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Identification-robust Inequality Analysis 
 

Jean-Marie Dufour *, Emmanuel Flachaire †, Lynda Khalaf ‡, Abdallah Zalghout §    
 
 

Abstract/Résumé 
 
We propose confidence sets for inequality indices and their differences, which are robust to the 
fact that such measures involve possibly weakly identified parameter ratios. We also document 
the fragility of decisions that rely on traditional interpretations of - significant or insignificant - 
comparisons when the tested differences can be weakly identified. Proposed methods are applied 
to study economic convergence across U.S. states and non-OECD countries. With reference to 
the growth literature which typically uses the variance of log per-capita income to measure 
dispersion, results confirm the importance of accounting for microfounded axioms and shed new 
light on enduring controversies surrounding convergence. 
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1 Introduction

Economic inequality can be broadly defined in terms of the distribution of economic variables, which

include income (predominantly), and other variables such as consumption or health. Using one or more

samples, inequality can be measured in several ways, most of which are justified statistically as well as

through theoretical axiomatic approaches. In this context, size-correct statistical inference is an enduring

challenge. One reason is that the underlying distributions often have thick tails, which contaminate standard

asymptotic and bootstrap-based procedures (Davidson and Flachaire, 2007; Cowell and Flachaire, 2007).

Another reason is that two different distributions can yield equal measures, which complicates comparisons

(Dufour et al., 2019).

An important additional difficulty is that common inequality measures – such as the generalized en-

tropy (GE) and Gini indices – involve transformations of parameters (Cowell and Flachaire, 2015). For-

mally, denote by X the random variable with a typical realization representing say the income of a randomly

chosen individual in the population, and let FX refer to the CDF of X . Given a predetermined parameter –

denoted γ – that characterizes the sensitivity to changes over different parts of the income distribution, the

GE measure – denoted GEγ – can be defined as a function of the ratio of two particular moments of FX :

the mean µX =EF(X) and νX(γ) = EF(X
γ).1 Such nonlinear forms may easily be ill-conditioned or poorly

identified, with non-trivial implications on the associated estimators and test statistics; see Dufour (1997).

The first objective of this paper is to underscore and address resulting inference problems.

Identification broadly refers to our ability to recover objects of interest from available models and

data (Dufour and Hsiao, 2008). In the context of income inequality, it was long believed that statistical

measures of precision are not required, as researchers deal with large samples. The large standard errors

reported in empirical studies suggest otherwise, stressing the importance of conducting inference valid for

all sample sizes (Maasoumi, 1997). Yet standard errors, large or small, do not tell the whole story. In fact,

the profession now recognizes that confidence intervals with bounded limits, which automatically result

from inverting conventional t-type tests (based on standard errors), deliver false statistical decisions and

undercut the reliability of related policies. Despite a sizable econometric literature on inequality, methods

that take into account the irregularities underscored in the weak identification literature appear to be missing

1This definiton implies that GEγ is more sensitive to differences in the top (bottom) tail with more positive (negative) γ .
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in this context.2

More to the point from the index comparison perspective, most available approaches for this purpose

focus on significance tests. The second objective of this paper is to document the fragility of decisions

relying on traditional interpretations of – significant or insignificant – test results, when the difference under

test can be weakly identified. In particular, when a zero difference cannot be rejected, we show that because

of the definition of conventional inequality indices, one may also not be able to refute a large spectrum

of possible values of this difference. From a policy perspective, this indicates that available samples are

uninformative on inequality changes, which stands in sharp contrast to a no-change conclusion.

The third objective is to propose tractable identification-robust confidence sets for inequality indices

– in particular, for differences between such indices – which require the same basic inputs as their standard

counterparts. Whereas usual companion variances and covariances as well as critical values need to be

computed, the alternative test statistics are formed and inverted analytically into confidence sets that will

reflect the underlying identification status.

The fourth objective is to discuss challenges for empirical researchers and policy-makers in light of the

above observations. We study evidence on economic convergence; see e.g. Romer (1994) for a historical

critical perspective. We show that conflict in test decisions and uninformative confidence sets cannot be ruled

out with standard measures and data sets. The fact that tests and confidence sets have different theoretical

implications is not alarming. However, when these differences are empirically relevant, this can lead to

severe economic and policy controversies. To the best of our knowledge, this problem and our proposed

solution have escaped formal notice.

Indeed, the literature on statistical inference for inequality measures is relatively recent; see Cowell

and Flachaire (2015) for a comprehensive survey. In particular, the standard bootstrap is known to fail, and

alternative methods remain scarce for both the one-sample problem of analyzing a single index (Davidson

and Flachaire, 2007; Dufour et al., 2018) and the two-sample problem of assessing differences between two

indices (Dufour et al., 2019). It is important to note that the latter problem is much more challenging than

the former. For testing the equality of two inequality measures from independent samples, Dufour et al.

(2019) suggest a permutational approach for the two-sample problem which outperforms other asymptotic

and bootstrap methods available in the literature. However, these results are limited to testing the equality

2See e.g. Dufour (1997), Andrews and Cheng (2013), Kleibergen (2005), Andrews and Mikusheva
(2015), Beaulieu et al. (2013), Bertanha and Moreira (2016), and references therein; see also Bahadur and
Savage (1956) and Gleser and Hwang (1987).
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of two inequality measures and do not provide a way of making inference on a possibly non-zero difference

nor building a confidence interval on the difference.

In the present paper, we propose Fieller-type methods for inference on the GE family of inequality

indices. This family satisfies a set of key axiomatic principles and is widely used in practice.3 We study

the general comparison problem of testing any possibly non-zero difference between measures, with either

independent or dependent samples. Moving from testing a zero difference to assessing the size of the

difference is much more informative from both statistical and economic viewpoints, including potential

policy recommendations.

The fact that inequality measures in general, and those considered in this paper in particular, can be

expressed as ratios of moments or ratios of functions of moments, provides a strong motivation for our work

since Fieller-type methods are typically used for inference on ratios. Fieller’s original solution for the means

of two independent normal random variables was extended to multivariate normals (Bennett, 1959), general

exponential (Cox, 1967) and linear (Zerbe, 1978; Dufour, 1997) regression models, dynamic models with

possibly persistent covariates (Bernard et al., 2007, 2019) and for simultaneous inference on multiple ratios

(Bolduc et al., 2010). For a good review of inference on ratios, see Franz (2007).

On the GE class of inequality indices, this paper makes the following contributions. First, we provide

analytical and tractable solutions for proposed confidence sets. Second, we show in a simulation study that

the proposed solutions are more reliable than Delta counterparts. Third, we show that our approach outper-

forms most simulation-based alternatives including the permutation test of Dufour et al. (2019). Fourth, our

solution covers tests for any given value of the difference [i.e. not just zero, in contrast with Dufour et al.

(2019)], allowing the construction of confidence sets through test inversion. Fifth, we provide useful empir-

ical evidence supporting the seemingly counter-intuitive bounds that Fieller-type methods can produce.

Key simulations results illustrate the superiority of Fieller-type methods across the board: (1) the

improved level control (over the Delta method) is especially notable for indices that put more weight on the

right tail of the distribution i.e. as γ increases; (2) size improvements preserve power; (3) results are robust

to different assumptions on the shape of the null distributions; (4) tests based on the Fieller-type method

outperform available permutation tests when the distributions under the null hypothesis are different. A

permutational approach is not available (to date) for the general problem we consider here. Overall, while

3These include scale invariance, the Pigou-Dalton transfer, the symmetry and the Dalton population principle. It is also addi-

tively decomposable. See Cowell (2000) for a detailed discussion on these and other properties of indices.
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irregularities arising from the right tail have long been documented, we find that left-tail irregularities are

equally important in explaining the failure of standard inference methods for inequality measures.

Our empirical study on growth demonstrates the practical relevance of these theoretical results. Using

per-capita income data for 48 U.S. states, we analyze the convergence hypothesis by comparing the inequal-

ity levels between 1946 and 2016. In contrast to the bulk of this literature, we depart from just testing and

build confidence sets to document the economic and policy significance of statistical decisions. The empiri-

cal literature on growth relies on the variance of log incomes as a measure of dispersion in per-capita income

distributions (Blundell et al., 2008). But this measure violates the Pigou-Dalton principle (Araar and Duclos,

2006). We use GE indices instead, since these satisfy the axioms suggested in the inequality measurement

literature. We document specific cases where the variance of log incomes decrease while the GE2 measure

indicates the opposite. Empirically, accounting for micro-founded axioms is of first-order importance.

We find that inter-state inequality has declined over the 1946-2016 period indicating convergence

across the states. For the GE2 index, the Fieller-type and Delta methods lead to contradictory conclusions:

in contrast to the former, the latter suggests that inequality declines are insignificant at usual levels. Results

with non-OECD countries stress the severe consequences of ignoring identification problems: with the GE2

index, the Fieller-type method produces an unbounded set, which casts serious doubts on the reliability of

the no-change results using the Delta method.

The rest of the paper is organized as follows. Section 2 derives Fieller-type confidence sets. Section

3 reports the results of the simulation study. Section 4 contains the inter-state convergence application, and

Section 5 concludes. Figures and tables are presented in the Appendix.

2 Fieller-type confidence sets for Generalized Entropy inequality measures

An inequality measure is a measure of dispersion in a distribution of a random variable. We shall

find it convenient throughout the rest of this paper to refer to income distributions, though our results apply

equally to other popular distributions considered in the area of inequality such as wage, wealth, and con-

sumption distributions. Many inequality measures, including the GEγ class, depend solely on the underlying

distribution and can typically be written as a functional which maps the space of the cumulative distribution

function (CDF) to the nonnegative real line R0
+.

