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Asymptotic and bootstrap tests for inequality measures are known to perform poorly in finite samples when
the underlying distribution is heavy-tailed. We propose Monte Carlo permutation and bootstrap methods
for the problem of testing the equality of inequality measures between two samples. Results cover the Gen-
eralized Entropy class, which includes Theil’s index, the Atkinson class of indices, and the Gini index. We
analyze finite-sample and asymptotic conditions for the validity of the proposed methods, and we intro-
duce a convenient rescaling to improve finite-sample performance. Simulation results show that size correct
inference can be obtained with our proposed methods despite heavy tails if the underlying distributions
are sufficiently close in the upper tails. Substantial reduction in size distortion is achieved more generally.
Studentized rescaled Monte Carlo permutation tests outperform the competing methods we consider in
terms of power.

KEY WORDS: Bootstrap; Income distribution; Inequality measures; Permutation test.

1. INTRODUCTION

Income and wealth distributions are typically nonnormal
and can take various shapes. In view of this, distribution-free
approaches are especially well suited to the task of comparing
inequality measures. However, despite a sizable literature,
nonparametric methods for inference on such measures per-
form poorly in finite samples. As the sample size grows,
concern shifts from finite-sample distortions to asymptotic
problems caused by the failure of the assumptions needed to
ensure size control. These problems are often associated with
heavy tails, a common situation in applied work. In economics,
for example, income inequalities are of primary interest and
income distributions are characterized by a prominently heavy
right tail. In addition, inequality measures can be equal even
if the underlying distributions differ, which also confounds
inference.
Consider two variables x and y drawn from two distributions

Fx and Fy. We study distribution-free tests of

H0 : θ (Fx) = θ (Fy), (1)

where θ (.) is some functional on some subset F of distribu-
tions (further structure is provided below). Inequality indices
constitute special cases of θ (.) and provide the motivation

for our work. Formally, we analyze centered and uncentered
moments, the Generalized Entropy (GE) class of inequality
measures, which includes Theil’s index, the Atkinson class of
inequality indices (Atkinson 1970), and the Gini index.

While bootstrapping offers a natural alternative to standard
asymptotic approximations for this problem, Davidson and
Flachaire (2007), Cowell and Flachaire (2007), Schluter and
van Garderen (2009), and Davidson (2009, 2012) showed
that heavy tails also cause bootstrap failures. A few improve-
ments have been proposed. Davidson and Flachaire (2007)
considered a bootstrap data-generating process (DGP), which
combines a parametric estimate of the upper tail with a non-
parametric estimate of the rest of the distribution. Schluter and
van Garderen (2009) proposed normalizing transformations
of inequality measures using Edgeworth expansions, to adjust
asymptotic Gaussian approximations. Such corrections can
be effective in specific instances—for example, when the null
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hypothesis takes the form H1 : θ (Fx) = δ0 with δ0 known—but
still fail for heavy-tailed distributions.
This article analyzes permutation methods for testing H0

in (1) and shows that permutational Monte Carlo (MC) test
methods (Pitman 1937; Dwass 1957; Dufour 2006) provide
substantial improvement. We ask what finite and large-sample
assumptions are needed to support reliable permutations,
focusing on the specificities of commonly used inequality mea-
sures. Our analysis applies and extends the theoretical setups
of Romano (1990), Dufour (2006), and Chung and Romano
(2013).
We first consider a baseline problem, which restricts (1) to

the case where available samples are drawn from the same
distribution, that is, when Fx = Fy. We show that MC permuta-
tion tests provide exact inference in finite samples, even if the
common distribution is heavy-tailed. Our result allows for
continuous and discrete distributions, and does not require any
regularity condition on the form of the functional θ (·). We also
allow for exchangeable (as opposed to iid) observations, hence
covering the case of random draws without replacement from
a finite population. To the best of our knowledge, although
restrictive, this special case provides the only available exact
solution for the problem at hand.
The fact remains that (1) does not guarantee that Fx = Fy. In

this case, the use of permutation tests is not justified from an
exact perspective. Romano (1990) showed that, when Fx �= Fy,
permutation tests of the hypothesis in (1) are asymptotically
valid in specific cases—in the sense that the probability of
Type I error tends to the nominal level asymptotically—but
they are not generally valid. For instance, permutations work
using differences of sample means if the samples are of the
same size, but are invalid with differences of medians. We
suggest a convenient rescaling that validates permutations for
several inequality measures. A bootstrap method for this null
hypothesis is also proposed.
More recently, Chung and Romano (2013) showed that per-

mutation tests are asymptotically valid in a more general setting
if the underlying statistic is studentized. The importance of stu-
dentization is well-known for bootstrapping to achieve asymp-
totic refinements (Hall 1992). In contrast, with permutation
tests, studentization may be required for validity. In particular,
when comparing medians, studentized statistics will work while
nonstudentized counterparts are invalid. Although Chung and
Romano (2013) did not analyze inequality measures, their gen-
eral statistical setup validates comparing these measures using
studentized criteria. The rescaling we introduce may not be nec-
essary for size control with studentized criteria, at least asymp-
totically. Yet we show that it matters from the power perspective.
Simulation experiments are provided to study the finite-

sample properties of the proposed tests when the samples
are drawn from similar and different distributions. Some very
heavy-tailed distributions are considered to include a worst-case
scenario in our design. In terms of Type 1 error or size distor-
tion, our results show that when the samples are drawn from
two (strongly) heavy-tailed distributions, which are not too
different, permutation tests perform very well in finite samples.
When distributions differ dramatically particularly in their tails,
while size distortions are not completely eradicated, permu-
tation tests outperform the standard asymptotic and bootstrap

tests. In terms of power, our results show that permutation tests
based on rescaled samples perform better in small samples than
permutation tests based on original samples. We also analyze
dependent samples and permutation algorithms with matched
(paired) data. Results are broadly similar to the iid case, which
confirms the finite-sample superiority of MC permutation
methods.
The article is organized as follows. Section 2 describes

a general framework and presents the proposed inference
methods. In Section 3, we show how exact simulation-based
permutation tests for the hypothesis of equal distributions can
be obtained using statistics comparing general functionals of
empirical distribution functions. In Section 4, we consider the
problem of testing the equality of general functionals when the
distributions of the two populations can differ. In Section 5,
we study specific cases based on moments and commonly used
inequality measures. Simulation experiments are reported in
Section 6. We conclude in Section 7.

