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1. Introduction

The ground covered by Kleibergen and Mavroeidis (2009) jgréssive. First, the authors survey
new methods for inference in models with possibly weak umagnts, especially in view of dealing
with parameter subset inference in a GMM context. The tesistits considered include a number
of concentrated test statistics: a S-type statistic based on the one proposed by Stock and Wright
(2000), a Kleibergen-type (KLM) statistic [Kleibergen (#)], an overidentification test (JKLM)
derived from the two previous procedures, and a condititikellhood-ratio-type (LR-type) statistic
[which extends the method of Moreira (2003)]. Second, ththods are applied to study a currently
popular macroeconomic relation, the new Keynesian Philtiprve (NKPC), which now plays an
important role in decisions about monetary policy. Thisetyf model is especially important in
countries which practice “inflation targeting” (like New @and, Canada, Australia, U.K., etc.).

The contribution of the authors is quite welcome, becauserfany years, it appeared that
macroeconomists had walked out of econometrics and segiopgical work. Recent econometric
activity around the NKPC is certainly comforting developrh#r econometricians.

I will discuss the paper by Kleibergen and Mavroeidis (2G89he light of my own work on the
econometric problems associated with weak identificatiuf¢ur (1997, 2003), Dufour and Jasiak
(2001), Dufour (2003), Dufour and Taamouti (2005, 2007)k®d chatoka and Dufour (2008)]
as well as NKPCs [Dufour, Khalaf, and Kichian (2006), Dufokhalaf, and Kichian (2007b),
Dufour, Khalaf, and Kichian (2007a), Dufour, Khalaf, andcKian (2008)]. | intend to focus on
some pitfalls associated with the econometric methodsgsex by the authors as well as potential
research directions. Specific issues that will be discusssdde:

1. concerning econometric theory:

(a) inference in the presence of weak identification;
(b) limited information and robustness to missing instratag
(c) projection methods and subset inference;

2. the meaning of the empirical results presented on NKPCs.

2. Weak identification and statistical inference

In my view, recent econometric work on weak identificatiooypdes three main lessons.

1. Asymptotic approximations can easily be misleadings #ispecially important in this area to
produce a finite-sample theory at least in a number of refereases.

2. In structural models with identification difficulties veeal of the intuitions which people draw
from studying the linear regression model and using stahdsymptotic approximations can
easily be misleading. In particular, standard errors dacoastitute a valid way of assessing



parameter uncertainty and do not yield valid confidencenate [Dufour (1997)]. Further-

more, individual parameters in statistical models are ®eoiegally meaningful, although pa-
rameter vectors are. Restrictions on the values of indalidoefficients may be empirically
empty, while restrictions on the whole parameter vectoreanpirically meaningful.

3. To build confidence sets (and to a lesser extent, tests)piportant to look fopivotal func-
tions. Pivots are not generally available for individual paraengt but they can be obtained
for appropriately selected parameter vectors. Given at fboroa parameter vector, we can
construct valid tests and confidence sets for the parametdorv Inference on individual
coefficients may then be derived through projection methods

It is now widely accepted that inference in structural medslould take into account the fact
that identification may be weak. In so-called “linear IV reggions”, this means taking care of the
possibility of “weak instruments”. In particular, this hiegl to the development of “identification
robust” methods, which are based on first deriving some gifahctions (at least asymptotically.

The point of departure of this work has been the finite-samppdeedure proposed long ago by
Anderson and Rubin (1949, AR). However, it was soon notetlitte@ AR procedure may involve
sizeable “power losses” when the number of instruments isskatige, and various methods aimed
at improving this feature have been proposed [Kleiberg@0Z2 Moreira (2003)]. However, these
“improvements” come at a cost. First, the justification af thethods is only asymptotic, which
of course leaves open the possibility of arbitrary large sistortions even fairly stringent distrib-
utional assumptions (convergence results are not unifoB@gond, they are not robust to “missing
instruments” and, more generally, to the formulation of adaidor the explanatory endogenous
variables. This latter problem has received little attamiin the literature, so it is worthwhile to
explain it in greater detail.

