i=1

φ̇
σ
i ln(σ2

t+1−i) +

ṗ
∑

i=1

φ̇
−
i r

−
t+1−i + εσt+1. (6.9)

Thus, a measure of the impact of bad news on volatility at horizonh, whereh ≥ 1, is given by the

following equation:

C(er− →
h

ln(σ2)) = ln

[

Var
[

eσt+h | σ2(ω, t], er+(ω, t]
]

Var
[

uσ
t+h | J(t)

]

]

. (6.10)

Similarly, a measure of the impact of good news on volatilityat horizonh is given by:

C(er+ →
h

ln(σ2)) = ln

[

Var
[

vσ
t+h | σ2(ω, t], er−(ω, t]

]

Var
[

uσ
t+h | J(t)

]

]

(6.11)

where

er−(ω, t] =
{

er−t−s, s ≥ 0
}

, (6.12)

er+(ω, t] =
{

er+t−s, s ≥ 0
}

, (6.13)

andJ(t) is the information set obtained by “adding”σ2(ω, t] to er−(ω, t] ander+(ω, t], introduced

the News Impact Function (hereafterNIF). By analogy, e call the curves defined in (6.10) and (6.11),

Causal News Impact Functions (CNIF). We also define a function which allows us to compare the

impact of bad and good news on volatility. This function can be defined as follows:

C(er− | er+ →
h

ln(σ2)) = ln

[

Var
[

eσt+h | σ2(ω, t], er+(ω, t]
]

Var
[

vσ
t+h | σ2(ω, t], er−(ω, t]

]

]

. (6.14)

WhenC(er− | er+ →
h

ln(σ2)) ≥ 0, this means that bad news have more impact on volatility than

good news. Otherwise, good news will have more impact on volatility than bad news. Compared to

Chen and Ghysels (2007), our approach is also multi-horizonand based on high-frequency data but

is more parametric in nature. Before applying these new measures to our S&P 500 futures market,

we conduct a simulation study to verify that the asymmetric reaction of volatility is well captured

in various models of the GARCH family that produce or not suchan asymmetry.
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6.2. Simulation study on news asymmetry detection

We will now present an exploratory simulation study on the ability of the causality measures to

detect asymmetry in the impact of bad and good news on volatility [Pagan and Schwert (1990),

Gouriéroux and Monfort (1992), Engle and Ng (1993)]. To do this, we consider that returns are

governed by a process of the form:

rt+1 =
√
σtεt+1 (6.15)

whereεt+1 ∼ N (0, 1) andσt represents the conditional volatility of returnrt+1. Since we are

only interested in studying the asymmetry in leverage effect, equation (6.15) does not allow for a

volatility feedback effect. Second, we assume thatσt follows one of the following heteroskedastic

models:

1. GARCH(1, 1) model:

σt = ω + βσt−1 + αε2t−1 ; (6.16)

2. EGARCH(1, 1) model:

log(σt) = ω + β log(σt−1) + γ
εt−1√
σt−1

+ α

[ | εt−1 |√
σt−1

−
√

2/π

]

; (6.17)

3. nonlinear NL-GARCH(1, 1) model:

σt = ω + βσt−1 + α | εt−1 |γ ; (6.18)

4. GJR-GARCH(1, 1) model:

σt = ω + βσt−1 + αε2t−1 + γIt−1ε
2
t−1 (6.19)

where

It−1 =

{

1, if εt−1 ≤ 0 ,
0, otherwise;

5. asymmetric AGARCH(1, 1) model:

σt = ω + βσt−1 + α (εt−1 + γ)2 ; (6.20)

6. VGARCH(1, 1) model:

σt = ω + βσt−1 + α

(

εt−1√
σt−1

+ γ

)2

; (6.21)
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7. nonlinear asymmetric GARCH(1, 1) model[NGARCH(1, 1)] :

σt = ω + βσt−1 + α (εt−1 + γ
√
σt−1)

2 . (6.22)

GARCH and NL-GARCH models are, by construction, symmetric.Thus, we expect that the curves

of causality measures for bad and good news will be the same. Similarly, because EGARCH, GJR-

GARCH, AGARCH, VGARCH, and NGARCH are asymmetric we expect that these curves will be

different. The parameter values considered are given in Table 4 of Appendix B.9

To see whether the asymmetric structures gets translated into the causality patterns, we then

simulate returns and volatilities according to the above models and we evaluate the causality mea-

sures for bad and good news as described in Section 6.1. To abstract from statistical uncertainty, the

models are simulated with a large sample size(T = 40000).