Our aim is to make inference on the GEγ measure for any given γ ∈ (0, 2). In particular, we wish to

4



build an asymptotic Fieller-type confidence set (FCS) for the difference between two measures. We call

this problem the two-sample problem, as opposed to the one-sample problem where the objective consists in

testing and building a confidence interval for a single index. The crucial difference between a FCS and its

standard counterpart based on the Delta method (DCS) is that the former reformulates the null hypothesis

in a linear form. The method proceeds by inverting the square of the t-test associated with the reformulated

linear hypothesis. Consequently, it avoids the irregularities which affect the validity of the Delta method as

the denominator approaches zero.

A consequence of rewriting the null hypothesis in linear form is that the variance used by the Fieller-

type statistic depends on the true value of the tested parameter, which leads to a quadratic inequality problem.

The resulting confidence regions are not standard, in the sense that they may be asymmetric, consisting of

two disjoint unbounded confidence intervals or the whole real line R. Nevertheless, unbounded intervals

are an attractive feature of the method which addresses coverage problems (Koschat et al., 1987; Gleser

and Hwang, 1987; Dufour, 1997; Dufour and Jasiak, 2001; Dufour and Taamouti, 2005, 2007; Bertanha

and Moreira, 2016). For a geometric comparison of the Fieller and Delta methods, see Hirschberg and Lye

(2010).

Our notational framework is introduced below for presentation clarity. To set focus, we first extend

the work of Dufour et al. (2018) on the one-sample problem for the Theil index in order to cover the GEγ

class. Our main contribution on the two-sample problem is next presented under three different dependence

schemes.

2.1 Framework and notation

The GEγ(X) measure can be expressed as in Shorrocks (1980):

GEγ(X) = 1
γ(γ−1)

[
EF (X

γ )
[EF (X)]γ

−1
]

for γ 6= 0, 1 ,

GE0(X) = EF [log(X)]− log[EF(X)] ,

GE1(X) = EF [X log(X)]
EF (X)

− log[EF(X)] .

(2.1)

The family nests several indices including two well-known ones introduced by Theil (1967): the Mean

Logarithmic Deviation (MLD) which is the limiting value of the GEγ(X) as γ approaches zero, and the

Theil index which is the limiting value of the GEγ(X) as γ approaches 1. When γ = 2, the index is equal to
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half of the coefficient of variation and is related to the Hirschman-Herfindahl (HH) index which is widely

used in industrial organization (Schluter, 2012). The Atkinson index can be obtained from the GEγ(X) index

using an appropriate transformation.

If X1, . . . ,Xn is a sample of i.i.d. observations, the empirical distribution function (EDF), denoted by

F̂X , can be estimated by

F̂X(x) =
1

n

n

∑
i=1

1(Xi ≤ x) (2.2)

where n is the number of observations and 1(·) is the indicator function that takes the value of 1 if the

argument is true, and 0 otherwise. We can consistently estimate GEγ(X) by

ĜEγ(X) =
1

γ(γ−1)

[
ν̂X(γ)

µ̂
γ

X

−1

]
, (2.3)

µ̂X =
∫

xdF̂X =
1

n

n

∑
i=1

Xi , ν̂X(γ) =
∫

xγdF̂X =
1

n

n

∑
i=1

X
γ

i . (2.4)

For our two-sample analysis, we denote by X the random variable representing the incomes of individ-

uals from the first population with CDF FX , and by Y the incomes of individuals from the second population

with CDF FY . We assume we have two i.i.d. samples X1, . . . ,Xn and Y1, . . . ,Ym from each population. EDF’s

denoted F̂X(x) and F̂Y (y) are obtained as in (2.2) and the inequality measures denoted GEγ(X) and GEγ(Y )

and defined as in (2.1) are estimated conformably as in (2.3) with estimated counterparts denoted by ĜEγ(X)

and ĜEγ(Y ). Our analysis covers:

Assumption 1. Samples are of equal sizes and independent.

Assumption 2. Samples have different sample size and are independent.

Assumption 3. Samples are of equal sizes and dependent.

2.2 The one-sample problem

In this section we propose level 1−α confidence sets for GEγ(X) using a single sample. The standard

DCS is derived by inverting the square (or the absolute value) of the t-test associated with

HD(δ 0) : GEγ(X) = δ 0 (2.5)
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where δ 0 is a some admissible value of the index. By inverting a test statistic with respect to the parameter

tested (δ 0 in this case), we mean collecting the values of the parameter for which the test cannot be rejected

at a given significance level α . Assuming that the estimator is asymptotically normal, this can be carried out

by solving the following inequality for δ 0:

T̂D(δ 0)
2 =

[
ĜEγ(X)−δ 0(

V̂D[ĜEγ(X)]
)1/2

]2

≤ z2
α/2 (2.6)

where zα/2 is the asymptotic two-tailed critical value at the significance level α (i.e., P[Z ≥ zα/2] = α/2 for

Z ∼ N[0, 1]) and V̂D[ĜEγ(X)] is the estimate of the asymptotic variance.

The Delta method implies:

VD[GEγ(X)] =
1

n

[
∂GEγ (x)

∂ µx

∂GEγ (x)
∂νx

]  σ2
x σ x,xγ

σ xγ ,x σ2
xγ

 [ ∂GEγ (x)
∂ µx

∂GEγ (x)
∂νx

]′
(2.7)

where σ2
X ,σ

2
X γ and σX ,X γ represent the variance of X , the variance of X γ and the covariance between X

and X γ respectively. The estimated variance of µ̂X , the variance of ν̂X and the covariance between µ̂X and

ν̂X are equal to σ̂
2
X/n, σ̂

2
X γ/n and σ̂X ,X γ/n. In our estimation, we use the sample counterparts for these

population moments estimated using the EDF of the two samples. Solving (2.6) for δ 0 and plugging in the

estimate V̂D := V̂D[ĜEγ(X)] of the variance in (2.7) we get:

DCS[GEγ(X);1−α] =
[
ĜEγ(X)− zα/2V̂

1/2
D , ĜEγ(X)+ zα/2V̂

1/2
D

]
. (2.8)

In contrast, we propose a Fieller-type set by inverting the square of the t-test associated with the

linearized counterpart of HD(δ 0), namely:

HF(δ 0) : θ(δ 0) = 0 , where θ(δ 0) = νX(γ)−µ
γ

X − γ(1− γ)µ
γ

X δ 0 . (2.9)

Maintaining the asymptotic normality assumption as with the DCS, the proposed set can be formally char-

acterized as follows.

Theorem 1. Given a single sample of observations on a random variable X, consider the GEγ(X) index

defined by (2.1) and its estimate given by (2.3). The (1−α)-level Fieller confidence set for this index is

7



obtained as follows

FCS[GEγ(X);1−α]=



[
−B−

√
D

2A
, −B+

√
D

2A

]
if D> 0 and A> 0]

−∞, −B+
√

D
2A

]
∪
[
−B−

√
D

2A
,+∞

[
if D> 0 and A< 0

R if D< 0, A< 0 ,

(2.10)

D= B2−4AC, A= A1− z2
α/2A2 , B= B1− z2

α/2B2 , C =C1− z2
α/2C2 , (2.11)

A1 = µ̂
2γ

X [γ
2− γ]2 , B1 =−2µ̂

γ

X [γ
2− γ][ν̂X(γ)− µ̂

γ

X ], C1 =
(
ν̂X(γ)− µ̂

γ

X

)2
, (2.12)

A2 = [σ̂
2
X γ

2[γ2− γ]2µ̂
2(γ−1)
X ]/n , B2 = [2σ̂

2
X γ

2[γ2− γ]µ̂
2(γ−1)
X −2γ[γ2− γ]σ̂X ,X γ µ̂

γ−1
X )]/n , (2.13)

C2 = [σ̂
2
X γ

2
µ̂

2(γ−1)
X −2γσ̂X ,X γ µ̂

γ−1
X + σ̂

2
X γ ]/n . (2.14)

Proof. The standard t-statistic associated with (2.9) takes the form

T̂F(δ 0) =
θ̂(δ 0)(

V̂ [θ̂(δ 0)]
)1/2

, (2.15)

where θ̂(δ 0) is an estimate of θ(δ 0) and V̂ [θ̂(δ 0)] is an estimate of the variance of θ̂(δ 0). Assuming

asymptotic normality, inverting a test based on this statistic leads to the quadratic inequality

T̂F(δ 0)
2≤ z2

α/2 ⇔ θ̂(δ 0)
2

V̂ [θ̂(δ 0)]
≤ z2

α/2 ⇔ θ̂(δ 0)
2− z2

α/2 V̂ [θ̂(δ 0)]≤ 0 . (2.16)

A few algebraic manipulations give

θ̂(δ 0)
2 = A1δ

2
0+B1δ 0+C1, V̂ [θ̂(δ 0)] = A2δ

2
0+B2δ 0+C2. (2.17)

On substituting (2.17) into (2.16), we obtain the following

FCS[GEγ(X);1−α] =
{

δ 0 : Aδ
2
0+Bδ 0+C ≤ 0

}
, (2.18)

the solution of which corresponds to (2.10).

For more details, see Bolduc et al. (2010) and the references therein. Unlike the Delta method, the

Fieller-type method satisfies the theoretical result which states that, for a confidence interval of a locally

almost unidentified (LAU) parameter, or a parametric function, to attain correct coverage, it should allow

for a non-zero probability of being unbounded (Koschat et al., 1987; Gleser and Hwang, 1987; Dufour,

1997; Dufour and Taamouti, 2005, 2007; Bertanha and Moreira, 2016).
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2.3 The two-sample problem

The above rationale is extended here to 1−α confidence sets for ∆GEγ :=GEγ(X)−GEγ(Y ). Inverted

tests thus focus on null hypotheses of the form

HD(∆0) : ∆GEγ = ∆0 (2.19)

where ∆0 is any known admissible value of ∆GEγ , including possibly ∆0 = 0, for equality. We derive the

DCS and FCS for each of Assumptions 1 - 3. These cases will actually differ only by the expression of

the variance. Thus to avoid redundancy, we will derive the method in its most general form and state the

restrictions required to obtain the relevant formulae in to each case.