3. Limited information and robustness to missing instrumerts

A central feature of most situations where 1V methods areired come from the fact that instru-
ments may used to solve an endogeneity or an errors-inblasigroblem. It is very rare one can
or should use all the possible valid instruments.
Consider the standard model:
y=Y0+ X1v+u, (3.2)

Y =X1L1+ Xollo+V, (3.2)

wherey andY areT x 1 andT x G matrices of endogenous variables; is aT x k; matrix of
exogenous variables (instruments)= 1, 2, 8 and~ areG x 1 andk; x 1 vectors of unknown
coefficients,[I; andIl; arek; x G andky x G matrices of unknown coefficients,is a vector of
structural disturbance$] is a7" x G matrix of reduced-form disturbances, akd= [X;, X»]is a
full-column rankT" x k matrix (k = k1 + k2). We wish to test

Ho(Bo) : B =By - (3.3)



As mentioned above, a solution to the problem of testing éngresence of weak instruments
has been available for more that 50 years [Anderson and Ru8#49)]. On observing that

Yy — Yﬂo = X101 + X005 + ¢ (34)

wheref, =~ + I1;,(8 — By), 02 = II2(8 — By) ande = u + V(5 — B,), Ho(5,) can be tested by
testing

If u is independent ok andu ~ N [0, 02 17|, the AR statistic is the usual F-statistic & :

(y = Y Bo) [M(X1) = M(X)|(y = Y Bo)/ko
(y =Y Bo) M(X)(y =Y Bo)/(T — k)

which yields the confidence s€i(a) = {8, : AR(By) < Fo(ke, T — k) } for §.

A drawback of the AR method is that it loses power when too mastyumentg X,) are used.
Potentially more powerful methods can be obtained by etiptpthe special form (3.2) of the model
for Y, which entails (among other things) the assumption that thamofY” only depends ok,
and X, :

AR(ﬂo) =

~ F(ky, T — k), (3.6)

E(Y) = X1, + X515 . (3.7)

This is what in the end methods like those proposed by Klgie(2002) or Moreira (2003) do.
Now suppose model (3.2) is in fact incomplete, and a thirdrisnaf instruments does indeed
appear in the reduced form féf :

Y = Xq1 + Xolly + X3llIs+V (38)

whereXs is aT x ks matrix of explanatory variables (not necessarily striethpgenous). Equation
(3.4) then becomes:
y—YpBy=X141 + XoAs + X343 + ¢ (3.9

whereA, = v + I11(8 — By), A2 = II2(8 — By), Az = II3(8 — By) ande = u + V(B8 — By)-
SinceA; = 0 andAs = 0 underHy, it is easy to see that the null distribution 4RR(53,) remains
F(ky, T — k). The AR procedure isobust to missing instruments (or instrument exclusion). It is
also interesting to observe that the vectys. .. , V; may not follow a Gaussian distribution and
may be heteroskedastic. A similar result obtains if

Y = g(Xh X27 X37 VY? H) (310)

whereg(-) is an arbitrary (possibly nonlinear) function.

Alternative methods of inference aimed at being robust takwdentification [Wang and Zivot
(1998), Kleibergen (2002), Moreira (2003)] do not enjoysttyipe of robustness. The reason is that
most of these methods exploit the specification

Y =Xq1I + Xollo +V (311)



Table 1. Instrument exclusion and the size of tests robusttk instruments

Random missing instruments
Nominal size= 0.05. Results are given in percentages.