2. FRAMEWORK

In this section, we set notation, define the test statistics,
and present alternative permutational and simulation-based p-
values for comparing a general functional θ (.) on two different
populations. The specific treatment of inequality measures is
deferred to Section 5.
We consider two samples X = {X1, X2, . . . , Xn} and

Y = {Y1, Y2, . . . , Ym} each of which comprises indepen-
dent and identically distributed observations with cumulative
distribution functions Fx and Fy, respectively. We wish to test
general hypotheses of type H0 as in (1). A natural statistic for
such a problem is given by

T = θ (F̂x) − θ (F̂y), (2)

where F̂x and F̂y are the empirical distribution functions (EDFs)
of the samples X and Y , and N is the total number of observa-
tions, N = n+ m. On studentizing T , we get the studentized
test statistic

S = θ (F̂x) − θ (F̂y)√
V̂ [θ (F̂x)] + V̂ [θ (F̂y)]

, (3)

where V̂ [.] denotes an estimate of the variance of the indices in
question.
Suppose the asymptotic distribution of S under H0 is N[0,

1] (as m, n → ∞), and consider a critical region of the form
|S| > c where c is a critical value. Then an asymptotic p-value
for this test can be obtained as follows:

pa = G�(|S0|) = 2 min(�(S0) ; 1 − �(S0)), (4)

where S0 is the observed value of S,

G�(x) := P[|Z| > |x|]
= �(− |x|) + 1 − �(|x|)
= 2min(�(x), 1 − �(x)), (5)

Z ∼ N[0, 1], and �(·) = P[Z ≤ x] is the standard Normal
distribution function. Note the identities in (5) depend on the
continuity and symmetry of the normal distribution.
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We introduce three p-values, described in the following
subsections. For clarity, in what follows, p∗ refers to the
MC-permutation p-value, p� to the bootstrap p-value, and p•
denotes its counterpart that imposes the null hypothesis.

2.1 Monte Carlo Permutational p-Values

The permutational distribution based on the test statistic T
in (2), also known as the randomization distribution, is the
distribution obtained by permuting in all possible ways the
N = n+ m observations of the combined sample

Z = (X1, X2, . . . , Xn,Y1, Y2, . . . , Ym)
′. (6)

We denote P (Z) the set of all vectors obtained by permuting
the components of Z. Two permutations are viewed as distinct
as soon as they correspond to different orderings of the com-
ponents of Z (even if some of the observations are numerically
equal), so the total number of different permutations in P (Z) is
(m+ n)!. Under the assumption that the m+ n observations in
Z are iid, the (m+ n)! permutations in P (Z) are equally prob-
able, which in turn determines the permutational distribution of
T (or S). However, the total number of permutations (m+ n)!
to consider rapidly becomes prohibitively large as the sample
sizes m and n increase.
Following the suggestion of Dwass (1957), we draw at

random B permutations of Z from the set P (Z). These may be
drawn with or without replacement [in P (Z)]. When draws are
taken with replacement, the random permutations are iid; when
taken without replacement, they are exchangeable. In this arti-
cle, we focus on the case where the permutations are generated
without replacement. Along with the actual data, this yields
B+ 1 random permutations of Z: Z∗1, . . . , Z∗B. From each
permuted sample, the corresponding EDFs F̂x∗ j and F̂y∗ j are
computed, and the value of the test statistic as defined in (2):

T∗ j = θ (F̂x∗ j ) − θ (F̂y∗ j ), j = 1, . . . , B. (7)

Using the above simulated permutational test statistics, we can
then compute the following p-value functions:

p̂−
∗B(x) =

∑B
j=1 1[T∗ j ≤ x] + 1

B+ 1
, p̂+

∗B(x) =
∑B

j=1 1[T∗ j ≥ x] + 1

B+ 1
,

(8)
where the indicator function 1(A) is equal to one if A is true,
and zero otherwise. We can then obtain one-sided tests of H0

against H−
1 : θ (Fx) < θ (Fy) and H+

1 : θ (Fx) > θ (Fy), by taking
the following critical regions, respectively:

p̂−
∗B(T ) ≤ α, (9)

p̂+
∗B(T ) ≤ α, (10)

where α is the level of the test and T is the observed value
of the test statistic. To get a two-sided test, we can reject H0

against H1 : θ (Fx) �= θ (Fy) when either one of the one-sided
tests is significant at level α/2:

p̂−
∗B(T ) ≤ α/2 or p̂+

∗B(T ) ≤ α/2 (11)

or equivalently

p̂c∗B := 2min{ p̂−
∗B(T ), p̂+

∗B(T )} ≤ α. (12)

Another way of building a two-sided test consists in working
with the absolute value of the test statistic: setting

p̂a∗B(x) =
∑B

j=1 1(|T∗ j| ≥ x) + 1

B+ 1
, (13)

H0 is rejected against H1 when

p̂a∗B(|T |) ≤ α. (14)

The two critical regions in (12) and (14) are not generally equiv-
alent. In this article, we focus on two-sided tests of type (12).
In (8)–(14), the statistic T can be replaced by its studentized
version S, in which case

S∗ j = θ (F̂x∗ j ) − θ (F̂y∗ j )√
V̂ [θ (F̂x∗ j )] + V̂ [θ (F̂y∗ j )]

, j = 1, . . . , B. (15)

Of course, tests based on T or S are not generally equivalent.

2.2 Conventional Bootstrap p-Values

A bootstrap test is computed by resampling the original data
with replacement. A bootstrap sample, of the same size as the
observed sample, is obtained by making n draws with replace-
ment from the n observed realizations {X1, . . . , Xn}, where each
Xi has probability 1/n of being selected on each draw, and then
making, independently, m draws with replacement from the m
observed realizations {Y1, . . . , Ym}, where each Yi has proba-
bility 1/m of being selected on each draw. Let (X�,Y�) refer to
the bootstrap sample so obtained, and denote by F̂x� and F̂y� the
associated EDFs. The bootstrap statistic is computed as was S in
(3), except that the null hypothesis tested is that the difference
between the two indices is equal to θ (F̂x) − θ (F̂y) rather than to
0. Formally, the adjusted bootstrap statistic takes the form

S� =
(
θ (F̂x� ) − θ (F̂y� )

)− (
θ (F̂x) − θ (F̂y)

)√
V̂ [θ (F̂x� )] + V̂ [θ (F̂y� )]

. (16)

This modification ensures that the hypothesis pertaining to the
bootstrap statistics holds true for the population the bootstrap
samples are drawn from, that is, the original sample. Let S� j,
j = 1, . . . , B, refer to the series of bootstrap statistics. The
bootstrap p-value is the proportion of the bootstrap samples
for which the absolute value of the bootstrap statistic is more
extreme than the statistic computed from the original data.
Thus, for a two-tailed test, the bootstrap p-value is

p� = 2 min

⎛⎝ 1

B

B∑
j=1

1(S� j ≤ S0); 1
B

B∑
j=1

1(S� j > S0)

⎞⎠ . (17)

2.3 Bootstrap p-Values Under the Null Hypothesis

The permutation approach does not differ radically from the
bootstrap approach. For example, a sample obtained by per-
muting elements of the combined sample Z defined in (6) is
equivalent to resampling without replacement N observations
from Z. It thus makes sense to resample with replacement from
Z to form an alternative bootstrap sample that respects the null
hypothesis. One can proceed as follows. Drawwith replacement
n observations in Z to form a sample denoted X• and then draw
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with replacement m other observations in Z to form a sample
denoted Y•. Again, let F̂x• and F̂y• refer to the associated EDFs,
respectively. The bootstrap statistic can be computed as

S• = θ (F̂x• ) − θ (F̂y• )√
V̂ [θ (F̂x• )] + V̂ [θ (F̂y• )]

