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quantitative (CIREQ), and Groupe de recherche en économie de l’énergie, de l’environnement et des
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ABSTRACT

Asymptotic and bootstrap tests based on inequality measures are known to perform poorly
in finite samples when the underlying distribution is heavy-tailed. We propose Monte-Carlo
permutation and bootstrap methods for the problem of testing the equality of inequality
measures between two samples. Results cover the Generalized Entropy class which includes
Theil’s index, the Atkinson class of indices and the Gini index. We analyze finite-sample
and asymptotic conditions for the validity of proposed methods, and introduce a conve-
nient rescaling to improve finite-sample performance. Simulation results show that size
correct inference can be obtained with our proposed methods despite heavy tails if the
underlying distributions are sufficiently close in the upper tails. Substantial reduction in
size distortion is achieved more generally. Studentized rescaled Monte Carlo permutation
tests outperform the competing methods we consider in terms of power.
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1 Introduction

Income and wealth distributions are typically non-normal and can take various shapes. In

view of this, distribution-free approaches are especially well suited to the task of compar-

ing inequality measures. However, despite a sizable literature, non-parametric methods

for inference on such measures perform poorly in finite samples. As the sample size grows,

concern shifts from small sample distortions to asymptotic problems caused by the failure

of the assumptions needed to ensure size control. These problems are often associated

with heavy tails, a common situation in applied work. In economics for example, in-

come inequalities are of primary interest and income distributions are characterized by a

prominently heavy right tail. In addition, inequality measures can be equal even if the

underlying distributions differs, which also confounds inference.

Consider two variables x and y assumed drawn from two distributions, Fx and Fy. We

study distribution-free tests of

H0 : θ(Fx) = θ(Fy) (1)

where θ(.) is some functional on some subset F of distributions (further structure is pro-

vided below). Inequality indices that are special cases of (1) provide the motivation for

our work. Formally, we analyze centered and uncentered moments, the Generalized En-

tropy (GE) class of inequality measures which includes Theil’s index, the Atkinson class

of inequality indices (Atkinson, 1970) and the Gini index.

While bootstraps offer a natural alternative to standard asymptotics for this problem,

Davidson and Flachaire (2007), Cowell and Flachaire (2007), Schluter and van Garderen

(2009) or Davidson (2009, 2012) show that heavy tails also cause bootstrap failures. A few

improvements have been proposed. Davidson and Flachaire (2007) consider a bootstrap

data generating process (DGP) which combines a parametric estimate of the upper tail with

a non-parametric estimate of the rest of the distribution. Schluter and van Garderen (2009)

propose normalizing transformations of inequality measures using Edgeworth expansions,

to adjust asymptotic Gaussian approximations. Such corrections which seem effective in
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specific instances, for example when the null hypothesis takes the form H1 : θ(Fx) = δ0

with δ0 known, still fail with heavy-tailed distributions.

This paper analyzes permutation methods for inference on (1) and offers compelling ar-

guments that permutation-based Monte Carlo (MC) test methods (Pitman, 1937; Dwass,

1957; Dufour, 2006) are one large step in the right direction. We ask what finite and

large-sample assumptions are needed to support reliable permutations, focusing on the

specificities of commonly used inequality measures. Our analysis applies and extends the

theoretical setups of Romano (1990), Dufour (2006) and Chung and Romano (2013).

We first consider a baseline problem which restricts (1) to the case where available

samples are drawn from the same distribution, that is when Fx = Fy. We show that MC

permutation tests provide exact inference in finite samples, even if the common distribution

is heavy-tailed. Our result allows for continuous and discrete distributions, and does not

require any regularity condition on the form of the functional θ(·). We also allow for

exchangeable (as opposed to i.i.d.) observations, hence covering the case of random draws

without replacement from a finite population. To the best of our knowledge, although

restrictive, this special case provides the only available exact solution for the problem at

hand.

The fact remains that (1) does not guarantee that Fx = Fy. A simple counter-example

is provided in Figure 1 which depicts Singh-Maddala distributions (Burr XII) with den-

sity f(u) = aqua−1/(ba[1 + (u/b)a]1+q), for two choices of a, b and q: 2.8, 0.1930698, 1.7

[depicted as Fx] and 4.8, 0.1930698, 0.6366578 [depicted as Fy]. The latter choice yields

a distribution much more heavy-tailed than the former, yet both distributions share the

same value of the Theil index which equals 0.1401. In this case, the use of permutation

tests is not justified from an exact perspective. Romano (1990) shows that, when Fx 6= Fy,

permutation tests of the hypothesis in (1) are asymptotically valid - in the sense that the

probability of a Type I error tends asymptotically to the nominal level - for some very

specific cases, but are not valid in general. For instance, permutations work using differ-

ences of sample means if the samples are of the same size, but are invalid with differences
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of medians. We suggest a convenient rescaling that validates permutations for several

inequality measures. A bootstrap method for this null hypothesis is also proposed.

More recently, Chung and Romano (2013) showed that permutation tests are asymp-

totically valid in a more general setting if the underlying statistic is studentized. The

importance of studentization is well-known for bootstrapping to achieve asymptotic refine-

ments (Hall, 1992). In contrast, with permutation tests, studentization may be required

for validity. In particular, when comparing medians, studentized statistics will work while

non-studentized counterparts are invalid. Although Chung and Romano (2013) do not

analyze inequality measures, their general statistical setup validates comparing these mea-

sures using studentized criteria. The rescaling we introduce may not be necessary for size

control with studentized criteria, at least asymptotically. Yet we show that it matters

from the power perspective.

Simulation experiments are provided to study the finite-sample properties of proposed

tests when the samples are drawn from similar and different distributions. We consider

excessively heavy-tailed cases to analyze size within a worst-case scenario design. In terms

of Type 1 error or size distortion, our results show that when the samples are drawn from

two (strongly) heavy-tailed distributions which are not too different, permutation tests

perform very well in finite samples. When distributions differ dramatically particularly in

their tails, while size distortions are not completely eradicated, permutation tests outper-

form the standard asymptotic and bootstrap tests. In terms of power, our results show

that permutation tests based on rescaled samples perform better in small samples than

permutation tests based on original samples.

The paper is organized as follows. Section 2 sets a general framework and presents

our proposed inference methods. In section 3, we show how exact simulation-based per-

mutation tests for the hypothesis of equal distributions can be obtained using statistics

comparing general functionals of empirical distribution functions. In section 4, we con-

sider the problem of testing the equality of general functionals when the distributions of

the two populations can differ. In section 5, we study specific cases based on moments and
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commonly used inequality measures. Simulation experiments are reported in section 6.