The results obtained in this way are reported in Figure 8 of Appendix B. We see from these that

symmetry and asymmetry are well represented by causality measure patterns. For the symmetric

models [GARCH and NL-GARCH], bad and good news have the same impact on volatility. In

contrast, for the asymmetric models [EGARCH, GJR-GARCH, AGARCH, VGARCH, NGARCH],

bad and good news exhibit different impact curves.

It is also interesting to observe for the asymmetric models that bad news have a greater impact

on volatility than good news. The magnitude of the volatility response is largest for NGARCH

model, followed by the AGARCH and GJR-GARCH models. The effect is negligible in EGARCH

and VGARCH models. The impact of good news on volatility is more noticeable in AGARCH and

NGARCH models. Overall, causality measures appear to capture quite well the effects of returns

on volatility, both qualitatively and quantitatively.

7. News effects in S&P 500 futures market

We now apply the good news and bad news measures of causality to S&P 500 futures returns. To

carry out our analysis, we consider two alternative measures of news: (1) positive and negative

deviations of returns from average past returns, and (2) positive and negative variance risk premia.

An important feature of our approach comes from the fact thata specific volatility model need not

be estimated, which can be contrasted with previous relatedstudies [see, for example Bekaert and

Wu (2000), Engle and Ng (1993), Glosten et al. (1993), Campbell and Hentschel (1992), and Nelson

9These parameters are the results of an estimation of different parametric volatility models using the daily returns
series of the Japanese TOPIX index from January 1, 1980 to December 31, 1988. For details, see Engle and Ng (1993).
We also considered other values based on Engle and Ng (1993).The results are similar to those presented here.

24



(1991)].

7.1. Return news

Our empirical results on return news effect (includingCausal News Impact Functions) are sum-

marized and compared in Figure 9 of Appendix B. Detailed results (with confidence intervals) are

presented in tables 5-7 of Appendix B and figures 17-C. We find amuch stronger impact of bad

news on volatility for several days. Statistically, the impact of bad news is significant for the first

four days, whereas the impact of good news is negligible at all horizons. So our central finding is

that bad news have more impact on volatility than good news atall horizons.

7.2. Variance risk premium

Let us now look at the reaction of future returns to the sign ofthe difference between implied

volatility and realized volatility (bipower variation). This difference is a measure of the variance risk

premium since the option-implied volatility includes the risk premium that investors associate with

expected future volatility [see Bollerslev and Zhou (2006)and Drechsler and Yaron (2008)]. We

will therefore assess whether a positive variance risk premium has an impact of similar magnitude

on expected returns than a negative variance risk premium. In the case of a positive variance risk

premium, we expect an increase in the expected returns (return risk premium), and in the opposite,

we expect a decrease in expected returns.

Since implied volatility is a predictor of future volatility, we write:

ln(RVt+h) = f (ln(IVt), ln(IVt−1), . . . ) + εt+h, ∀h ≥ 1, (7.1)

εt+h = ln(RVt+h) − f (ln(IVt), ln(IVt−1), . . . ) , (7.2)

wheref (ln(IVt), ln(IVt−1), . . . ) is a function of the past observations on implied volatility.10

The term on the right-hand side of equation (7.2) can be viewed as an approximation of volatility

shocks or volatility news. To measure empirically thedynamic impact of volatility news on returns,

we consider the following model:

rt+1 = µr +

p
∑

j=1

ϕr
jrt+1−j +

p
∑

j=1

ϕ−
j V P

−
t+1−j +

p
∑

j=1

ϕ+
j V P

+
t+1−j + ur

t+1 (7.3)