(18)

with no further adjustments since the sampling scheme imposes
the null hypothesis. Let S• j, j = 1, . . . , B, refer to the series
of bootstrap statistics so obtained, leading to the two-tailed
bootstrap p-value:

p• = 2 min

⎛⎝ 1

B

B∑
j=1

1(S• j ≤ S0); 1
B

B∑
j=1

1(S• j > S0)

⎞⎠ . (19)

3. EXACT MONTE CARLO PERMUTATION TESTS

Before we consider the general problem of testing H0, it
will be of interest to study the problem of testing H0 when the
populations considered have the same distributions, against
H−
1 , H

+
1 or H1. This is equivalent to testing Fx = Fy against

alternatives where θ (Fx) �= θ (Fy). This relatively restrictive
null hypothesis appears naturally when subsets of a wider pop-
ulation are considered. We will show here that both the level
and the size of permutation tests based on general statistics
of the form T or S can be controlled, irrespective whether the
distribution Fx (or Fy) is discrete or continuous, without any
restriction on the form of the functional θ (·). We also allow for
exchangeable (as opposed to iid) observations, hence covering
the case of random draws without replacement from a finite
population (in addition to iid observations). Thus, the result
given here can be viewed as an extension of the basic finding
of Dwass (1957) who considered tests that compare arithmetic
means of iid random variables with continuous distribution.
Since most estimated inequality measures rely on statistics

based on EDFs, which are not continuous, a tie-breaking pro-
cedure may be needed to control test size. For this purpose, we
propose to use the randomized ordering described in Dufour
(2006), which leads to the following procedure. We first draw
by simulation B+ 1 iid random variables U0, U1, . . . ,UB,

according to a uniform distribution on (0, 1), independently of
(T, T∗1, . . . ,T∗B). Then we compute p-value functions similar
to those described in Section 2.1, with the difference that the
pairs (T∗ j,Uj ), j = 0, . . . ,B, are ordered according to the
lexicographic order:

(T∗i, Ui) ≤ (T∗ j, Uj ) ⇔ [T∗i < T∗ j

or (T∗i = T∗ j andUi ≤ Uj )], (20)

where T∗0 = T is the statistic obtained from the actual data.
More precisely, this yields the following modified (tie-adjusted)
p-value functions:

p̃−
∗B(x) =

∑B
i=1 1[(T∗i, Ui) ≤ (x, U0)] + 1

B+ 1
, (21)

p̃+
∗B(x) =

∑B
i=1 1[(x, U0) ≤ (T∗i, Ui)] + 1

B+ 1
, (22)

p̃a∗B(x) =
∑B

i=1 1[(x, U0) ≤ (|T∗i|, Ui)] + 1

B+ 1
. (23)

The tests are performed as before on replacing p̂ by p̃. We can
then establish the following theorem.

Theorem 1. Suppose the n+ m random variables X1,
X2, . . . , Xn,Y1, Y2, . . . , Ym are exchangeable. Then, for
0 < α < 1,

P[ p̂−
∗B(T ) ≤ α] ≤ P[ p̃−

∗B(T ) ≤ α] = α, (24)

P[ p̂+
∗B(T ) ≤ α] ≤ P[ p̃+

∗B(T ) ≤ α] = α, (25)

P[ p̂a∗B(|T |) ≤ α] ≤ P[ p̃a∗B(|T |) ≤ α] = α, (26)

where the p-value functions are defined in (8) and (21)–(23).

Proof. By the exchangeability assumption, different permuta-
tions of the components of Z are equally probable, so randomly
selected permutations (either with or without replacement) are
themselves exchangeable. Consequently, the random variables
T, T∗1, . . . ,T∗B are exchangeable. On applying Proposition 2.4
of Dufour (2006), we then get

P[ p̃−
∗B(T ) ≤ α] = P[ p̃+

∗B(T ) ≤ α] = P[ p̃a∗B(|T |) ≤ α] = α.

(27)
Finally, the inequalities in (24)–(26) follow on observing that

p̃−
∗B(x) ≤ p̂−

∗B(x), p̃+
∗B(x) ≤ p̂+

∗B(x), p̃a∗B(x) ≤ p̂a∗B(x).
(28)
�

Theorem 1 means that the critical regions p̃−
∗B(T ) ≤ α,

p̃+
∗B(T ) ≤ α, and p̃a∗B(|T |) ≤ α have size α for testing H0 when

the populations considered have the same distributions, while
the critical regions p̂−

∗B(T ) ≤ α, p̂+
∗B(T ) ≤ α, and p̂a∗B(|T |) ≤ α

are typically conservative, so they still have level α for testing
H0. Clearly, the same result holds if the test statistic T is
replaced by its studentized version S.
Note also the events p̃−

∗B(T ) ≤ α/2 and p̃+
∗B(T ) ≤ α/2

are mutually exclusive [and similarly for p̂−
∗B(T ) ≤ α/2 and

p̂+
∗B(T ) ≤ α/2] for 0 < α < 1, so that

P[ p̂−
∗B(T ) ≤ α/2 or p̂+

∗B(T ) ≤ α/2] ≤ P[ p̃−
∗B(T )

≤ α/2 or p̃+
∗B(T ) ≤ α/2] = α (29)

under H0 when the populations considered have the same
distributions, for 0 < α < 1. Thus, on setting

p̂c∗B(x) := 2min{ p̂−
∗B(x), p̂

+
∗B(x)},

p̃c∗B(x) := 2min{ p̃−
∗B(x), p̃

+
∗B(x)}, (30)

we have

P[ p̂c∗B(T ) ≤ α] ≤ P[ p̃c∗B(T ) ≤ α] = α (31)

under H0, so p̂c∗B(T ) ≤ α and p̃c∗B(T ) ≤ α constitute two-sided
critical regions with level α for H0 (0 < α < 1). The latter are
not in general equivalent to p̂a∗B(|T |) ≤ α or p̃a∗B(|T |) ≤ α.
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4. PERMUTATION TESTS FOR COMPARING LINEAR
FUNCTIONALS: DIFFERENT DISTRIBUTIONS

In this section, we identify specific finite-sample permutation
test problems and extend the results in Romano (1990) on the
asymptotic validity of permutation tests based on T [in (2)]
to the case where θ (.) is a linear functional. This result will
be used in the next section to show that permutation tests are
asymptotically valid for inequality measures if the samples
are previously rescaled adequately. Permutations based on
studentized statistics [such as (3) here] have been shown to
be valid under rather general regularity conditions by Chung
and Romano (2013). The following analysis, which focuses
on (2) is nevertheless informative, as the properties we derive
are new to this literature. The transformation we introduce for
simple contrasts [like (2)] also ends up enhancing power when
combined with studentization.
In general, when the assumption Fx = Fy does not hold,

permutation tests of H0 [in (1)] are no longer exact (at level α).
However, as pointed out by Romano (1990), such tests can be
asymptotically valid in specific cases, in the sense that under
the null hypothesis, the rejection frequency of H0 tends to the
nominal level α as the sample size increases.
For the general two-sample problem of testing θ (Fx) = θ (Fy),

when the statistics n1/2[θ (F̂x) − θ (Fx)] and m1/2[θ (F̂y) − θ (Fy)]
converge weakly to Gaussian distributions with mean 0, the
corresponding permutation test is asymptotically valid when
the asymptotic variances of the statistics θ (F̂x) and θ (F̂y)
are equal; see Romano (1990). This result requires that θ (.)
be appropriately differentiable in the sense of Gill (1988).
However, asymptotic validity of the permutation test does not
generally hold in such two-sample problems, while it does for
one-sample problems.
With two independent samples, {X1, . . . , Xn} and

