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CHAPTER 25

Investment, Taxation, and Econometric
Policy Evaluation: Some Evidence on
the Lucas Critique '

Jean-Marie Dufour

Summary

The aggregate investment schedule 1nay be used to study the impact of various policy mea-
sures, such as changes in corporate tax rates, depreciation allowances, and investment tax
credits. Its parameters should be invariant with respect to the policy changes themselves,
a point forcefully stressed by Lucas (1976). On the impact of investment tax credits, Lucas
makes two predictions: first, if the model is implemented under an assumption of static
expectations (versus rational expectations) and estimated from a period during which pol-
icy rules changed appreciably, it will exhibit parameter instability; second, the impact of
tax credits is likely to be heavily underestimated. This chapter presents empirical evi-
dence on both these effects by studying a version of the Hall-Jorgenson model estimated
from US data (1956~1972). For this purpose, we use recursive stability analysis, an ex-
ploratory methodology that makes very weak assumptions on the form of the instability
to be detected and provides indications on the direction of prediction errors. The main
finding is a discontinuity associated with the first imposition of the tax credit (1964-1966);
further, this shift led to underprediction of investment. The results thus support Lucas’s
hypothesis.
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25.1 Introduction

The stability over time of the aggregate investiment schedule has great importance for
macroeconomic policy. In particular, one may use this relationship to study the impact
of various policy mneasures, such as changes in nominal corporate tax rates, changes in
depreciation allowances, investment tax credits, and the like. An ingenious formulation of
an investment function making possible such studies is due to Hall and Jorgenson (1967).
This model was employed, for example, by Gordon and Jorgenson (1976) to study the
impact of investment tax credits in the United States over the period 1960-1985.

It is easy to understand that the model used for such policy simmulations should exhibit
a good stability over timme. In particular, the parameters should be invariant with respect
to the policy changes themselves, a point forcefully stressed by Lucas (1976). This author
argues that parameters in econometric relationships reflect economic agents’ decision rules:
since-the latter integrate knowledge about policies, changes in policy rules are likely to
induce shifts in the parameters. Lucas describes three cases where such phenomena could
be observed: the first one deals with income transfers and the aggregate consumption
function, the second one concerns studies of the effect of investinent tax credits with the
help of the Hall-Jorgenson model of investment demand, while the third one is based on the
Phillips curve. In this chapter, we provide empirical evidence on this issue by considering
the second example. '

In this case, Lucas argues that the eflect of a change in the rate of an investment tax
credit depends crucially on expectations concerning future chaunges in this rate: the impact
of a change in the tax credit differs, depending on expectations about future changes of
the tax credit. In other words, the response coeflicient to a change in the rate of the
tax credit depends on expectations about future changes of this rate. In particular, after
developing a simple investment model, Lucas shows that the immpact ol a given change may
be substantially bigger if it is viewed as transitory rather than permanent (once-and-for-
all) [1]. Consequently, if an investigator assumes that changes in the investinent tax credit
are viewed as permanent by the relevant economic agents, while the latter in fact view it
as transitory, e may appreciably underestimate the impact of the tax credit. Thus, to
forecast accurately the effect of a proposed change in the tax credit, it is important

1. to make correct assumptions concerning expectations on future changes in the tax
credit that will follow a proposed change;

2. to specify and estiinate the model under correct expectational assumptions over the
historical period used for estimation.

Note here that Iall and Jorgenson (1967), as well as Gordon and Jorgenson (1976), as-
sumed that changes in tax rates were viewed as permanent.

To get evidence on the Lucas critique, we shall reexamine the same model and data
as Gordon and Jorgenson (1976). Over the sampling period used for the estimation of
their investment function (1956-1972), five major changes in the tax credit took place.
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The tax credit was originally introduced in 1962 to stimulate investment. Then “the effec-
tiveness of the tax credit was increased substantially in 1964 with the repeal of the Long
Amendment [2]. The investment tax credit was suspended in 1966-1967 and repealed in
1969 in order to reduce the level of investment. The tax credit was re-enacted in 1971 to
stimulate investment expenditures” [3]. These events suggest that policy regime changes
took place over the period considered and, from Lucas’ argument, we should observe pa-
rameter instability in the Gordon-Jorgenson model (unless expectations effectively obeyed
the scheme implicitly assumed by Hall and Jorgenson). Further, since it is argued that
the assunption of static expectations should lead to underestimating the impact of the
tax credit, we also expect that the introduction of the investment tax credit be associated
with underpredictions of investment expenditures.

To study such general effects, we need an exploratory methodology that is sensitive to
a wide variety of possible structural changes and capable of providing information on the
timing of structural change. Further, it should give indications on the direction of predic-
tion errors associated with the use of a model. An attractive procedure of this type consists
of estimating the model recursively (adding one observation at a time) and examining a
nuinber of resulting statistics. This approach was first formalized by Brown et al. (1975);
a systematization as well as.a number of extensions were provided by Dufour (1979, 1982,
1986). [For further work along those lines, see also Hackl (1980)]. Because it is especially
well adapted to our objectives, this is the approach we will follow to study the Lucas
effects.

In Section 25.2, we present the investment model that will be analyzed. In Section 25.3,
we describe succinctly the methodology used and define the main statistics considered. In
Section 25.4, we present the empirical results. In Section 25.5, we summarize our findings
and conclusions. '

25.2 The Model

The model studied by Gordon and Jorgenson (1976) is based on quarterly data and has
the form

6
IPDES8, = o+ 8Ky + ) BiViei | w ~ (25.1)

1i=0
where [P DE58, is real investment (1958 dollars) in producers’ durable equipment (during

period t), K, is gross beginning-of-period real capital stock of producers’ durable equip-
ment, Vy is a proxy for the desired capital stock defined as \

Vi = (PGN P,_3)(GN P58,_,/C,_, (25.2)

GN P58, is the real gross national product (1958 dollars), which, like 1P DE58,, is sea-
sonally adjusted and measured at annual rates; PGNP, is the GNP price deflator, C, is
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the rental cost of capital, and wu, is a random disturbance. The cost of capital C, is given
by the expression

Ci = PIPDE(0.138 4 Ry (1~ Up)J[1 - Uy Z, - TC, + Y, Z, TC, U)/(1 - Uy) (25.3)

where PIPDE, is the price deflator for investment in producers’ durable equipment, 0.138
is the depreciation rate on producers’ durable equipment as calculated by Christensen and
Jorgenson (1969), U, is the nominal corporate tax rate, R, is the interest rate on new
issues of high-grade corporate bonds, Z; is the present discounted value of depreciation
allowances, T'Cy is the effective tax credit and Y; equals 1.0 during those years in which
the Long Amendment applied and zero otherwise.

In order to estimate this model, Gordon and Jorgenson (1976) used a second-degree
Almon polynomial lag structure constrained to pass through zero after seven periods. This
imposes the restrictions

Bi = ap - ayi —azi’, i=0,1,...,7 (25.4)

with 7 = ap — Tay — 49a; = 0, so that there are effectively only two free parameters in
the distributed lag on V. Under these conditions, the equation to be estimated is

IPI)E58¢ = o -} 61(‘5 -l ayq ng -} (l2W2t -} Uy (255)
where
' 6 6
W= (T-i)Vii and Wy =) (49— )V, . (25.6)
’ 1=0 ©1=0

Furthermore, since the original Durbin-Watson statistic was 0.7554, a first-order autore-
gressive transformation was used (with § = 0.6223, estimated by the Cochrane-Orcutt
method). The following equation, based on the period 1956/1-1972/IV, was finally ob-
tained:

IPDES8, = -9.656 -+ 0.0572 I 4 0.00181 V; 4 0.00218 V;_,

(1.522)  (0.0163) (0.00071) (0.00033)
4+ 0.00233 Vi_, + 0.00228 Vi_z + 0.00202 V,_4 + 0.00156 V,_
(0.00019) (0.00031) (0.00038) (0.00036)
+ - 0.00088 V;_g, R? =0.9577, DW =1.9788, SE =1.0150. (25.7)
(0.00023) '

The sample 1956/1-1972/1V represents effective observations, not including those obser-
vations that are “lost” because of the presence of lagged explanatory variables and the
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autoregressive transformation. The standard errors are given in parentheses. R? is the
multiple correlation coeflicient, DW is the Durbin-Watson statistic, and SE is the stan-
dard error of the regression (all for the transformed model).

This model is based on a static-expectations assumnption [see equation (25.2)]. By
contrast, in his theoretical argument, Lucas (1976) considers a tax credit that follows
a Markovian scheme, which includes as special cases both a permanent credit (i.e., the
probability that the tax credit will disappear is zero) and a frequently imposed but always
transitory credit (i.e., the probability that the tax credit will disappear soon is high). As-
suming rational expectations on the part of investors, he then shows that the impact of the
tax credit can be much bigger if it is viewed as transitory rather than permanent. Indeed,
under reasonable values of the model parameters, the ratio of the actual to predicted effect
may be in the range of 4 to 7.