We conclude in section 7.

2 Framework

In this section, we set notation, define the test statistics, and present alternative per-

mutational and simulation-based p-values for comparing a general functional θ(.) on two

different populations. The specific treatment of inequality measures is deferred to section

5.

We consider two samples X = {X1, X2, . . . , Xn} and Y = {Y1, Y2, . . . , Ym} each

of which comprises independent and identically distributed observations with cumulative

distribution functions Fx and Fy respectively. We wish to test general hypotheses of type

H0 as in (1). A natural statistic for such a problem is given by

T = θ(F̂x)− θ(F̂y) (2)

where F̂x and F̂y are the empirical distribution functions (EDFs) of the samples X and

Y , and N is the total number of observations, N = n+m. On studentizing T , we get the

studentized test statistic

S =
θ(F̂x)− θ(F̂y)√

V̂ [θ(F̂x)] + V̂ [θ(F̂y)]
(3)

where V̂ [.] denotes an estimate of the variance of the indices in question.

Suppose the asymptotic distribution of S under H0 is N [0, 1] (as m, n → ∞), and

consider a critical region of the form |S| > c where c is a critical value. Then an asymptotic

p-value for this test can be obtained as follows:

pa = GΦ(|S0|) = 2 min
(

Φ(S0) ; 1− Φ(S0)
)

(4)
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where S0 is the observed value of S,

GΦ(x) := P[|Z| > |x|] = Φ(− |x|) + 1− Φ(|x|) = 2 min
(

Φ(x), 1− Φ(x)
)
, (5)

Z ∼ N [0, 1], and Φ(·) = P[Z ≤ x] is the standard Normal distribution function. Note the

identities in (5) depend on the continuity and symmetry of the normal distribution.

We introduce three p-values, described in the following subsections. For clarity, in

what follows, p∗ refers to the MC-permutation p-value, p[ to the bootstrap p-value, and p•

denotes its counterpart that imposes the null hypothesis.

2.1 Monte-Carlo permutational p-values

The permutational distribution based on the test statistic T in (2), also known as the

randomization distribution, is the distribution obtained by permuting in all possible ways

the N = n+m observations of the combined sample

Z = (X1, X2, . . . , Xn, Y1, Y2, . . . , Ym)′. (6)

We denote P(Z) the set of all vectors obtained by permuting the components of Z. Two

permutations are viewed as distinct as soon as they correspond to different orderings of

the components of Z (even if some of the observations are numerically equal), so the total

number of different permutations in P(Z) is (m + n)!. Under the assumption that the

m+n observations in Z are i.i.d., the (m+n)! permutations in P(Z) are equally probable,

which in turn determines the permutational distribution of T (or S). However, the total

number of permutations (m + n)! to consider rapidly becomes prohibitive large as the

sample sizes m and n increase.

Following the suggestion of Dwass (1957), we draw at random B permutations of Z

from the set P(Z). These may be drawn with or without replacement [in P(Z)]. When

draws are taken with replacement, the random permutations are i.i.d.; when taken without
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replacement, they are exchangeable. In this paper, we focus on the case where the per-

mutations are generated with replacement. Along with the actual data, this yields B + 1

random permutations of Z: Z∗1, . . . , Z∗B. From each permuted sample, the corresponding

EDFs F̂x∗j and F̂y∗j are computed, and the value of the test statistic as defined in (2):

T∗j = θ(F̂x∗j)− θ(F̂y∗j) , j = 1, . . . , B . (7)

Using the above simulated permutational test statistics, we can then compute the following

p-value functions:

p̂−∗B(x) =

∑B
j=1 1[T∗j ≤ x] + 1

B + 1
, p̂+

∗B(x) =

∑B
j=1 1[T∗j ≥ x] + 1

B + 1
, (8)

where the indicator function 1(A) is equal to one if A is true, and zero otherwise. We can

then obtain one-sided tests of H0 against H−1 : θ(Fx) < θ(Fy) and H+
1 : θ(Fx) > θ(Fy), by

taking the following critical regions respectively:

p̂−∗B(T ) ≤ α , (9)

p̂+
∗B(T ) ≤ α , (10)

where α is the level of the test and T is the observed value of the test statistic. To get

a two-sided test, we can reject H0 against H1 : θ(Fx) 6= θ(Fy) when either one of the

one-sided tests is significant at level α/2:

p̂−∗B(T ) ≤ α/2 or p̂+
∗B(T ) ≤ α/2 (11)

or equivalently

p̂c∗B := 2 min{p̂−B(T ) , p̂+
∗B(T )} ≤ α . (12)

Another way of building a two-sided test consists in working with the absolute value of
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the test statistic: setting

p̂a∗B(x) =

∑B
j=1 1(|T∗j| ≥ x) + 1

B + 1
, (13)

H0 is rejected against H1 when

p̂a∗B(|T |) ≤ α . (14)

The two critical regions in (12) and (14) are not generally equivalent. In this paper, we

focus on two-sided tests of type (12). In (8) - (14), the statistic T can be replaced by its

studentized version S, in which case

S∗j =
θ(F̂x∗j)− θ(F̂y∗j)√

V̂ [θ(F̂x∗j)] + V̂ [θ(F̂y∗j)]
, j = 1, . . . , B . (15)

Of course, tests based on T or S are not generally equivalent.

2.2 Conventional bootstrap p-values

A bootstrap test is computed by resampling the original data with replacement. A boot-

strap sample, of the same size as the observed sample, is obtained by making n draws with

replacement from the n observed realizations {X1, . . . , Xn}, where each Xi has probabil-

ity 1/n of being selected on each draw, and then making, independently, m draws with

replacement from the m observed realizations {Y1, . . . , Ym}, where each Yi has probability

1/m of being selected on each draw. Let (X[, Y[) refer to the bootstrap sample so obtained

and denote by F̂x[ and F̂y[ the associated EDFs respectively. The bootstrap statistic is

computed as was S in (3), except that the null hypothesis tested is that the difference

between the two indices is equal to θ(F̂x)− θ(F̂y) rather than to 0. Formally, the adjusted

bootstrap statistic takes the form

S[ =

(
θ(F̂x[)− θ(F̂y[)

)
−
(
θ(F̂x)− θ(F̂y)

)
√
V̂ [θ(F̂x[)] + V̂ [θ(F̂y[)]

. (16)
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This modification ensures that the hypothesis pertaining to the bootstrap statistics holds

true for the population the bootstrap samples are drawn from, that is, the original sample.