The square of the asymptotic t-type statistic for HD(∆0) is

ŴD(∆0)
2 =

[∆ĜEγ −∆0]
2

V̂D[∆ĜEγ ]
(2.20)

where ∆ĜEγ = ĜEγ(X)− ĜEγ(Y ) which upon inversion yields the confidence set:

DCS(∆GEγ ;1−α) =
[
ĜEγ(X)− zα/2 [V̂D(∆ĜEγ)]

1/2, ĜEγ(X)+ zα/2 [V̂D(∆ĜEγ)]
1/2
]
. (2.21)

The estimation of the variance VD(∆ĜEγ) in (2.21) will differ according to the three cases stated above. The

general form of the variance which encompasses the variances relevant for each of these cases can be written

as:

V (∆ĜEγ) =



∂∆GEγ

∂ µx

∂∆GEγ )
∂νx

∂∆GEγ )
∂ µy

∂∆GEγ )
∂νy



′ ΣXX/n ΣXY/n

ΣY X/n ΣYY/n




∂∆GEγ

∂ µx

∂∆GEγ )
∂νx

∂∆GEγ

∂ µy

∂∆GEγ

∂νy


= R

Σxx/n Σxy/n

Σyx/n Σyy/n

 R′ , (2.22)

ΣXX =

 σ2
x σ x,xγ

σ xγ ,x σ2
xγ

 , ΣYY =

 σ2
y σ y,yγ

σ yγ ,y σ2
yγ

 , ΣXY =

σ x,y σ x,yγ

σ xγ ,y σ xγ ,yγ

 , ΣY X = Σ
′
XY . (2.23)

The variance under Assumption 1 can be determined simply by setting ΣXY in (2.22) equal to zero since the

samples are assumed to be independent. Under Assumption 2, the variance is determined by setting ΣXY

in (2.22) equal to zero and by dividing ΣYY by m instead of n Assumption 3 requires taking into account
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the dependence between the two samples. Since the samples are of equal size, the covariance matrix ΣXY

is not equal to zero. The variance actually corresponds to (2.22) without imposing earlier restrictions [i.e.,

V3(∆ĜEγ) =V (∆ĜEγ)].

Our proposed Fieller-type method proceeds by reformulating the null hypothesis in a linear form (with-

out the ratio transformation). This can be obtained through multiplication of both sides of (2.19) by the

common denominator γ(γ−1)µ
γ

X µ
γ

Y :

HF(∆0) : Θ(∆0) = 0 where Θ(∆0) = νX(γ)µ
γ

Y −νY (γ)µ
γ

X − γ(γ−1)µ
γ

X µ
γ

Y ∆0 . (2.24)

We then consider the acceptance region associated with the t-test of this linear hypothesis:

ŴF(∆0)
2 =

[
Θ̂(∆0)(

V̂ [Θ̂(∆0)]
)1/2

]2

≤ z2
α/2 (2.25)

where and V̂ [Θ̂(∆0)] is the relevant estimate of the variance of Θ̂(∆0).

Theorem 2. Given a sample of observations on two random variable X and Y , consider two indices GEγ(X)

and GEγ(Y ) each defined as in (2.1), and their difference ∆GEγ := GEγ(X)−GEγ(Y ) estimated using

∆ĜEγ := ĜEγ(X)− ĜEγ(Y ) each given as in (2.3). The (1−α)-level Fieller confidence set for ∆GEγ ,

denoted FCS[∆GEγ ;1−α], takes the same form as in (2.10) - (2.11) with

A1 = µ̂
2γ

X µ̂
2γ

Y [γ
2− γ]2 , B1 =−2µ̂

γ

X µ̂
γ

Y [γ
2− γ][ν̂X(γ)µ̂

γ

Y − ν̂Y (γ)µ̂
γ

X ] ,

C1 = [ν̂X(γ)µ̂
γ

Y − ν̂Y (γ)µ̂
γ

X ]
2 , (2.26)

and A2,B2 and C2 are obtained using (2.22):

A2 =
[
γ[γ2− γ]µ̂

(γ−1)
X µ̂

γ

Y

]2 σ̂
2
X

n
+
[
γ[γ2− γ]µ̂

(γ−1)
Y µ̂

γ

X

]2 σ̂
2
Y

m
+2γ

2[γ2− γ]µ̂
2γ−1
X µ̂

2γ−1
Y

σ̂X ,Y

n
, (2.27)

B2 = 2
[
γ

2[γ2− γ]µ̂
2(γ−1)
X µ̂

γ

Y ν̂Y (γ)
σ̂

2
X

n
− γ[γ2− γ]µ̂

γ−1
X µ̂

2γ

Y

σ̂X ,X γ

n
− γ

2[γ2− γ]µ̂
2(γ−1)
Y µ̂

γ

X ν̂X(γ)σ̂
2
Y

+γ[γ2− γ]µ̂
γ−1
Y µ̂

2γ

X

σ̂Y,Y γ

m
+ γ

2[γ2− γ]µ̂
γ−1
X µ̂

γ−1
Y (µ̂

γ

X ν̂Y (γ)− µ̂
γ

Y ν̂X(γ))
σ̂X ,Y

n

+γ[γ2− γ]µ̂
2γ−1
X µ̂

γ

Y

σ̂X ,Y γ

n
− γ[γ2− γ]µ̂

2γ−1
Y µ̂

γ

X

σ̂Y,X γ

n

]
, (2.28)
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C2 =
[
γν̂Y (γ)µ̂

γ−1
X

]2 σ̂
2
X

n
+ µ̂

2γ

Y

σ̂X γ

n
−2γν̂Y (γ)µ̂

γ−1
X µ̂

γ

Y

σ̂X ,X γ

n
+
[
γν̂Y (γ)µ̂

γ−1
Y

]2 σ̂Y

m
+ µ̂

2γ

X

σ̂Y γ

m

−2γν̂X(γ)µ̂
γ−1
Y µ̂

γ

X

σ̂Y,Y γ

m
−2γ

2
µ̂

γ−1
X µ̂

γ−1
Y ν̂X(γ)ν̂Y (γ)

σ̂X ,Y

n
+2γ µ̂

2γ−1
X ν̂Y (γ)

σ̂X ,Y γ

n

+2γ µ̂
2γ−1
Y ν̂X(γ)

σ̂Y,X γ

n
−2µ̂

γ

X µ̂
γ

Y

σ̂X γ ,Y γ

n
, (2.29)

imposing in turn: σ̂X ,Y , σ̂X γ ,Y , σ̂X ,Y γ and σ̂X γ ,Y γ equal to zero and n=m, under Assumption 1; σ̂X ,Y , σ̂X γ .Y ,

σ̂X ,Y γ and σ̂X γ ,Y γ equal to zero under Assumption 2, and n= m under Assumption 3.

Proof. To obtain a Fieller-type confidence set, we solve the inequality in (2.25) for ∆0, as follows:

ŴF(∆0)
2≤ z2

α/2 ⇔ Θ̂(∆0)
2

V̂ [Θ̂(∆0)]
≤ z2

α/2 ⇔ Θ̂(∆0)
2− z2

α/2 V̂ [Θ̂(∆0)]≤ 0 . (2.30)

Here, Θ̂(∆0)
2 and V̂ [Θ̂(∆0)] are quadratic functions of ∆0 that can be expressed as follows:

Θ̂(∆0)
2 = A1∆

2
0+B1∆0+C1 , V̂ [Θ̂(∆0)] = A2∆

2
0+B2δ 0+C2 . (2.31)

As with Theorem 1, the above leads to

FCS(∆GEγ ;1−α) =
{

∆0 : A∆
2
0+B∆0+C ≤ 0

}
(2.32)

which gives the proposed solution.

The above presumes asymptotic normality of the underlying criteria. In fact, the considered mea-

sures are known transformations of two moments the estimators of which are asymptotically normal under

standard regularity assumptions; see (Davidson and Flachaire, 2007; Cowell and Flachaire, 2007). These

typically require that the first two moments exists and are finite. Asymptotic normality of the statistics in

(2.6), (2.20), (2.15) and (2.25) thus follows straightforwardly. Nevertheless, convergence in this context

is known to be slow, especially when the distribution of the data is heavy-tailed and with indices that are

sensitive to the upper tail. Our simulations confirm these issues, yet the Fieller-based criteria perform better

than the Delta method in finite samples because these eschew problems arising from the ratio.

3 Simulation evidence

This section reports the results of a simulation study designed to compare the finite-sample properties

of FCS to the standard DCS in the one-sample and the two-sample problems. This will be done for the

two popular inequality measures nested in the general entropy class of inequality measures: the Theil Index

(GE1), and half of the coefficient of variation squared (GE2) which is related to the Hirschman-Herfindahl

(HH) index.

We report the rejection frequencies of the tests underlying the proposed confidence sets, under both
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the null hypothesis (level control) and the alternative (power). Under the null hypothesis, these can also

be interpreted as 1 minus the corresponding coverage probability for the associated confidence set. So

we are studying here both the operating characteristics of tests used and the coverage probabilities of the

confidence sets defined above. For further insight on confidence set properties, we also study the frequency

of unbounded outcomes and the width of the bounded ones.

Since available inference methods perform poorly when the underlying distributions are heavy-tailed,

we designed our simulation experiments to cover such distributions by simulating the data from the Singh-

Maddala distribution, which was found to successfully mimic observed income distributions for developed

countries such as Germany (Brachmann et al., 1995). Another reason to use the Singh-Maddala distribu-

tion is that it was widely used in the literature which makes our results directly comparable to previously

proposed inference methods. The CDF of the Singh-Maddala distribution can be written as

FX(x) = 1−
[

1+

(
x

bX

)aX
]−qX

(3.1)

where aX , qX and bX are the three parameters defining the distribution. aX influences both tails, while qX

only affects the right tail. The third parameter (bX ) is a scale parameter to which we give little attention

as the inequality measures considered in this paper are scale invariant. This distribution is a member of

the five-parameter generalized beta distribution and its upper tail behaves like a Pareto distribution with a

tail index equal to the product of the two shape parameters aX and qX (ξ X = aX qX ). The k-th moment

exists for −aX < k < ξ X which implies that a sufficient condition for the mean and the variance to exist is

−aX < 2< ξ X .