In this chapter, we study the stability over time of the above model. For this pur-
pose, we use an “exploratory” methodology aimed at being sensitive to a wide variety
of instability patterns. It is based on estimating recursively the model under study and
considering associated paths of coefficient estimates and prediction errors. An especially
interesting aspect of this approach for our problem is that it can give us information on
the timing of parameter shifts and the direction of prediction errors, two issues for which
Lucas’s conjecture has implications. In the next section, we give a succinct description of
the methodology employed.

On the basis of this approach, we shall present (in section 25.4) the results of three
different recursive estimation experiments with the same dala as Gordon and Jorgen-
son (1976). In the first one, we simply estimate equation (25.5) recursively by ordinary
least squares. In the second one, we take into account the fact that Gordon and Jorgen-
son (1976) made a correction for “autocorrelation” (which, however, may only be an ad
hoc response to a parameter instability problemn) and we study how the conclusions are
affected after making such a correction. We thus estimate recursively the transformed
model

1PDE58¢([3) = (1(1 - f)) -I— 61(1(/3) ~|~ a,VV“(p“) -'- azI’Vzt(f)) ‘I— 6: (258)

where p = 0.6223, IPDE58,(p) = IPDES8 — pIPDE58, 4, I{i(p) = K — pIy_1, etc.
[See Dufour (1982, Section 2.5) for a discussion of this procedure. Note that p is not
recursively estimated.]

Finally, in the third experiment, we try to deal with an extra difliculty: since the
capital stock K is a function of past investment, K; cannot, strictly speaking, be taken
as independent of the disturbance vector. The regressor K; may be viewed as a forin of
lagged dependent variable, and the tests performed in the two first experiments cannot be
considered exact. A suggested in Dufour (1982, Section 2.5), we get rid of the troublesome
regressor I(,(5) by subtracting §K,(5) on both sides of (25.6) where § is the estimate of §
based on the full sample. We thus consider the regression

IPDES8(4) — 6K1(p) = (1 = p) -+ ay Wiy (p) + asWa(p) + €} (25.9)
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where § = 0.0572 and j = 0.6223, and perform the recursive estimation experiment on
the remaining coeflicients. Of course, this third experiment loses some of the advantages
of “recursivity” (6 is not estimated recursively), which may lead to a loss of power. But
it appears necessary in the present circumstances as a way of cross-checking the results
obtained without taking into account the presence of a lagged dependent variable.

25.3 Methodology

In this section, which draws heavily on Dufour (1986, Section 2.3), we sketch the main
features of recursive stability analysis and define the main statistics used. For a detailed
description and more complete bibliography, the reader is referred to Dufour (1982).

Let us consider the following regression model:
w=zf+w, t=1,..,T (25.10)

where y, is an observation on the dependent variable, z, is a K X 1 column vector of
nonstochastic regressors, 3 is a K X 1 vector of regressor coeflicients, u; is a disturbance
term that follows a normal distribution with mean zero and variance o2, Assume also that
the disturbances u;,...,ur are independent.

We wish to investigate the constancy of the regression coeflicient 3 over different
observations. In other words, we consider the alternative model

w=zftw, t=1,..,T (25.11)

and wish to test the null hypothesis Ho: 8y = ... = fr = .

When the data have a natural order (e.g., time), a simple way to investigate the
stability of regression coeflicients is to estimate the model recursively. Using the first K
observations in the sample to get an initial estimate of 3, we gradually enlarge the sample,
adding one observation at a time, and reestimate 3 at each step. We get in this way the
sequence of estimates

b, = (X! X,)'X'Y,, r=K,. . .,T, (25.12)

where X] = (2y,...,2,) and Y, = (y1,...9,)'. We assume here that rank(X,) = K,
r=K,...,T. A computationally eflicient algorithm allows one to get this sequence easily
[see Brown et al. (1975, p. 152)]. It is intuitively clear that the examination of this
sequence of estimates can provide information on possible instabilities of the regression
coeflicients. We see also that two different permutations of the data usually yield different
sequences of estimates. However, when the data are ordered (e.g., by time), it appears that
the most easily interpretable results will be obtained by putting the data either in their
original time order or in the reverse order. In the first case, one gets “forward recursive
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estimates”; and in the second case, “backward recursive estimates”. In this chapter we
will concentrate our attention on forward recursive estimation. '

Recursive estimates are a descriptive device reflecting the influence of different ob-
servations in a sequential updating process. However, recursive estimates are strongly
autocorrelated, even under the null hypothesis of stability, and the analysis of their be-
havior remains delicate from a statistical point of view. One can show easily that recursive
estimates follow a “heteroscedastic random walk”; see Dufour (1982, eq.24). Thus the ob-
servation of a “trend” must be interpreted with great care. Consequently, it is important
to have statistics that are easier to interpret. For this purpose, we look at the associated
sequences of prediction errors. Namely, we consider the sequences of prediction errors

Vhe = Yp — 2obp, =K +k,...,T (25.13)

where 1 < k < T — K. Since these have different variances, it is convenient to standardize
them and to compute

Wey = Zi' r=Ktk,..,T (25.14)

where dy, = {1 + :v'r(X:_kX,_k)“lm,]%. We call the sequence wy,, r = K + k,..., T,
“k-steps-ahead recursive residuals” — or simply “k-step recursive residuals”. Depending
on whether the sample is in forward or backward order, we get “forward” or “backward
recursive residuals”. It is easy to verify that, under the null hypothesis of stability,

E(wg,) =0, E(wi)=d%
Further, when k = 1, one has
E(wy,wis) =0, 7#s

so that the sequence wy,,r = K + 1,...,T, is a normal white noise. For k > 2, the
sequence Wy, r = K + k,...,T, is dependent but only up to lag k — 1 [see Dufour (1982,
pp. 41-44)). '

It is not difficult to determine how relatively simple forms of structural chémge will
affect the behavior of prediction errors (or recursive residuals). For example, a sudden
shift in the coeflicients at some point tg will, in many circumstances, lead to an increase
in the size of prediction errors and/or a tendency to either overpredict or underpredict
the dependent variable (for ¢ > ty); a systematic drift in one or several of the coefficients
will often lead to a systematic tendency to over- or underpredict; etc. Thus, we will first
use the sequences of standardized prediction errors to perform an exploratory analysis
and search for patterns indicative of possible structural shifts. For this purpose, it is
especially useful to look at several “clues”. The simple statistical properties of the one-
step recursive residuals (forward or backward) designate them as the basic instrument of
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analysis for that search. llowever, we will find instructive to compare these with the k-step
recursive residuals (k > 2): since the latter are forecasts using estimates from a sample
further away in time, they may exhibit better-defined and more recognizable patterns;
they can also help to identify possible breakpoints.

When interpreting and comparing various sets of residuals, it is always useful to recall
that all recursive residuals have the same standard error o (under the null hypothesis).
Interpretation will generally be easier if we scale the residuals with an estimate of 0. Since
the most natural estimate is the one obtained from the full sample (i.e., the standard error
of the regression), one computes

Wy = kK gk, T (25.15)
. ag

where

52 _ (Yr — Xobg) (Yr — Xrbr)
(T - K)

This procedure can also help display the recursive residuals, for in most practical situ-
ations, it will bring all residuals in a convenient scale —— not too close to zero and well
inside the interval (10, 4-10) [4].

Though the first purpose of the instruments we defined is exploratory, it is important to
assess the statistical significance of what is observed. Because one-step recursive residuals
have such simple statistical properties, we will use these for this assessment. Roughly
speaking, we expect two main types of effects to result from structural shifts: tendericies
either to over- or underpredict the dependent variable and discontinuities in the size of
the prediction errors. Consequently, we will compute a number of simple statistics aimed
at being sensitive to these characteristics. Statistics especially sensitive to the sign of
prediction errors include the CUSUM test originally suggested by Brown et al. (1975), a
Student t-test and the corresponding Wilcoxon signed-rank test, run tests based on the
number of runs and the length of longest run, and serial dependence tests. Statistics
sensitive to discontinuities in the size of prediction errors include the CUSUM of squares

test suggested by Brown et al. (1975) and heteroscedasticity tests. We now define succincty
the various test statistics.

If we let :wt = wy, t = K +1,...,T, the CUSUM test is based on considering the
cumulative sums

W, = wij, r=K+1,...,T (25.16)

Q> =

j=K 41

where 6% = Sp/(1'— K) and St = Eg‘:I(H w}. The null hypothesis Hy is rejected at level
a if C = maxg p1<r<1 |[Wy| 2 €o, Where
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oo W,
W= (VI =K +2{(r - K)/VT - K|} (25.17)

and ¢, depends on the level of the test (co.01 = 1.143, co 95 = 0.948, cg.10 = 0. 850). In other
words, Il is rejected if the graph of W, crosses elther one of two straight lines determined
by the level of the test. The t-test is based on the standard Student’s ¢-statistic to test
the hypothesis that the recursive residuals have zero mean against a systematic tendency
to over- or underpredict. It is based on the statistic

vI'—- KW

t= — (25.18)
where
. i Wi i U)t - w 2 (2(’ 19)
w = e ) ; J.
t::[(»l-ll — I K1 K -1

under the null hypotlesis, { follows a Student’s ¢-distribution with 7' — I — 1 degrees of
freedom. The Wilcoxon signed-rank test is based on the statistic

T
Z w(w) R : (25.20)

t=I -1

where

1, 1[z>0
u(z) = {0
T . )
RE =3 wljw] - Jwl) (26.21)

We may view it as a robust alternative to the t-test; its distribution (for 7' < 50) has
been extensively tabulated by Wilcoxon et al. (1973, pp. 171-259). For T' > 50, one can
use the standardized form X' = (S — E(S)]/o(S), where E(S) = n(n + 1)/4, o¢(S) =
[n(n 4 1)(2n + 1)/24]% and n =1 — I{. Under Hy, S’ is approximately N(0,1).