Let S[j, j = 1, . . . , B, refer to the series of bootstrap statistics. The bootstrap p-value

is the proportion of the bootstrap samples for which the absolute value of the bootstrap

statistic is more extreme than the statistic computed from the original data. Thus, for a

two-tailed test, the bootstrap p-value is

p[ = 2 min

(
1

B

B∑
j=1

1(S[j ≤ S0);
1

B

B∑
j=1

1(S[j > S0)

)
. (17)

2.3 Bootstrap p-values under the null hypothesis

The permutation approach does not differ radically from the bootstrap approach. For

example, a sample obtained by permuting elements of the combined sample Z defined

in (6) is equivalent to resampling without replacement N observations from Z. It thus

makes sense to resample with replacement from Z to form an alternative bootstrap sample

that respects the null hypothesis. One can proceed as follows. Draw with replacement

n observations in Z to form a sample denoted X• and then draw with replacement m

other observations in Z to form a sample denoted Y•. Again, let F̂x• and F̂y• refer to the

associated EDFs respectively. The bootstrap statistic can be computed as

S• =
θ(F̂x•)− θ(F̂y•)√

V̂ [θ(F̂x•)] + V̂ [θ(F̂y•)]
(18)

with no further adjustments since the sampling scheme imposes the null hypothesis. Let

S•j, j = 1, . . . , B, refer to the series of bootstrap statistics so obtained, leading to the

two-tailed bootstrap p-value:

p• = 2 min

(
1

B

B∑
j=1

1(S•j ≤ S0);
1

B

B∑
j=1

1(S•j > S0)

)
. (19)

8



3 Exact Monte-Carlo permutation tests

Before we consider the general problem of testing H0 when the populations considered may

have otherwise different distributions, it will be of interest to study the problem of testing

H0 against H−1 , H+
1 or H1. This is equivalent to testing Fx = Fy against alternatives where

θ(Fx) 6= θ(Fy). This relatively restrictive null hypothesis appears naturally when subsets

of a wider population are considered. We will show here that both the level and the size

of permutation tests based on general statistics of the form T or S can be controlled,

irrespective whether the distribution Fx (or Fy) is discrete or continuous, without any

restriction on the form of the functional θ(·). We also allow for exchangeable (as opposed

to i.i.d.) observations, hence covering the case of random draws without replacement from

a finite population (in addition to i.i.d. observations). Thus, the result given here can

be viewed as an extension of the basic finding of Dwass (1957) who considered tests that

compare arithmetic means of i.i.d. random variables with continuous distribution.

Since most estimated inequality measures rely on statistics based on EDFs, which

are not continuous, a tie-breaking procedure may be needed to control test size. For

this purpose, we propose to use the randomized ordering described in Dufour (2006),

which leads to the following procedure. We first draw by simulation B + 1 i.i.d. random

variables U0, U1, ... , UB, according to a uniform distribution on (0, 1), independently

of (T, T∗1 , ... , T∗B). Then we compute p-value functions similar to those described in

Section 2.1, with the difference that the pairs (T∗j, Uj), j = 0, ..., B, are ordered according

to the lexicographic order:

(T∗i, Ui) ≤ (T∗j, Uj)⇔ [T∗i < T∗j or (T∗i = T∗j and Ui ≤ Uj)] (20)

where T∗0 = T is the statistic obtained from the actual data. More precisely, this yields

the following modified (tie-adjusted) p-value functions:

p̃−∗B(x) =

∑B
i=1 1[(T∗i, Ui) ≤ (x, U0)] + 1

B + 1
, (21)
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p̃+
∗B(x) =

∑B
i=1 1[(x, U0) ≤ (T∗i, Ui)] + 1

B + 1
, (22)

p̃a∗B(x) =

∑B
i=1 1[(x, U0) ≤ (|T∗i|, Ui)] + 1

B + 1
. (23)

The tests are performed as before on replacing p̂ by p̃. We can then establish the following

theorem.

Theorem 1 Suppose the n+m random variables X1, X2, . . . , Xn, Y1, Y2, . . . , Ym are ex-

changeable. Then, for 0 < α < 1,

P[p̂−∗B(T ) ≤ α] ≤ P[p̃−∗B(T ) ≤ α] = α, (24)

P[p̂+
∗B(T ) ≤ α] ≤ P[p̃+

∗B(T ) ≤ α] = α, (25)

P[p̂a∗B(|T |) ≤ α] ≤ P[p̃a∗B(|T |) ≤ α] = α , (26)

where the p-value functions are defined in (8) and (21) - (23).

Proof: By the exchangeability assumption, different permutations of the components of Z

are equally probable, so randomly selected permutations (either with or without replace-

ment) are themselves exchangeable. Consequently, the random variables T, T∗1 , ... , T∗B

are exchangeable. On applying Proposition 2.4 of Dufour (2006), we then get

P[p̃−∗B(T ) ≤ α] = P[p̃+
∗B(T ) ≤ α] = P[p̃a∗B(|T |) ≤ α] = α . (27)

Finally, the inequalities in (24) - (26) follow on observing that

p̃−∗B(x) ≤ p̂−∗B(x) , p̃+
∗B(x) ≤ p̂+

∗B(x) , p̃a∗B(x) ≤ p̂a∗B(x) . (28)

�

Theorem 1 means that the critical regions p̃−∗B(T ) ≤ α, p̃+
∗B(T ) ≤ α and p̃a∗B(|T |) ≤

α have size α for testing H0, while the critical regions p̂−∗B(T ) ≤ α, p̂+
∗B(T ) ≤ α and
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p̂a∗B(|T |) ≤ α are typically conservative, so they still have level α for testing H0. Clearly,

the same result holds if the test statistic T is replaced by its studentized version S.

Note also the events p̃−∗B(T ) ≤ α/2 and p̃+
∗B(T ) ≤ α/2 are mutually exclusive [and

similarly for p̂−∗B(T ) ≤ α/2 and p̂+
∗B(T ) ≤ α/2] for 0 < α < 1, so that

P[p̂−∗B(T ) ≤ α/2 or p̂+
∗B(T ) ≤ α/2] ≤ P[p̃−∗B(T ) ≤ α/2 or p̃+

∗B(T ) ≤ α/2] = α (29)

under H0, for 0 < α < 1. Thus, on setting

p̂c∗B(x) := 2 min{p̂−∗B(x), p̂+
∗B(x)} , p̃c∗B(x) := 2 min{p̃−∗B(x), p̃+

∗B(x)} , (30)

we have

P[p̂c∗B(T ) ≤ α] ≤ P[p̃c∗B(T ) ≤ α] = α (31)

under H0, so p̂c∗B(T ) ≤ α and p̃c∗B(T ) ≤ α constitute two-sided critical regions with level

α for H0 (0 < α < 1). The latter are not in general equivalent to p̂a∗B(|T |) ≤ α or

p̃a∗B(|T |) ≤ α.