The moment of order γ of Singh-Maddala distribution have the following closed form:

νX(γ) := E(X γ)=
b

γ

X Γ
(
γa−1

X +1
)

Γ
(
qX − γa−1

X

)
Γ(qX)

(3.2)

where Γ(·) is the gamma function. For γ = 1, this yields the mean of X [µX = νX(1) = E(X)] and, for

γ = 2, the second moment of X [νX(2) = E(X2)]. Similarly, replacing X by Y in the above expressions,

we can compute µY and νY (2). Using the values of these moments, we compute analytical expressions for

GEγ(X) and GEγ(Y ). Each experiment involves 10000 replications and sample sizes of n = 50, 100, 250,

500, 1000, 2000. The nominal level α is set at 5%.
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3.1 Simulation results: one-sample problem

Dufour et al. (2018) proposed Fieller-type confidence sets for the Theil index [GE1] and showed, in

a simulation study, that it improves coverage compared to the Delta method. In this section, we provide

additional evidence on the superiority of the Fieller-type method by considering the GE2 index. Following

the literature in this area, we use a Singh-Maddala distribution with parameters aX = 2.8, qX = 1.7 as

benchmark [X ∼ SMX(aX = 2.8, b, qX = 1.7)]. We study the finite-sample size and power behavior of

Fieller-type method and the Delta method as we deviate from the benchmark case towards heavy-tailed

distributions.

The tests reported here involve null hypotheses of the form H0 : GEγ = δ 0 (where γ = 1 or 2) and can be

performed in two different ways. For the Delta method, we can either use the critical region T̂D(δ 0)
2 > z2

α/2,

where T̂D(δ 0)
2 is defined in (2.6), or check whether the confidence set DCS[GEγ(X);1−α] defined in (2.8)

contains the tested value δ 0. Similarly, for the Fieller method, we can either use the critical region T̂F(δ 0)
2
>

z2
α/2

, where T̂F(δ 0)
2

is defined in (2.15), or check whether the confidence set FCS[GEγ(X);1−α] defined in

(2.18) contains the tested value δ 0. Both approaches are numerically equivalent and yield the same results. If

P[T̂F(δ 0)
2
> z2

α/2
] = p(δ 0) for a distribution which satisfies GEγ = δ 0, then P

[
δ 0 ∈FCS[GEγ(X);1−α]

]
=

1− p(δ 0) is the coverage probability for δ 0 in this case, and similarly for T̂D(δ 0)
2.

The left panel of Figure 1 plots the rejection frequencies of tests for the Theil index based on the

Fieller and Delta methods, under the following Singh-Maddala null distribution: X ∼ SMX(aX = 1.1, qX =

4.327273). For small sample (50 observations), the Fieller-type method reduces size distortions by about 3

percentage points. As n increases, size distortions shrink and both methods converge to the same level.

In contrast with the Theil index, the GE2 index puts more emphasis on the right tail of the distribution.

In this case, the Fieller-type method exhibits a greater advantage in terms of reliability [see the left panel

of Figure 2]. For n = 50, the Delta method rejection frequency is 38%, while that of Fieller-type method

are around 26.2%, thereby reducing the size distortion by more than 11%. The relative robustness of the

Fieller method to the changes in the upper tail makes it an attractive alternative to the Delta method, which

is known to perform poorly when the underlying distributions are characterized by thick right tails.

Another important observation about the Fieller-type method is that it is less distorted by the shape

of the left tail. As we will show shortly, our results indicate that for small samples, size distortions caused

by thick left tails are smaller with the Fieller-type method than with the Delta method. Table 1 reports the
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percentage difference of the rejection frequencies between both methods as the left tail becomes thicker.

The simulation design behind the results starts with a lighter left tail (aX = 3.173) and make it thicker by

decreasing the value of aX down to 1.1. To focus solely on the left tail, we fix the tail index (ξ X = aX qX ) at

4.76. We do so by increasing the parameter qX sufficiently enough to offset the impact of aX on ξ X . In the

second part of the table, we consider a smaller tail index (ξ X = 3.64).

As we move down the table, the left tail becomes thicker, which negatively affects the performances

of both the Delta and the Fieller-type methods, though the latter exhibits smaller level distortions. Thus,

the Fieller method is less negatively affected by a thick left tail. This is true for the Theil index and the

GE2 index. As the left tail becomes more thick, the percentage difference of the rejection frequencies for

the Theil index with ξ X = 4.67 steadily increases from 1.53% to around 13.45% for very thick left tails.

For GE2, the percentage difference of the rejection frequencies is more prominent increasing from 5.91% to

around 30.9%. Similar conclusions can be drawn from the lower part of the table which considers a thicker

right tail (smaller tail index, ξ X = 3.64).

To study power, we consider DGPs which deviate from the null hypothesis. We mainly change the

shape parameter aX as it affects both the left and the right tails. The right panels of Figures 1 and 2 plots

the powers of both methods. To compare power, we focus on sample sizes at which the two methods have

similar size performance (i.e., when the sample size is 500). As can be seen from the plots, both methods

are equally powerful.

3.2 Simulation results: two-sample problem

We will now consider the problem of testing hypotheses of the form H0(γ) : GEγ(X)−GEγ(Y ) = ∆0,

for each one of the inequality indices we focus on (γ = 1 or 2). Even though we emphasize the important

problem of testing equality (∆0 = 0), we also consider the problem of testing nonzero differences (∆0 6= 0).

Our simulation experiments accommodate three possible cases which can arise in practice: (1) independent

samples of equal sizes, (2) independent samples of unequal sizes, (3) dependent samples with equal sizes.

More specifically, the study presented here covers the following three specifications for each of the three

cases: (1) the underlying distributions are identical [∆0 = 0 with FX = FY ]; (2) the two indices are equal and

the underlying distributions under the null hypothesis are not identical [∆0 = 0 with FX 6= FY ]; (3) the two

indices are unequal [∆0 6= 0]. This leaves us with 9 possible cases, as follows.

14



1. Experiment I – Independent samples of equal sizes (m= n): (a) ∆0 = 0 with FX = FY ; (b) ∆0 = 0 with

FX 6= FY ; and (c) ∆0 6= 0 (hence FX 6= FY ).

2. Experiment II – Independent samples of unequal sizes (m 6= n):(a) ∆0 = 0 with FX = FY ; (b) ∆0 =

0 with FX 6= FY ; and (c) ∆0 6= 0 (hence FX 6= FY ).

3. Experiment III – Dependent samples of equal sizes (m= n):

(a) ∆0 = 0 with FX = FY ; (b) ∆0 = 0 with FX 6= FY ; and (c) ∆0 6= 0 (hence FX 6= FY ).

As in the one-sample problem, the simulation results are presented graphically through plotting the

rejection frequencies against the number of observations. When the number of observations is different be-

tween the two samples, we plot the rejection frequencies against the number of observations of the smallest

sample.

As in the one-sample problem, the tests reported here can be performed in two different ways. For

the Delta method, we can either use the critical region ŴD(∆0)
2 > z2

α/2, where ŴD(∆0)
2 is defined in (2.20),

or check whether the confidence set DCS(∆GEγ ; 1−α) defined in (2.21) contains the tested value ∆0.

Similarly, for the Fieller method, we can either use the critical region ŴF(∆0)
2 > z2

α/2, where ŴF(∆0)
2 is

defined in (2.25), or check whether the confidence set FCS(∆GEγ ;1−α) defined in (2.32) contains the

tested value ∆0. Both approaches are numerically equivalent and yield the same results (a feature we did

check). If P[ŴF(∆0)
2 > z2

α/2
] = p(∆0) for a pair of distribution which satisfy GEγ(X)−GEγ(Y ) = ∆0, then

P
[
∆0∈FCS[GEγ(X);1−α]

]
= 1− p(∆0) is the coverage probability for ∆0 in this case, and similarly for

ŴD(∆0)
2.

The powers of FCS and DCS are investigated by considering DGPs which do not satisfy the null

hypothesis. We do so by considering DGPs with a lower value of the shape parameter aX and a higher

value of the shape parameter aY . Thus, we are deviating from the null hypothesis by assuming distributions

with heavier left and right tails to draw the first sample, and distributions with less heavy left and right tails

to draw the second sample. The rejection frequencies under the alternative are not size-controlled, yet we

compare power when both methods have similar sizes.

Our extensive simulation study reveals several important results. First, the Fieller-type method outper-

forms the Delta method under most specifications, and when it does not, it performs as well as the Delta

method. Put differently, the Fieller-type method was never dominated by Delta method. Second, the Fieller-

type method is more robust to irregularities arising from both the left and right tails. Third, the Fieller-type
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method gains become more sizeable as the sensitivity parameter γ increases. Fourth, the performance of the

Fieller-type method matches, and for some cases exceeds, the permutation method which is considered one

of the best performing methods proposed in the literature so far for the two-sample problem. In the reminder

of this section we take a closer look at the simulation evidence supporting the above findings.

Experiment I: Independent samples of equal sizes – The left panels of Figures 3 and 4 depict the rejection

frequencies against the sample size for GE1 and GE2 respectively. Here the distributions are assumed

identical [FX = FY ]. Comparing the two panels, we notice that better size control with the Fieller-type

method is more noticeable for GE2: the size gains are larger when the index used is more sensitive to

the changes in the right tail of the underlying distributions. As the sample size increases the rejection

probabilities of the two methods converge to the same level.

In the second specification, the indices are identical, but the underlying distributions are not [∆0 =

0 with FX 6= FY ]. The left panel of Figure 5 plots the FCS and DCS rejection frequencies for this scenario.

Again, the results suggest that the Fieller-type method outperforms the Delta method in small samples in

terms of size, and the gains are most prominent for GE2. The gains are smaller in this scenario compared to

the previous one. As we will show later, the Fieller-type method will not solve the over-rejection problem

under all scenarios, but it will reduce size distortions in many cases, and when it does not, it performs as

well as the Delta method.