An intuitively attractive way of looking at the sequence of the recursive residuals con-
sists of observing runs of overpredictions (or underpredictions), as defined by the sequence
u(we), t = K +1,...,7. Two simple tests are then obtained by considering the number
of runs It in this sequence or by observing the length of the longest run in the sequence.
The distribution of the number of runs R is obtained by noting that 2 — 1 follows a bi-
nominal distribution Bi(1'— K — 1, %), a siall number of runs suggests that the model has
a tendency to overpredict or underpredict. Besides, an especially long run of negative or
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positive errors of prediction suggests the presence of a shift. The probability of getting at

least one run of a given length or greater may be computed from formulas (135) to (138)
in Dufour (1982).

In a large number of cases, structural change leads to situations where the means of
the cross products Zy; = wywyyp,t = K +1,..., T — k (where 1 < k < T — K — 1) differ
from zero [see Dufour (1982, pp. 52-55)]. This suggests testing whether Zj; has mean
zero: we can do this by using “serial dependence tests” not corrected for the mean (for
such tests are more accurately viewed in this context as location tests rather than serial
dependence tests). We will consider two types of statistics for doing this: the modified
von Neumann ratio

(n - 1)~1 EZ‘;I}H(W-H - wt)z

VIR = T T 5
n Zt:K—{-l Wy

(25.22)

where n = T — K, and rank Wilcoxon-type serial dependence tests based on statistics of
the form

Tk ‘
Se= Y, wW(Z) R, k=1,2,... (25.23)
t=K+1
where R}, Zz-[(-l—l (| Zke) — |Zii]). V R provides an exact parametric test of the null

hypothems B(wgweyq) = 0,t = K-+1,...,T—1, for a table, see Theil (1971, pp. 728-729).
Each statistic Sy is distributed like the Wilcoxon signed-rank statistic to test the zero
median hypothesis; it gives an exact test of the null hypothesis F(w,aw,yt) = 0, t =
K+1,...,T—k, where k > 1 [see Dufour (1981)]. Further, under Ho, E(Sk) = ng(ne+1)/4,
and o(Sk) = [n(n + 1)(2np 4 1)/24)'/2, where ny, = T — K — k.

The CUSUM of squares test is based on considering the statistic

’:__ 'w? ’
Dj=K+1 L, or=K41,...,T (25.24)

Sy = =F
Yi=K+1 w;

The null hypothesis is rejected at level « if

S=_  max |Sg4;—

(25.25)
1<G<T—K~1

J
—=|>d
T-K'=™°
where dg is obtained by entering Table 1 of Durbin (1969) at a/2 and n = (3)(T- K)-1
il T — K is even, or by interpolating linearly between n = ( )J(I' — K) — (3/2) and

n=G)NT-K)- ( )if T — K is odd. We do not use heteroscedastlmty tests in this paper
and so do not need to define them here.

Whenever possible we will report the marginal significance level (p-value) of each statis-
tic. Of course, a test significant at a very low level provides stronger evidence against the
null hypothesis. Note also that any of the tests suggested above can be applied to a
subset of the one-step recursive residuals, provided this subset is suggested by a priori
considerations (e.g., dates of policy changes).
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25.4 Recursive Stability Analysis of Investment Demand

As indicated in Section 25.2, the first experiment consists of estimating equation (25.5) re-
cursively by ordinary least squares (1956/1-1972/IV) [5]. The recursive estimates obtained
are listed in Table 25.1 and graphed in Figure 25.1(a-d); the corresponding recursive resid-
uals (1, 2, 3, 4, and 8 steps ahead) are listed in Table 25.2, with a nuber of test statistics
in Table 25.3, and they are graphed in Figure 25.2(a-d) [6).

When we look at the recursive estimates, we distinguish four main phases:

1. The first phase (beginning to 1961/I) is characterized by relatively large fluctuations
(including some “weird” values, especially at the very beginning, which is not sur-
prising for, at the beginning, the estimations are based on few observations) and by
a rough trend (upward for o and ay, downward for § and ay).

2. The second phase (1961/I1-1963/111) is one of relative stability exhibiting no clear
trend, expect for § which increases after 1962/1V.

3. The third phase (1963/IV-1966/1V) displays well-defined trends (downward for a
and ay, upward for § and ay) during which all coeflicients change sign.

4. Finally, during the fourth phase (1967/1-1972/IV), a; and a; move in directions
opposite to the ones they followed in the previous phase, while a and § seem stable.

"Thus, the fourth quarters of 1963 and 1966 appear to be breakpoints.

When we examine one-step-ahead recursive residuals, we find no systematic tendency
to over- or underpredict over the full period (as indicated by the global location tests
in Table 25.3). However, we can observe a run of 13 consecutive underpredictions {from
1963/IV to 1966/1V, a very surprising outcome if the model is correct: under the null
hypothesis of stability, the probability of getting at least one run of this length or more
is 0.0065. The total number of runs of either over- or underpredictions (16) is extremely
small in relation to the samnple size, and there is strong evidence of serial dependence
(at least up to a distance of 3 quarters). Indeed, the trajectory of the one-step recursive
residuals has several striking features. The first period (beginning to 1963/III) exhibits
a tendency to overpredict (negative residuals). This phenomenon is also indicated by
the CUSUM test [see Figure 25.2(f)]. Note also that the CUSUM of squares test is not
significant (at level 0.05). Next, we note a long run of 13 consecutive underpredictions
(1963/1V-1966/1V), a “breakpoint” between 1966/IV and 1967/1, another run of 9 under-.
predictions (1967/IV-1969/IV), while the sequel of the series looks relatively “random”.
We can also observe that two-, three-, and four-steps-ahead recursive residuals display
basically the same pattern. The form of the pattern is in fact clearer from the latter than
from the one-step residuals.

It is interesting to compare the trajectory of the one-step recursive residuals with the
movement of the effective investient tax credit [7]. The long run of underpredictions starts
in 1963/1V, which roughly coincides with the repeal of the Long Amendinent (1964/I),
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Table 25.1: Gordon-Jorgenson model: forward recursive estimates (OLSQ):
1956/1-1972/1V. '

Quarter ¢ a § ay az
56.04 -326.102 1.6091 -0.0183925 0.0018862
57.01 -355.362 1.7910 -0.0199375 0.0020607
§7.02 -200.678 0.9335 -0.0113769 0.0011276
§7.03 -258.690 1.2004 -0.0145302 0.0014536
57.04 103.729 -0.2716 0.0044718 -0.0004420
58.01 §1.225 -0.3009 0.0038135 -0.0004790
§8.02 -201.634 0.5238 -0.0078796 0.0006041
658.03 -213.437 056234 -0.0076991 0.0005612
58.04 -133.600 0.1898 -0.0028328 0.0000649
659.01 -121.596 0.1442 --0.0021972 0.0000024
59.02 -127.719 | 0.1655  -0.0024678 0.0000277
659.03 -86.004 0.0339 -0.0010597 -0.0000916
69.04 -57.819 -0.0476 -0.0005529 -0.0001204
60.01 -40.011 -0.0949 -0.0004649 -0.0001113
60.02 -39.388 -0.0965 -0.0004630 -0.0001109
60.03 -27.361 -0.1262 -0.0004526 -0.0000987
60.04 12912 -0.1608 -0.0005411 -0.0000723
61.01 7.845  -0.2074 -0.0007922 -0.0000198
61.02 20.961 -0.2326 -0.0011519 0.0000372
61.03 27.251 -0.2398 .0.0011481 0.0000465
61.04 29.245 -0.2407 -0.0011379 0.0000489
62.01 29.312  -0.2407 -0.0011375 0.0000489
62.02 28.384 -0.2413  -0.0011478 0.0000481
62.03 28.268 -0.2420 -0.0011981 0.0000533
62.04 28.814 -0.2319 -0.0007962 0.0000129
63.01 30.011 ©-0.2123 -0.0007552 0.0000171
63.02 31475 -0.1941 -0.0011388 0.0000686
63.03 31.800 -0.1914 -0.0012565 0.0000832
63.04 31.227 -0.1943 -0.0010485 0.0000580
64.01 30.255 -0.1965 -0.0007345 0.0000205
64.02 28.943 .0.1961 -0.0004098 -0.0000180
64.03 27.405 -0.1945 -0.0001861 -0.0000452
64.04 26.252 -0.1911 -0.0000746 -0.0000586
65.01 23.723 -0.1807 0.0002025 -0.0000908
65.02 21.435 -0.1694 0.0004589 -0.0001199
65.03 17.259 -0.1464 0.0008914 -0.0001683
65.04 12.713 -0.1186 0.0013065 . -0.0002138
66.01 7.462 -0.0837 0.0016886 -0.0002547
66.02 2.236 -0.0461 0.0019594 -0.0002822
66.03 -2.754 -0.0090 0.0022482 -0.0003115
66.04 -6.225  0.0172 0.0025062 -0.0003381
67.01 -3.042 -0.0074 0.0022301  -0.000309%
67.02 -2.278 -0.0128 0.0020597 -0.0002909
67.03 -1.695 -0.0184 0.0019768 -0.0002822
67.04 -2.642 .0.0093 0.0019180 -0.0002744
68.01 -5.921  0.0244 0.0015286 -0.0002263 i
68.02 -6.344 0.0287 0.0014691 -0.0002190°
68.03 -7.195 0.0375 0.0013446 -0.0002039
68.04 -7.587 0.0415 0.0012932 -0.0001976
69.01 -8.738 0.0531 0.0011811 -0.0001834
69.02 -8.968 0.0554 0.0011641 -0.0001812
69.03 -9.197 0.0578 0.0011459 -0.0001788
69.04 -9.346  0.0592 0.0011719  -0.0001815
70.01 -8.954 0.0553 0.0010426  -0.0001677
70.02 -8.798 0.0536 0.0009942 -0.0001625
70.03 -9.123 0.05786 0.0009975 -0.0001622
70.04 -7.815 0.0421 0.0012129 -0.0001890
71.01 -7.838 0.0410 0.0012349 -0.0001916
71.02 -8.278  0.0469 0.0010713  -0.0001723
71.03 -8.479 0.04956 0.0009764 -0.0001612
71.04 -9.088 0.0572 0.0006227 -0.0001205
72.01 -9.427 0.0612 0.0004061  -0.0000956
72.02 -9.405 0.0609 0.0004209 -0.0000973