10f (ln(IVt), ln(IVt−1), ...) represents the optimal forecast, in the sense of minimization of the mean squared error,
of ln(RVt+h) based on the past observations of implied volatility.
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whereV P−
t+1−j = min {V Pt+1−j , 0} , V P+

t+1−j = max {V Pt+1−j , 0} and

V Pt+1−j = ln(IVt+1−j) − ln(RVt+1−j) , j = 1, . . . , p. (7.4)

Equation (7.3) represents a linear projection of returns onits own past and the past of negative and

positive variance risk premia. This regression model allows one to capture the effect of volatility

news on returns through the coefficientsϕ−
j orϕ+

j , for j = 1, . . . , p. It also allows one to examine

different effects that large and small negative and/or positive volatility shocks have on return risk

premium. When implied volatility is bigger than realized volatility (bipower variation), we expect

an increase in future volatility followed by an increase in the expected returns. In the opposite

situation, we expect a decrease in future volatility followed by a decrease in the expected returns.

The empirical results on the impact of volatility news on returns are given in Figure 10 of

Appendix B. The latter shows the impact of negative and positive variance risk premium on returns

and the comparison between them. We see that a positive variance risk premium has more impact

on expected returns than a negative variance risk premium, which means that positive shocks on

volatility have more impact on returns than negative shocks. The impact is twice as big on the first

day and shrinks to zero after about five days. By looking at thesign of coefficientsϕ+
j andϕ−

j , for

j = 1, . . . , p, we find thatϕ+
j are positive, whereasϕ−

j are negative, as expected. Consequently,

the increase in expected returns tends to be higher than the decrease for a movement in the variance

risk premium of the same magnitude but of opposite signs.

8. Conclusion

In this paper we analyze and quantify the relationship between volatility and returns with high-

frequency equity returns. Within the framework of a vector autoregressive linear model of re-

turns and realized volatility or bipower variation, we quantify the dynamic leverage and volatility

feedback effects by applying short-run and long-run causality measures proposed by Dufour and

Taamouti (2009). These causality measures go beyond simplecorrelation measures used recently

by Bollerslev et al. (2006).

Using 5-minute observations on S&P 500 Index futures contracts, we measure a weak dynamic

leverage effect for the first four hours in hourly data and a strong dynamic leverage effect for the

first three days in daily data. The volatility feedback effect is found to be negligible at all horizons.

Interestingly, when we remeasure the dynamic leverage and volatility feedback effects using implied

volatility (IV ), we find that a volatility feedback effect appears, while theleverage effect remains
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almost the same. This can be explained by the power of impliedvolatility to predict future volatility

and by the fact that volatility feedback effect is related tothe latter. We also use causality measures

to quantify and test statistically the dynamic impact of good and bad news on volatility. First, we

assess by simulation the ability of causality measures to detect the differential effect of good and

bad news in various parametric volatility models. Then, empirically, we measure a much stronger

impact for bad news at several horizons. Statistically, theimpact of bad news is significant for the

first four days, whereas the impact of good news is negligibleat all horizons. We introduce a new

concept of news based on volatility. This one is defined by thedifference between implied volatility

and realized volatility (bipower variation). When impliedvolatility is bigger than realized volatility

(bipower variation) it means that the market is expecting anincrease in future volatility with respect

to current volatility. Our empirical results show that suchan expected increase in volatility has a

stronger impact on return risk premium than an expected decrease of a similar magnitude.
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Appendix

A. Bootstrap confidence intervals for causality measures

We compute the nominal95% bootstrap confidence intervals of the causality measures asfollows

[see Dufour and Taamouti (2009)]:

(1) Estimate by OLS theV AR(p) process given by equation (3.1) and save the residuals11

û(t) =

(

rt
ln(RVt)

)

− µ̂−
p

∑

j=1

Φ̂j

(

rt−j

ln(RVt−j)

)

, for t = p+ 1, . . . , T, (A.1)

whereµ̂ andΦ̂j are the OLS regression estimates ofµ andΦj, for j = 1, . . . , p.