We now move to the third scenario, where we consider different distributions under the null hypothesis

and unequal inequality indices [∆0 6= 0]. In this scenario, the difference under the null hypothesis can take

any admissible value (possibly different from zero). Testing a zero value, although informative, does not

always translate into a confidence interval. Hence, one of our contributions lies in considering the non-zero

null hypothesis which allows us to rely for inference on the more-informative confidence sets approach

rather than testing the equality of the difference between the two indices to one specific value.

The results, as shown in the left panels of Figures 7 and 8, suggest a considerable improvement. In both

panels, the Fieller-type method leads to size gains and almost achieves correct size. The improvements are

more pronounced for the GE2 index. The right panels of Figures 3 to 8 illustrate the power of FCS and DCS

for both GE1 and GE2 under the three scenarios considered: [∆0 = 0 with FX = FY ], [∆0 = 0 with FX 6= FY ]

and [∆0 6= 0] respectively. The results show that the Fieller-type method is as powerful as the Delta method

when compared at sample sizes where both FCS and DCS have similar empirical rejection frequencies.

Experiment II: Independent samples of unequal sizes – Empirically, when comparing inequality levels
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spatially or over time, it is unlikely one encounters samples with the same size. Thus, it is useful to assess the

performance of our proposed method when the sample sizes are unequal. To do so, we adjust our simulation

design by setting the number of observations of the second sample to be as twice as large as the first sample.

If we denote the size of the first sample by n and that of the second by m, then n = 2m.4 The results are

analogous to those obtained in the first experiment, under which sample sizes were equal, in the sense that

the Fieller-type method improves level control for both GE1 and GE2, with a larger improvement for GE2.

The size and power simulation results for the three scenarios considered here are available in the online

appendix.

Experiment III: Dependent samples of equal sizes – Another interesting case is the one where the samples

are dependent. This occurs mostly when comparing inequality levels before and after a policy change,

such as comparing pre-tax and post-tax income inequality levels, or comparing the distributional impact

of a macroeconomic shock. To accommodate for such dependencies, we modify the simulation design

as follows: the samples are drawn in pairs from the joint distribution, which we denote FXY , where the

correlation between the two marginal distributions is generated using a Gumbel copula with a high Kendall’s

correlation coefficient of 0.8. For this case, results are in line with the independent cases, in small samples

and when larger γ is used. Size and power plots are available in the online appendix.

Comparing the Fieller-type method with the permutation method – As outlined in the introduction, the

permutation-based Monte-Carlo test approach proposed in Dufour et al. (2019) stands out as one of the best

performing nonparametric inference method for testing the equality of two inequality indices. The authors

focus on the Theil and the Gini indices. The permutation testing approach provides exact inference when

the null distributions are identical (FX = FY ) and it leads to a sizable size distortion reduction when the null

distributions are sufficiently close (FX ≈ FY ). However, as the null distributions differ, the performance of

the method deteriorates.

Figures 9 and 10 plot size and power of the permutation Fieller-type methods against the tail index

of FY . As in Dufour et al. (2019), we fix the tail index of the null distribution FX to 4.76. When the

distributions under the null hypothesis are identical, the permutation method is exact and thus it is important

to compare methods when exactness does not hold. Our results point to two main advantages of the Fieller-

type method over the permutation method: for the Theil index, the Fieller-type method is more powerful and

these power gains are magnified as the difference between the indices becomes larger. On the other hand,

4The results presented here are not sensitive to choice of the ratio between n and m
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when considering the GE2, there are size gains mainly when the tail index is relatively small (i.e., when the

right tail is heavier). These size gains are not associated with power loss as the right panel of the same figure

illustrates.

The attraction of the Fieller-type method with respect to the permutation approach goes beyond the

superior performance highlighted above. Unlike the Fieller-type method, its applicability is restricted to the

null hypothesis of equality (∆0 = 0), and further theoretical developments would be needed to test more

general hypotheses. Building confidence intervals using a permutation-based or another simulation-based

method (such as the bootstrap) would also require a computationally intensive numerical inversion (e.g.,

through a grid search). So another appealing feature of the Fieller-type approach comes from the fact that it

is computationally easy to implement.

Behavior with respect to the tails – To better understand under what circumstances does the Fieller-type

method improves level control, we assess the performance of the proposed method to different tail shapes.

The literature has focused on the role of heavy right tails in the deterioration of the Delta method confidence

sets. However, as our results indicate, heavy left tails also contribute to the under-performance of the

standard inference procedures. The Fieller-type method is less prone to such irregularities arising from both

ends of the distributions and thus it reduces size distortions whether the cause of the under-performance is

arising from the left tail or the right tail. This is supported by the results reported below in Tables 2 and

3. The results in these tables rely on samples of 50 observations. Table 2 reports the percentage difference

of the rejection frequencies as the right tails of the two distributions become thicker. The right-tail shape

is determined by the tail index (ξ X = aX qX ). The smaller the tail index, the thicker is the right tail of

the distribution under consideration. The reliability advantage of the Fieller-type method (over the Delta

method) increases as the right tail of the distributions gets thicker.

To study the impact of the left tail, the parameters of the first distribution are fixed at aX = 2.8 and

qX = 1.7, while aY and qY are varied such that the left tail becomes thicker and the right tail is left unchanged.

This is done by decreasing aY , and increasing qY enough to keep the tail index fixed (ξ X = ξY = 4.76). The

last column of Table 3 shows the percentage difference of the rejection frequencies between the Fieller-type

and Delta methods. As the left tail thickens, the performance of the Delta method deteriorates relative to the

Fieller-type method, and thus the Fieller method better captures irregularities in the left tail. This conclusion

holds regardless of whether the left tail of the second distribution is lighter or thicker than the left tail of the

first distribution.
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Fieller-type method and the sensitivity parameter γ – A consistent conclusion from our results is that

the Fieller’s-induced size gains are more prominent for GE2 compared to GE1, that is, when the sensitivity

parameter γ increases from 1 to 2. This might suggest that as γ increases, size gains from the Fieller-type

method increase. Such generalization is indeed supported by simulation evidence illustrated by Figure 11.

The left panel plots rejection frequencies of DCS and FCS for γ ∈ [0, 3.5] for independent samples. The

right panel considers dependent samples. As γ becomes larger, FCS outperforms DCS at an increasing rate.

The superiority of the Fieller-type method in this context is unaffected by the independence assumption as

shown in the right panel where the rejection frequencies are plotted against γ for dependent samples with

Kendall’s correlation of 0.8.

Recall that the parameter γ characterizes the sensitivity of the index to changes at the tails of the

distribution. For instance, the index becomes more sensitive to changes at the upper tails as γ increases

(assuming positive γ). Thus, relative to the Delta method, the performance of the Fieller-type method in

the two-sample problem improves as the right tail of the underlying distributions becomes heavier. This

conclusion, as we saw from the results above, is robust to the assumptions about the independence of the

samples and to the distance between the two null distributions.

The identical performance of the Fieller-type method and Delta method at γ = 0 is expected as the

underlying t-tests inverted in the process of building FCS and DCS are identical since the null hypothesis is

no longer a ratio. To see that, recall that the limiting solution for GEγ(·) at γ = 0 is equal to EF [log(X)]−

log[EF(X)]. Graphically, we can see that both methods start off at the same rejection frequencies when

γ = 0, and then diverge as γ increases.

Robustness to the shapes of the null distributions – So far, our simulation experiments have focused on

comparing the finite-sample performance of FCS and DCS by studying their behavior as the number of

observation increases, holding the parameters of the two underlying null distributions constant. Here we try

to check the robustness of our results by fixing the number of observations at 50 and allowing the parameters

(aX , qX , aY and qY ) to vary. This type of analysis highlights the (in)sensitivity of our conclusions regarding

the Fieller-type method to the shape of the null distributions. In left panel of Figure 12, we plot the rejection

frequencies of both methods against the sensitivity parameter ξ X for the Theil index. We set ξ X equal to

4.76 and allow ξY to vary between 3.05 and 6.255. In the right panel, we focus on the GE2 index. Here ξ X

is fixed at 4.76 again and the parameter ξY ranges between 3.293 and 5.7107.

For small samples, the gains of the Fieller-type method are maintained regardless the shape of the
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distribution. The gains are more pronounced for GE2 compared to GE1. These two graphs show that

the gains attained by the Fieller-type method are not arbitrary and that they hold for various parametric

assumptions of the underlying distributions.

Slow convergence – Inequality estimates are characterized by slow convergence when underlying distribu-

tions are heavy-tailed. This problem has in fact motivated most of the proposed asymptotic refinements in

this literature [see Davidson and Flachaire (2007); Cowell and Flachaire (2007)]. Our results in Table 4 and

Table 5 corroborate this fact, as over-rejections remain even with samples as large as 200000, particularly

with the GE2 which puts more weight on the upper tail of the distribution. On balance, our main finding is

the superiority of the Fieller method in finite samples.

Widths of the confidence sets – The last two columns of Table 5 show the average widths of the FCS and

the DCS for the two sample problem. Since the Fieller’s method can produce unbounded confidence sets,

we take the average of the widths based on the bounded confidence sets. In general, compared to the FCS

widths, the DCS widths are shorter with small samples, i.e. they are shorter when the Delta method rejection

frequencies are higher than those of Fieller. This suggest that the DCS are too short and thus they tend to

undercover the true difference between the indices. As the sample size increases, the two methods exhibit

similar performance and the widths coincides. This is true as well for the one-sample problem as the last

two columns of table 4 illustrate.

4 Application: Regional income convergence

In this section, we present empirical evidence on the relevance of our theoretical results to applied

economic work. We assess economic convergence across the U.S. states between 1946 and 2016. One of the

motivating factors behind the choice of the convergence question is the small number of observations, which

represents an ideal opportunity to assess the empirical value of our theoretical findings as our simulation

results have shown that improvements via the Fieller-type method are most prominent when sample sizes

are small. In what follows, unless stated otherwise, tests and confidence sets are at the 5% level.