. 72.03 -9.213 0.05693 0.0005416 -0.0001110
72.04 -9.204 0.0593 0.0005455 -0.0001114

*End-of-sample quarter. Ali samples start in 56.01 (1956/1).
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Table 25.2: Gordon-Jorgenson model: forward recursive residuals (OLSQ):
1956/1-1972/IV |

Quarter ¢ 1 step. 2 steps 3 steps  { steps 8 steps

§57.01 0.0352 - - - -
67.02 -0.3443  -0.0826 - - -
57.03 0.1202 -0.2410 -0.0586 - -
57.04 -0.9358 -0.3520 -0.4835 -0.1767 -
58.01 -2.0437 -1.9434 -0.7658 -0.6970 -
58.02 -0.6692 -1.6723 -1.4633 -1.1100 -
68.03 -0.7965 -1.2645 -2.1070 -2.3049 - -
58.04 -0.8318 -1.0136 -0.6006 -1.4623 -0.2768
§9.01 -0.1621 -0.7309 -0.8453 0.0888 -0.6647
69.02 0.1216 -0.0394 -0.6529 -0.7163 -0.3496
59.03 -1.0660 | -0.6810 -0.5661 -0.9969 -0.6585
59.04 -1.1178  -1.5424 -1.0406 -0.8184 0.2308
60.01 -0.9078 -1.3542 -1.7216 -1.1940 0.2001
60.02 -0.0416 -0.4826 -1.0236 -1.4762 -1.1135
60.03 -1.0657 -0.9519 -1.2886 -1.6988 -1.3356
60.04 -1.6579 : -1.9499 -1.7102 -1.9269 -1.2609
61.01 -3.0500 -3.4503 -3.5545 -3.0574 -2.0087
61.02 -2.4494 -3.3145 -3.6992 -3.7670 -3.0622
61.03 -1.6073 -2.1589 -3.1013 -3.5108 -3.0344
61.04 -0.5886 -1.0080 -1.7293 -2.7638 -2.7488
62.01 -0.0238 -0.1942 -0.6676 -1.4533 -2.5886
62.02 0.3981 0.3744 0.1668 -0.3661 -3.0006
62.03 0.1264 ' 0.2424 0.2210 -0.0026 -3.0570
62.04 -1.2763 -1.0963 -0.8944 -0.8431 -3.4240
63.01 -1.8985 | -2.2543 -1.9576 -1.6653 -2.9185
63.02 -1.6528 -2.1564 -2.4872 -2.1761  -2.2537
63.03 -0.2602 -0.8525 -1.5101 -1.8747 -1.3761
63.04 0.3969 0.2401 -0.4329 -1.1003 -0.9530
64.01 0.6896 0.7948 0.5781 -0.1357 -0.7935
64.02 0.8716 1.1661 1.2154 0.9388 -0.7791
64.03 1.6153 1.8299 1.9545 1.9162 -0.6585
64.04 1.0617 1.4188 1.6490 1.7873 -0.2733
656.01 1.8532 2.0483 2.3979 2.5852 1.0665
65.02 1.3797 1.7851 1.9928 2.3620 1.9435
65.03 2.3894 2.6599 3.0484 3.2200 3.2393
65.04 2.3603 2.8022 3.1595 3.6466 3.9159
66.01 2.5607 3.0896 - 3.6277 3.8720 4.6526
66.02 2.3817 2.9778 3.5237 4.0661 5.0238
66.03 2.2171  2.8001 3.4335 3.9931 5.1704
66.04 1.6839  2.2018 2.8415 3.5181 5.1804
67.01 -1.6789 -0.9150 -0.0800 0.7362 3.2344
67.02 -0.6451  -1.1402 -0.4052 0.4580 3.4158
67.03 -0.5047 -0.7066 -1.3239 -0.5287 2.7265
67.04 0.4544 . 0.2537 - 0.0078 -0.6620 2.6274
68.01 1.6167 1.6684 1.4436 1.1773 2.5613
68.02 0.2516 0.9135 1.0190 0.8428 1.4060
68.03 0.6852 0.7289 1.3712 1.4368 0.9470
68.04 0.4210 0.6192 0.6681 1.3293 0.2713
69.01 1.6063 1.6606 1.7926 1.7423 1.6934 ’
69.02 0.3751 0.7129 0.7986 0.9801 1.4135 ‘
69.03 - 0.4108 0.4787 0.8364 0.9210 1.7631
69.04 0.3736 0.4438 0.5115 0.8600 1.7602
70.01 -1.2635 -1.1376 -1.0360 -0.9323 -0.0573
70.02 -0.6683 -0.8777 -0.7616 -0.6496 0.20565
70.03 0.9227 0.76566 0.4189 0.5001 1.1474
70.04 -2.7727 -2.6033 -2.5670 -2.7044 -1.6355
71.01 -0.1711 -0.8527 -0.6282 -0.7284 -0.5813
71.02 1.0118 0.9240 0.1605 0.3546 0.2081
71.03 0.4976 0.7913 0.7026 -0.0633 -0.0638
71.04 1.8427 1.8979 2.1286 1.9701 1.1664
72.01 1.3878 1.9639 2.0065 2.2322 1.3999
72.02 -0.1190 0.3230 0.9883 1.1032 0.6790
72.03 -1.3400 -1.3280 -0.8496 -0.1343 -0.3332
72.04 -0.0745 -0.2912 -0.3096 0.0560 0.9355

“Scaled recursive residuals are not reported: the standard error of the transformed regression is
& = 1.015 (based on the sample 1956/1-1972/1V).
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Table 25.3: Gordon-Jorgenson model: test statistics (OLSQ), based on the 64 one--

step-ahead recursive residuals.

Type Indicator Result  p-values ®
Global location t-test 0.619 0.9506
tests ® Number of positive residuals 32 1.0000
Wilcoxon test 1053 0.9307
Runs tests © Nuwmnber of runs 16 0.000019
Length of longest run 13 0.0065
Serial correlation Modified von Neumann ratio 0.6779 < 0.002
tests ¢ Rank tests '
' k Signed-rank tests Sign tests
Sk St p-value Sk St p-value
1 1735 4977 0.00000065 48 4.158 0.000038
2 1421 3.116 0.0018 41  2.540 0.0151
3 1284 2.431 0.0150 37  1.664 0.1237
4 1091 1.296 0.1951 33 0.7746 0.5190
5 1041 1.177 0.2390 33 0.9113 0.4350
6 1095 1.854 0.0637 35 1.576 0.1480
7 1058 1.839 0.0659 35 1.722 0.1112
8 983 1.509 0.1313 32 1.069 0.3497
9 1015 2.053 0.0401 33 1.483 0.1770
10 958 1.856 0.0635 32  1.361 0.2203
‘ 11 877 1.430 0.1528 31 1.236 0.2717
12 807 1.075 0.2825 30 1.109 - 0.3317

"Marginal significance levels.
¥See Dufour (1982, Section 4.3). The tests are two-sided.

“See Dufour (1982, Section 4.5). The tests are one-sided: P[R < 16] = 0.000019 and P[L > 16] =
0.0065, where 2 = number of runs (of -} ’s or -’s) and L = length of the longest run.