AR‘ARS‘ K ‘LM‘LR ‘LRl‘LRZ AR‘ARS‘ K ‘LM‘LR ‘LRl‘LRZ
ko (@ 6 =0andp=0.01 (b) 6=0andp=1

2 50| 52 52| 48| 51| 51| 52 |55| 59 59| 50| 58 | 58 | 59
3 | 38| 46 56 | 35| 36 | 45| 45 | 50| 6.2 56 | 20| 1.7 | 58 | 58
4 | 54| 57 57| 49| 41| 54 | 56 | 48| 56 55| 13| 11 | 56 | 55
5 66| 77 59| 56| 39| 74| 77 |43| 50 | 46 | 04| 04 | 49 | 51
10 | 43| 56 60 | 41| 17| 60| 6.2 | 42| 56 | 46 | 0.0 | 00 | 42 | 43
20 | 55| 9.0 84|30 05| 91| 92 |49)| 77 | 48 | 00| 00 | 53 | 55
40 | 48| 124 | 165| 09 | 00 | 146 | 149| 41| 110| 58 | 00| 0.0 | 6.3 | 6.2

(c) 6 =1andp=0.01 (d d=1landp=1

2 49 | 55 55 |1 49| 53| 53| 55 |44| 48 | 48 | 42| 48 | 48 | 4.8
3 | 50| 55 74 | 46 | 53 | 57 | 57 | 44| 49 51| 18| 25 | 5.0 | 50
4 | 50| 57 |115| 45| 57| 58| 59 | 52| 63 | 47 | 06| 08 | 46 | 47
5 54| 63 |157| 47| 59 | 6.6 | 6.7 | 51| 6.2 52 | 04| 08 | 57 | 6.0
10| 49| 72 | 345| 38| 77| 80 | 78 | 48| 6.7 64 | 01| 01 | 66 | 6.7
20 | 47| 72 | 569| 29| 93 |10.7| 7.8 | 48| 7.7 66 | 00| 00 | 6.7 | 7.0
40 | 42| 118 | 773 | 1.0 | 298| 335| 129 | 53| 125| 11.9| 0.0 | 0.0 | 14.4 | 15.6
(e) 6 =10andp =0.01 ) d=10andp=1
2 44 | 47 | 47 | 42| 45 | 45 | 47 | 50| 54 | 54 | 49| 52 | 52 | 54
3 | 43| 44 96 | 40| 44 | 46 | 48 | 48| 5.6 50| 18| 46 | 6.1 | 6.3
4 | 33| 39 |159| 31| 38| 39| 40 | 50| 6.0 66 | 08| 52 | 6.1 | 64
5 53| 57 | 289| 46| 56 | 58 | 59 | 44| 49 61| 04| 44 | 52 | 55

10| 52| 70 | 747| 42| 75| 80 | 76 | 50| 6.7 | 150| 01| 60 | 7.8 | 7.4
20 | 51| 79 | 946| 26 | 11.7| 125| 89 | 45| 7.1 | 39.8| 0.0 | 89 | 10.7| 7.7
40 | 50| 108 | 979 | 0.7 | 335 36.2| 128 | 52| 124 | 73.6 | 0.0 | 30.5| 34.7 | 14.1

for the reduced form.
In Dufour and Taamouti (2007), we present the results of aulgition study based on a model
of the following form:

y=Y181+Yofy +u, (Y1,Y2)=Xolly + X36 + (V1,V2), (3.12)
- 1 8 8

(up, Vie, Vo) "2 N(0, ), =] 8 1 3 |, (3.13)
8 3 1

whered represents the importance of the excluded instrument; plsaof these results is repro-
duced in Table 1. These show clearly that methods which depeavily on the specification (3.2)
can suffer from large size distortions. This suggests tmaproblem of missing instruments may
be as important in practice as the problem of weak instrusnent

Methods which yield “power gains” by relying on additionaistrictions on the reduced form



of the model arecloser to full-information methods. Adding restrictions typically allows one
to obtain more power (precision). However, if the restoiot used are not really part of the null
hypothesis of interest, the resulting tests will be plaggdize distortions. This is the oldade-
off between thénefficiency of limited-information methods and th&agility of full-information
methods. In general, the latter cannot be viewed as sulestitor the former. What do we do when
results conflict?