The late 1980’s witnessed a new wave of interest in economic convergence that was spurred by the

revival of growth models. The convergence hypothesis, first theorized by the popular Solow growth model,

postulates that in the long run, economies will converge to similar per-capita income levels. The convergence

question is important from theoretical and policy perspectives.
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Theoretically, Romer (1994) and Rebelo (1991) argue that the rejection of the convergence hypothesis

provides empirical support for the endogenous growth model and evidence against the neoclassical growth

model. In the latter models, per-capita income convergence results from the diminishing return to capital

assumption. This assumption implies that the return to capital increases in economies with low level of

capital and decreases in capital-abundant economies. Moreover, since the rate of return on capital is higher

in poorer economies, investments will migrate from rich economies to poorer ones, further enhancing growth

and reducing the gap between them. On the other hand, in endogenous growth models as in Romer (1994)

and Rebelo (1991), the diminishing rate of return on capital is considered implausible once knowledge is

assumed to be one of the production factors. Thus, the model does not predict convergence, but on the

contrary predicts that divergence might occur.

Empirically, policy-makers are interested in learning about the dynamics of income dispersion across

regions/states so they can engage in redistributive policies when needed or to assess the distributional impact

of a specific policy. Among the various definitions of convergence provided in the literature, two definitions

appear to dominate the work on this topic: β -convergence and σ -convergence (Barro, 2012; Barro and Sala-i

Martin, 1992; Quah, 1996; Sala-i Martin, 1996; Higgins et al., 2006). Although related, these two measures

might lead to different conclusions as they capture different dimensions of economic convergence. For an

analytical treatment of the relationship between the two measures, see Higgins et al. (2006).

β -convergence occurs when there is a negative relationship between the growth rate and the initial

level of per-capita income, that is, when poor economies grow at a faster rate than the rich ones. The σ -

convergence concept focuses on the dispersion of the income distribution which is typically measured in this

literature by the variance of the logs. The variance of logs is scale-independent and thus multiplying the per-

capita incomes by a scale k has no impact on the dispersion level. Alternative scale-independent measures of

dispersion such as inequality measures have generally not been utilized in convergence analysis. The only

exception is Young et al. (2008) which reported the Gini coefficient for comparison purposes with reference

to the variance of logs.

One feature of inequality measures such as the Gini coefficient and the GE measures is that they re-

spect the Pigou-Dalton principle, which states that a rank preserving transfer from a richer individual/state

to a poorer individual/state should make the distribution at least as equitable. In the context of economic

convergence, this principle is particularly relevant. For instance, if the US government makes a transfer from

a richer state to a poorer one, one would expect dispersion between states to decline. The Gini and GE mea-
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sures would capture this decline, whereas the variance of logs might indicate no change or even an increase

in dispersion. The fact that the variance of logs violates the Pigou-Dalton principle is usually neglected in

the literature on the grounds that the problem occurs only at the extreme right tail of the distribution. How-

ever, Foster and Ok (1999) show that disagreement between the variance of logs and inequality measures

can result from changes in incomes in other parts of the distribution including the left tail. The following ex-

ample (Foster and Ok, 1999) underscores the importance of the Pigou-Dalton principle and its implications

for convergence. Consider two income distributions defined by the following incomes (2, 5, 10, 28, 40) and

(2, 5, 10, 34, 34) where the latter is associated with a transfer from the richest [40 to 34] incomes to poorer

ones [28 to 34]. The resulting change in the variance of logs, from 1.5125 to 1.5154, suggests an increase

of inequality. In contrast, the GE2 index declines from 0.3696 to 0.3446, thereby capturing the expected

distributional impact of such a transfer.

Our empirical analysis of per-capita income dispersion across the US is motivated by comparably

peculiar statistics. Consider the publicly available per-capita income at the state level for 48 out of the 50

states (as the data for Alaska and Hawaii is not available). The variance of logs between the years 2000 and

2016 indicates a 3% increase in dispersion, whereas GE2 indicates a decline in dispersion by 0.3%. This

provides a compelling basis for the more comprehensive inferential analysis reported next.

Using the same data source, we first compute the Theil index for the per-capita income distributions

of 1946 and 2016. Then we construct the Delta and Fieller confidence sets for the difference between the

two indices. A standard interpretation of differences between the two confidence intervals (at the considered

level) implies that one will reject the null hypothesis ∆GEγ = ∆0 for a given ∆0 while the other fails to reject

it. Special attention should be paid to the ∆0 = 0 case, as decisions might reverse the conclusion on whether

convergence holds or not.

Using the Theil index, our results in the first column of Table 6 indicate that per-capita income in-

equality across states has declined between 1946 and 2016. The decline in inequality implies convergence.

This is compatible with the general convergence trend reported in the literature (Barro and Sala-i Martin,

1992; Bernat Jr, 2001; Higgins et al., 2006). Although the Fieller and Delta-method confidence sets are not

identical, they still lead to the same conclusion which is that the decline of inequality is statistically different

from zero at the level used.

In the second column of Table 6, we consider the same problem using GE2 index rather than the Theil

one. This index puts more weight on the right tail of the distribution. In this case, the results also indicate
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a decline of inequality across states. Inequality in 1946 was 0.02679 and declined by −0.01163 by 2016.

The confidence sets based on the Delta and Fieller-type methods lead to opposite conclusions about the

statistical significance of the decline in inequality. DCS fails to reject the null hypothesis of no change in

inequality, thus the decline in inequality based on DCS is not statistically different from zero. On the other

hand, the Fieller-type methods rejects the hypothesis of no inequality change, which entails that the decline

is significant.

In addition to DCS and FCS, we report the permutational p-values. For the GE2, the p-value is less

than 5% and thus we reject the null hypothesis of no change in inequality contradicting the conclusion based

on the Delta method. This constitutes an empirical evidence supporting the findings of Dufour et al. (2019).

Two conclusions can be drawn from our findings. First, the Fieller-type and the Delta methods can lead

to different confidence sets in practice which documents the empirical relevance of our theoretical findings.

Second, disparities between both sets can lead to spurious conclusions about inequality changes if one set

includes zero while the other does not. From a policy point of view, this disparity is crucial, especially if

important policy actions are motivated by underlying analysis.

We next turn to non-OECD countries between 1960 and 2013. Table 7 presents estimates and confi-

dence sets for the difference of inequality measures between the two periods. The main finding here is that

the Fieller-type confidence set based on the GE2 index is the whole real line R. These results confirm that

decisions based on Delta-method are spurious, and that a no-change conclusion is flawed: data and measure

are, instead, uniformative.

The permutational method leads results similar to Delta and the Fieller-type methods for non-OECD

countries. Available permutation tests although preferable size-wise to their standard counterparts, are diffi-

cult to invert to build confidence sets. Instead, the confidence sets proposed here can be unbounded and thus

avoid misleading statistical inferences and policy decisions, in particular from seemingly insignificant tests.

The econometric literature on inequality has long emphasized the need to avoid over-sized tests. Rightfully,

spurious rejections are misleading. Our results document a different although related problem: even with

adequately sized no-change tests, weak identification can undercut the reliability of policy advice resulting

form insignificant no-change test outcomes. Far more attention needs to paid to confidence sets. Moreover,

sets that can be unbounded make empirical and policy work far more credible than it can be using bounded

alternatives or no-change tests that cannot be inverted.
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5 Conclusion

This paper introduces a Fieller-type method for inference on the GE class of inequality indices, in

the one and two-sample problem with a focus on the latter. Simulation results confirm that the Fieller-type

method outperforms standard counterparts including the permutation test, over all experiments considered.

Size gains are most prominent when using indices that put more weight on the right tail of the distribution

and results are robust to different assumptions about the shape of the null distributions. While irregular-

ities arising from the right tail have long been documented, we find that left tail irregularities are equally

important in explaining the failure of standard inference methods. On recalling that permutation tests are

difficult to invert, our results underscore the usefulness of the Fieller-type method for evidence-based policy.

An empirical analysis of economic convergence reinforces this result, and casts a new light on traditional

controversies in the growth literature.

Fieller’s approach is frequently applied in medical research and to a lesser extent in applied economics

despite its solid theoretical foundations (Srivastava, 1986; Willan and O’Brien, 1996; Johannesson et al.,

1996; Laska et al., 1997). This could be due to the seemingly counter-intuitive non-standard confidence sets

it produces which economists often find hard to interpret. Consequently, many applied researchers encoun-

tering the estimation of ratios avoid using it and opt to use methods that yield closed intervals regardless

of theoretical validity. This paper illustrates serious empirical and policy flaws that may result from such

practices in inequality analysis.
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Appendix

A Figures

A.1 One-sample problem

GE1: Size GE1: Power

Figure 1: Size and power of Delta(-method) and Fieller-type tests for GE1 (Theil) index
H0: GE1(X) = 0.4929

Left panel DGP: SMX (aX = 1.1, qX = 4.327273). GE1(X) = 0.4929

Right panel DGP: SMX (aX = 1.7, qX = 2.8). GE1(X) = 0.27137

GE2: Size GE2: Power

Figure 2: Size and power of Delta(-method) and Fieller-type tests for GE2 index
H0: GE2(X) = 0.71578

Left panel DGP: SMX (aX = 1.1, qX = 4.327273). GE2(X) = 0.71578

Right panel DGP: SMX (aX = 1.7, qX = 2.8). GE2(X) = 0.33503
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A.2 Two-sample problem

A.2.1 Experiment I: Design (I-a) – Independent samples: n= m, FX = FY , ∆0 = 0

GE1: Size GE1: Power

Figure 3: Design (I-a) – Size and power of Delta and Fieller-type tests for GE1 comparisons
(used to derive confidence sets)

H0: GE1(X) = GE1(Y )
Left panel: SMX (aX = 5.8, qX = 0.499616), SMY (aY = 5.8, qY = 0.499616). GE1(X) = GE1(Y ) = 0.14011