Sk is a rank statistic for testing serial dependence [see Dufour (1982, Section 4.6)], k being the lag
used; test; S = (Sk — Eo(Sk))/ Stdo(Sk). We consider here two-sided tests (against positive or negative
serial dependence). For'a more complete theory of these tests, see Dufour (1981).
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Figure 25.2: Gordon-Jorgenson model (OLSQ): recursive residuals and CUSUM tests.
Significance boundaries in (e) and (f) correspond to tests of level 0.05.
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Table 25.4: t-statistics for subperiods (OLSQ).
Period @ ‘ l p-value
1962/1-1966/111  2.5563  0.0200
]964/1—1966/111 8.834  0.00000251

1967/11-1969/1 1.7 0.128
197]./][—1972/IV 1.127 0.303
Remainder ® -3.790  0.000705

“1962/1-1966/111 coneslponds to the first applicalion of the tax credit; 1964/1-1966 /111 is the
sajue period after the repeal of the Long Amendment; 1967/11-1969/1 corresponds to the second
application and 1971/11-1972/1V to the third one,

*1957/1-1961/1V, 1966/1V-1967/1, 1969/11-1971/].

and lasts as long as the eflective tax credit is-nonzero (up to 1966/1V). The suspension
of the tax credit (1967/1) is associated with a discontinuity in the same series, while the

following run of underpredictions (1967/1V-1969/1V) can be related Lo the reimposition
of the tax credit (1967/11-1969/1).

- On this issue, it is also instructive to compute t-statistics to test the null hypothesis of
- a zero mean (based on the one-step-ahead recursive residuals) for each of the subperiods
corresponding to the different phases of the tax credit. This is justified by the fact that
the (one-step-ahead) recursive residuals are 1i.d.N(0,0%) under the null hypothesis [see
Dulour (1982, Section 4.3)]." The results of these calculations are given in Table 25.4.
From the latter, it is remarkable thal each period where the eflective tax credit is nonzero
corresponds to a positive t-statistic (indicating a tendency to underpredict), while the
period over which it does not apply yields a negative t-statistic. T'his effect is especially
strong for the first application of the tax credit after the repeal of the Long Amendment.

Thus, if we estimale recursively equation (25.5) by ordinary least S(]llareé, we find sev-
eral clues of instability. In particular, the results point to the presence of a substantial shift
associated with the first imposition of the investment tax credit, especially after the repeal
of the Long Amendment. Furthermore, this shift induced systematic underprediction of
the level of investment expenditures over the corresponding period. On the other hand,
the two other applications of the tax credit are not associated with statistically significant
ellects, even though the ¢-statistics are also positive.

Consider now the results of a similar experiment applied to equation (25.8), i.e., model
(25.5) alter correction for autocorrelation (using § = 0.6223). I'he recursive estimates are
listed in Table 25.5 and graphed in Figures 25.3(a-d); the recursive residuals are listed
in Table 25.6 with a number of test statistics in Table 25.7, and they are graphed in
Figures 25.4(a~d) [8]. When we look at the recursive estimales, we can still observe the
same basic phases: first (1957/1-1961/1), wide fluctuations with rough trends (upward
for o and a3, downward for § and a1); second (1961/11-1963/1V), a period of relative
stability with no general trend (expect for § which starts to increase near 1961/1V); third
(1963/XIV-1966/1V), well-defined trends for all coeflicients (downward for « and a,, upward
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Table 25.5: Gordon-Jorgenson model: forward recursive estitates (data transformed with
p= 0.6223): 1956/I~1972/1V.

Quarter o 5 . ay a3
56.04 -363.656 -1.8131 0.0519153 -0.0071130
67.01 -271.063 1.2423 -0.0022213 0.0000800
67.02 -306.493 1.13256 0.0016707  -0.0004430
67.03 -313.996 1.4091 -0.0048950 0.0003463
67.04 256,176 -0.7712 0.0072487  -0.0006241
58.01 -391.011 1.1731 0.00666839 -0.0010445
58.02 -312.996 0.9128 0.0082321 -0.0010437
658.03 -262.689 0.7487 0.0023925  -0.0005566
68.04 -259.607 0.8018 -0.0006244 -0.0002177
69.01 -277.221 0.8733 -0.0013764 -0.0001448 .
659.02 -273.910 0.8607 -0.0013323 -0.0001476
£9.03 -103.182 0.2313  -0.0007210 -0.0000052
59.04 -50.171 0.0343 .0.0014466 0.0000221
60.01 .38.357 -0.0089 -0.0016395 0.0000519 }
60.02 -53.803 0.0468 -0.0016769 0.0000337
60.03 -23.015 -0.0706 -0.00180856 0.0000787
60.04 -0.459 -0.1558 -0.0021968 0.0001378
61.01 33.432 -0.2782 -0.0028205 0.0002318
61.02 41.104 -0.3030 -0.0031011 0.0002691
61.03 . 42.370 -0.3038 -0.0030304 0.0002635
61.04 40573 -0.3014 -0.0030468 0.0002626
62.01 38.703 -0.2085 -0.0030512 0.0002606
62.02 36.644 -0.2961 -0.0030638 0.0002588
62.03 35.078 -0.2750 -0.0023387 0.0001821
62.04 36.499 -0.2411 -0.0019230 0.0001498
63.01 40.351 -0.2223 -0.0024909 0.0002265
63.02 41.286 .0.2195 -0.0026724 0.0002494
63.03 37.019 -0.2210 -0.0018309 0.0001472
63.04 33,600 -0.2135 -.0.0012767 0.0000814
64.01 30.380 . -0.2017 -0.0008162 0.0000394
64.02 26.664 -0.1819 -0.0006697 0.0000114
64.03 23.462 -0.1666 ~ -0.0008041 0.0000256
64.04 23.063 = -0.1643 -0.0007949 0.0000246
65.01 16.427 -0.1174 .0.0003890 -0.0000193
65.02 13.667 -0.1067 -0.0002885  -0.0000288
65.03 4.147 -0.0414 0.0001009 -0.0000698
66.04 -1.634 -0.0008 0.0003055  -0.0000897
66.01 -8.201 0.0404 0.0004660 -0.0001036
66.02 -12.363 0.0820 0.0005219  -0.0001067
66.03 -16.481 0.1144 0.0006648 -0.0001197
66.04 -17.838 0.12562 0.0007345 -0.0001264
67.01 -6.792 0.0266 0.0000840 -0.0000639
67.02 -8.687 0.04656 0.0008241  -0.0001450
.87.03 -7.34% 0.0350 0.0008336 -0.0001476
67.04 -7.942 0.0409 0.0007639  -0.0001390
68.01 -11.173 0.0732 0.0003778  -0.0000914
68.02 -8.627 0.0467 0.9006748 -0.0001282
68.03 -9.310 0.06544 0.0006087 -0.0001186
68.04 ) -9.264 0.0539 0.0008002 -0.0001199
69.01 -10.988 0.0698 0.0006009 -0.0001170
69.02 -10.243 0.0626 0.0006111  -0.0001191
68.03 -10.428 0.0645 0.0006022 -0.0001178
69.04 -10.709 0.0673 0.0006918 -0.0001274
70.01 -9.662 0.0656 0.0004987 -0.0001076
70.02 -9.806 0.0586 0.0006126 -0.0001088
70.03 - -11.118 0.0743 0.0003393  -0.00008668
70.04 -7.688 0.0284 0.0011028 -0.0001802
71.01 -8.888 0.0446 0.0007806 -0.0001413
71.02 -9.601 0.0541 0.0005443 -0.0001132
71.03 -9.386 0.0614 0.0008417 -0.0001246
71.04 -10.134 0.0596 0.0002408 -0.0000785%
72.01 -10.262 0.0607 0.0001823 -0.0000719
72.02 ~9.801 0.0584 0.0003461 -0.0000903
72.03 -9.466 0.0671 10.0004711 -0.0001039
72.04 -9.666 0.0572 0.0004686 -0.0001039
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Table 25.6: Gordon-Jorgenson model: forward recursive residuals (data transformed
with p = 0.6223): 1956/1-1972/IV @ '

