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1. Introduction

Recent developments in econometrics :

1. new fields of applications linked to the availability of new data, fi-
nancial data, micro-data, panels, qualitative variables, etc. ;

2. great variety of new models : multivariate time series models,
GARCH, etc. ;

3. greater ability to estimate nonlinear models which require an impor-
tant computational capacity ;

4. methods based on simulation : bootstrap, indirect inference, etc. ;
5. methods based on weak distributional assumptions : nonparametric

methods, asymptotic distributions based on “weak regularity condi-
tions”, etc. ;

6. discovery of various nonregular problems which require nonstandard
distributional theories : unit roots, etc.

Two types of ill-defined problems in econometrics :

1. trying to solve an inference problem using a technique that cannot
deliver a solution because of the very structure of the tech-
nique :
two examples :

(a) in the context of a structural model, to build a confidence in-
terval for a parameter which is not identifiable, using the usual
technique based on standard errors ;

(b) to test an hypothesis on a mean under an assumption heteros-
kedasticity of unknown form, using the usual techniques based
on correcting least square standard errors (“heteroskedasticity-
robust methods”) ;

2. trying to solve a statistical problem for which no reasonable no rea-
sonable solution can possibly exist :
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(a) testing an hypothesis on a dynamic model, allowing a dynamic
structure (under the null hypothesis) which involves an unlimited
(not necessarily infinite) number of parameters ;

(b) testing an hypothesis on a mean in the context of a nonparame-
tric model, e.g. assuming that the observations are i.i.d. with a
finite mean.
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2. Models and hypotheses

The purpose of econometric analysis is to develop mathematical represen-
tations of data, which we call models or hypotheses (models subject
to restrictions).
An hypothesis must have two basic properties :

1. to restrict the expected behavior of observations : to be informa-
tive ;
an non-restrictive hypothesis says nothings and, consequently, does
not learn us anything : it is

empirically empty ,
void of empirical content ;

the more restrictive a model is, the more informative it is, the more
interesting it is ;

2. to be compatible with available data ;
ideally, we would like it to be true.

These two criteria oppose each other :

1. information criterion −→ parsimony −→ parametric
models, strong assumptions ;

2. compatibility with observed data −→ vague models, little
restrictive −→ nonparametric models, weak hypotheses.

There is a wide current of thought in philosophy of science that empha-
sizes

falsifiability as a criterion for the scientific character of a theory (Popper).

Deterministic models (claim to make arbitrarily precise predictions) :
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– highly falsifiable ;
– always inconsistent with observed data.

Probabilistic models

Most models used in econometrics are probabilistic, which has two
consequences :

1. unverifiable :
as for any theory that makes an indefinite number of predictions,
we can never be sure that the model will not be jeopardized by new
data ;

2. logically unfalsifiable : (in contrast with deterministic models) :
a probabilistic model is usually logically compatible with all possible
observation vectors.

Given these facts, it is clear any criterion for assessing whether an
hypothesis is acceptable must involve a conventional aspect.

The purpose of hypothesis testing theory is to supply a coherent fra-
mework for accepting or rejecting probabilistic hypotheses.

It is a probabilistic adaptation of the falsification principle.
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3. Statistical inference

Consider an experiment whose result can be represented by a vector of
observations

X(n) = (X1 , . . . , Xn)
′ (3.1)

where Xi takes real values, and let

F n(x1 , . . . , xn) = P [X1 ≤ x1 , . . . , Xn ≤ xn] (3.2)

its distribution.
Let

Fn = {Functions de distribution on Rn} . (3.3)

An hypothesis H0 for X(n) is an assertion which states that

H0 : F n ∈ H0 (3.4)

where H0 is a subset of all possible distributions on Fn.

In particular, H0 often takes the following form :

H0 = H(F0 , θ0
1) ≡ {F (x) , x ∈ Rn : F (x) = F0(x | θ1, θ2) and θ1 = θ0

1}
(3.5)

where F0 is a function with a specific form [e.g., corresponding to a Gaus-
sian law] and (θ1, θ2) ∈ Ω1 × Ω2 . In this case, we can write in short
form : :

H0 : θ1 = θ0
1 . (3.6)

where :

θ1 is the parameter of interest,

θ2 is a nuisance parameter.

H0 may contain single distribution (simple hypothesis) or several dis-
tributions (composite hypothesis).
Strong interpretation of H0 : the “true” distribution of X(n) belongs to
H0 .
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Weak interpretation of H0 : there is at least one distribution in H0 that
can be viewed as a representation compatible the observed “behavior” of
X(n).