{Y1, . . . , Ym}, drawn from the probability distributions Fx
and Fy, the test statistic n1/2[θ (F̂x) − θ (F̂y)] is asymptotically
Gaussian with mean 0 and variance

Vas
[
θ (F̂x)

]+ 1 − λ

λ
Vas

[
θ (F̂y)

]
(32)

under H0, where Vas[θ (F̂x)] and Vas[θ (F̂y)] are the asymptotic
variances of n1/2[θ (F̂x) − θ (Fx)] and m1/2[θ (F̂y) − θ (Fy)], as
n → ∞ and m/(m+ n) → λ, where 0 < λ < 1 (Romano
1990, Theorem 3.3). Further, the permutational distribution of
the test statistic is asymptotically Gaussian with mean 0 and
variance

Vas
[
θ
(
(1 − λ)F̂x + λF̂y

)]+ 1 − λ

λ
Vas

[
θ
(
(1 − λ)F̂x + λF̂y

)]
.

(33)
This result is useful to consider asymptotic validity of a per-
mutation test when the variances in (32) and (33) are the same,
that is, when the following condition holds:

Vas
[
θ
(
(1 − λ)F̂x + λF̂y

)] = λVas
[
θ (F̂x)

]+ (1 − λ)Vas
[
θ (F̂y)

]
.

(34)
In this case, the permutation test is asymptotically valid, in the
sense that the permutational distribution of the test statistic is
asymptotically identical to the unconditional sampling distri-
bution of n1/2[θ (F̂x) − θ (F̂y)]. This permutational distribution
can then be used to compute a critical value or a p-value.
Condition (34) holds in particular when the sample sizes are

“equal” (in large samples) or when the distributions have the
same asymptotic variances. But it does not hold in general.
In view of applying these general results to compare inequal-

ity measures, it will be useful to consider the case where the
functionals involved are mixture-linear and the available esti-
mators are asymptotically linear. These concepts are defined in
what follows.

Definition 1. Let D be a set of distribution functions on the
real numbers, and θ : D → R a mapping from D to the real
numbers. We say that θ is a mixture-linear functional of order
K, where K is a positive integer, if D is closed under linear
mixtures, that is, F1, . . . , FK ∈ D entails

∑K
k=1 λkFk ∈ D , and

θ (·) satisfies the condition

θ

(
K∑
k=1

λkFk

)
=

K∑
k=1

λkθ (Fk ), (35)

for all F1, . . . , FK ∈ D and nonnegative scalars λ1, . . . , λK ∈
R such that

∑K
k=1 λk = 1.

Definition 2. Given a sample Z = {Z1, . . . , Zn} of indepen-
dent observations drawn from distribution Fz, an estimator θ (F̂z)
of the functional θ (Fz) is asymptotically linear Gaussian if

n1/2[θ (F̂z) − θ (Fz)] = 1√
n

n∑
i=1

gz(Zi) + oFz (1)
d−→

n→∞ N[0, σθ (Fz)],

(36)
where σθ (Fz) depends on the underlying distribution.

Theorem 2. Consider the problem of testing H0 : θ (Fx) =
θ (Fy) from two independent samples X = {X1, . . . ,Xn} and
Y = {Y1, . . . ,Ym} of independent observations with distribu-
tions Fx and Fy, respectively, where Fx and Fy have finite second
moments, and letD = {Fz : Fz = λFx + (1 − λ)Fy,0 < λ < 1}.
Suppose θ : D → R is a mixture-linear functional of order 2,
and the estimator θ (F̂z) is asymptotically linear Gaussian for
any iid sample Z1, . . . , Zn with distribution Fz ∈ D . If

Vas[θ (F̂x)] = Vas[θ (F̂y)], (37)

where Vas[θ (F̂x)] and Vas[θ (F̂y)] are the asymptotic variances of
n1/2[θ (F̂x) − θ (Fx)] and m1/2[θ (F̂y) − θ (Fy)], or if

m/(m+ n) −→
n→∞ λ = 1/2, (38)

then the permutation test based on T defined in (2) and the MC
replications (7) is asymptotically valid.

Proof. The fact that the permutational distribution (under
H0) of the test statistic n1/2[θ (F̂x) − θ (F̂y)] is asymptotically
Gaussian follows from condition (36); see Chung and Romano
(2013). (Alternatively, Romano (1990) relied on differentia-
bility conditions.) Let λ1,n and λ2,n be fixed positive constants
(which may depend on n) such that λ1,n + λ2,n = 1. Since θ (.)
is a linear functional and the two samples are independent, we
have

V

[
θ

(
2∑

k=1

λk,n F̂k

)]
= V

[
2∑

k=1

λk,n θ (F̂k )

]
=

2∑
k=1

λk,n V
[
θ (F̂k )

]
.

For F1 = Fx and F2 = Fy, we have

V
[
θ
(
λ1,nF̂x + λ2,nF̂y

)] = λ1,n V [θ (F̂x)] + λ2,n V [θ (F̂y)].
(39)
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Take λ2,n := m/(m+ n) and λ1,n := n/(m+ n) = 1 − λ2,n.
Then, λ2,n → λ and λ1,n → 1 − λ as n → ∞, where 0 < λ <

1, hence

V [θ (λ1,nF̂x + λ2,nF̂y)] −→
n→∞ (1 − λ)Vas[θ (F̂x)] + λVas[θ (F̂y)].

(40)
The condition (34) is then satisfied if λ = 1/2 or Vas[θ (F̂x)] =
Vas[θ (F̂y)]. �

Note that the (arithmetic) mean is a linear functional, but
the quantile is not a linear functional. Comparing means from
samples of similar size with a permutation test is then asymp-
totically valid, even if the underlying distributions are not
identical, while comparing quantiles with a permutation test is
no longer valid, in general, if the underlying distributions are not
identical.

5. COMPARING INEQUALITY MEASURES

This section focuses on identifying functionals θ (.) of inter-
est for which permutation tests (7) are valid in the sense of
Theorem 2. We study moments and inequality measures for
which condition (34) would hold.