Quarter 1 step 2 steps 3 steps  { steps 8 sleps
57.01 0.8617 - - — -~
67.02 -0.2876  0.7745 - - -
§7.03 0.56832 0.0882 0.8594 - -
57.04 -1.1129  -0.4006 -0.4743 0.7274 -
58.01 -1.8398 -2.1876 -0.9812 -0.7629 -
58.02 0.15689 -1.0499 -0.4120 -0.1960 -
658.03 0.5489 0.6080 -0.7196 -0.6797 -
68.04 0.6562 0.7814 0.7972 0.0318 0.7833
58.01 0.2795 0.6693 0.7879 0.7170  -0.1665
59.02 -0.0302 0.1087 0.4062 0.6159 0.0048
59.03 -1.4740 -1.1866 -0.9079 -0.5339 -0.4487
59.04 -0.6864 -1.4794 -1.2603 -1.0678 0.4201
60.01 -0.2317 -0.5886 -1.4267 -1.2044 -0.6091
60.02 0.4567 0.2821 -0.1956 -1.1910 -0.7622
60.03 -1.1264 -0.8059 -0.8034 -1.0666 -1.10568
60.04 -1.0778 -1.4389.  -1.0643 -1.0100 -1.3586
61.01 -2.1211  -2.3610 -2.6163 -2.0790 -1.9059 '
61.02 -0.6305 -1:.1889 -1.4830 -1.8146 -2.0349
61.03 -0.1769 -0.3097 -0.9042 -1.2230 -1.2533
61.04 0.2439 0.1839 0.0216 -0.6485 -0.9146
62.01 0.2705 0.3254 0.2659 0.0762 -0.9703
62.02 0.3446 0.4043 0.4681 0.3720 -1.4314
62.03 -0.5286 -0.4090 -0.3113 -0.2141 -1.3080
62.04 -1.4905 -1.5615 -1.3492 -1.1776 -1.8167
63.01 -1.0779 -1.5502 -1.6266 -1.3804 -1.1316
83.02 -0.2264  -0.6454 -1.1347 -1.2600 -0.6952

" 63.03 0.8557 0.6718 0.1440 -0.3490 -0.0831

63.04 0.6493 0.9670 0.7573 0.2130 -0.0957
64.01 0.5692 0.7803 1.0892 0.8612 -0.1237
64.02 0.6716 0.8141 1.0016 1.2811 -0.17656

64.03 1.0488 1.1659 1.27156 1.4139 0.0405
64.04 0.0779 0.3026 0.4656 0.6190 - 0.2726.
66.01 1.2389 1.2223 1.4180 1.5533 1.6100

66.02 0.2578  0.5865 0.5869 0.8015 1.56434
65.03 1.5437 1.5641 1.8458 1.7981 2.2194
66.04 0.8328 1.2251 1.2443 1.5695 1.9277
66.01 0.9921 1.1928 1.6967 1.6917 2.1479
66.02 0.6097 0.8805 1.1017 1.6327 1.9872
66.03 0.6486 0.8110 1.0981 1.3219 1.9889
66.04 . 0.2372 0.4550 0.6430 0.9605 1.9735
67.01 -2.4115  -2.1238 -1.6915 -1.3304 0.2121
67.02 1.0586 -0.0779 0.0356 0.3018 1.6664
67.03 -0.2880 0.2444 -0.8673 - -0.6589 0.6505
67.04 0.1035 0.0075 0.1772  -0.6717 0.4132
68.01 0.8737 0.8043 0.6673 0.8197 0.56047
68.02 -1.0001 -0.6762 -0.4352 -0.5072 -0.6355
68.03 0.4017 0.0870 0.4180 0.4110 -0.3358
68.04 -0.0358 0.0652 -0.2357 0.1008 -0.7244
69.01 1.3803 1.3494 1.4046 1.0719 1.2657
69.02 -0.6068 -0.3531 -0.3529 -0.2463 -0.1877
69.03 0.1533 0.0395 0.2896 0.2842 0.3840
69.04 - 0.3481 0.3692 0.2434 0.6176 0.5684
70.01 -1.3268 -1.1676 -1.1161 -1.2200 -1.0088
70.02 0.3041 -0.0354 0.0668 0.0978 0.3677
70.03 1.2032 1.2403 0.9179 0.9743 - 1.0602
70.04 -3.4415 -3.0240 -2.8938 -3.1034 -2.4678
71.01 1.4386 0.4566 0.7641 0.7997 0.4413
71.02 0.9690 1.3068 0.2686 0.6726 0.4643
71.03 -0.3259 -0.0517 0.3486 -0.6952 -0.4223
71.04 1.4282 1.2599 1.4814 1.8241 0.9441
72.01 0.2908 0.6649 0.6394 0.7795 0.4317
72.02 -1.0287 -0.9480 -0.5379 -0.6084 -0.5838
72.03 -1.4314 -1.6655 -1.4939 -1.1499 -1.4101
72.04 0.6363 0.5052 0.4022 0.4314 0.9186

“Scaled recursive residuals are not reported: the standard error of the transformed regression is
& = 1.015 (based on the sample 1956/1-1972/1V).
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Table 25.7: Gordon-Jorgenson model (5 = 0.6223): test statistics. °

Type Indicator - Result  p-values
Global location t-test -0.1203  0.9042
tests Number of positive residuals 38 0.1686
Wilcoxon test 1126 0.5652
Runs tests Number of runs 29 0.2250
Length of longest run 14 0.0032
Serial correlation Modified von Newmann ratio 1.967 > 0.10
~ tests Rank tests
‘ k Signed-rank tests Sign tests
Sk St p-value S, Sk p-value
1 1161 1.047 0.2949 35 0.8819 0.4500
2 1103  0.8869 0.3751 36 1.270 0.2529
3 1114 1.210 0.2262 36 1.408 0.2000
4 789 —0.9276 . 0.3536 26 —1.033 0.3663
5 897 0.0906 0.9278 32 0.6509 0.6029
6 1126 2.094 0.0362 36 1.838 0.0869
q 1092 2.109 0.0349 37 2.252 0.0331
8 787 —0.0897 0.9285 30 0.5345 0.6889
9 870 0.8379 0.4021 28 0.1348 1.0000
10 710 —0.2798 0.7796 26 -—0.2720 0.8919
11 578 ~1.217 0.2235 24 —0.6868 0.5831

oy
N

696 0.0638  0.9492 25 —0.2774 0.8899

“Number of residuals: 64

Table 25.8: t-statistics for subperiods (p = 0.6223).

Period ot p-value
1962/1-1966/III  2.178  0.0429
1964/1—1966/111 6.066  0.0000812
1967/11-1969/1  1.130 0.256
1971/11—1972/1\7 0.194 0.853
Remainder ¢ —1.839 0.0762

*1957/1-1961/1V, 1966/1V-1967/1, 1969/11-1971/1."
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Figure 25.4: Gordon-Jorgenson model (p = 0.6223): recursive residuals and CUSUM tests.
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for § and a;) during which all coeflicients change sign; fourth (1967/1-1972/1V), a period
during which all coeflicients seem to stabilize. On the other hand, the one-step recursive
residuals [Figure 25.4(a)) appear more “random” than without the tranformation [compare
Figures 25.2(a) and 25.4(a)]. Global location tests and serial dependence tests are not
significant at standard levels (say, 0.10). Nevertheless, we can still observe a tendency
to overpredict in the earlier period (up to 1963/II) as well as a run of 14 consecutive
underpredictions from 1963/ to 1966/1V followed by a sudden drop (1967/1) [9]. The
(1967/1V-1969/1V) run of underpredictions disappears. These observations are confirmed
when we look at several-steps-ahead recursive residuals (Figures 25.4(b-d)). We thus
continue to find signs of instability, especially in association with the first application of
the tax credit (after the repeal of the Long Amendment)

The t-statistics for the separate subperiods corresponding to the different applications
of the tax credit are reported in Table 25.8. As in the first experiment, the t-statistic for
periods where the tax credit was in force are positive, while for the rest of the sample the
t-statistic is negative. Moreover, the t-statistic for the first application period is significant

(at level 0.04) and very strongly significant (at level 0.00008) if the period where the Long
Amendment applied is excluded. ‘

Finally, to take into account the fact that K is a form of lagged dependent variable, let
us consider the result of estimating recursively equation (25.9). The recursive estimates
are listed in Table 25.9 and graphed in Iigures 25.5(a~c); the recursive residuals are listed
in Table 25.10, with'a number of test statistics in Table 25.11, and they are graphed in Fig-
ures 25.6(a~d). From the recursive estimates, we still observe the same four phases: first
(1956/1V-1961/1), wide fluctuations with rough trends (upwards for « and a,, downward
for ay); second (1961/11-1963/11), a period of relative stability; third (1963/111-1966/1V),
a clear trend (downward for a and as, upward for a;); fourth (1967/1-1972/1V), a period
where all coefficients seem to stabilize. On the basis of the one-step recursive residu-
als [Figure 25.6(a)], we find now that none of the test statistics in Table 25.11 nor the
CUSUM and CUSUM of squares tests [Figures 25. 6(e) and (f)] are significant (at level
0.05). In particular, the longest-run test is not conclusive. [Two residuals in the middle
of the longest run previously observed (1963/111-1966/1V) are now below the zero line. ]
Nevertheless, several-steps-ahead recursive residuals [Figures 25.6(b~d)] do not seem to be
aflected in the same way and exhibit basically the same pattern as in the previous experi-
ment; in particular, two- and three-steps-ahead recursive residuals contain continuous runs
of underpredictions covering the period 1963/111-1966/1V. Indeed, the similarity between
Figures 25.4(a) and 25.6(a) (showing one-step-ahead recursive residuals) is striking: we
still note a tendency to overpredict up to 1963/II and a tendency to underpredict over
the period 1963/111-1966/IV, while the rest looks relatively “random”. If we compute
t-statistics over the seperate subperiods corresponding to the seperate phases of the tax
credit, we find results analogous to the ones obtained before (see Table 25.12). The t-
statistic attached to 1962/I-1966/I11 (first application of the tax credit) is positive and
significant at level 0.04 while, for the period 1964/1-1966/111 (alter the repeal of the Long
Amendment), it is significant at level 0.00065. Note again the contrast between the ap-
plication periods of the tax credit (which yield positive t-statistics) and the remainder of
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Table 25.9: Gordondorgenson model: forward recursive estimales (data transformed with
p = 0.6223, capital subtracted): 1956/1-1972/IV. '