4 Permutation tests for comparing linear functionals:

different distributions

In this section, we identify specific finite-sample permutation test problems and extend

the results in Romano (1990) on the asymptotic validity of permutation tests (2) to the

case where θ(.) is a linear functional. The latter result will be used in the next section

to show that permutation tests are asymptotically valid with inequality measures if the

samples are previously rescaled adequately. Permutations based on studentized statistics

[such as (3) here] have been shown to be valid under rather general regularity conditions

by Chung and Romano (2013). The following analysis which focuses on (2) is nevertheless

informative, as the properties we derive are new to this literature. More to the point, the
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transformation we introduce to validate (3) ends up enhancing power when combined with

studentization.

In general, if the assumption Fx = Fy does not hold, the permutation test of H0 in (1)

is no longer of α-level. However, as pointed out by Romano (1990), permutation tests can

be asymptotically valid in some specific cases, in the sense that under the null hypothesis,

the rejection frequency of the permutation test tends to the nominal level α as the sample

size increases.

Romano (1990) shows that, in a general two-sample problem of testing θ(Fx) = θ(Fy),

the asymptotic validity of the permutation test follows when the asymptotic variance of

the original statistic n1/2[θ(F̂x) − θ(F̂y)] and the asymptotic variance of the permutation

statistic are the same (both statistics converge weakly to a Gaussian distribution with mean

0). This result requires that θ(.) is appropriately differentiable in the sense of Gill (1988).

It leads him to conclude that the validity of the permutation test does not hold in general

for two sample problems, while it is generally asymptotically valid for certain one-sample

problems. In his Theorem 3.3, Romano (1990) shows that, with two independent samples,

{X1, . . . , Xn} and {Y1, . . . , Ym}, drawn from the probability distributions Fx and Fy, the

test statistic n1/2[θ(F̂x)− θ(F̂y)] is asymptotically Gaussian with mean 0 and variance

Vas

[
θ(F̂x)

]
+

1− λ
λ

Vas

[
θ(F̂y)

]
(32)

where Vas[θ(F̂x)] and Vas[θ(F̂x)] are the asymptotic variances of, respectively, n1/2[θ(F̂x)−

θ(Fx)] and m1/2[θ(F̂y) − θ(Fy)], and m/(m + n) → λ as n → ∞, λ > 0. Moreover, he

shows that the distribution of the permutation test behaves asymptotically as Gaussian

with mean 0 and variance

Vas

[
θ
(

(1− λ)F̂x + λF̂y

)]
+

1− λ
λ

Vas

[
θ
(

(1− λ)F̂x + λF̂y

)]
. (33)

This result is useful to consider asymptotic validity of a permutation test when the vari-
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ances (32) and (33) are the same, that is, when the following condition holds:

Vas

[
θ
(

(1− λ)F̂x + λF̂y

)]
= λVas

[
θ(F̂x)

]
+ (1− λ)Vas

[
θ(F̂y)

]
. (34)

If this condition holds, the permutation test is asymptotically valid, in the sense that the

distribution of the permutation test behaves asymptotically as the unconditional sampling

distribution of n1/2[θ(F̂x) − θ(F̂y)]. The distribution of the permutation test can then be

used to compute a critical value or a p-value.

Looking at situations where (34) holds, Romano shows that for comparing means, the

permutation test is asymptotically valid only if the sample sizes are (approximately) the

same or the distributions have (approximately) the same variances. Moreover, he argues

that this condition does not hold in general. Looking more closely at situations where

(34) holds, we derive the following result, which will be useful to show that permutation

tests may be valid in several useful situations, such as comparing moments or inequality

measures between two samples.

This result assumes that the considering functionals are mixture-linear and the available

estimators are asymptotically linear. These concepts are defined in what follows:

Definition 1 A mixture-linear functional is a mapping from a subset of distributions on

the set of real numbers, θ : D → R, satisfying the following condition

θ

(
K∑
k=1

λkFk

)
=

K∑
k=1

λkθ(Fk) (35)

where F1, . . . , FK are distributions and λ1, . . . , λK are fixed positive scalars such that∑K
k=1 λk = 1.

Definition 2 Given a sample Z = {Z1, . . . , Zn} of independent observations drawn from

distribution Fz, an estimator of a functional θ(F̂z) is asymptotically linear if

n1/2[θ(F̂z)− θ(Fz)] =
1√
n

n∑
i=1

gz(Zi) + oFz(1) (36)
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where the function gz can depend on the underlying distribution.

Theorem 2 Consider the problem of testing

H0 : θ(Fx) = θ(Fy) (37)

from two samples X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym} of independent observations,

drawn, respectively, from distributions Fx and Fy, using estimators θ(F̂x) and θ(F̂y) that

are asymptotically linear, that is, satisfy (36), not just for i.i.d. samples under Fx and Fy,

but also when sampling i.i.d. observations from the mixture distribution λFx + (1− λ)Fy,

and assume finite second moments. A permutation test (7) is asymptotically valid if θ(.)

is a mixture-linear functional, as in (35), and, in addition, at least one of the following

conditions hold:

m/(m+ n) −→
n→∞

λ = 1/2 (38)

Vas[θ(F̂x)] = Vas[θ(F̂y)] (39)

where Vas[θ(F̂x)] and Vas[θ(F̂x)] are the asymptotic variances of, respectively, n1/2[θ(F̂x)−

θ(Fx)] and m1/2[θ(F̂y)− θ(Fy)].

Proof: Romano (1990) shows that the distribution of the permutation test based on the

statistic n1/2[θ(F̂x)− θ(F̂y)] is asymptotically Gaussian.1 With a linear functional θ(.) and

independent samples, we have:2

V

[
θ

(
K∑
k=1

λkF̂k

)]
= V

[
K∑
k=1

λkθ(F̂k)

]
=

K∑
k=1

λkV
[
θ(F̂k)

]
.

1Romano (1990) relies on differentiablity conditions, whereas Chung and Romano (2013) use the weaker
condition (36) instead.