Right panel: SMX (aX = 4.8, qX = 0.499616), SMY (aY = 6.8, qY = 0.499616). GE1(X) = 0.22857, GE1(Y ) = 0.09514

GE2: Size GE2: Power

Figure 4: Design I(a) – Size and power of Delta and Fieller-type tests for GE2 comparisons
(used to derive confidence sets)

H0: GE2(X) = GE2(Y )
Left panel: SMX (aX = 5.8, qX = 0.499616), SMY (aY = 5.8, qY = 0.499616). GE2(X) = GE2(Y ) = 0.24396

Right panel: SMX (aX = 4.8, qX = 0.499616), SMY (aY = 6.8, qY = 0.499616). GE2(X) = 0.63705, GE2(Y ) = 0.13806
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A.2.2 Experiment I: Design (I-b) – Independent samples: n= m, FX 6= FY , ∆0 = 0

GE1: Size GE1: Power

Figure 5: Design (I-b) – Size and power of Delta and Fieller-type tests for GE1 comparisons
H0: GE1(X) = GE1(Y )

Left panel: SMX (aX = 2.8, qX = 1.7), SMY (aY = 5.8, qY = 0.499616). GE1(X) = GE1(Y ) = 0.14011

Right panel: SMX (aX = 1.8, qX = 1.7), SMY (aY = 6.8, qY = 0.499616). GE1(X) = 0.33830, GE1(Y ) = 0.09514

GE2: Size GE2: Power

Figure 6: Design I(b) – Size and power of Delta and Fieller-type tests for GE2 comparisons
H0: GE2(X) = GE2(Y )

Left panel: SMX (aX = 2.8, qX = 1.7), SMY (aY = 3.8, qY = 0.9831). GE2(X) = GE2(Y ) = 0.16204

Right panel: SMX (aX = 1.8, qX = 1.7), SMY (aY = 4.8, qY = 0.9831). GE2(X) = 0.5479, GE2(Y ) = 0.08835
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A.2.3 Experiment I: Design (I-c) – Independent samples: n= m, FX 6= FY , ∆0 6= 0

GE1: Size GE1: Power

Figure 7: Design (I-c) – Size and power of Delta and Fieller-type tests for GE1 comparisons
H0: GE1(X)−GE1(Y ) = 0.04670

Left panel: SMX (aX = 2.8, qX = 1.7), SMY (aY = 3.8, qY = 1.3061). GE1(X) = 0.14011, GE1(Y ) = 0.09340

Right panel: SMX (aX = 1.8, qX = 1.7), SMY (aY = 4.8, qY = 1.3061). GE1(X) = 0.33829, GE1(Y ) = 0.05839

GE2: Size GE2: Power

Figure 8: Design (I-c) – Size and power of Delta and Fieller-type tests for GE2 comparisons
H0: GE2(X)−GE2(Y ) = 0.05401

Left panel: SMX (aX = 2.8, qX = 1.7), SMY (aY = 3.8, qY = 1.2855). GE2(X) = 0.16203, GE2(Y ) = 0.10802

Right panel: SMX (aX = 1.8, qX = 1.7), SMY (aY = 4.8, qY = 1.2855). GE2(X) = 0.54790, GE2(Y ) = 0.06367
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A.2.4 Comparing Fieller’s method and the permutation method

GE1: Size GE1: Power

Figure 9: Size and Power of two-sample tests

Rejection frequencies of asymptotic Fieller-type and permuted delta methods

Note – Samples are independent and n = m. FX = FY and GE1(X) =GE1(Y ). The left panel pertains to the size

analysis and it plots the Rejection frequencies of asymptotic the Fieller-types and Permuted Delta method against the

tail index: ξ = [2.897, 6.256]. Power analysis is presented in the right panel where rejection frequencies are plotted

against the difference between the two indices: GE1(Y )−GE1(X). For power, we set qY = 10.

GE2: Size GE2: Power

Figure 10: Size and Power of two-sample tests

Rejection frequencies of asymptotic Fieller-type and permuted delta method

Note – Samples are independent and n = m. FX = FY and GEγ(X) =GEγ(Y ). The left panel pertains to the size

analysis and it plots the Rejection frequencies of asymptotic Fieller-type and Permuted delta methods against the tail

index: ξ = [2.897, 6.256]. Power analysis is presented in the right panel where rejection frequencies are plotted against

the difference between the two indices: GE2(Y )−GE2(X). For power, we set q2= 10.
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A.2.5 Behavior with respect to the sensitivity parameter γ

Independent Samples Dependent Samples

Figure 11: Rejection frequencies of the tests inverted to derive the Delta method and Fieller’s confidence sets
over the sensitivity parameter γ

Note – The distributions under the null hypothesis are identical and defined by: SMX (aX = 2.8, qX = 1.7) and

SMY (aY = 2.8, qY = 2). n= m= 50

A.2.6 Robustness to the shape of the null distributions

GE1 GE2

Figure 12: Rejection frequencies of the tests inverted to derive the Delta method and Fieller’s confidence sets
over the tail index ξ y

Note – In the left panel, we consider the Theil index where ξ X is fixed at 4.76 and ξY = [3.055, 6.255]. In the right

panel, we consider GE2 with ξ X is fixed at 4.76 and ξY = [3.293, 5.7107]. n= m= 50
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B Tables

Table 1: Rejection frequencies of Delta and Fieller methods: effect of left-tail thickness

a q ξ = aq GE1 GE2 PDL - GE1 PDL - GE2

3.173333 1.5 4.76 0.11991 0.13808 1.53 5.91

2.8 1.7 4.76 0.14012 0.16204 4.08 8.67

2.38 2 4.76 0.17279 0.20215 4.10 11.45

2 2.38 4.76 0.21774 0.26039 6.23 15.65

1.5 3.173333 4.76 0.32206 0.4112 10.47 21.87

1.1 4.327273 4.76 0.4929 0.71578 13.45 30.91

2.5 1.456 3.64 0.19888 0.26379 2.95 4.48

2.3 1.582609 3.64 0.21891 0.29233 2.83 5.83

2.1 1.733333 3.64 0.24375 0.32895 3.23 7.34

1.9 1.915789 3.64 0.27516 0.37727 5.30 9.47

1.7 2.141176 3.64 0.31577 0.44332 6.30 11.03

1.5 2.426667 3.64 0.36978 0.53789 8.11 14.14

1.3 2.8 3.64 0.44414 0.682 9.15 17.33

Note- PDL stands for the percentage difference of the levels of the Delta and the Fieller-type method. The results in this table

pertain to the percentage difference of the DCS and FCS levels as the left tail of the underlying distribution gets thicker. The right

tail is fixed (ξ X = 4.76). Column 6 reports the percentage difference associated with the null hypothesis H01: GE1 = 0 and column

7 reports the percentage difference associated with the null hypothesis H02: GE2 = 0.

Table 2: Rejection frequencies of Delta and Fieller methods:

effect of right-tail thickness in the two sample problem; n=50.

aX qX qY aY ξ X = ξY GE1(X) = GE1(Y ) GE2(X) = GE2(Y ) PDL - GE1 PDL - GE2

5 2.1 5 2.1 10.5 0.04075 0.04096 2.84 10.58

5 1.9 5 1.9 9.5 0.04268 0.04326 4.47 13.99

5 1.7 5 1.7 8.5 0.04524 0.04639 5.19 20.59

5 1.5 5 1.5 7.5 0.0488 0.05084 8.81 24.2

5 1.3 5 1.3 6.5 0.05401 0.05763 13.60 31.96

5 1.1 5 1.1 5.5 0.06230 0.06906 16.88 42.72

5 0.9 5 0.9 4.5 0.07708 0.09155 29.70 56.74

5 0.7 5 0.7 3.5 0.10877 0.15046 36.87 66.55

5 0.5 5 0.5 2.5 0.20464 0.49151 53.75 84.86

Note – PDL stands for the percentage difference of the levels of the Delta and the Fieller-type method. The results in this table

pertain to the percentage difference of the DCS and FCS levels as the right tails of both distributions gets thicker. The left tails of

both distributions are fixed (aX and aY are fixed) and the right tails gets thicker (with smaller ξ X and ξY ). Column 8 reports the

percentage difference associated with the null hypothesis H01: GE1(X) = GE1(Y ) and column 9 reports the percentage difference

associated with the null hypothesis H02: GE2(X) = GE2(Y ).

A–7



T
a

b
le

3
:

R
ej

ec
ti

o
n

fr
eq

u
en

ci
es

o
f

D
el

ta
an

d
F

ie
ll

er
m

et
h
o
d
s:

ef
fe

ct
o
f

le
ft

-t
ai

l
th

ic
k
n
es

s
in

th
e

tw
o

sa
m

p
le

p
ro

b
le

m
;

n
=

5
0
.

a
X

q
X

a
Y

q
Y

ξ
X
=

ξ
Y

G
E

1
(X
)

G
E

2
(X
)

G
E

1
(Y
)

G
E

2
(Y
)