Quarter o ay a3
56.03 269.178 . 00266443  -0.0033785
56.04 -633.474  0.0279611 -0.0041437
57.01 44434  0.0029566 -0.0002796
§7.02 -9.307 ' 0.0057092 -0.0006864
57.03 68.847 -0.0004134  0.0001406
57.04 4559  0.0061358 -0.0007076
58.01 -63.204  0.0073406  -0.0009702
58.02 -81.617  0.0063041 -0.0007791
58.03 -76.324  0.0038777 -0.0006091
£8.04 -67.076  0.0003639  -0.0002038
59.01 -65.306 -0.0011968  -0.0000274
59.02 -66.868 -0.0023877  0.0001015
59.03 -60.603 -0.0013361 -0.0000030
59.04 -66.332  .0.0013686  0.0000111
60.01 -51.703  -0.0014486  0.0000271
60.02 -65.690 -0.0015420  0.0000297
60.03 -43.791 -0.0013385  0.0000303
60.04 -31.604 '-0.0014408  0.0000654
61.01 -11.626 -0.0016787  0.0001307 ,
61.02 -4.316 -0.0020039  0.0001809
61.03 -2.846  -0.0019123  0.0001735
61.04 23729 -0.0019261  0.0001733
62.01 -4.591 -0.0019339  0.0001726
62.02 -5.986 -0.0019488  0.0001717
62.03 -5.767 -0.0018010  0.0001565
62.04 .0.979 -0.0014920 . 0.0001302
63.01 4.346  -0.0020012  0.0001969
63.02 5.020 -0.0020984  0.0002089
63.03 0.472 -0.0012382  0.0001047
63.04 -1.676 -0.0007826  0.0000500
64.01 -2.772  -0.0005481  0.0000218
64.02 -3.606 -0.0004066  0.0000045
64.03 -4.662 -0.0005419  0.0000177
64.04 -4.448  -0.0005549  0.0000195
65.01 -5.903  -0.0002692 -0.0000150
65.02 -5.859  .0.0002796  -0.0000137
65.03 -7.456 ° 0.0000680 -0.0000553
65.04 -8.199  0.0002511  -0.0000771
66.01 -9.084  0.0004542 -0.0001013
66.02 .9.629  0.0005739  -0.0001156
66.03 -10.370  0.0008547  -0.0001482
66.04 -10.814  0.0010835 -0.0001745
67.01 -8.858 -0.0001366 -0.0000350
67.02 -9.637  0.0007289 -0.0001329
67.03 -9.487  0.0005972 -0.0001179
67.04 -9.458  0.0006046 -0.0001187
68.01 -9.734  0.0006181 -0.0001096
66.02 -9.439  0.0005808 -0.0001171
68.03 -9.5644  0.0006848 -0.0001167
68.04  -9.523 0.0006818 -0.0001163
69.01 -9.986 00007138 -0.0001318
69.02 -9.832 0.0006638 -0.0001260
69.03 -9.892  0.0006779 -0.0001276
69.04 -9.988  0.0008207 -0.0001437
70.01 -9.773  0.0004730 -0.0001046
70.02 -9.808  ©0.0005361 -0.0001117
70.03 -9.967 ' 0.0006536 -0.0001251
70.04 -9.564  0.0006583 -0.0001137
71.01 -9.678  0.0006456 -0.0001125
71.02 -9.787 _ 0.0004912 -0.0001066
71.03 -9.701  0.0006681 -0.0001150
71.04 -10.012 0.0002613 -0.0000814
72.01 -10.088  0.0002035 -0.0000750
72.02 -9.845  0.0003521 -0.0000812
72.03 -9.461  0.0004706 -0.0001038
72.04 -9.656 | 0.0004686 -0.0001039
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Iigure 25.5: Gordon-Jorgenson model (4 = 0.6223, capital subtracted): recursive esti-
mates.
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Table 25.10: Gordon-Jorgenson model: forward recursive residuals (data transformed with
p = 0.6223, capital subtracted): 1956/1-1972/1V

Quarter I step 2 steps 3 aleps  f sleps 8 sleps
56.04 -0.4199 - - -
57.01 0.8641  0.1812 - - -
57.02 -0.2360 0.7132  0.1499 - -
67.03 06522 0.1718 0.8687 0.3168 -
67.04 -1.0829 -0.2235 -0.3217 0.6768 -
68.01 -1.9936 .2.26290 -0.9667 -0.7152 -
58.02 -0.8332 -1.6766 -1.9926 .0.7974 -
58.03 0.1899 0.0007 -0.6741 -1.2200 0.2449
68.04 06683, 06189 0.6749 0.1889  0.7389
§9.01 0.6272 09089 0.8026 0.8015 0.0256
69.02 07184 0.9022 1.1223  0.9816  0.5414
59.03 -0.7600 -0.4986 -0.2149  0.2369  0.0179
69.04 -0.5613 -0.6071 -0.5808 -0.4781 0.1685
60.01 -0.3321 -0.4330 -0.5716 -0.4760 -0.0714
60.02 0.3859 0.3018 0.1742 -0.0635  0.4872
60.03 -1.2749 -1.1330 -1.1798 -1.2770 -0.8328
60.04 -1.4013 -1.6667 -1.5027 -1.5372 -1.4847
61.01 -2.5474 = -2.8018 -3.0363 -2.8012 -2.7459
61.02 -1.0226 -1.5398 -1.8266 -2.0898 -2.1254
61.03 -0.2222 -0.4303 -1.0725 -1.4242 -1.6397
61.04 0.1430 ' 0.0745 -0.1657 -0.8660 -1.3921
62.01 0.1549 0.1869 0.1104 -0.1498 -1.3990
62.02 0.2718  0.3031 0.3316 0.2379 -1.6604
62.03 -0.1166 -0.0304 0.0190 0.0664 -1.56225
62.04 -1.2664 -1.1632 -0.9974 -0.8782 -1.8958
63.01 -0.9177 -1.3088 -1.2424 -1.0481 -1.0927
63.02 -0.1178 -0.4768 -0.8837 -0.8700 -0.5227
63.03 0.8714 0.7339  0.2743 -0.1395. 0.0708
63.04 05483 0.8849 0.7324 0.2609 0.0214
64.01 0.3913 0.5762 09175  0.7550 -0.0326
64.02 04291 0.5246 0.69041  1.0191 -0.1177
64.03 0.9357 1.0010 1.0654 1.1851  0.0794
64.04 -0.1638 0.0407 0.1380 0.2461  0.1134
65.01  0.9715° 0.9208 1.0886 1.1629  1.3162
65.02 -0.0314 0.1821 0.1465 ©0.3315  1.0884
65.03  1.3211 ¢ 1.2844 1.4728 1.4017 1.7198
65.04 06624 0.9118 0.8809 1.0904 1.3204
66.01  0.9107 1.0193  1.2699  1.2271 1.6876
66.02 0.6385 0.7855  0.8994 1.1506  1.4354
66.03 0.7928 0.8899 1.0479 1.1668  1.5086
66.04 04721 06282 0.7343 09060 1.4817
67.01 -2.3454 -2.1507 -1.8133 -1.7687 -0.9133
67.02 1.0167 0.1404 0.2867 0.4837  1.1923
67.03 -0.3686 0.1141 -0.6157 -0.4467  0.2265
67.04 -0.0860 -0.0986 -0.0645 -0.2878  0.1369
68.01 0.8886 0.8772 0.8678 0.8781 0.9148
68.02 -0.9809 -0.9008 -0.8049 -0.9173 -0.9136
68.03 0.3398 0.2651  0.3367  0.3271  0.1463
68.04 -0.0626 -0.0383 -0.1070 -0.0417 -0.3491
60.01 1.4165 ' 140690 1.4279  1.3582  1.5590
69.02 -0.5310 -0.4080 -0.4097 -0.3839 -0.4400
69.03 0.2166 0.1736 0.2908  0.2849  0.2953
69.04 04084 0.4268 0.3656 0.5220 0.5205
7001 -1.2921 -1.1693 -1.1369 -1.1864 -1.0270
70.02 0.3034 0.0739 0.1626 0.1793  0.2792
70.03  1.3505 1.3714  1.2230 1.2684  1.339%
70.04 -3.6869 -3.6318 -3.5113 -3.5892 -3.4442
71.01 1.0081 0.9063 0.9443 09528  0.9026
71.02 0.7913 0.8227 0.7326 0.7538  0.7647
71.03 -0.4334 -0.3792 -0.3406 -0.4102 -0.3727
71.04 1.3976 1.3088 1.3699 1.4116  1.4399
72.01 0.3310 05957 0.5166 0.5822  0.4998
72.02 -1.0080 -0.9369 -0.6372 -0.7017 -0.6821
72.03 -1.4293 ° -1.5536 -1.4869 -1.2252 -1.2691
72.04 0.6363 05065 0.4086 0.4396 0.6492
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Table 25.11: Gordon-Jorgenson model (4 = 0.6223, capital subtracted): test statistics. @