2With independent samples, Cov[θ(F̂k), θ(F̂l)] = 0, for k 6= l, k, l = 1, . . . ,K.
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For K = 2, F1 = Fx and F2 = Fy, we have

V
[
θ
(
λ1F̂x + λ2F̂y

)]
= λ1 V [θ(F̂x)] + λ2 V [θ(F̂y)], (40)

Let us define λ2 = m/(m+ n)→ λ as n→∞ and λ1 = n/(m+ n) = 1− λ2, we obtain

V
[
θ
(
λ1F̂x + λ2F̂y

)]
−→
n→∞

(1− λ)Vas[θ(F̂x)] + λVas[θ(F̂y)], (41)

The condition defined in (34) is then satisfied if λ = 1/2 or Vas[θ(F̂x)] = Vas[θ(F̂y)].

�

Note that the (arithmetic) mean is a linear functional, but the quantile is not a linear

functional. Comparing means from samples of similar size with a permutation test is

then asymptotically valid, even if the underlying distributions are not identical, while

comparing quantiles with a permutation test is no longer valid, in general, if the underlying

distributions are not identical.

5 Comparing inequality measures

This section focuses on identifying functionals θ(.) of interest for which permutation tests

(7) are valid in the sense of Theorem 2. We study moments and inequality measures for

which condition (34) would hold.

5.1 Centered and uncentered moments

Consider the functional

θ(Fz) =

∫
φ(z) dFz(z), (42)
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where φ(.) is any function in R for which E[φ(.)] exists. For any random variable w that

follows a mixture of K distributions

w ∼
K∑
k=1

λkFk(w),

if we consider K random variables w1, . . . , wK from the K component distributions then

θ(Fw) = E[φ(w)] =

K∑
k=1

λkE[φ(wk)] =

K∑
k=1

λkθ(Fwk). (43)

The functional (42) is linear and Theorem 2 applies: permutation tests are asymptotically

valid if either (38) or (39) holds.

Then, comparing uncentered moments between two samples with permutation tests is

asymptotically valid, it corresponds to the special case of (42) with φ(z) = zr, where r

is a positive integer. The mean corresponds to the case φ(z) = z. Turning to centered

moments, consider

θ(Fz) =

∫
[z − E(z)]r dFz(z), (44)

where r is an integer greater than 1. With w and w1, . . . , wK as in (43), we have

θ(Fw) = E
(

[w − E(w)]r
)

(45)

=

K∑
k=1

λkE
([
wk − E(wk) + E(wk)− E(w)

]r)
. (46)

The two last terms in parenthesis vanish if they are equal leading to:

θ(Fw) =
K∑
i=1

λkE
(

[wk − E(wk)]
r
)

(47)

=

K∑
i=1

λkθ(Fwk) if E(wk) = E(w),∀k. (48)

This result suggest that (44) is not a linear functional, unless the component distributions
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share a common mean. From Theorem 2, comparing centered moments from two samples

with a permutation test (7) is then invalid, unless the samples come from distributions

with the same mean, µ(Fx) = µ(Fy), and either (38) or (39) holds.

However, centered moments are translation invariant: calculating centered moments

from the original samples or from the centered samples,

{
X1 − µ(Fx), . . . , Xn − µ(Fx)

}
and

{
Y1 − µ(Fy), . . . , Ym − µ(Fy)

}
, (49)

gives the same result. The main issue here is that the centered samples have a common

mean, which is equal to zero, and the statistic (44) is a linear functional in this particular

case. Comparing centered moments from the two centered samples rather than from

the original samples makes no difference, while it validates (asymptotically) the use of

permutation test.

In practice, µ(Fx) and µ(Fy) are often unknown. Permutation tests can nevertheless

be applied on the combined sample

Zc =
{
X1 − X̄, . . . , Xn − X̄, Y1 − Ȳ , . . . , Yn − Ȳ )

}
(50)

where X̄ = n−1
∑n

i=1 Xi and Ȳ = m−1
∑m

i=1 Yi are the sample means of each sample. This

procedure is known to perform well in finite sample when testing the equality of variances

from two samples, see Lim and Loh (1996) and Boos and Brownie (2004).

5.2 The generalized entropy class

We consider the important GE class of inequality measures, defined by equations (51)-(53):

θζGE(F ) =
1

ζ2 − ζ

[∫ [
y

µ(F )

]ζ
dF (y)− 1

]
, ζ ∈ R, ζ 6= 0, 1, (51)

θ0
GE(F ) = −

∫
log

[
y

µ(F )

]
dF (y), (52)
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θ1
GE(F ) =

∫
y

µ(F )
log

[
y

µ(F )

]
dF (y). (53)

The parameter ζ of the GE class characterizes the sensitivity to differences over different

segments of the distribution. The more positive (negative) ζ is, the more sensitive is

the inequality measure to differences at the top (bottom) of the distribution. The Mean

Logarithmic Deviation (MLD) index, θ0
GE(F ), is the limiting case when ζ = 0. The Theil

index, θ1
GE(F ), is the limiting case of the GE when ζ = 1.

The GE class of inequality measures is decomposable, that is, it can be expressed as

a simple additive function of within-group and between-group inequality. Let there be K

groups and let the proportion of the population falling in group k be λk; then the class of

GE indices is equal to

θζGE(F̂w) =
K∑
k=1

λk

[w̄k
w̄

]ζ
θζGE(F̂wk)−

1

ζ2 − ζ

(
K∑
k=1

λk

[w̄k
w̄

]ζ
− 1

)
(54)

where w̄k is the mean income in group k, w̄ is the mean income of the population

w̄ = K−1

K∑
k=1

λkw̄k

and θζGE(F̂wk) is the GE index in group k, see Cowell (2011). It is clear that

θζGE(F̂w) =
K∑
k=1

λkθ
ζ
GE,k(F̂wk) if w̄k = w̄, ∀k. (55)

It follows that θζGE(F̂w) is not a linear functional, unless the mean in each group is the same.

From Theorem 2, comparing GE inequality measures from two samples with permutation

tests (7) is then valid only if the samples come from distributions with the same mean,

µ(Fx) = µ(Fy), and either (38) or (39) holds.

As is clear from equations (51)-(53), the GE class of inequality measures is scale in-

variant, which suggests to base a permutation test on the rescaled samples, where the
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observations are divided by their distributional mean,

{
X1

µ(Fx)
, . . . ,

Xn

µ(Fx)

}
and

{
Y1

µ(Fy)
, . . . ,

Yn
µ(Fy)

}
. (56)

Comparing Generalized Inequality indices from these rescaled samples rather than from

the original samples makes no differences, while it validates (asymptotically) the use of

permutation test. In practice, distributional means are often unknown; we thus use sample

means X̄ and Ȳ instead, so the permutation test is based on the following combined sample

Zs =

{
X1

X̄
, . . . ,

Xn

X̄
,
Y1

Ȳ
, . . . ,

Ym
Ȳ

}
, X̄ =

1

n

n∑
i=1

Xi, Ȳ =
1

m

m∑
i=1

Yi. (57)

It is worth noting that when we consider the rescaled samples (56), the GE inequality

measures can be rewritten as a moment θζGE(Fz) =
∫
φ(z) dFz(z), as defined in (42), where

φ(z) =


(zζ − 1)/(ζ2 − ζ) for ζ 6= 0, 1

− log z for ζ = 0

z log z for ζ = 1

(58)

which leads us back to the results of section 5.1.