(2) Generate(T -p) bootstrap residualŝu∗(t) by random sampling with replacement from the

residualŝu(t), t = p+ 1, . . . , T.

(3) Generate a random draw for the vector ofp initial observations

w(0) = [(r1, ln((RV1))
′

, . . . , (rp, ln(RVp))
′

]
′

. (A.2)

(4) Given µ̂ andΦ̂j, for j = 1, . . . , p, û∗(t), andw(0), generate bootstrap data for the dependent

variable(r∗t , ln(RVt)
∗)

′
from equation:

(

r∗t
ln(RVt)

∗

)

= µ̂+

p
∑

j=1

Φ̂j

(

r∗t−j

ln(RVt−j)
∗

)

+ û∗(t), t = p+ 1, . . . , T. (A.3)

(5) Calculate the bootstrap OLS regression estimates

Φ̂∗ = (µ̂∗, Φ̂∗
1, Φ̂

∗
2, . . . , Φ̂

∗
p) = Γ̂ ∗−1Γ̂ ∗

1 , Σ̂
∗
u =

T
∑

t=p+1

û∗(t)û∗(t)
′

/(T − p), (A.4)

Γ̂ ∗ = (T − p)−1
T

∑

t=p+1

w∗(t)w∗(t)
′

, Γ̂ ∗
1 = (T − p)−1

T
∑

t=p+1

w∗(t)(r∗t+1, ln(RVt+1)
∗)

′

,(A.5)

11When we “add” the past of implied volatility to the information setIrσ2(t), then we consider theV AR(p) process
given by equation (4.1).
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wherew∗(t) = [(r∗t , ln(RVt)
∗)

′
, . . . , (r∗t−p+1, ln(RVt−p+1)

∗)
′
]
′
and

û∗(t) = ũ∗(t)−
T

∑

t=p+1

ũ∗(t)/(T −p), andũ∗(t) =

(

r∗t
ln(RVt)

∗

)

− µ̂−
p

∑

j=1

Φ̂j

(

r∗t−j

ln(RVt−j)
∗

)

.

(A.6)

(6) Estimate the constrained model of the marginal processrt andln(RVt) using the bootstrap sam-

ple
{

(r∗t , ln(RVt))
′
}T

t=1
.

(7) Calculate the causality measures at horizonh, denoted Ĉ(j)∗(r −→
h

ln(RV )) and

Ĉ(j)∗(ln(RV ) −→
h

r), using equations (3.17) and (3.18) respectively and the bootstrap sample.

(8) ChooseB such1
2α(B + 1) is an integer and repeat steps(2)-(7) B times.12

(9) Finally, calculate theα and1-α percentile interval endpoints of the distributions ofĈ(j)∗(r −→
h

ln(RV )) andĈ(j)∗(ln(RV ) −→
h
r).13

A proof of the asymptotic validity of the bootstrap confidence intervals of the causality measures is

provided in Dufour and Taamouti (2009).

121-α is the considered level of confidence interval.
13We follow the same steps to compute the bootstrap confidence intervals of instantaneous causality and dependence

measures.
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B. Summary of empirical results

We present here basic summary statistics and graphs for the data used in this paper.

Table 1. Summary statistics for S&P 500 futures returns,1988-2005

V ariables Mean St.Dev. Median Skewness Kurtosis

F ive-minute 6.9505e − 006 0.000978 0.00e − 007 −0.0818 73.9998
Hourly 1.3176e − 005 0.0031 0.00e − 007 −0.4559 16.6031
Daily 1.4668e − 004 0.0089 1.1126e − 004 −0.1628 12.3714

Note: This table summarizes the five-minute, hourly, and daily returns distributions for the S&P 500 index contracts. The
sample covers the period from 1988 to December 2005 for a total of 4494 trading days.