Irrespective of the interpretation, we have :

H0 is acceptable ⇐⇒
(
(∃F ∈ H0) F is acceptable

)
(3.7)

(
∼

(
(∃F ∈ H0) F is acceptable

)) ⇐⇒
(
(∀F ∈ H0) F is inacceptable

)

(3.8)
H0 is inacceptable ⇐⇒

(
(∀F ∈ H0) F is inacceptable

)
(3.9)

A test for H0 is a rule by which one decides to reject or accept the
hypothesis (or to view it as incompatible with the data).
In general, we can represent the rule using an indicator function
φ(X1, . . . , Xn) which takes the values 0 or 1 :

φ(X1, . . . , Xn) = 1 means that H0 is rejected,
= 0 means that H0 is accepted. (3.10)

By definition, φ(X1, . . . , Xn) has level α iff

EF [φ(X1, . . . , Xn)] = PF [Rejecting H0] ≤ α for all F ∈ H0 (3.11)

or, equivalently,
sup
F∈H0

PF [Rejecting H0] ≤ α (3.12)

Usually, φ(X1, . . . , Xn) is defined in the following way :

φ(X1, . . . , Xn) = 1 if Sn(X1, . . . , Xn) > c
= 0 if Sn(X1, . . . , Xn) ≤ c

(3.13)

If we consider an hypothesis of the form

H0(θ
0
1) : θ1 = θ0

1 . (3.14)
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and if we can build a different test for each possible value of θ0
1 ,

φ(θ0
1; X1, . . . , Xn) = 1 if Sn(θ

0
1; X1, . . . , Xn) > c(θ0

1)
= 0 if Sn(θ

0
1; X1, . . . , Xn) ≤ c(θ0

1)
(3.15)

we can determine the set of values which are can be viewed as compatible
with the data according to the tests considered :

C =
{
θ0

1 : φ(θ0
1 ; X1, . . . , Xn) = 0

}
. (3.16)

If
EF [φ(θ0

1 ; X1, . . . , Xn)] ≤ α for all F ∈ H(F0 , θ0
1) (3.17)

we have
inf
θ1,θ2

P[θ1 ∈ C] ≥ 1− α . (3.18)

C is a confidence region with level 1− α for θ1 .

In practice, confidence regions (or confidence intervals) were made
possible by the discovery of pivotal statistics :

Sn(θ1; X1, . . . , Xn) ∼ Distribution without nuisance parameters (or boundable).
(3.19)

We can find a point c such that :

P[Sn(θ1; X1, . . . , Xn) > c] ≥ α , ∀θ1 . (3.20)

Difficulties : there are problems where :

1. the proposed statistics may not may not be pivotal ;

2. there is no valid test that satisfies reasonable properties [e.g., to
depend upon the data] :

non testable hypothesis ,
empirically empty hypothesis .
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4. Inference on structural models and weak instruments

Several authors in the pas have noted that usual asymptotic approxima-
tions are not valid or lead to very inaccurate results when parameters
of interest are close to regions where these parameters are not anymore
identifiable :

Sargan (1983, Econometrica)
Phillips (1984, International Economic review)
Phillips (1985)
Gleser and Hwang (1987, Annals of Statistics)
Koschat (1987, Annals of Statistics)
Phillips (1989, Econometric Theory)
Hillier (1990, Econometrica)
Nelson and Startz (1990a, Journal of Business)
Nelson and Startz (1990b, Econometrica)
Buse (1992, Econometrica)
Maddala and Jeong (1992, Econometrica)
Choi and Phillips (1992, Journal of Econometrics)
Bound, Jaeger, and Baker (1993, NBER Discussion Paper)
Dufour and Jasiak (1993, CRDE)
Bound, Jaeger, and Baker (1995, Journal of the American Statistical

Association)
McManus, Nankervis, and Savin (1994, Journal of Econometrics)
Hall, Rudebusch, and Wilcox (1996, International Economic Review)
Dufour (1997, Econometrica)
Shea (1997, Review of Economics and Statistics)
Staiger and Stock (1997, Econometrica)
Wang and Zivot (1998, Econometrica)
Zivot, Startz, and Nelson (1998, International Economic Review)
Dufour and Jasiak (1999, International Economic Review, à paraître)
Startz, Nelson, and Zivot (1999, International Economic Review)
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Consider a situation where we have two parameters θ1 and θ2 such that
θ2 stops being identifiable when θ1 takes a certain value, say θ1 = θ0

1 :

L(y|θ1, θ2) = L(y|θ0
1) does not depend on θ2 when θ1 = θ0

1 . (4.1)

4.1 Theorem If θ2 is a parameter whose value is not bounded, then
the confidence region C with level 1 − α for θ2 must have the following
property :

P[C is unbounded] > 0 (4.2)

and, if θ1 = θ0
1,

P[C is unbounded] ≥ 1− α . (4.3)

Démonstration. See Dufour (1997, Econometrica).

4.2 Corollary If C does not satisfy the property given in the previous
theorem, its level must be zero.

This will be the case, in particular, for any Wald-type confidence in-
terval, obtained by assuming that

tθ̂2
=

θ̂2 − θ2

σ̂θ2

approx∼ N(0, 1) [or another distribution] (4.4)

hence an interval of the form

θ̂2 − cσ̂θ2
≤ θ2 ≤ θ̂2 + cσ̂θ2

(4.5)

where P [|N(0, 1)| > c] ≤ α . This interval has level :

inf
θ

P
[
θ̂2 − cσ̂θ2

≤ θ2 ≤ θ̂2 + cσ̂θ2

]
= 0 . (4.6)

In many models, the notion of standard error loses its usual meaning and
does not constitute a valid basis for building confidence intervals.
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5. Inference on nonparametric models