Clearly the same approach can be applied to the Atkinson class of inequality indices

(Atkinson, 1970),

θζAtk(F ) = 1−
[∫ [

y

µ(F )

]ζ
dF (y)

]1/ζ

, ζ < 1 (59)

which can be rewritten as a function of the GE class of inequality measures

θζAtk(F ) =


1− [(ζ2 − ζ)θζGE(F ) + 1]1/ζ , ζ 6= 0,

1− exp(−θ0
GE(F )), ζ = 0.

(60)
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5.3 The Gini coefficient

The Gini index can be expressed in a number of different forms. Let us consider the

following expressions,

θGini(F ) =
1

2µ(F )

∫∫
|y1 − y2| dF (y1)dF (y2) =

E(|y1 − y2|)
2µ(F )

, (61)

θGini(F ) = 1− 2

∫ 1

0

L(F ; q) dq , (62)

where y1 and y2 are two random variables independently drawn from F , and L(F ; q) is

the qth ordinate of the Lorenz curve. Equation (61) presents the Gini as the normalized

average absolute difference between all the possible pairs of incomes in the population,

while equation (62) shows that the Gini index is twice the area between the Lorenz curve

and the 450 line.

The Gini index is also closely related to a measure of dispersion of a distribution. The

most popular measure of dispersion is the standard deviation, which is the square root of

the variance that can be rewritten as follows:

V (y) = E[(y − µ(F ))2] = E

[
1

2
(y1 − y2)2

]
. (63)

Another well-known measure of dispersion is the Gini’s mean difference,

∆(F ) = E(|y1 − y2|). (64)

Both measures of dispersion are translation invariant. In section 5.1, we prove that test-

ing the equality of variances from two samples with different means can be done with

permutation tests based on the combined sample of the recentered individual samples.

Boos et al. (1989) proved that this procedure is asymptotically correct for a large class of

U -statistics, from which the Gini’s mean difference is a special case. We can then use the

relationship between the Gini (inequality) index and the Gini’s mean difference to justify
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asymptotically the use of permutation test with the Gini index. Indeed, we have

∆(F ) = 2µ(F )θGini(F ). (65)

With µ(F ) = 1, the Gini’s mean difference is twice the Gini index. Comparing the Gini’s

mean difference or the Gini index from two samples is then equivalent if the underlying

distributions share a common mean equal to one.

The last condition does not hold in general. However, the Gini index is scale invariant.

Then, calculating Gini index from the original samples or from the rescaled samples, where

the observations are divided by their distributional mean,

{
X1

µ(Fx)
, . . . ,

Xn

µ(Fx)

}
and

{
Y1

µ(Fy)
, . . . ,

Yn
µ(Fy)

}
, (66)

gives the same results. The main issue here is that these rescaled samples share a common

mean, equals to one. Comparing Gini inequality measures from the two rescaled samples in

(66) rather than from the original samples makes no difference for scale invariant statistic,

while it validates asymptotically the use of permutation test. In practice, distributional

means are replaced by sample means and permutation tests are based on the combined

sample of empirically rescaled individual data Zs as defined in (57).

6 Simulation study

Overall, we focus our simulation study to extreme cases of (very) heavy-tailed distributions

in (very) small sample to stress-test the methods employed in testing. The heavy-tailed

distribution used as a benchmark in previous studies is a more favorable case here, and we

use much more heavy-tailed distributions with a very small number observations in each

samples. In our experiments, we test the equality of Gini and Theil inequality measures

between two samples.
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6.1 Model design

We make use of simulated data sets drawn from the Singh-Maddala distribution, which

can quite successfully mimic observed income distributions in various countries (McDonald,

1984; Kleiber and Kotz, 2003). The CDF of the Singh-Maddala distribution can be written

as

SM(x; a, b, q) : F (x) = 1−
[
1 +

(x
b

)a]−q
, (67)

where a, b, q are positive, b is a scale parameter and a, q are shape parameters; q only affects

the right tail, whereas a affects both tails. The kth moment exists for −a < k < aq. The

upper-tail of the Singh-Maddala distribution behaves like a Pareto distribution with a tail

index equal to ξ = aq (Schluter and Trede, 2002). Smaller is ξ, heavier is the upper tail

of the distribution.

As a benchmark, we use the parameter values a = 2.8, b = 100−
1
2.8 , q = 1.7, a choice

that closely mimics the net income distribution of German households (Brachman et al.,

1996). This distribution is used in Davidson and Flachaire (2007) and Cowell and Flachaire

(2007) to show poor finite-sample performance of asymptotic and bootstrap inference. Its

tail index is equal to ξ = aq = 4.76. We will depart from this distribution using heaviest-

tailed distributions (Singh-Maddala distributions with smaller tail parameters ξ) for which

we know that bootstrap inference is poorest.

We compute the Theil index as

θ1
GE(F̂y) =

1

n

n∑
i=1

yi
µ̂

log

(
yi
µ̂

)
(68)

where µ̂ = 1
n

∑n
i=1 yi. The variance of the Theil index is computed as v̂ar(θ1

GE(F̂y)) =

1
n2

∑n
i=1(Zi − Z̄)2, where

Zi =
yi
µ̂

[
log

(
yi
µ̂

)
− θ1

GE(F̂y)− 1

]
, (69)
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and Z̄ = 1
n

∑n
i=1 Zi, see Cowell and Flachaire (2014).

We compute the Gini index as

θGini(F̂y) =
2
∑n

i=1 iy(i)

µ̂n(n− 1)
− n+ 1

n− 1
(70)

where the y(i), i = 1, . . . , n are the order statistics (y(1) ≤ · · · ≤ y(n)) and µ̂ is the sample

mean, µ̂ = 1
n

∑n
i=1 yi. The variance of the Gini index is computed as v̂ar(θGini(F̂y)) =

1
(nµ̂)2

∑n
i=1(Zi − Z̄)2, where

Zi = −
(
θGini(F̂y) + 1

)
y(i) +

2i− 1

n
y(i) −

2

n

i∑
j=1

y(j) (71)

and Z̄ = 1
n

∑n
i=1 Zi, see Davidson (2009) and Cowell and Flachaire (2014).