Table 2. Summary statistics for daily volatilities, 1988-2005

V ariables Mean St.Dev. Median Skewness Kurtosis

RVt 8.1354e − 005 1.2032e − 004 4.9797e − 005 8.1881 120.7530
BVt 7.6250e − 005 1.0957e − 004 4.6956e − 005 6.8789 78.9491
ln(RVt) −9.8582 0.8762 −9.9076 0.4250 3.3382
ln(BVt) −9.9275 0.8839 −9.9663 0.4151 3.2841
Jt+1 0.0870 0.1005 0.0575 1.6630 7.3867

Note: This table summarizes the daily volatilities distributions for the S&P 500 index contracts. The sample covers the
period from 1988 to December 2005 for a total of 4494 trading days.
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Table 3. Hourly and daily volatility feedback effects

Hourly volatility feedback effects usingln(RV )

C(ln(RV ) →
h
r) h = 1 h = 2 h = 3 h = 4

Point estimate 0.00016 0.00014 0.00012 0.00012
95% Bootstrap interval [0.0000, 0.0007] [0.0000, 0.0006] [0.0000, 0.0005] [0.0000, 0.0005]

Hourly volatility feedback effects usingln(BV )

C(ln(BV ) →
h
r) h = 1 h = 2 h = 3 h = 4

Point estimate 0.00022 0.00020 0.00019 0.00015
95% Bootstrap interval [0.0000, 0.0008] [0.0000, 0.0007] [0.0000, 0.0007] [0.0000,0.0005]

Daily volatility feedback effects usingln(RV )

C(ln(RV ) →
h
r) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0019 0.0019 0.0019 0.0011
95% Bootstrap interval [0.0007, 0.0068] [0.0005, 0.0065] [0.0004, 0.0061] [0.0002, 0.0042]

Daily volatility feedback effects usingln(BV )

C(ln(BV ) →
h
r) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0017 0.0017 0.0016 0.0011
95% Bootstrap interval [0.0007, 0.0061] [0.0005, 0.0056] [0.0004, 0.0055] [0.0002, 0.0042]

Note: This table summarizes the estimation results of causalitymeasures from hourly realized volatility[ln(RV )] to

hourly returns (r), hourly bipower variation [ln(BV )] to hourly returns, daily realized volatility to daily returns, and

daily bipower variation to daily returns, respectively. The second row in each small table gives the point estimate of the

causality measures at horizonsh = 1, ..., 4. The third row gives the95% corresponding percentile bootstrap interval.

Table 4. Parameter values of different GARCH models

ω β α γ

GARCH 2.7910−5 0.86695 0.093928 −
EGARCH −0.290306 0.97 0.093928 −0.09

NL-GARCH 2.7910−5 0.86695 0.093928 0.5, 1.5, 2.5

GJR-GARCH 2.7910−5 0.8805 0.032262 0.10542

AGARCH 2.7910−5 0.86695 0.093928 −0.1108

VGARCH 2.7910−5 0.86695 0.093928 −0.1108

NGARCH 2.7910−5 0.86695 0.093928 −0.1108

Note: This table summarizes the parameter values for parametricvolatility models considered in our simulations study.
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Table 5. Measuring the impact of good news on volatility using ln(RV ) [centered positive returns]

̂Et(rt+1) = 1

15

∑15

j=1
rt+1−j

C(er+ →
h

ln(RV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0007 0.0007 0.0007 0.0004
95% Percentile bootstrap interval [0.0003, 0.0043] [0.0002, 0.0039] [0.0001, 0.0034] [0.0000, 0.0030]

̂Et(rt+1) = 1

30

∑30

j=1
rt+1−j

C(er+ →
h

ln(RV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0010 0.0007 0.0007 0.0005
95% Percentile bootstrap interval [0.0004, 0.0051] [0.0003, 0.0039] [0.0003, 0.0036] [0.0000, 0.0032]

̂Et(rt+1) = 1

90

∑90

j=1
rt+1−j

C(er+ →
h

ln(RV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0013 0.0008 0.0008 0.0008
95% Percentile bootstrap interval [0.0004, 0.0059] [0.0003, 0.0044] [0.0002, 0.0041] [0.0001, 0.0039]