5.1 Centered and Uncentered Moments

Consider the functional

θ (Fz) =
∫

φ(z) dFz(z), (41)

where φ(.) is any function in R for which E[φ(.)] exists. For
any random variable w that follows a mixture of K distribu-
tions, w ∼ ∑K

k=1 λkFk(w), if we consider K random variables
w1, . . . , wK from the K component distributions, then

θ (Fw ) = E[φ(w)] =
K∑
k=1

λkE[φ(wk )] =
K∑
k=1

λkθ (Fwk ). (42)

The functional (41) is linear and Theorem 2 applies: permuta-
tion tests are asymptotically valid if either (37) or (38) holds.
Then, comparing uncentered moments between two samples

with permutation tests is asymptotically valid, it corresponds
to the special case of (41) with φ(z) = zr, where r is a positive
integer. The mean corresponds to the case φ(z) = z. Turning to
centered moments, consider

θ (Fz) =
∫
[z− E(z)]r dFz(z), (43)

where r is an integer greater than 1. With w and w1, . . . , wK

as in (42), we have

θ (Fw ) = E([w − E(w)]r )

=
K∑
k=1

λkE([wk − E(wk ) + E(wk ) − E(w)]r ).

(44)

The two last terms in parenthesis vanish if they are equal
leading to

θ (Fw ) =
K∑
i=1

λkE([wk − E(wk )]
r )

=
K∑
i=1

λkθ (Fwk ) if E(wk ) = E(w),∀k.

This result suggest that (43) is not a linear functional, unless
the component distributions share a common mean. From
Theorem 2, comparing centered moments from two samples
with a permutation test (7) is then invalid, unless the samples
come from distributions with the same mean, μ(Fx) = μ(Fy),
and either (37) or (38) holds.
However, centered moments are translation invariant: calcu-

lating centered moments from the original samples or from the
centered samples,

{X1 − μ(Fx), . . . , Xn − μ(Fx)} and

{Y1 − μ(Fy), . . . , Ym − μ(Fy)}, (45)

gives the same result. The main issue here is that the centered
samples have a common mean, which is equal to zero, and
the statistic (43) is a linear functional in this particular case.
Comparing centered moments from the two centered samples
rather than from the original samples makes no difference,
while it validates (asymptotically) the use of permutation test.
In practice, μ(Fx) and μ(Fy) are often unknown. Permutation

tests can nevertheless be applied on the combined sample

Zc = {
X1 − X̄, . . . , Xn − X̄,Y1 − Ȳ , . . . , Yn − Ȳ )

}
, (46)

where X̄ = n−1∑n
i=1 Xi and Ȳ = m−1∑m

i=1 Yi are the sample
means of each sample. This procedure is known to perform well
in finite samples when testing the equality of variances from two
samples, see Lim and Loh (1996) and Boos and Brownie (2004).

5.2 The Generalized Entropy Class

We consider the important GE class of inequality measures,
defined by

θ
ζ

GE(F ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
ζ 2−ζ

[∫ [
y

μ(F )

]ζ

dF (y) − 1

]
, if ζ �= 0, 1,

−
∫

log
[

y
μ(F )

]
dF (y), if ζ = 0,∫

y
μ(F ) log

[
y

μ(F )

]
dF (y), if ζ = 1.

(47)

The parameter ζ of the GE class characterizes the sensitivity
to differences over different segments of the distribution. The
more positive (negative) ζ is, the more sensitive is the inequality
measure to differences at the top (bottom) of the distribution.
The Mean Logarithmic Deviation (MLD) index, θ0

GE(F ), is
the limiting case when ζ = 0. The Theil index, θ1

GE(F ), is the
limiting case of the GE when ζ = 1.
The GE class of inequality measures is decomposable, that is,

it can be expressed as a simple additive function of within-group
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and between-group inequality. Let there be K groups and let
the proportion of the population falling in group k be λk; then
the class of GE indices is equal to

θ
ζ

GE(F̂w ) =
K∑
k=1

λk

[
w̄k

w̄

]ζ

θ
ζ

GE(F̂wk )

− 1

ζ 2 − ζ

(
K∑
k=1

λk

[
w̄k

w̄

]ζ

− 1

)
, (48)

where w̄k is the mean income in group k, w̄ = K−1∑K
k=1 λkw̄k

is the mean income of the population and θ
ζ

GE(F̂wk ) is the GE
index in group k, see Cowell (2011). It is clear that

θ
ζ

GE(F̂w ) =
K∑
k=1

λkθ
ζ

GE,k(F̂wk ) if w̄k = w̄, ∀k. (49)

It follows that θζ

GE(F̂w ) is not a linear functional, unless themean
in each group is the same. From Theorem 2, comparing GE
inequality measures from two samples with permutation tests
(7) is then valid only if the samples come from distributions with
the same mean, μ(Fx) = μ(Fy), and either (37) or (38) holds.

As is clear from Equation (47), the GE class of inequality
measures is scale invariant, which suggests to base a permu-
tation test on the rescaled samples, where the observations are
divided by their distributional mean,{

X1
μ(Fx)

, . . . ,
Xn

μ(Fx)

}
and

{
Y1

μ(Fy)
, . . . ,

Ym
μ(Fy)

}
. (50)

Comparing Generalized Inequality indices from these rescaled
samples rather than from the original samples makes no differ-
ences, while it validates (asymptotically) the use of permutation
test. In practice, distributional means are often unknown; we
thus use sample means X̄ and Ȳ instead, so the permutation test
is based on the following combined sample:

Zs =
{
X1
X̄

, . . . ,
Xn
X̄

,
Y1
Ȳ

, . . . ,
Ym
Ȳ

}
, X̄ = 1

n

n∑
i=1

Xi,

Ȳ = 1

m

m∑
i=1

Yi. (51)

It is worth noting that when we consider the rescaled sam-
ples (50), the GE inequality measures can be rewritten as a
moment θ

ζ

GE(Fz) = ∫
φ(z) dFz(z), as defined in (41), where

φ(z) = (zζ − 1)/(ζ 2 − ζ ) for ζ �= 0, 1, φ(z) = − log z for
ζ = 0, and φ(z) = z log z for ζ = 1, which leads us back to the
results of Section 5.1.
Clearly the same approach can be applied to the

Atkinson class of inequality indices (Atkinson 1970),
θ

ζ

Atk(F ) = 1 − [
∫
[ y
μ(F ) ]

ζdF (y)]1/ζ , ζ < 1, which can be rewrit-
ten as a function of the GE class of inequality measures

θ
ζ

Atk(F ) =
{
1 − [(ζ 2 − ζ )θζ

GE(F ) + 1]1/ζ , ζ �= 0,
1 − exp(−θ0

GE(F )), ζ = 0.
(52)

5.3 The Gini Coefficient

The Gini index can be expressed in a number of different forms.
Let us consider the following expressions,

θGini(F ) = 1

2μ(F )

∫∫
|y1 − y2| dF (y1)dF (y2) = E(|y1 − y2|)

2μ(F )
,

(53)

θGini(F ) = 1 − 2
∫ 1

0
L(F; q) dq, (54)

where y1 and y2 are two random variables independently drawn
from F , and L(F; q) is the qth ordinate of the Lorenz curve.
Equation (53) presents the Gini as the normalized average
absolute difference between all the possible pairs of incomes in
the population, while Equation (54) shows that the Gini index
is twice the area between the Lorenz curve and the 45◦ line.