Our results are presented with figures, with the following legend:

• asymptotic: asymptotic test.

• bootstrap: standard bootstrap test S[ (defined in (16))

• Perm T, rescaled: permutation test T∗ based on Zs (defined in (7) and (57))

• Perm S, rescaled: permutation test S∗ based on Zs (defined in (15) and (57))

• Perm S, standard: permutation test S∗ based on Z (defined in (15) and (6))

• Boot S, rescaled: bootstrap test S• based on Zs (defined in (18) and (57))

• Boot S, standard: bootstrap test S• based on Z (defined (18) and (6))

The number of replications is equal to 10,000. The number of bootstrap and permu-

tation samples are similar, B = 999. The sample size of both samples X and Y is the

same, n = m. The permutation and bootstrap p-values are obtained as described above.

We compute the rejection probability, or rejection frequency, as the proportion of p-value

less than a nominal level equals to 0.05.
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6.2 Size

In the experiments, we consider several Singh-Maddala distributions for which the Theil

inequality measure index is the same and the tail index varies, ξ ∈ [2.9, 6.26].3 The Singh-

Maddala distribution with ξ = 2.9 is then the heaviest-tailed distribution considered here.

Similar experiments are conducted for the Gini inequality measure, with slightly different

tail parameters, ξ ∈ [2.59, 6.6].4 Inference is exact if the rejection probability is equal to

0.05.

6.2.1 Identical distributions

Figure 2 shows empirical rejection frequencies for asymptotic, bootstrap and permutation

tests for the Theil index, when Fx = Fy, as the upper tail becomes heavier. The sample

size is very small n = 50. Figure 3 shows similar results for the Gini index. When the

upper-tail of the distribution becomes heavier (as ξy decreases), asymptotic and standard

bootstrap tests perform very poorly, while permutation and bootstrap under the null tests

based on the studentized statistic (perm S rescaled, perm S standard, boot S rescaled and

boot S standard) provide empirical frequencies almost equal to 0.05. Note that studentized

permutation tests based on the combined original samples (perm S standard) provides exact

inference - as shown by (Chung and Romano, 2013), not permutation tests based on the

combined rescaled samples (perm S rescaled): it is because samples are previously divided

by sample means rather than by distributional means.

3Singh-Maddala distributions with parameters (a, q) equal to (2.5, 2.502199), (2.6, 2.149747),
(2.7, 1.894309), (2.8, 1.7), (3.0, 1.4223847), (3.2, 1.2320215), (3.4, 1.0922125), (3.8, 0.8984488),
(4.8, 0.6366578) and (5.8, 0.4996163), share the same (scale-invariant) Theil index, equal to 0.1401151.
The tail parameters are, respectively, equal to ξ = 6.26, 5.59, 5.11, 4.76, 4.27, 3.94, 3.71, 3.41, 3.06, 2.9.

4Singh-Maddala distributions with parameters (a, q) equal to (2.5, 2.640350), (2.6, 2.218091),
(2.7, 1.920967), (2.8, 1.7), (3.0, 1.3921126), (3.2, 1.1866026), (3.4, 1.0388049), (3.8, 0.8387663),
(4.8, 0.5784599) and (5.8, 0.4473111), share the same (scale-invariant) Gini index, equals to 0.2887138.
The tail parameters are, respectively, equal to ξ = 6.6, 5.77, 5.19, 4.76, 4.18, 3.80, 3.53, 3.19, 2.78, 2.59.

24



6.2.2 Different distributions

We then generate samples from different distributions, Fx 6= Fy, with the same value of

the inequality index. Figure 4 shows rejection frequencies for asymptotic, bootstrap and

permutation tests for the Theil index, as the distribution Fy moves away from Fx. The

distribution Fx is fixed, with a tail index ξx = 4.76, while Fy has varying tail indices.

When the tail index of Fy is smaller (higher) than that of Fx, that is, when ξy < ξx, Fy is

more (less) heavy-tailed than Fx. Figure 5 shows similar results for the Gini index. From

these Figures, we can see that the results deteriorate when Fy tends to be much more

heavy-tailed than Fx, that is, when ξy < 3.5. Overall, permutation and bootstrap under

the null tests based on the studentized statistic (perm S rescaled, perm S standard, boot S

rescaled and boot S standard) perform similarly and they outperform other methods. They

perform very well when ξy > 3.5, that is, when Fy is not much more heavy-tailed than Fx.

6.2.3 Sample size

Figure 6 shows rejection frequencies for the Theil measure, as the sample size increases

(n = 50, . . . , 10.000), with identical distributions (Fx = Fy), in the worst case previously

studied (ξx = ξy = 2.9). Figure 7 shows similar results for the Gini index (with ξx =

ξy = 2.59). We can see that the rejection frequencies decrease slowly as the sample size

increases with asymptotic tests, and, even more slowly with standard bootstrap tests. In

contrast, permutation tests and bootstrap under the null perform very well in all cases

when they are based on studentized statistic: rejection frequencies are always almost equal

to 0.05 for perm S rescaled, perm S standard, boot S rescaled and boot S standard.

Figure 8 shows rejection frequencies for the Theil measure, as the sample size increases

(n = 50, . . . , 10.000) with different distributions (Fx 6= Fy), in the worst cases previously

studied (ξx = 4.76, ξy = 2.9). Figure 9 shows similar results for the Gini index (with

ξx = 4.76, ξy = 2.59). We can see that, for each method, the rejection frequencies decrease

very slowly as the sample size increases. Moreover, permutation and bootstrap under the
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null tests based on a studentized statistic outperform other methods.

6.3 Power

To study the power, we test the equality of an inequality measure between two samples,

when the samples come from two distributions with different values of the inequality

measure. From the study on the size, studentized permutation and bootstrap under the

null tests outperform other methods. They also perform similarly when the null hypothesis

is true, we can thus compare power between these methods.

In our experiments, the distribution Fx is fixed and the distribution Fy varies:

Fx = SM(x; 2.8, 0.1930698, 1.7)

Fy = SM(y; 2.8, 0.1930698, q) where q ∈ [0.8; 31.7]

As q increases, the tail index and the inequality measure increase. 5

Figure 10 shows rejection frequencies for testing the equality of the Theil measure

between two samples, when the true null hypothesis, θ(Fy)− θ(Fx), goes away from 0. We

consider a very small sample (n = 50, on the left) and a moderate sample (n = 200, on

the right). In the Figure, we shall consider different cases:

• θ(Fy)− θ(Fx) = 0: the two distributions are identical and H0 is true (Size).