Type - Indicator Result  p-values
Global location t-test —0.4535 0.6502
tests Number of positive residuals 35 0.6201
Wilcoxon test 1112 0.7962
Runs tests | Number of runs 34 0.6460
Length of longest run 7 0.3892
Serial correlation Modified von Newmann ratio 1.974 > 0.10
tests Rank tests
k Signed-rank tests Sign tests
Sk S}, p-value Sy S}, p-value
i 1 1101 0.4079 0.6833 31 -0.2500 0.9007
2 1117 0.7462 0.4556 35 0.8819 0.4500
3 1106 0.9079 0.3639 30 —0.2540 0.8991
4 818 —0.9158 0.3598 25 —1.408 0.2000
5 866 —0.3607 0.7183 25 —1.291 0.2451
6 1100 1.623 0.1046 34 1.172 0.2976
7 1092 1.831 0.0671 36 1.838 0.0868
8 738 —0.7032 0.4820 25 —0.9272 0.4270
9 973 1.427 0.1534 33 1.336 0.2288
10 748 —0.1843 0.8538 26 -0.4045 0.7877
11 639 —0.8912 0.3728 25  -—-0.5443 0.6835
12 806 0.8012 0.4230 28 —-0.4121

0.7838

T

“Number of residuals: 64.

Table 25.12: t-statistics for subperiods (§ = 0.6223, capital subtracted).

Period t p-value
1962/I~1966/III 2.197 0.0414
1964/1—1966/III 4.697 0.000653
1967/11-1969/1 ,  0.957  0.370
1971/11—1972/1\7 0.105 0.920
Remainder ¢ —1.944 0.0613

“1956/1V-1961/IV, 1966/1V~1967/1, 1969/11-1971/1.




468 Statistical Analysis and Forecasting of Economic Structural Change

1 st b) 2 steps
) (a) 1 step . (b) p
0 — 0
-2 -2
_4 T T T T ‘ T —4 - \ T Y . Y T
56.04 59.04 62.04 65.04 68.04 71.04 57.01 60.01 63.01 66.01 69.01 72.01
(c) 3 steps , (d) 4 steps
2 2
'-
0 0
-2 -2
) -—4 T T T T T —4 T T Y T Y
57.02 60.02 63.02 66.02 69.02 7202 57.03 60.03 63.03 66,03 69.03 72.03
(e) CUSUM test . (f) CUSUM-SQ test

20 / R
1 0.8 |
10 -/

g
e, . taet 0 .
feet e 3 L . . 0 4
. . . * - -4
-4 . . . . .
.
. R

0.6 -

0.2 ]

Al Li T T A 0 .. L4 T T L
56.04 59.04 62.04 65.04 68.04 71.04 56.04 59.04 62.04 6504 68.04 71.04

Figure 25.6: Gordon-Jorgenson model (5 = 0.6223, capital subtracted): recursive residuals
and CUSUM tests.
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Figure 25.7: Gordon-Jorgenson model (A = 0.6223): generalized least squares residuals.

the sample (which yields a negative t-statistic).

Although the evidence is less strong than for the two previous experiments, we continue
to observe a phenomenon of underprediction associated with the first imposition of the
tax credit, and this especially after the repeal of the Long Amendment. For the two
other applications of the tax credit, we do not observe significant effects, although the -
corresponding t-statistics are positive and thus indicate a tendency to underpredict.

25.5 Conclusion

The results obtained in this recursive stability analysis are not as clear and definite as
those we got, for example, for tlie demand for money during the German hyperinfla-
tion [Dufour (1986)]. They are confused, in particular, by the presence of a regressor
(the capital stock) which contains lagged values of the dependent variable. Nevertheless,
one feature remains constant throughout tlie three experiments performed: there appears
;0 be a discontinuity associated with the introduction of the first investment tax credit
1962/1-1966/111), especially after the repeal of the Long Amendement (1964/1). Further-
nore, the discontinuity is a type that leads to underprediction of investment, a behavior
n contrast with the performance of the model before 1962 (where we find a tendency to
werpredict). This phenomenon of underprediction is in agreement with Lucas’s forecast.
Chere is also some indication of a tendency to overpredict investiment over the two other
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Table 25.13: Effective investment tax credit (1961-1972).

Quarter Taz credit Y
61.01 0.0% 0
61.02 0.0% 0
61.03 0.0% 0
61.04 0.0% 0
62.01 3.1% 1
62.02 3.5% 1
62.03 3.9% 1
62.04 4.3% 1
63.01 4.7% 1
63.02 5.1% 1
63.03 65.6% . 1
63.04 5.6% 1
64.01 5.6% 0
64.02 5.6% 0
64.03 5.6% 0
64.04 5.6% 0
65.01 5.6% o
65.02 5.6% 0
65.03 5.6% 0
65.04 5.6% 0
66.01 65.6% 0
66.02 5.6% 0
66.03 5.86% 0
66.04 0.0% 0
67.01 0.0% 0
67.02 5.6% 0
67.03 5.6% 0
67.04 5.6% 0
68.01 5.6% 0
68.02 5.6% 0
68.03 5.6% 0
68.04 5.6% 0
69.01 5.6% 0
69.02 0.0% 0
69.03 0.0% 0
69.04 0.0% 0
70.01 0.0% 0
70.02 0.0% 0
70.03 0.0% 0
70.04 0.0% 0
71.01 0.0% 0
71.02 4.0% 0
71.03 5.0% 0
71.04 5.6% 0
72.01 5.6% 0
72.02 5.6% 0
72.03 65.6% 0
72.04 5.6% 0
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periods where the tax credit was in force (1967/11-1969/I and 1971/11-1972/1V). This is

suggested by the signs of the corresponding t-statistics, but the effects appear too small
to be considered significant.

On the whole, the evidence we found is quite consistent with the type of instabilility
suggested by Lucas (1976), even though it appears difficult to qualify this evidence as
being very “strong”. Of course, one could try to explain the instability detected by a
misspecification other than the one pointed out by Lucas (e.g., the Almon lag scheme

used may be wrong). In any event, whatever the “true” problem may be, it is certainly
useful to know about its existence.
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Notes

[1] Lucas (1976) assumes the tax credit follows a Markovian scheme (which includes as
special cases both a permanent credit and a frequently imnposed but always transitory
credit) and shows that the impact of the tax credit on investment can be much bigger if
it is viewed as transitory rather than permanent. Indeed, under reasonable values of the
parameters, the ratio of the actual to predicted effect may be in the range of 4 to 7.

[2] The Long Amendment forbade firms to use for depreciation purposes the part of the
cost of a capital asset financed by the tax credit.

[3] Gordon and Jorgenson (1976, p.278). We list in Table 25.13 the “effective tax credit”
(1961-1972) as measured by these authors. The “effective tax credit” could be nonzero
longer than the nominal credit because, even after the credit was suspended, firis could
still use a credit to which they were entitled but did not use when it was in force.

[4] Though scaled recursive residuals are similar to ¢-statistics, one can check easily that
they do not generally follow Student t-distributions. Note also that 2 tends to overes-
timate o® when structural change is present [see Dufour (1982, pp. 60-61)]: clearly, this
can make a number of important residuals look “small” and should be discounted when
interpreting the results.

[6] Of course, given that I; is a formn of lagged dependent variable and if disturbance are
autocorrelated, least squares coeflicient estinates could be inconsistent. Nevertheless, the
appearance of “autocorrelation” may be a symptom of an instability problem and thus
an experiment without such a correction seems indicated. In any case, this will allow us
to illustrate how a misspecification can lead to a parameter instability phenomenon in a
recursive estimation experiment.

[6] Eight-steps-ahead recursive residuals are not graphed. The test statistics in Table 25.3,
as well as those in Tables 25.7 and 25.11, are based on forward one-step-ahead recursive
residuals. We report systematically three categories of tests (general tests, runs tests,

and serial dependence tests) that can be compared and cross-checked [see Dufour (1982,
Section 4)]. '

[7] For a listing of the variables T'C, (effective tax credit rate) and U, (dummy for Long
Amendment) from 1961/I to 1972/IV, see Table 25.13.

[8] Recursive residuals obtained in this way do not enjoy exactly their convenient theoret-
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ical properties (fqr the true value of p is unknown). However, if /5 is consistent estimate of
p, we can still expect it will fall in the neighborhood of the true value of p and thus provide
approximately valid test statistics. But this is not guaranteed. In view of this difficulty, we
performed somne sensitivity analysis by considering models transformed by different values
of p inside a grid in the neighborhood of p. In all cases we obtained essentially the same
conclusions. For further discussions of this problem, see Dufour (1982; Section 2.5).

[9] It is interesting to compare the residuals in Figure 25.4(a) (recursive) with the corre-
sponding generalized least squares residuals in Figure 25.7 and to see how more revealing
recursive residuals are.