̂Et(rt+1) = 1

120

∑120

j=1
rt+1−j

C(er+ →
h

ln(RV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0011 0.00076 0.00072 0.00074
95% Percentile bootstrap interval [0.0004, 0.0054] [0.00029, 0.0041] [0.00024, 0.00386] [0.0000, 0.00388]

̂Et(rt+1) = 1

240

∑240

j=1
rt+1−j

C(er+ →
h

ln(RV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0011 0.0006 0.0006 0.0007
95% Percentile bootstrap interval [0.0004, 0.0053] [0.0003, 0.0041] [0.0002, 0.0035] [0.0000, 0.0034]

Note: This table summarizes the estimation results of causality measures from centered positive returns (er+) to realized volatility[ln(RV )] using
five estimators of the conditional mean, form = 15, 30, 90, 120, 240. In each of the five small tables, the second row gives the point estimate of the
causality measures at horizonsh = 1, ..., 4. The third row gives the95% corresponding percentile bootstrap interval.
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Table 6. Measuring the impact of good news on volatility using ln(BV ) [centered positive returns]

̂Et(rt+1) = 1

15

∑15

j=1
rt+1−j

C(er+ →
h

ln(BV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0008 0.0008 0.0006 0.0006
95% Percentile bootstrap interval [0.0003, 0.0045] [0.0002, 0.0041] [0.0002, 0.0035] [0.0000, 0.0034]

̂Et(rt+1) = 1

30

∑30

j=1
rt+1−j

C(er+ →
h

ln(BV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0012 0.0007 0.0007 0.0007
95% Percentile bootstrap interval [0.0005, 0.0053] [0.0003, 0.0041] [0.0002, 0.0039] [0.0001, 0.0038]

̂Et(rt+1) = 1

90

∑90

j=1
rt+1−j

C(er+ →
h

ln(BV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0018 0.0009 0.0008 0.0010
95% Percentile bootstrap interval [0.0006, 0.0065] [0.0003, 0.0044] [0.0002, 0.0041] [0.0001, 0.0042]

̂Et(rt+1) = 1

120

∑120

j=1
rt+1−j

C(er+ →
h

ln(BV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0016 0.0008 0.0007 0.0009
95% Percentile bootstrap interval [0.0006, 0.0063] [0.0002, 0.0047] [0.0002, 0.0042] [0.0001, 0.0044]

̂Et(rt+1) = 1

240

∑240

j=1
rt+1−j

C(er+ →
h

ln(BV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0015 0.0007 0.0006 0.0008
95% Percentile bootstrap interval [0.0005, 0.0057] [0.0002, 0.0044] [0.0002, 0.0038] [0.0001, 0.0037]

Note: This table summarizes the estimation results of causality measures from centered positive returns (er+) to bipower variation [ln(BV )] using
five estimators of the conditional mean, form = 15, 30, 90, 120, 240. In each of the five small tables, the second row gives the point estimate of the
causality measures at horizonsh = 1, ..., 4. The third row gives the95% corresponding percentile bootstrap interval.
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Table 7. Measuring the impact of good news on volatility [uncentered positive returns]

usingln(RV )

C(r+ →
h

ln(RV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0027 0.0012 0.0008 0.0009

95% Percentile bootstrap interval [0.0011, 0.0077] [0.0004, 0.0048] [0.0002, 0.0041] [0.0001, 0.0038]

usingln(BV )

C(r+ →
h

ln(BV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0035 0.0013 0.0008 0.0010

95% Percentile bootstrap interval [0.0016, 0.0087] [0.0004, 0.0051] [0.0002, 0.0039] [0.0001, 0.0043]

Note: This table summarizes the estimation results of causality measures from uncentered positive returns (r+) to realized volatility [ln(RV )]

[bipower variationln(BV )]. The second row of each small table gives the point estimateof the causality measures at horizonsh = 1, . . . , 4.