• θ(Fy)− θ(Fx) 6= 0: the two distributions are different and H0 is not true (Power).

• θ(Fy)− θ(Fx) < 0: Fy is less heavy-tailed than Fx (ξy > ξx).

• θ(Fy)− θ(Fx) > 0: Fy is more heavy-tailed than Fx (ξy < ξx).

5We take q = 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.9, 2.2, 2.7, 3.7, 5.7, 31.7 from which we have the tail
indices ξ = 2.8 q ∈ [2.24; 88.76] and the true null hypothesis, respectively, equals to H0 : θ(Fy)− θ(Fx) =
0.21, 0.143, 0.1, 0.071, 0.051, 0.035, 0.023, 0.014, 0,−0.01,−0.02,−0.03,−0.041,−0.049,−0.06 for the Theil
and to 0.12, 0.09, 0.068, 0.052, 0.038, 0.028, 0.019, 0.012, 0,−0.009,−0.018,−0.029,−0.041,−0.052,−0.066
for the Gini.

26



Power comparison of the considered permutation and bootstrap methods are valid since

rejection probabilities under the null hypothesis θ(Fy)−θ(Fx) = 0 are close to the nominal

level (here 0.05) which in Figure 10 is represented via the dashed horizontal line.

From Figure 10, we can see that the curves are asymmetric around 0. When Fy is

less heavy-tailed than Fx (θ(Fy) − θ(Fx) < 0), the null is quickly rejected as the true

null hypothesis moves away from 0. On the other side, when Fy is more heavy-tailed

than Fx (θ(Fy)− θ(Fx) > 0), the null is slowly rejected as the true null hypothesis moves

away from 0. Overall, we can see that the permutation approach (perm S rescaled and

standard) is more powerful than the bootstrap under the null approach (boot S rescaled and

standard), the difference between the two approaches being resampling without replacement

rather than with replacement. In addition, the studentized permutation tests based on

the combined rescaled samples (perm S rescaled) outperforms other methods. It rejects

the null much more faster than other methods, especially when Fy is heavier-tailed than

Fx (θ(Fy)− θ(Fx) > 0). Figure 11 shows similar results for the Gini index.

7 Conclusion

We study Monte-Carlo permutation and bootstrap methods for the problem of testing the

equality of inequality measures between two samples. For scale-independent measures,

as the Gini, Theil, Generalized Entropy and Atkinson indices, we introduce a convenient

rescaling to validate and enhance performance. Our simulation results show that per-

mutation tests control size regardless of tail thickness, when underlying distributions are

not too distant (with respect to scale). When underlying distributions differ substantially

in their upper tails, proposed permutation methods still provide significant improvement

over standard asymptotic and bootstrap tests. In addition, results suggest that rescaling

observations by sample means before permutation improves power in finite samples.
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Figure 1: Two very different Singh-Maddala distributions, Fx = SM(x; 2.8, b, 1.7) and
Fy = SM(y; 5.8, b, 0.5) where b = 0.1930698. The tail parameters are, respectively, equal
to ξx = 2.8 × 1.7 = 4.76 and ξy = 5.8 × 0.5 = 2.9. Thus, Fy is much more heavy-tailed
than Fx. These two distributions share the same Theil index, equals to 0.1401151.
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Figure 2: Size: Rejection frequencies of asymptotic, permutation and bootstrap tests for
the problem of testing the equality of Theil inequality measures between two samples.
The two distributions are identical, Fx = Fy. The upper tail is heavier as ξy decreases,
with ξy = ξx ∈ [2.9; 6.26] and n = 50.
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Figure 3: Size: Rejection frequencies of asymptotic, permutation and bootstrap tests for
the problem of testing the equality of Gini inequality measures between two samples. The
two distributions are identical, Fx = Fy. The upper tail is heavier as ξy decreases, with
ξy = ξx ∈ [2.59; 6.6] and n = 50.
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Figure 4: Size: Rejection frequencies of asymptotic, permutation and bootstrap tests for
the problem of testing the equality of Theil inequality measures between two samples.
The distribution Fx is fixed (ξx = 4.76) and Fx 6= Fy. The distribution Fy goes away from
Fx, being heavier tailed as ξy decreases, with ξy ∈ [2.9; 6.26] and n = 50.
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Figure 5: Size: Rejection frequencies of asymptotic, permutation and bootstrap tests for
the problem of testing the equality of Gini inequality measures between two samples. The
distribution Fx is fixed (ξx = 4.76) and Fx 6= Fy. The distribution Fy goes away from Fx,
being heavier tailed as ξy decreases, with ξy ∈ [2.59; 6.6] and n = 50.
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Figure 6: Size: Rejection frequencies of asymptotic, permutation and bootstrap tests for
the problem of testing the equality of Theil inequality measures between two samples,
as the sample size increases. The two distributions are identical, Fx = Fy, and very
heavy-tailed, ξy = ξx = 2.9.
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Figure 7: Size: Rejection frequencies of asymptotic, permutation and bootstrap tests for
the problem of testing the equality of Gini inequality measures between two samples,
as the sample size increases. The two distributions are identical, Fx = Fy, and very
heavy-tailed, ξy = ξx = 2.59.
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Figure 8: Size: Rejection frequencies of asymptotic, permutation and bootstrap tests for
the problem of testing the equality of Theil inequality measures between two samples, as
the sample size increases. The two distributions are very different in their upper tails,
Fx 6= Fy, with tail parameters equal to ξx = 4.76 and ξy = 2.9.
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Figure 9: Size: Rejection frequencies of asymptotic, permutation and bootstrap tests for
the problem of testing the equality of Gini inequality measures between two samples, as
the sample size increases. The two distributions are very different in their upper tails,
Fx 6= Fy, with tail parameters equal to ξx = 4.76 and ξy = 2.59.
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Figure 10: Power: Rejection frequencies of permutation and bootstrap tests for the
problem of testing the equality of Theil inequality measures between two samples, when
the true null hypothesis is equal to θ(Fy) − θ(Fx). The distribution Fx is fixed and the
distribution Fy is heavier tailed as θ(Fy)− θ(Fx) increases.
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Figure 11: Power: Rejection frequencies of permutation and bootstrap tests for the
problem of testing the equality of Gini inequality measures between two samples, when
the true null hypothesis is equal to θ(Fx) − θ(Fy). The distribution Fx is fixed and the
distribution Fy is heavier tailed as θ(Fy)− θ(Fx) increases.
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