The Gini index is also closely related to a measure of disper-
sion of a distribution. The most popular measure of dispersion is
the standard deviation, which is the square root of the variance
that can be rewritten as follows:

V (y) = E[(y− μ(F ))2] = E

[
1

2
(y1 − y2)

2

]
. (55)

Another well-known measure of dispersion is the Gini’s mean
difference,

�(F ) = E(|y1 − y2|). (56)

Both measures of dispersion are translation invariant. In
Section 5.1, we prove that testing the equality of variances
from two samples with different means can be done with per-
mutation tests based on the combined sample of the recentered
individual samples. Boos, Janssen, and Veraverbeke (1989)
proved that this procedure is asymptotically correct for a large
class of U-statistics, from which the Gini’s mean difference is
a special case. We can then use the relationship between the
Gini (inequality) index and the Gini’s mean difference to justify
asymptotically the use of permutation test with the Gini index.
Indeed, we have

�(F ) = 2μ(F )θGini(F ). (57)

With μ(F ) = 1, the Gini’s mean difference is twice the Gini
index. Comparing the Gini’s mean difference or the Gini
index from two samples is then equivalent if the underlying
distributions share a common mean equal to one.
The last condition does not hold in general. However, the

Gini index is scale invariant. Then, calculating Gini index from
the original samples or from the rescaled samples, where the
observations are divided by their distributional mean,{

X1
μ(Fx)

, . . . ,
Xn

μ(Fx)

}
and

{
Y1

μ(Fy)
, . . . ,

Ym
μ(Fy)

}
, (58)

gives the same results. The main issue here is that these rescaled
samples share a common mean, equals to one. Comparing Gini
inequality measures from the two rescaled samples in (58)
rather than from the original samples makes no difference for
scale invariant statistic, while it validates asymptotically the
use of permutation test. In practice, distributional means are
replaced by sample means and permutation tests are based on
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the combined sample of empirically rescaled individual data Zs
as defined in (51).

6. SIMULATION STUDY

Overall, we focus our simulation study to extreme cases of
(very) heavy-tailed distributions in small samples to stress-test
the methods employed in testing. The heavy-tailed distribution
used as a benchmark in previous studies is a more favorable
case here, and we use much more heavy-tailed distributions
with a very small number observations in each samples. In our
experiments, we test the equality of Gini and Theil inequality
measures between two samples.

6.1 Model Design

We make use of simulated datasets drawn from the Singh–
Maddala distribution, which can quite successfully mimic
observed income distributions in various countries (McDonald
1984; Kleiber and Kotz 2003). The CDF of the Singh–
Maddala distribution, SM(x; a, b, q), can be written as
F (x) = 1 − [1 + ( xb )

a]−q, where a, b, q are positive, b is a
scale parameter and a, q are shape parameters; q only affects
the right tail, whereas a affects both tails. The kth moment
exists for −a < k < aq. The upper-tail of the Singh–Maddala
distribution behaves like a Pareto distribution with a tail index
equal to ξ = aq (Schluter and Trede 2002). Smaller is ξ , heavier
is the upper tail of the distribution.
As a benchmark, we use the parameter values a = 2.8,

b = 100− 1
2.8 , q = 1.7. This distribution is used in Davidson

and Flachaire (2007) and Cowell and Flachaire (2007) to show
poor finite-sample performance of asymptotic and bootstrap
inference. Its tail index is equal to ξ = aq = 4.76. We will
depart from this distribution using heaviest-tailed distributions
(Singh–Maddala distributions with smaller tail parameters ξ )
for which we know that bootstrap inference is poorest.
We compute the Theil and the Gini indices as follows:

θ1
GE(F̂y) = 1

n

n∑
i=1

yi
μ̂
log

(
yi
μ̂

)
and

θGini(F̂y) = 2
∑n

i=1 iy(i)
μ̂n(n− 1)

− n+ 1

n− 1
, (59)

where μ̂ = 1
n

∑n
i=1 yi and, the y(i), i = 1, . . . , n are the order

statistics (y(1) ≤ · · · ≤ y(n)). (The variance of the Theil index
is computed as v̂ar(θ1

GE(F̂y)) = 1
n2
∑n

i=1(Zi − Z̄)2, where Zi =
yi
μ̂
[log( yi

μ̂
) − θ1

GE(F̂y) − 1], and Z̄ = 1
n

∑n
i=1 Zi. The variance of

the Gini index is computed as v̂ar(θGini(F̂y)) = 1
(nμ̂)2

∑n
i=1(Zi −

Z̄)2, where Zi = −(θGini(F̂y) + 1)y(i) + 2i−1
n y(i) − 2

n

∑i
j=1 y( j)

and Z̄ = 1
n

∑n
i=1 Zi, see Davidson 2009; Cowell and Flachaire

2015.)
Our results are presented with figures, with the following

legend:

� asymptotic: asymptotic test.
� bootstrap: standard bootstrap test S� (defined in (16))
� Perm T, rescaled: permutation test T∗ based on Zs
(defined in (7) and (51))

� Perm S, rescaled: permutation test S∗ based on Zs
(defined in (15) and (51))

� Perm S, standard: permutation test S∗ based on Z
(defined in (15) and (6))

� Boot S, rescaled: bootstrap test S• based on Zs
(defined in (18) and (51))

� Boot S, standard: bootstrap test S• based on Z
(defined (18) and (6))

The number of replications is equal to 10,000. The number
of bootstrap and permutation samples are similar, B = 999. The
permutation and bootstrap p-values are obtained as described
above. We compute the rejection probability, or rejection fre-
quency, as the proportion of p-value less than a nominal level
equals to 0.05.

6.2 Size

In the experiments, we consider several Singh–Maddala dis-
tributions for which the Theil inequality measure index is
the same and the tail index varies, ξ ∈ [2.9, 6.26]. (Singh–
Maddala distributions with parameters (a, q) equal to
(2.5, 2.502199), (2.6, 2.149747), (2.7, 1.894309), (2.8, 1.7),
(3.0, 1.4223847), (3.2, 1.2320215), (3.4, 1.0922125),
(3.8, 0.8984488), (4.8, 0.6366578), and (5.8, 0.4996163),
share the same (scale-invariant) Theil index, equal to
0.1401151. The tail parameters are, respectively, equal to ξ =
6.26, 5.59, 5.11, 4.76, 4.27, 3.94, 3.71, 3.41, 3.06, 2.9.) The
Singh–Maddala distribution with ξ = 2.9 is then the heaviest-
tailed distribution considered here. Similar experiments are
conducted for the Gini index, with slightly different tail
parameters, ξ ∈ [2.59, 6.6]. (Singh–Maddala distributions with
parameters (a, q) equal to (2.5, 2.640350), (2.6, 2.218091),
(2.7, 1.920967), (2.8, 1.7), (3.0, 1.3921126), (3.2, 1.1866026),
(3.4, 1.0388049), (3.8, 0.8387663), (4.8, 0.5784599), and
(5.8, 0.4473111), share the same (scale-invariant) Gini index,
equals to 0.2887138. The tail parameters are, respectively, equal
to ξ = 6.6, 5.77, 5.19, 4.76, 4.18, 3.80, 3.53, 3.19, 2.78, 2.59.)
Inference is exact if the rejection probability is equal to 0.05.
6.2.1. Identical Distributions. Figure 1 shows empirical