5.1. Procedures robust to heteroskedasticity of unknown form

H0 : X1 , . . . , Xn are independent observations
each one with a distribution symmetric about zero. (5.1)

H0 allows arbitrary heteroskedasticity. Let

H0 = {F ∈ Fn : F satisfies H0} (5.2)

5.1 Theorem If φ(X1, . . . , Xn) is a test with level α for H0, where
0 ≤ α < 1, then φ(X1, . . . , Xn) must satisfy the condition

E[φ(X1, . . . , Xn) | |X1| , . . . , |Xn| ] ≤ α under H0 . (5.3)

Démonstration. See Pratt and Gibbons (1981, Concepts of Nonpara-
metric Theory, Section 5.10) and Lehmann and Stein (1949, Annals of
Mathematical Statistics).

φ(X1, . . . , Xn) must be a sign test (or, more generally, a sign test
conditional on the absolute values of the observations).

5.2 Corollary If, for all 0 ≤ α < 1, the condition (5.3) is not satisfied,
then the size of the test φ(X1, . . . , Xn) is equal to one, i.e.

sup
Fn∈H0

EFn
[φ(X1, . . . , Xn)] = 1 . (5.4)

All test procedures typically designated as “robust to heteroskedasti-
city” (White-type) do not satisfy condition (5.3) and consequently have
size one :

For examples of size distortions, see :

Dufour (1981, Journal of Time Series Analysis),
Campbell and Dufour (1995, Review of Economics and Statistics),
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Campbell and Dufour (1997, International Economic Review).

11



5.2. Procedures robust to autocorrelation of arbitrary form

Consider the problem of testing the unit root hypothesis in the context
of an autoregressive model whose order is infinite or in not bounded by
a prespecified maximal order :

Xt = β0 +

p∑

k=1

λkXt−k + ut , t = 1 , . . . , T (5.5)

ut
i.i.d.∼ N [0 , σ2] (5.6)

where p is not bounded a priori. We wish to test :

H0 :

p∑

k=1

λk = 1 . (5.7)

H0 : Xt = β0 +
p∑

k=1
λkXt−k + ut , .t = 1 , . . . , T ,

p∑
k=1

λk = 1 and ut
i.i.d.∼ N [0 , σ2]

(5.8)

5.3 Theorem If φ(X1, . . . , Xn) is a test with level α for H0, i.e.

PF [Rejecting H0] = EF [φ(X0 , X1, . . . , Xn)] ≤ α for all F satisfying H0 ,

(5.9)
then,

PF [Rejecting H0] = EF [φ(X1, . . . , Xn)] ≤ α for all F ∈ H0 . (5.10)

Démonstration. See Cochrane (1991, Journal of Economic Dynamics
and Control) and Blough (1992, Journal of Applied Econometrics).

The test must behave in the following way (for a test of level .05) :

1. we throw away all data to garbage ;
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2. using a random number generator, produce a realization of U ∼
U(0, 1) ;

3. reject H0 if U ≤ .05.

Testable hypothesis :

H0(6) : Xt = β0 +
6∑

k=1
λkXt−k + ut , .t = 1 , . . . , T ,

6∑
k=1

λk = 1 and ut
i.i.d.∼ N [0 , σ2]

(5.11)

Similar difficulties for most hypotheses on the coefficients of (5.8).
Other relevant references : Sims (1971a), Sims (1971b), Blough (1992),

Faust (1996), Faust (1999).
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5.3. Procedures robust to nonnormality

Bahadur and Savage (1956)
Tibshirani and Wasserman (1988, Canadian Journal of Statistics)

H0(µ) : X1 , . . . , Xn are i.i.d. observations
such that E(X1) = µ

(5.12)

We wish to test the hypothesis that X1 , . . . , Xn have mean zero, under
the general assumption that the observations X1 , . . . , Xn are i.i.d. Let

H(µ) = {Distribution functions F ∈ Fn such that H0(µ) is satisfied} .

(5.13)

5.4 Theorem If φ(X1, . . . , Xn) is a test with level α for H0(µ0), i.e.

PF [Rejecting H0(µ0)] = EF [φ(X1, . . . , Xn)] ≤ α for all F ∈ H(µ0) ,

(5.14)
then, for any µ 6= µ0,

PF [Rejecting H0(µ0)] = EF [φ(X1, . . . , Xn)] ≤ α for all F ∈ H(µ) .

(5.15)

Démonstration. See Bahadur and Savage (1956).

5.5 Theorem If φ(X1, . . . , Xn) is a test with level α for H0(µ0), i.e.

PF [Rejecting H0(µ0)] = EF [φ(X1, . . . , Xn)] ≤ α for all F ∈ H(µ0)
(5.16)

and, if there one value µ1 6= µ0 such that

PF [Rejecting H0(µ0)] = EF [φ(X1, . . . , Xn)] ≥ α pout F ∈ H(µ1) ,

(5.17)
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then, for any µ 6= µ0,

PF [Rejecting H0(µ0)] = EF [φ(X1, . . . , Xn)] = α for all F ∈ H(µ) .

(5.18)
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