∆
0
,1

∆
0
,2

P
D

L
-

G
E

1
P

D
L

-
G

E
2

2
.8

1
.7

5
.8

0
.8

2
1

4
.7

6
0
.1

4
0
1
2

0
.1

6
2
0
4

0
.0

6
2
8

0
.0

7
3
4
7

0
.0

7
7
3
2

0
.0

8
8
5
7

1
8
.7

4
3
8
.6

2
.8

1
.7

5
.2

0
.9

1
5

4
.7

6
0
.1

4
0
1
2

0
.1

6
2
0
4

0
.0

6
9
5
7

0
.0

8
0
9
5

0
.0

7
0
5
5

0
.0

8
1
0
9

2
0
.8

0
3
9
.9

5

2
.8

1
.7

4
.8

0
.9

9
2

4
.7

6
0
.1

4
0
1
2

0
.1

6
2
0
4

0
.0

7
5
2
4

0
.0

8
7
2

0
.0

6
4
8
8

0
.0

7
4
8
4

1
9
.7

8
4
1
.7

2

2
.8

1
.7

4
.2

1
.1

3
3

4
.7

6
0
.1

4
0
1
2

0
.1

6
2
0
4

0
.0

8
6
6
6

0
.0

9
9
9
8

0
.0

5
3
4
6

0
.0

6
2
0
6

2
1
.3

5
4
5
.9

2
.8

1
.7

3
.8

1
.2

5
3

4
.7

6
0
.1

4
0
1
2

0
.1

6
2
0
4

0
.0

9
6
8
5

0
.1

1
1
4
8

0
.0

4
3
2
7

0
.0

5
0
5
6

2
3
.4

1
4
8
.4

1

2
.8

1
.7

3
.2

1
.4

8
8

4
.7

6
0
.1

4
0
1
2

0
.1

6
2
0
4

0
.1

1
8
6
6

0
.1

3
6
6
1

0
.0

2
1
4
6

0
.0

2
5
4
3

2
3
.8

2
5
2
.1

9

2
.8

1
.7

3
1
.5

8
7

4
.7

6
0
.1

4
0
1
2

0
.1

6
2
0
4

0
.1

2
8
4
8

0
.1

4
8
1
6

0
.0

1
1
6
4

0
.0

1
3
8
8

2
6
.2

2
5
6
.0

3

2
.8

1
.7

2
.6

1
.8

3
1

4
.7

6
0
.1

4
0
1
2

0
.1

6
2
0
4

0
.1

5
4
0
1

0
.1

7
8
8
8

-0
.0

1
3
8
9

-0
.0

1
6
8
4

2
5
.3

7
5
6
.9

4

2
.8

1
.7

2
.4

1
.9

8
3

4
.7

6
0
.1

4
0
1
2

0
.1

6
2
0
4

0
.1

7
0
9
2

0
.1

9
9
8
2

-0
.0

3
0
8

-0
.0

3
7
7
8

2
7
.0

1
5
8
.7

9

2
.8

1
.3

1
.3

2
.8

3
.6

4
0
.1

7
5
3
5

0
.2

3
1
3
3

0
.4

4
4
1
4

0
.6

8
2

-0
.2

6
8
7
9

-0
.4

5
0
6
7

3
0
.0

8
4
9
.2

8

2
.8

1
.3

1
.5

2
.4

2
6
6
6
7

3
.6

4
0
.1

7
5
3
5

0
.2

3
1
3
3

0
.3

6
9
7
8

0
.5

3
7
8
9

-0
.1

9
4
4
3

-0
.3

0
6
5
6

3
2
.6

5
5
2
.5

8

2
.8

1
.3

1
.7

2
.1

4
1
1
7
6

3
.6

4
0
.1

7
5
3
5

0
.2

3
1
3
3

0
.3

1
5
7
7

0
.4

4
3
3
2

-0
.1

4
0
4
2

-0
.2

1
1
9
9

3
2
.7

7
5
4
.6

4

2
.8

1
.3

1
.9

1
.9

1
5
7
8
9

3
.6

4
0
.1

7
5
3
5

0
.2

3
1
3
3

0
.2

7
5
1
6

0
.3

7
7
2
7

-0
.0

9
9
8
1

-0
.1

4
5
9
4

3
2
.9

8
5
9
.8

1

2
.8

1
.3

2
.1

1
.7

3
3
3
3
3

3
.6

4
0
.1

7
5
3
5

0
.2

3
1
3
3

0
.2

4
3
7
5

0
.3

2
8
9
5

-0
.0

6
8
4

-0
.0

9
7
6
2

3
7
.3

7
6
2
.3

0

2
.8

1
.3

2
.3

1
.5

8
2
6
0
9

3
.6

4
0
.1

7
5
3
5

0
.2

3
1
3
3

0
.2

1
8
9
1

0
.2

9
2
3
3

-0
.0

4
3
5
6

-0
.0

6
1

4
0
.2

5
6
6
.8

3

2
.8

1
.3

2
.5

1
.4

5
6

3
.6

4
0
.1

7
5
3
5

0
.2

3
1
3
3

0
.1

9
8
8
8

0
.2

6
3
7
9

-0
.0

2
3
5
3

-0
.0

3
2
4
6

4
1
.1

0
7
1
.3

4

N
o

te
-

P
D

L
st

an
d

s
fo

r
th

e
p

er
ce

n
ta

g
e

d
if

fe
re

n
ce

o
f

th
e

le
v
el

s
o

f
th

e
D

el
ta

an
d

th
e

F
ie

ll
er

’s
m

et
h

o
d

.
T

h
e

re
su

lt
s

in
th

is
ta

b
le

p
er

ta
in

to
th

e
p
er

ce
n
ta

g
e

d
if

fe
re

n
ce

o
f

th
e

D
C

S
an

d

F
C

S
le

v
el

s
as

th
e

le
ft

ta
il

s
o

f
b

o
th

d
is

tr
ib

u
ti

o
n

s
g
et

s
th

ic
k
er

.
T

h
e

ri
g

h
t

ta
il

s
o

f
b

o
th

d
is

tr
ib

u
ti

o
n

s
ar

e
fi

x
ed

(ξ
X
=

ξ
Y
=

4
.7

6
)w

h
il

e
th

e
le

ft
ta

il
o
f

th
e

se
co

n
d

d
is

tr
ib

u
ti

o
n

g
et

s
th

ic
k
er

(w
it

h
sm

al
le

r
a

Y
).

C
o

lu
m

n
1

2
re

p
o

rt
s

th
e

p
er

ce
n
ta

g
e

d
if

fe
re

n
ce

as
so

ci
at

ed
w

it
h

th
e

n
u

ll
h
y

p
o

th
es

is
H

0
1

:
G

E
1
(X
)
−

G
E

1
(Y
)
=

∆
0
,1

an
d

co
lu

m
n

1
3

re
p
o
rt

s
th

e
p
er

ce
n
ta

g
e

d
if

fe
re

n
ce

as
so

ci
at

ed
w

it
h

th
e

n
u

ll
h
y

p
o

th
es

is
H

0
2

:
G

E
1
(X
)
−

G
E

1
(Y
)
=

∆
0
,2

.
T

h
e

v
al

u
es

o
f

∆
0
,1

an
d

∆
0
,1

ar
e

g
iv

en
in

co
lu

m
n

s
1

0
an

d
1
1

re
sp

ec
ti

v
el

y.

A–8



Table 4: Rejection probabilities and widths of confidence sets

based on the Delta and Fieller-type methods: One-sample problem

n Rejection

Delta

Rejection

Fieller

Bounded Union of two

disjoint sets

Unbounded Width

Fieller

Width

Delta

50 0.3758 0.2616 9841 105 54 1.4339 0.6316

100 0.3211 0.2773 9983 16 1 0.7616 0.6026

200 0.2707 0.258 9998 2 0 0.6324 0.5462

500 0.2219 0.2244 10000 0 0 0.4482 0.4325

1000 0.1764 0.1796 10000 0 0 0.3635 0.3575

2000 0.1626 0.167 10000 0 0 0.2746 0.2726

10000 0.1077 0.1095 10000 0 0 0.1474 0.1472

20000 0.0990 0.1006 10000 0 0 0.1098 0.1097

100000 0.0753 0.0756 10000 0 0 0.0544 0.0544

200000 0.0686 0.0698 10000 0 0 0.0395 0.0395

Note – The coverage rate of the confidence set is equal to 1−(Rejection probability). The results in this

table pertains to the GE2 index with SMX(aX = 1.1, qX = 4.327273). H0: GE2 = 0.71577

Table 5: Rejection probabilities and widths of confidence sets

based on the Delta and Fieller-type methods: Two-sample problem

n Rejection

Delta

Rejection

Fieller

Bounded Union of two

disjoint sets

Unbounded Width

Fieller

Width

Delta

50 0.1843 0.1161 9955 35 10 0.1031 0.0655

100 0.1666 0.1293 9997 3 0 0.0642 0.0548

200 0.1468 0.1297 9999 1 0 0.0461 0.0436

500 0.1316 0.125 10000 0 0 0.032 0.0313

1000 0.1187 0.1168 10000 0 0 0.0239 0.0237

2000 0.1049 0.1047 10000 0 0 0.0179 0.0179

10000 0.0790 0.0787 10000 0 0 0.0090 0.0090

20000 0.0761 0.0766 10000 0 0.0066

100000 0.0663 0.0663 10000 0 0 0.0032 0.0032

200000 0.0616 0.0617 10000 0 0 0.0023 0.0023

Note – The coverage rate of the confidence set is equal to 1−(Rejection probability). The results in this

table pertains to GE2 index with SMX(aX = 2.8, qX = 1.7) and SMY (aY = 3.8, qY = 1.2855). H0: GE2(X)−
GE2(Y ) = 0.05401.
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Table 6: Estimates and confidence intervals of the change in inequality across U.S. states between 1946 and

2016.

Theil Index / GE1 GE2

First sample - 1946 0.02743 0.02679

Second sample -2016 0.0144 0.01516

GEγ(2016)−GEγ(1946) −0.01303 −0.01163

Delta C.I. [−0.02486,−0.001204] [−0.02349, 0.00024]
Inequality decreases No change in Inequality

Fieller′s C.I. [−0.02531,−0.00155] [−0.02456,−0.00043]
Inequality decreases Inequality decreases

Permutation test p−Value 0.014 0.014

Inequality decreases Inequality decreases

Number of states 48 48

Table 7: Estimates and confidence intervals of the change in inequality across non-OECD countries

Theil Index / GE1 GE2

First sample - 1960 0.717621 1.46631

Second sample -2013 0.78726 1.45076

GEγ(2013)−GEγ(1960) 0.06964 −0.01554

Delta C.I. [−0.35694, 0.49623] [−1.15143, 1.120337]
Fieller′s C.I. [−0.40436, 0.63075] R
Permutation test p−value 0.886 0.992

Number of countries 72 72
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