rejection frequencies for asymptotic, bootstrap, and permuta-
tion tests for the Theil index, when Fx = Fy, as the upper tail
becomes heavier. The sample size is very small n = m = 50.
Figure 2 shows similar results for the Gini index. When the
upper-tail of the distribution becomes heavier (as ξy decreases),
asymptotic and standard bootstrap tests perform very poorly,
while permutation and bootstrap under the null tests based on
the studentized statistic (perm S rescaled, perm S standard, boot
S rescaled, and boot S standard) provide empirical frequencies
almost equal to 0.05. Note that studentized permutation tests
based on the combined original samples (perm S standard)
provides exact inference—as shown by Chung and Romano
(2013), not permutation tests based on the combined rescaled
samples (perm S rescaled): it is because samples are previously
divided by sample means rather than by distributional means.
6.2.2. Different Distributions. We then generate sam-

ples from different distributions, Fx �= Fy, with the same value
of the inequality index. Figure 3 shows rejection frequencies for
asymptotic, bootstrap, and permutation tests for the Theil index,
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Figure 1. Size: Rejection frequencies of asymptotic, permutation, and bootstrap tests for the problem of testing the equality of Theil inequality
measures between two samples. The two distributions are identical, Fx = Fy. The upper tail is heavier as ξy decreases, with ξy = ξx ∈ [2.9; 6.26]
and n = m = 50.

Figure 2. Size: Rejection frequencies of asymptotic, permutation, and bootstrap tests for the problem of testing the equality of Gini inequality
measures between two samples. The two distributions are identical, Fx = Fy. The upper tail is heavier as ξy decreases, with ξy = ξx ∈ [2.59; 6.6]
and n = m = 50.

Figure 3. Size: Rejection frequencies of asymptotic, permutation, and bootstrap tests for the problem of testing the equality of Theil
inequality measures between two samples. The distribution Fx is fixed (ξx = 4.76) and Fx �= Fy. The distribution Fy goes away from Fx, being
heavier tailed as ξy decreases, with ξy ∈ [2.9; 6.26] and n = m = 50.
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Figure 4. Size: Rejection frequencies of asymptotic, permutation, and bootstrap tests for the problem of testing the equality of Gini inequality
measures between two samples. The distribution Fx is fixed (ξx = 4.76) and Fx �= Fy. The distribution Fy goes away from Fx, being heavier tailed
as ξy decreases, with ξy ∈ [2.59; 6.6] and n = m = 50.

as the distribution Fy moves away from Fx. The distribution Fx
is fixed, with a tail index ξx = 4.76, while Fy has varying tail
indices. When the tail index of Fy is smaller (higher) than that
of Fx, that is, when ξy < ξx, Fy is more (less) heavy-tailed than
Fx. Figure 4 shows similar results for the Gini index. From these
figures, we can see that the results deteriorate when Fy tends
to be much more heavy-tailed than Fx, that is, when ξy < 3.5.
Overall, permutation and bootstrap under the null tests based on
the studentized statistic (perm S rescaled, perm S standard, boot
S rescaled, and boot S standard) perform similarly and they out-
perform other methods. They perform very well when ξy > 3.5,
that is, when Fy is not much more heavy-tailed than Fx.
6.2.3. Sample Size. Figure 5 shows rejection frequen-

cies for the Theil measure, as the sample size increases (n =
m = 50, . . . , 10,000), with identical distributions (Fx = Fy),
in the worst case previously studied (ξx = ξy = 2.9). We
can see that the rejection frequencies decrease slowly as the
sample size increases with asymptotic tests, and, even more

slowly with standard bootstrap tests. In contrast, permutation
tests and bootstrap under the null perform very well in all
cases when they are based on studentized statistic: rejec-
tion frequencies are always almost equal to 0.05 for perm S
rescaled, perm S standard, boot S rescaled, and boot S stan-
dard. (We obtain similar results for the Gini index (results not
reported).)
Figure 6 shows rejection frequencies for the Theil measure,

as the sample size increases (n = m = 50, . . . , 10, 000) with
different distributions (Fx �= Fy), in the worst cases previously
studied (ξx = 4.76, ξy = 2.9). We can see that, for each method,
the rejection frequencies decrease very slowly as the sample
size increases. Moreover, permutation and bootstrap under
the null tests based on a studentized statistic outperform other
methods. (We obtain similar results for the Gini index (results
not reported).)
Figure 7 shows rejection frequencies for the Theil mea-

sure, with unequal sample sizes (n = 100, 110, . . . , 190

Figure 5. Size: Rejection frequencies of asymptotic, permutation, and bootstrap tests for the problem of testing the equality of Theil inequality
measures between two samples, as the sample size increases. The two distributions are identical, Fx = Fy, and very heavy-tailed, ξy = ξx = 2.9.
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Figure 6. Size: Rejection frequencies of asymptotic, permutation, and bootstrap tests for the problem of testing the equality of Theil
inequality measures between two samples, as the sample size increases. The two distributions are very different in their upper tails, Fx �= Fy,
with tail parameters equal to ξx = 4.76 and ξy = 2.9.

and m = 200 − n), in the worst case previously stud-
ied (ξx = ξy = 2.9). The x-axis goes from equal sizes
(n = m = 100) to extremely unequal sizes (n = 190, m = 10).
With identical distributions (left panel: Fx = Fy), we can see
that over-rejections increase quickly with asymptotic and boot-
strap tests, as the sample sizes are more unequal. By contrast,
permutation tests perform very well in all cases when they are
based on studentized statistic. With different distributions (right
panel: Fx �= Fy), over-rejections increase quickly with asymp-
totic and bootstrap tests, as the sample sizes are more unequal.
They increase slowly with permutation tests. Overall, we can
see that permutation tests outperform asymptotic and standard
bootstrap tests, with unequal sample sizes. They perform very
well when the two distributions are similar.

6.3 Power

To study the power, we test the equality of an inequality mea-
sure between two samples, when the samples come from two

distributions with different values of the inequality measure.
From the study on the size, studentized permutation and boot-
strap under the null tests outperform other methods. They also
perform similarly when the null hypothesis is true, we can thus
compare power between these methods.
In our experiments, the distribution Fx is fixed and the

distribution Fy varies:

Fx = SM(x; 2.8, 100− 1
2.8 , 1.7) and

Fy = SM(y; 2.8, 100− 1
2.8 , q), q ∈ [0.7; 31.7]. (60)

As q increases, the tail index and the inequality measure
increase. (We take q = 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5,
1.7, 1.9, 2.2, 2.7, 3.7, 5.7, 31.7 from which we have
the tail indices ξ = 2.8 q ∈ [1.96; 88.76]. The true null
hypothesis is, respectively, equal to H0 : θ (Fy) − θ (Fx) =
0.328, 0.21, 0.143, 0.1, 0.071, 0.051, 0.035, 0.023,
0.014, 0,−0.01,−0.02,−0.03,−0.041,−0.049,−0.06 for
the Theil index.) Figure 8 shows rejection frequencies for