An important challenge consists in finding methods which ramge powerful than AR-type
procedures and robust to missing instruments. This isligdior example, by using instrument
reduction and transformation methods in conjunction witit-sample techniques; see Dufour and
Taamouti (2003b, 2003a) and Dufour (2003).

Concerning the GMM procedures used by Kleibergen and M&lin€2009), there is no proof
or discussion whether these enjoy robustness to missitrginents. For example, problems similar
to “missing instruments” may be induced when potentialfpimative moment equations are not
considered or dropped from the equations used for the GMIlgrénice. Indeed, in the GMM
setup considered by the authors, the assumption (3.2) iacexp by high-level assumptions on
the asymptotic distribution of the derivativegd) = 9f;(60)/06’ of the moment equations [see
Kleibergen and Mavroeidis (2008)]. The latter appear tolve restrictions on the “reduced form”
(model solution), though the exact nature of these remtnistis unclear. It seems plausible that the
S-type procedure be less affected by such problems thanttkee statistics (since it is the procedure
closest to the original AR method), but this remains to benseknyway, | suggest it would be
important to study this type of difficulty in the context ofetimodels and methods considered by
Kleibergen and Mavroeidis (2009).

4. Projection methods and subset inference
Inference on individual coefficients can be performed bygisi projection approach. If
P8 e Cs(a) >1 -« 4.1)

then, for any functiory(3),
Plg(B) € g[Cs(a)]] > 1 —a. (4.2)

If g(8) is a component of} [or a linear transformatiog(3) = w'f], the projection-based con-
fidence set can be obtained very easily [Dufour and Jasiaklj2@ufour and Taamouti (2005),
Dufour and Taamouti (2007)]. This is a generic method witmadisample justification. Further-
more, no restriction on the form @f-) is required.

Kleibergen (2007) and Kleibergen and Mavroeidis (2008)ntli& is possible to produce more
efficient methods for subset inference by considering tatisics where the “nuisance parameters”
have been replaced by point estimates (under the null hgpeh This is certainly an interesting
contribution. But there are three main limitations.

1. The argument is asymptotic.



2. In the GMM case, the “regularity conditions” bear not ooly the moment variableg (9)

but also on the derivatives of theggf) = a{;{ga)’ which involve implicit restrictions on the
solution (reduced form) of the model.

3. As aresult of the previous point, validity in cases whegriiments are “missing” remains
unproved (and doubtful).

The projection approach is applicable as soon as a test alulhbypothesig) = 6, is feasible
for all 8y, which requires weaker assumptions than those used by theraub ensure the validity
of the concentrated identification robust GMM tests theyppee. Of course, an interesting related
issue would consist in studying to what extent these assangptould be relaxed while preserving
the validity of the concentrated test procedures.

5. Work on new Keynesian Phillips curves

In our own work on NKPCs [Dufour, Khalaf, and Kichian (200®)ufour, Khalaf, and Kichian
(2007b), Dufour, Khalaf, and Kichian (2007a), Dufour, Kdifaland Kichian (2008)], we focus on
AR-type methods for producing inference on the parametesause of the arguments above, we
think such methods are more robust and reliable. We haveasmmeto change our mind on that
issue. If there is a strong disagreement between such neetimatl other “identification robust”
methods (which may not be robust to the specification of tdaaed-form), we think conclusions
from AR-type methods should prevail.

The parameters of NKPCs depend on deeper structural pasesnen which it is interesting to
draw inference. This is done in our work using AR-type methdtlwould be interesting to show
the methods proposed by the authors can be applied for thabgeiand what results are obtained.

We agree with the authors, that many NKPC specificationslagripd with identification prob-
lems. But results may change dramatically when the defivstaf variables, instruments, or small
elements of the specification are modified. Identificatidousd methods in this context can prove
to be very useful. Their work and ours (as well as others)igean interesting illustration of that.
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