The third row gives the95% corresponding percentile bootstrap interval.
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Figure 1. Daily prices and returns of the S&P 500 futures. January 1988 to December 2005.
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Figure 2. Daily realized volatility and bipower variation of the S&P 500 futures. January 1988 to December 2005.
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Figure 3. Quantile to quantile plots (QQ plot) of the relative measure of jumps(RJ), zQP, l, t, zQP, t, andzQP, lm, t. January 1988 to
December 2005.
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Figure 4. Leverage and volatility feedback effects in hourly and daily data using a bivariate autoregressive model(r, RV ). January 1988
to December 2005.
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Figure 5. Causality measures between implied volatility(IV ) [or variance risk premiumIV −RV ] and realized volatility(RV ), using
trivariate VAR models for(r, RV, IV ) and(r, RV, IV −RV ). January 1996 to December 2005.
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Figure 6. Volatility feedback effects, with implied volatility as auxiliary variable [trivariate models(r, RV, IV ) and(r, RV, IV −RV )]
and without implied volatility [bivariate model(r, RV )]; different transformations of volatility considered. Impact of vector

(RV, IV −RV ) on returns. January 1996 to December 2005.
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Figure 7. Leverage and volatility feedback effects, with implied volatility as auxiliary variable [trivariate models(r, RV, IV ) and
(r, RV, IV −RV )] and without implied volatility [bivariate model(r, RV )]. January 1996 to December 2005.
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Figure 8. Causality measures of the impact of bad and good news on symmetric and asymmetric GARCH volatility models.
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Figure 8 (continued). Causality measures of the impact of bad and good news on symmetric and asymmetric GARCH volatilitymodels.
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Figure 8 (continued). Causality measures of the impact of bad and good news on symmetric and asymmetric GARCH volatilitymodels.
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Figure 9. Causality measures of the impact of bad and good news on volatility, based on realized volatility[ln(RV )] and bipower
variation[ln(BV )]. January 1988 to December 2005.
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Figure 10. Causality measures of the impact of positive and negative variance risk premium on returns. January 1996 to December 2005.
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C. Detailed empirical results: Point estimates and confidence inter-
vals
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Figure 11. Leverage effects in hourly and daily data, using bivariate models for(r, ln(RV )) and(r, ln(BV )). January 1988 to
December 2005.
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Figure 12. Instantaneous causality and dependence betweendaily returns and volatility using bivariate models for(r, ln(RV )) and
(r, ln(BV )). January 1988 to December 2005.
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Figure 13. Causality measures between implied volatility(IV ) [or variance risk premiumIV −RV ] and realized volatility(RV ),
using trivariate VAR models for(r, RV, IV ) and(r, RV, IV −RV ). January 1996 to December 2005.
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Figure 14. Volatility feedback effects, with implied volatility as auxiliary variable [trivariate model(r, RV, IV )] and without implied
volatility [bivariate model(r, RV )]. January 1996 to December 2005.
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Figure 15. Other volatility feedback effects using variance risk premium(IV −RV ) and impact of(RV, IV −RV ) on returns.
January 1996 to December 2005.
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Figure 16. Leverage effects, with implied volatility as auxiliary variable [trivariate model(r, RV, IV ) or (r, RV, IV −RV )] and
without implied volatility [bivariate model(r, RV )]. January 1996 to December 2005.
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Figure 17. Causality measures of the impact of bad news on volatility (CNIF), using 5 estimators of the conditional mean(m = 15, 30,
90, 120, 240), realized volatility[ln(RV )] and bipower variation[ln(BV )]. January 1988 to December 2005.
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Figure 17 (continued). Causality measures of the impact of bad news on volatility (CNIF), using 5 estimators of the conditional mean
(m = 15, 30, 90, 120, 240), realized volatility[ln(RV )] and bipower variation[ln(BV )]. January 1988 to December 2005.
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Figure 17 (continued). Causality measures of the impact of bad news on volatility (CNIF), using 5 estimators of the conditional mean
(m = 15, 30, 90, 120, 240), realized volatility[ln(RV )] and bipower variation[ln(BV )]. January 1988 to December 2005.
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