Figure 7. Size: Rejection frequencies of asymptotic, permutation, and bootstrap tests for the problem of testing the equality of Theil
inequality measures between two samples of unequal sizes, m = 200 − n.
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Figure 8. Power: Rejection frequencies of permutation and bootstrap tests for the problem of testing the equality of Theil inequality measures
between two samples, when the true null hypothesis is equal to θ (Fy) − θ (Fx). The distribution Fx is fixed and the distribution Fy is heavier tailed
as θ (Fy) − θ (Fx) increases.

testing the equality of the Theil measure between two samples,
when the true null hypothesis, θ (Fy) − θ (Fx), goes away from
0. We consider a small sample (n = m = 50, on the left) and
a moderate sample (n = m = 200, on the right). We consider
different cases:

� θ (Fy) − θ (Fx) = 0: the two distributions are identical and
H0 is true (size);

� θ (Fy) − θ (Fx) �= 0: the two distributions are different and
H0 is not true (power);

� θ (Fy) − θ (Fx) < 0:Fy is less heavy-tailed thanFx (ξy > ξx);
� θ (Fy) − θ (Fx) > 0: Fy is more heavy-tailed than Fx
(ξy < ξx).

Power comparison of the considered permutation and boot-
strap methods are valid since rejection probabilities under the
null hypothesis θ (Fy) − θ (Fx) = 0 are close to the nominal level
(here 0.05), which in Figure 8 is represented via the dashed
horizontal line.
From Figure 8, we can see that the curves are asym-

metric around 0. When Fy is less heavy-tailed than Fx
(θ (Fy) − θ (Fx) < 0), the null is quickly rejected as the true
null hypothesis moves away from 0. On the other side, when
Fy is more heavy-tailed than Fx (θ (Fy) − θ (Fx) > 0), the null
is slowly rejected as the true null hypothesis moves away from
0. Overall, we can see that the permutation approach (perm
S rescaled and standard) is more powerful than the bootstrap
under the null approach (boot S rescaled and standard), the
difference between the two approaches being resampling with-
out replacement rather than with replacement. In addition, the
studentized permutation tests based on the combined rescaled
samples (perm S rescaled) outperform other methods. It rejects
the null much more faster than other methods, especially when
Fy is heavier-tailed than Fx (θ (Fy) − θ (Fx) > 0).6.2.3

6.4 Dependent Samples

It is often of great interest to compare inequality levels between
pretax and post-tax income distributions, for instance to
measure the impact of a specific taxation scheme on inequality.

In that case, the two samples are correlated and of equal size,
with the same individuals in both samples. Bootstrapping
and permuting should be modified to take into account such
dependencies:

� A bootstrap sample is obtained by making n draws by pairs
with replacement from the n observed incomes, where
each pairs (Xi,Yi) has probability 1/n of being selected on
each draw.

� A permuted sample is obtained by permuting elements
within pairs, that is, by permuting Xi and Yi (or Xi/X̄ and
Yi/Ȳ for the case of rescaling), with probability 1/2, for
i = 1, . . . , n.

The denominator of the studentized statistic, in (3), (15),
and (18), needs also to be modified to take into account the
dependence (matched-pair) between the samples. (The denom-
inator in (3) becomes {V̂ [θ (F̂x)] + V̂ [θ (F̂y)] − 2εxy/n}1/2. For
the Theil index, we have: εxy = 1

μ̂xμ̂y
{( ν̂x

μ̂x
+ 1)( ν̂y

μ̂y
+ 1)μ̂xμ̂y −

( ν̂x
μ̂x

+ 1)μ̂xν̂y − ( ν̂y
μ̂y

+ 1)ν̂xμ̂y + ν̂xν̂y} and, μ̂x = 1
n

∑n
i=1 xi,

ν̂x = 1
n

∑n
i=1 xi log xi, μ̂y = 1

n

∑n
i=1 yi, ν̂y = 1

n

∑n
i=1 yi log yi,

see Zheng and Cushing (2001).)
Figure 9 shows size results, that is, empirical rejection fre-

quencies for asymptotic, standard bootstrap and permutation
tests for the Theil index in small samples (n = 50), when
the two distributions are identical (left panel: Fx = Fy) and
different (right panel: Fx �= Fy). The correlation between the
two samples is generated using a Gumbel copula, and is very
strong: the Kendall correlation coefficient is high, ρ = 0.8. We
can see from this figure that the permutation t-tests outperform
other methods and that they perform very well when Fx is not
too far from Fy. Overall, the simulation results are quite similar
to those obtained previously in case of independent samples, in
left panels of Figures 1 and 3, with less distortions in the case
of identical distributions and more distortions in the case of
different distributions.
Figure 10 shows power results, that is, rejection frequencies

for testing the equality of the Theil index between two depen-
dent samples, when the true null hypothesis, θ (Fy) − θ (Fx), goes
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Figure 9. Size: Rejection frequencies of asymptotic, permutation, and bootstrap tests for the problem of testing the equality of Theil
inequality measures between two dependent samples, n = 50.

Figure 10. Power: Rejection frequencies of permutation and bootstrap tests for the problem of testing the equality of Theil inequality
measures between two dependent samples, when the true null hypothesis is equal to θ (Fx) − θ (Fy). The distribution Fx is fixed and the distribution
Fy is heavier tailed as θ (Fy) − θ (Fx) increases.

away from 0. We consider a small sample (left panel: n = 50)
and a moderate sample (right panel: n = 200). Overall, the sim-
ulation results are quite similar to those obtained previously in
case of independent samples, in Figure 8. The studentized per-
mutation tests based on the combined rescaled samples (perm S
rescaled) outperform other methods in small samples. It rejects
the null much more faster than other methods, especially when
Fy is heavier-tailed than Fx (θ (Fy) − θ (Fx) > 0).
It is interesting to note that, if a taxation scheme is propor-

tionate (the amount of the tax is a fixed proportion of incomes),
the pretax and post-tax distributions are identical for the Theil
and MLD indices (because of the scale independence property).
In such cases, inference should then be (nearly) exact with
studentized permutation tests, even if the income distributions
are heavy-tailed.
The above results suggest that further extensions relaxing

the iid assumption hold credible promise. One may consider, in
particular, non-iid observations within each sample as occurs
with stratified or clustered survey-based data; see Deaton

(1997) and Bhattacharya (2005, 2007). Although beyond the
scope of our article, permutation and bootstrap schemes that
account for such dependencies are a useful research direction.

7. CONCLUSION

We study Monte Carlo permutation and bootstrap methods
for the problem of testing the equality of inequality measures
between two samples. For scale-independent measures, as
the Gini, Theil, Generalized Entropy, and Atkinson indices,
we introduce a convenient rescaling to validate and enhance
performance. Our simulation results show that permutation
tests control size regardless of tail thickness, when underlying
distributions are not too distant (with respect to scale). When
underlying distributions differ substantially in their upper
tails, proposed permutation methods still provide significant
improvement over standard asymptotic and bootstrap tests. In
addition, results suggest that rescaling observations by sample
means before permutation improves power in finite samples.
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